1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
|
/*
* Copyright (C) 2000-2001 NCSA
* All rights reserved.
*
* Programmer: Quincey Koziol <koziol@ncsa.uiuc.edu>
* Thursday, September 28, 2000
*
* Purpose: Contiguous dataset I/O functions. These routines are similar
* to the H5F_istore_* routines and really only abstract away dealing
* with the data sieve buffer from the H5F_arr_read/write and
* H5F_seg_read/write.
*
*/
#define H5F_PACKAGE /*suppress error about including H5Fpkg */
#include "H5private.h" /* Generic Functions */
#include "H5Dprivate.h" /* Dataset functions */
#include "H5Eprivate.h" /* Error handling */
#include "H5Fpkg.h"
#include "H5FDprivate.h" /*file driver */
#include "H5FLprivate.h" /*Free Lists */
#include "H5Oprivate.h" /* Object headers */
#include "H5Pprivate.h" /* Property lists */
#include "H5Vprivate.h" /* Vector and array functions */
/* MPIO & MPIPOSIX drivers needed for special checks */
#include "H5FDmpio.h"
#include "H5FDmpiposix.h"
/* Interface initialization */
#define PABLO_MASK H5Fcontig_mask
static int interface_initialize_g = 0;
#define INTERFACE_INIT NULL
/* Declare a PQ free list to manage the sieve buffer information */
H5FL_BLK_DEFINE(sieve_buf);
/* Declare the free list to manage blocks of non-zero fill-value data */
H5FL_BLK_DEFINE_STATIC(non_zero_fill);
/* Declare the free list to manage blocks of zero fill-value data */
H5FL_BLK_DEFINE_STATIC(zero_fill);
/*-------------------------------------------------------------------------
* Function: H5F_contig_fill
*
* Purpose: Write fill values to a contiguously stored dataset.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* August 22, 2002
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5F_contig_fill(H5F_t *f, hid_t dxpl_id, struct H5O_layout_t *layout,
struct H5P_genplist_t *dc_plist, const struct H5O_efl_t *efl,
const struct H5S_t *space,
const struct H5O_fill_t *fill, size_t elmt_size)
{
hssize_t snpoints; /* Number of points in space (for error checking) */
size_t npoints; /* Number of points in space */
size_t ptsperbuf; /* Maximum # of points which fit in the buffer */
size_t bufsize=64*1024; /* Size of buffer to write */
size_t size; /* Current # of points to write */
hsize_t addr; /* Offset in dataset */
void *buf = NULL; /* Buffer for fill value writing */
#ifdef H5_HAVE_PARALLEL
MPI_Comm mpi_comm=MPI_COMM_NULL; /* MPI communicator for file */
int mpi_rank=(-1); /* This process's rank */
int mpi_size=(-1); /* Total # of processes */
int mpi_round=0; /* Current process responsible for I/O */
int mpi_code; /* MPI return code */
unsigned blocks_written=0; /* Flag to indicate that chunk was actually written */
unsigned using_mpi=0; /* Flag to indicate that the file is being accessed with an MPI-capable file driver */
#endif /* H5_HAVE_PARALLEL */
int non_zero_fill_f=(-1); /* Indicate that a non-zero fill-value was used */
herr_t ret_value=SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(H5F_contig_fill, FAIL);
/* Check args */
assert(f);
assert(TRUE==H5P_isa_class(dxpl_id,H5P_DATASET_XFER));
assert(layout && H5D_CONTIGUOUS==layout->type);
assert(layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS);
assert(H5F_addr_defined(layout->addr));
assert(dc_plist!=NULL);
assert(space);
assert(elmt_size>0);
#ifdef H5_HAVE_PARALLEL
/* Retrieve up MPI parameters */
if(IS_H5FD_MPIO(f)) {
/* Get the MPI communicator */
if (MPI_COMM_NULL == (mpi_comm=H5FD_mpio_communicator(f->shared->lf)))
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI communicator");
/* Get the MPI rank & size */
if ((mpi_rank=H5FD_mpio_mpi_rank(f->shared->lf))<0)
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI rank");
if ((mpi_size=H5FD_mpio_mpi_size(f->shared->lf))<0)
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI size");
/* Set the MPI-capable file driver flag */
using_mpi=1;
} /* end if */
else {
if(IS_H5FD_MPIPOSIX(f)) {
/* Get the MPI communicator */
if (MPI_COMM_NULL == (mpi_comm=H5FD_mpiposix_communicator(f->shared->lf)))
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI communicator");
/* Get the MPI rank & size */
if ((mpi_rank=H5FD_mpiposix_mpi_rank(f->shared->lf))<0)
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI rank");
if ((mpi_size=H5FD_mpiposix_mpi_size(f->shared->lf))<0)
HGOTO_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "Can't retrieve MPI size");
/* Set the MPI-capable file driver flag */
using_mpi=1;
} /* end if */
} /* end else */
#endif /* H5_HAVE_PARALLEL */
/* Get the number of elements in the dataset's dataspace */
snpoints = H5S_get_simple_extent_npoints(space);
assert(snpoints>=0);
H5_ASSIGN_OVERFLOW(npoints,snpoints,hssize_t,size_t);
/* If fill value is not library default, use it to set the element size */
if(fill->buf)
elmt_size=fill->size;
/*
* Fill the entire current extent with the fill value. We can do
* this quite efficiently by making sure we copy the fill value
* in relatively large pieces.
*/
ptsperbuf = MAX(1, bufsize/elmt_size);
bufsize = ptsperbuf*elmt_size;
/* Fill the buffer with the user's fill value */
if(fill->buf) {
/* Allocate temporary buffer */
if ((buf=H5FL_BLK_MALLOC(non_zero_fill,bufsize))==NULL)
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for fill buffer");
H5V_array_fill(buf, fill->buf, elmt_size, ptsperbuf);
/* Indicate that a non-zero fill buffer was used */
non_zero_fill_f=1;
} /* end if */
else { /* Fill the buffer with the default fill value */
htri_t buf_avail;
/* Check if there is an already zeroed out buffer available */
buf_avail=H5FL_BLK_AVAIL(zero_fill,bufsize);
assert(buf_avail!=FAIL);
/* Allocate temporary buffer (zeroing it if no buffer is available) */
if(!buf_avail)
buf=H5FL_BLK_CALLOC(zero_fill,bufsize);
else
buf=H5FL_BLK_MALLOC(zero_fill,bufsize);
if(buf==NULL)
HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for fill buffer");
/* Indicate that a zero fill buffer was used */
non_zero_fill_f=0;
} /* end else */
/* Start at the beginning of the dataset */
addr = 0;
/* Loop through writing the fill value to the dataset */
while (npoints>0) {
size = MIN(ptsperbuf, npoints) * elmt_size;
#ifdef H5_HAVE_PARALLEL
/* Check if this file is accessed with an MPI-capable file driver */
if(using_mpi) {
/* Round-robin write the chunks out from only one process */
if(mpi_round==mpi_rank) {
if (H5F_seq_write(f, dxpl_id, layout, dc_plist, efl, space,
elmt_size, size, addr, buf)<0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to write fill value to dataset");
} /* end if */
mpi_round=(++mpi_round)%mpi_size;
/* Indicate that blocks are being written */
blocks_written=1;
} /* end if */
else {
#endif /* H5_HAVE_PARALLEL */
if (H5F_seq_write(f, dxpl_id, layout, dc_plist, efl, space,
elmt_size, size, addr, buf)<0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINIT, FAIL, "unable to write fill value to dataset");
#ifdef H5_HAVE_PARALLEL
} /* end else */
#endif /* H5_HAVE_PARALLEL */
npoints -= MIN(ptsperbuf, npoints);
addr += size;
} /* end while */
#ifdef H5_HAVE_PARALLEL
/* Only need to block at the barrier if we actually wrote fill values */
/* And if we are using an MPI-capable file driver */
if(using_mpi && blocks_written) {
/* Wait at barrier to avoid race conditions where some processes are
* still writing out fill values and other processes race ahead to data
* in, getting bogus data.
*/
if (MPI_SUCCESS != (mpi_code=MPI_Barrier(mpi_comm)))
HMPI_GOTO_ERROR(FAIL, "MPI_Barrier failed", mpi_code);
} /* end if */
#endif /* H5_HAVE_PARALLEL */
done:
/* Free the buffer for fill values */
if (buf) {
assert(non_zero_fill_f>=0);
if(non_zero_fill_f)
H5FL_BLK_FREE(non_zero_fill,buf);
else
H5FL_BLK_FREE(zero_fill,buf);
} /* end if */
FUNC_LEAVE(ret_value);
}
/*-------------------------------------------------------------------------
* Function: H5F_contig_read
*
* Purpose: Reads some data from a dataset into a buffer.
* The data is contiguous. The address is relative to the base
* address for the file.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Thursday, September 28, 2000
*
* Modifications:
* Re-written in terms of the new readv call, QAK, 7/7/01
*
*-------------------------------------------------------------------------
*/
herr_t
H5F_contig_read(H5F_t *f, hsize_t max_data, H5FD_mem_t type, haddr_t addr,
size_t size, hid_t dxpl_id, void *buf/*out*/)
{
hsize_t offset=0; /* Offset for vector call */
herr_t ret_value=SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(H5F_contig_read, FAIL);
/* Check args */
assert(f);
assert(buf);
if (H5F_contig_readv(f, max_data, type, addr, 1, &size, &offset, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "vector read failed");
done:
FUNC_LEAVE(ret_value);
} /* end H5F_contig_read() */
/*-------------------------------------------------------------------------
* Function: H5F_contig_write
*
* Purpose: Writes some data from a dataset into a buffer.
* The data is contiguous. The address is relative to the base
* address for the file.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Thursday, September 28, 2000
*
* Modifications:
* Re-written in terms of the new readv call, QAK, 7/7/01
*
*-------------------------------------------------------------------------
*/
herr_t
H5F_contig_write(H5F_t *f, hsize_t max_data, H5FD_mem_t type, haddr_t addr, size_t size,
hid_t dxpl_id, const void *buf)
{
hsize_t offset=0; /* Offset for vector call */
herr_t ret_value=SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(H5F_contig_write, FAIL);
assert (f);
assert (buf);
if (H5F_contig_writev(f, max_data, type, addr, 1, &size, &offset, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "vector write failed");
done:
FUNC_LEAVE(ret_value);
} /* end H5F_contig_write() */
/*-------------------------------------------------------------------------
* Function: H5F_contig_readv
*
* Purpose: Reads some data vectors from a dataset into a buffer.
* The data is contiguous. The address is the start of the dataset,
* relative to the base address for the file and the offsets and
* sequence lengths are in bytes.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Friday, May 3, 2001
*
* Notes:
* Offsets in the sequences must be monotonically increasing
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5F_contig_readv(H5F_t *f, hsize_t _max_data, H5FD_mem_t type, haddr_t _addr,
size_t nseq, size_t size_arr[], hsize_t offset_arr[], hid_t dxpl_id,
void *_buf/*out*/)
{
unsigned char *buf=(unsigned char *)_buf; /* Pointer to buffer to fill */
haddr_t abs_eoa; /* Absolute end of file address */
haddr_t rel_eoa; /* Relative end of file address */
haddr_t addr; /* Actual address to read */
hsize_t max_data; /* Actual maximum size of data to cache */
size_t size; /* Size of sequence in bytes */
size_t u; /* Counting variable */
#ifndef SLOW_WAY
size_t max_seq; /* Maximum sequence to copy */
haddr_t temp_end; /* Temporary end of buffer variable */
size_t max_search; /* Maximum number of sequences to search */
size_t mask; /* Bit mask */
int bit_loc; /* Bit location of the leftmost '1' in max_search */
size_t *size_arr_p; /* Pointer into the size array */
hsize_t *offset_arr_p; /* Pointer into the offset array */
#endif /* SLOW_WAY */
herr_t ret_value=SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(H5F_contig_readv, FAIL);
/* Check args */
assert(f);
assert(buf);
/* Check if data sieving is enabled */
if(f->shared->lf->feature_flags&H5FD_FEAT_DATA_SIEVE) {
/* Outer loop, guarantees working through all the sequences */
for(u=0; u<nseq; ) {
/* Try reading from the data sieve buffer */
if(f->shared->sieve_buf) {
haddr_t sieve_start, sieve_end; /* Start & end locations of sieve buffer */
haddr_t contig_end; /* End locations of block to write */
size_t sieve_size; /* size of sieve buffer */
/* Stash local copies of these value */
sieve_start=f->shared->sieve_loc;
sieve_size=f->shared->sieve_size;
sieve_end=sieve_start+sieve_size;
/* Next-outer loop works through sequences as fast as possible */
for(; u<nseq; ) {
size=size_arr[u];
addr=_addr+offset_arr[u];
/* Compute end of sequence to retrieve */
contig_end=addr+size-1;
/* If entire read is within the sieve buffer, read it from the buffer */
if(addr>=sieve_start && contig_end<sieve_end) {
unsigned char *base_sieve_buf=f->shared->sieve_buf+(_addr-sieve_start);
unsigned char *temp_sieve_buf;
haddr_t temp_addr=_addr-1; /* Temporary address */
#ifdef SLOW_WAY
/* Retrieve all the sequences out of the current sieve buffer */
while(contig_end<sieve_end) {
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+offset_arr[u];
/* Grab the data out of the buffer */
HDmemcpy(buf,temp_sieve_buf,size_arr[u]);
/* Increment offset in buffer */
buf += size_arr[u];
/* Increment sequence number, check for finished with sequences */
if((++u) >= nseq)
break;
/* Re-compute end of sequence to retrieve */
contig_end=temp_addr+offset_arr[u]+size_arr[u];
} /* end while */
#else /* SLOW_WAY */
/* Find log2(n) where n is the number of elements to search */
/* Set initial parameters */
mask=(size_t)0xff<<((sizeof(size_t)-1)*8); /* Get a mask for the leftmost byte */
max_search=((nseq-1)-u)+1; /* Compute 'n' for the log2 */
assert(max_search>0); /* Sanity check */
bit_loc=(sizeof(size_t)*8)-1; /* Initial bit location */
/* Search for the first byte with a bit set */
while((max_search & mask)==0) {
mask>>=8;
bit_loc-=8;
} /* end while */
/* Switch to searching for a bit */
mask=1<<bit_loc;
while((max_search & mask)==0) {
mask>>=1;
bit_loc--;
} /* end while */
/* location of the leftmost bit, plus 1, is log2(n) */
max_seq=bit_loc+1;
/* Don't walk off the array */
max_seq=MIN(u+max_seq,nseq-1);
/* Determine if a linear search is faster than a binary search */
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
if(temp_end>=sieve_end) {
/* Linear search is faster */
/* Set the initial search values */
max_seq=u;
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
/* Search for the first sequence ending greater than the sieve buffer end */
while(temp_end<sieve_end) {
if(++max_seq>=nseq)
break;
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
} /* end while */
/* Adjust back one element */
max_seq--;
} /* end if */
else {
size_t lo,hi; /* Low and high bounds for binary search */
unsigned found=0; /* Flag to indicate bounds have been found */
/* Binary search is faster */
/* Find the value 'u' which will be beyond the end of the sieve buffer */
lo=u;
hi=nseq-1;
max_seq=(lo+hi)/2;
while(!found) {
/* Get the address of the end of sequence for the 'max_seq' position */
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
/* Current high bound is too large */
if(temp_end>=sieve_end) {
if((lo+1)<hi) {
hi=max_seq;
max_seq=(lo+hi)/2;
} /* end if */
else {
found=1;
} /* end else */
} /* end if */
/* Current low bound is too small */
else {
if((lo+1)<hi) {
lo=max_seq;
max_seq=(lo+hi+1)/2;
} /* end if */
else {
found=1;
} /* end else */
} /* end else */
} /* end while */
/* Check for non-exact match */
if(lo!=hi) {
temp_end=temp_addr+offset_arr[hi]+size_arr[hi];
if(temp_end<sieve_end)
max_seq=hi;
else
max_seq=lo;
} /* end if */
} /* end else */
/* Set the pointers to the correct locations in the offset & size arrays */
size_arr_p=&size_arr[u];
offset_arr_p=&offset_arr[u];
#ifdef NO_DUFFS_DEVICE
/* Retrieve all the sequences out of the current sieve buffer */
while(u<=max_seq) {
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(buf,temp_sieve_buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
} /* end while */
#else /* NO_DUFFS_DEVICE */
{
size_t seq_count;
seq_count=(max_seq-u)+1;
switch (seq_count % 4) {
case 0:
do
{
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(buf,temp_sieve_buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
case 3:
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(buf,temp_sieve_buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
case 2:
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(buf,temp_sieve_buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
case 1:
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(buf,temp_sieve_buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
} while (u<=max_seq);
} /* end switch */
}
#endif /* NO_DUFFS_DEVICE */
#endif /* SLOW_WAY */
} /* end if */
/* Entire request is not within this data sieve buffer */
else {
/* Check if we can actually hold the I/O request in the sieve buffer */
if(size>f->shared->sieve_buf_size) {
/* Check for any overlap with the current sieve buffer */
if((sieve_start>=addr && sieve_start<(contig_end+1))
|| ((sieve_end-1)>=addr && (sieve_end-1)<(contig_end+1))) {
/* Flush the sieve buffer, if it's dirty */
if(f->shared->sieve_dirty) {
/* Write to file */
if (H5F_block_write(f, H5FD_MEM_DRAW, sieve_start, sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "block write failed");
/* Reset sieve buffer dirty flag */
f->shared->sieve_dirty=0;
} /* end if */
} /* end if */
/* Read directly into the user's buffer */
if (H5F_block_read(f, type, addr, size, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "block read failed");
} /* end if */
/* Element size fits within the buffer size */
else {
/* Flush the sieve buffer if it's dirty */
if(f->shared->sieve_dirty) {
/* Write to file */
if (H5F_block_write(f, H5FD_MEM_DRAW, sieve_start, sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "block write failed");
/* Reset sieve buffer dirty flag */
f->shared->sieve_dirty=0;
} /* end if */
/* Determine the new sieve buffer size & location */
f->shared->sieve_loc=addr;
/* Make certain we don't read off the end of the file */
if (HADDR_UNDEF==(abs_eoa=H5FD_get_eoa(f->shared->lf)))
HGOTO_ERROR(H5E_FILE, H5E_CANTOPENFILE, FAIL, "unable to determine file size");
/* Adjust absolute EOA address to relative EOA address */
rel_eoa=abs_eoa-f->shared->base_addr;
/* Only need this when resizing sieve buffer */
max_data=_max_data-offset_arr[u];
/* Compute the size of the sieve buffer */
/* Don't read off the end of the file, don't read past the end of the data element and don't read more than the buffer size */
H5_ASSIGN_OVERFLOW(f->shared->sieve_size,MIN(rel_eoa-f->shared->sieve_loc,MIN(max_data,f->shared->sieve_buf_size)),hsize_t,size_t);
/* Update local copies of sieve information */
sieve_start=f->shared->sieve_loc;
sieve_size=f->shared->sieve_size;
sieve_end=sieve_start+sieve_size;
/* Read the new sieve buffer */
if (H5F_block_read(f, type, f->shared->sieve_loc, f->shared->sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "block read failed");
/* Reset sieve buffer dirty flag */
f->shared->sieve_dirty=0;
/* Grab the data out of the buffer (must be first piece of data in buffer ) */
HDmemcpy(buf,f->shared->sieve_buf,size);
} /* end else */
/* Increment offset in buffer */
buf += size_arr[u];
/* Increment sequence number */
u++;
} /* end else */
} /* end for */
} /* end if */
/* No data sieve buffer yet, go allocate one */
else {
/* Set up the buffer parameters */
size=size_arr[u];
addr=_addr+offset_arr[u];
max_data=_max_data-offset_arr[u];
/* Check if we can actually hold the I/O request in the sieve buffer */
if(size>f->shared->sieve_buf_size) {
if (H5F_block_read(f, type, addr, size, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "block read failed");
} /* end if */
else {
/* Allocate room for the data sieve buffer */
if (NULL==(f->shared->sieve_buf=H5FL_BLK_MALLOC(sieve_buf,f->shared->sieve_buf_size)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed");
/* Determine the new sieve buffer size & location */
f->shared->sieve_loc=addr;
/* Make certain we don't read off the end of the file */
if (HADDR_UNDEF==(abs_eoa=H5FD_get_eoa(f->shared->lf)))
HGOTO_ERROR(H5E_FILE, H5E_CANTOPENFILE, FAIL, "unable to determine file size");
/* Adjust absolute EOA address to relative EOA address */
rel_eoa=abs_eoa-f->shared->base_addr;
/* Compute the size of the sieve buffer */
H5_ASSIGN_OVERFLOW(f->shared->sieve_size,MIN(rel_eoa-f->shared->sieve_loc,MIN(max_data,f->shared->sieve_buf_size)),hsize_t,size_t);
/* Read the new sieve buffer */
if (H5F_block_read(f, type, f->shared->sieve_loc, f->shared->sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "block read failed");
/* Reset sieve buffer dirty flag */
f->shared->sieve_dirty=0;
/* Grab the data out of the buffer (must be first piece of data in buffer ) */
HDmemcpy(buf,f->shared->sieve_buf,size);
} /* end else */
/* Increment offset in buffer */
buf += size_arr[u];
/* Increment sequence number */
u++;
} /* end else */
} /* end for */
} /* end if */
else {
/* Work through all the sequences */
for(u=0; u<nseq; u++) {
size=size_arr[u];
addr=_addr+offset_arr[u];
if (H5F_block_read(f, type, addr, size, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "block read failed");
/* Increment offset in buffer */
buf += size_arr[u];
} /* end for */
} /* end else */
done:
FUNC_LEAVE(ret_value);
} /* end H5F_contig_readv() */
/*-------------------------------------------------------------------------
* Function: H5F_contig_writev
*
* Purpose: Writes some data vectors into a dataset from a buffer.
* The data is contiguous. The address is the start of the dataset,
* relative to the base address for the file and the offsets and
* sequence lengths are in bytes.
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Thursday, July 5, 2001
*
* Notes:
* Offsets in the sequences must be monotonically increasing
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5F_contig_writev(H5F_t *f, hsize_t _max_data, H5FD_mem_t type, haddr_t _addr,
size_t nseq, size_t size_arr[], hsize_t offset_arr[], hid_t dxpl_id,
const void *_buf)
{
const unsigned char *buf=_buf; /* Pointer to buffer to fill */
haddr_t abs_eoa; /* Absolute end of file address */
haddr_t rel_eoa; /* Relative end of file address */
haddr_t addr; /* Actual address to read */
hsize_t max_data; /* Actual maximum size of data to cache */
size_t size; /* Size of sequence in bytes */
size_t u; /* Counting variable */
#ifndef SLOW_WAY
size_t max_seq; /* Maximum sequence to copy */
haddr_t temp_end; /* Temporary end of buffer variable */
size_t max_search; /* Maximum number of sequences to search */
size_t mask; /* Bit mask */
int bit_loc; /* Bit location of the leftmost '1' in max_search */
size_t *size_arr_p; /* Pointer into the size array */
hsize_t *offset_arr_p; /* Pointer into the offset array */
#endif /* SLOW_WAY */
herr_t ret_value=SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(H5F_contig_writev, FAIL);
/* Check args */
assert(f);
assert(buf);
/* Check if data sieving is enabled */
if(f->shared->lf->feature_flags&H5FD_FEAT_DATA_SIEVE) {
/* Outer loop, guarantees working through all the sequences */
for(u=0; u<nseq; ) {
/* Try writing into the data sieve buffer */
if(f->shared->sieve_buf) {
haddr_t sieve_start, sieve_end; /* Start & end locations of sieve buffer */
haddr_t contig_end; /* End locations of block to write */
size_t sieve_size; /* size of sieve buffer */
/* Stash local copies of these value */
sieve_start=f->shared->sieve_loc;
sieve_size=f->shared->sieve_size;
sieve_end=sieve_start+sieve_size;
/* Next-outer loop works through sequences as fast as possible */
for(; u<nseq; ) {
size=size_arr[u];
addr=_addr+offset_arr[u];
/* Compute end of sequence to retrieve */
contig_end=addr+size-1;
/* If entire write is within the sieve buffer, write it to the buffer */
if(addr>=sieve_start && contig_end<sieve_end) {
unsigned char *base_sieve_buf=f->shared->sieve_buf+(_addr-sieve_start);
unsigned char *temp_sieve_buf;
haddr_t temp_addr=_addr-1; /* Temporary address */
#ifdef SLOW_WAY
/* Retrieve all the sequences out of the current sieve buffer */
while(contig_end<sieve_end) {
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+offset_arr[u];
/* Grab the data out of the buffer */
HDmemcpy(temp_sieve_buf,buf,size_arr[u]);
/* Increment offset in buffer */
buf += size_arr[u];
/* Increment sequence number, check for finished with sequences */
if((++u) >= nseq)
break;
/* Re-compute end of sequence to retrieve */
contig_end=temp_addr+offset_arr[u]+size_arr[u];
} /* end while */
#else /* SLOW_WAY */
/* Find log2(n) where n is the number of elements to search */
/* Set initial parameters */
mask=(size_t)0xff<<((sizeof(size_t)-1)*8); /* Get a mask for the leftmost byte */
max_search=((nseq-1)-u)+1; /* Compute 'n' for the log2 */
assert(max_search>0); /* Sanity check */
bit_loc=(sizeof(size_t)*8)-1; /* Initial bit location */
/* Search for the first byte with a bit set */
while((max_search & mask)==0) {
mask>>=8;
bit_loc-=8;
} /* end while */
/* Switch to searching for a bit */
mask=1<<bit_loc;
while((max_search & mask)==0) {
mask>>=1;
bit_loc--;
} /* end while */
/* location of the leftmost bit, plus 1, is log2(n) */
max_seq=bit_loc+1;
/* Don't walk off the array */
max_seq=MIN(u+max_seq,nseq-1);
/* Determine if a linear search is faster than a binary search */
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
if(temp_end>=sieve_end) {
/* Linear search is faster */
/* Set the initial search values */
max_seq=u;
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
/* Search for the first sequence ending greater than the sieve buffer end */
while(temp_end<sieve_end) {
if(++max_seq>=nseq)
break;
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
} /* end while */
/* Adjust back one element */
max_seq--;
} /* end if */
else {
size_t lo,hi; /* Low and high bounds for binary search */
unsigned found=0; /* Flag to indicate bounds have been found */
/* Binary search is faster */
/* Find the value 'u' which will be beyond the end of the sieve buffer */
lo=u;
hi=nseq-1;
max_seq=(lo+hi)/2;
while(!found) {
/* Get the address of the end of sequence for the 'max_seq' position */
temp_end=temp_addr+offset_arr[max_seq]+size_arr[max_seq];
/* Current high bound is too large */
if(temp_end>=sieve_end) {
if((lo+1)<hi) {
hi=max_seq;
max_seq=(lo+hi)/2;
} /* end if */
else {
found=1;
} /* end else */
} /* end if */
/* Current low bound is too small */
else {
if((lo+1)<hi) {
lo=max_seq;
max_seq=(lo+hi+1)/2;
} /* end if */
else {
found=1;
} /* end else */
} /* end else */
} /* end while */
/* Check for non-exact match */
if(lo!=hi) {
temp_end=temp_addr+offset_arr[hi]+size_arr[hi];
if(temp_end<sieve_end)
max_seq=hi;
else
max_seq=lo;
} /* end if */
} /* end else */
/* Set the pointers to the correct locations in the offset & size arrays */
size_arr_p=&size_arr[u];
offset_arr_p=&offset_arr[u];
#ifdef NO_DUFFS_DEVICE
/* Retrieve all the sequences out of the current sieve buffer */
while(u<=max_seq) {
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(temp_sieve_buf,buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
} /* end while */
#else /* NO_DUFFS_DEVICE */
{
size_t seq_count;
seq_count=(max_seq-u)+1;
switch (seq_count % 4) {
case 0:
do
{
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(temp_sieve_buf,buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
case 3:
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(temp_sieve_buf,buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
case 2:
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(temp_sieve_buf,buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
case 1:
/* Set the location within the sieve buffer to the correct offset */
temp_sieve_buf=base_sieve_buf+*offset_arr_p++;
/* Grab the data out of the buffer */
HDmemcpy(temp_sieve_buf,buf,*size_arr_p);
/* Increment offset in buffer */
buf += *size_arr_p++;
/* Increment the offset in the array */
u++;
} while (u<=max_seq);
} /* end switch */
}
#endif /* NO_DUFFS_DEVICE */
#endif /* SLOW_WAY */
/* Set sieve buffer dirty flag */
f->shared->sieve_dirty=1;
} /* end if */
/* Entire request is not within this data sieve buffer */
else {
/* Check if we can actually hold the I/O request in the sieve buffer */
if(size>f->shared->sieve_buf_size) {
/* Check for any overlap with the current sieve buffer */
if((sieve_start>=addr && sieve_start<(contig_end+1))
|| ((sieve_end-1)>=addr && (sieve_end-1)<(contig_end+1))) {
/* Flush the sieve buffer, if it's dirty */
if(f->shared->sieve_dirty) {
/* Write to file */
if (H5F_block_write(f, H5FD_MEM_DRAW, sieve_start, sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "block write failed");
/* Reset sieve buffer dirty flag */
f->shared->sieve_dirty=0;
} /* end if */
/* Force the sieve buffer to be re-read the next time */
f->shared->sieve_loc=HADDR_UNDEF;
f->shared->sieve_size=0;
} /* end if */
/* Write directly from the user's buffer */
if (H5F_block_write(f, type, addr, size, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "block write failed");
} /* end if */
/* Element size fits within the buffer size */
else {
/* Check if it is possible to (exactly) prepend or append to existing (dirty) sieve buffer */
if(((addr+size)==sieve_start || addr==sieve_end) &&
(size+sieve_size)<=f->shared->sieve_buf_size &&
f->shared->sieve_dirty) {
/* Prepend to existing sieve buffer */
if((addr+size)==sieve_start) {
/* Move existing sieve information to correct location */
HDmemmove(f->shared->sieve_buf+size,f->shared->sieve_buf,sieve_size);
/* Copy in new information (must be first in sieve buffer) */
HDmemcpy(f->shared->sieve_buf,buf,size);
/* Adjust sieve location */
f->shared->sieve_loc=addr;
} /* end if */
/* Append to existing sieve buffer */
else {
/* Copy in new information */
HDmemcpy(f->shared->sieve_buf+sieve_size,buf,size);
} /* end else */
/* Adjust sieve size */
f->shared->sieve_size += size;
/* Update local copies of sieve information */
sieve_start=f->shared->sieve_loc;
sieve_size=f->shared->sieve_size;
sieve_end=sieve_start+sieve_size;
} /* end if */
/* Can't add the new data onto the existing sieve buffer */
else {
/* Flush the sieve buffer if it's dirty */
if(f->shared->sieve_dirty) {
/* Write to file */
if (H5F_block_write(f, H5FD_MEM_DRAW, sieve_start, sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "block write failed");
/* Reset sieve buffer dirty flag */
f->shared->sieve_dirty=0;
} /* end if */
/* Determine the new sieve buffer size & location */
f->shared->sieve_loc=addr;
/* Make certain we don't read off the end of the file */
if (HADDR_UNDEF==(abs_eoa=H5FD_get_eoa(f->shared->lf)))
HGOTO_ERROR(H5E_FILE, H5E_CANTOPENFILE, FAIL, "unable to determine file size");
/* Adjust absolute EOA address to relative EOA address */
rel_eoa=abs_eoa-f->shared->base_addr;
/* Only need this when resizing sieve buffer */
max_data=_max_data-offset_arr[u];
/* Compute the size of the sieve buffer */
/* Don't read off the end of the file, don't read past the end of the data element and don't read more than the buffer size */
H5_ASSIGN_OVERFLOW(f->shared->sieve_size,MIN(rel_eoa-f->shared->sieve_loc,MIN(max_data,f->shared->sieve_buf_size)),hsize_t,size_t);
/* Update local copies of sieve information */
sieve_start=f->shared->sieve_loc;
sieve_size=f->shared->sieve_size;
sieve_end=sieve_start+sieve_size;
/* Check if there is any point in reading the data from the file */
if(f->shared->sieve_size>size) {
/* Read the new sieve buffer */
if (H5F_block_read(f, type, f->shared->sieve_loc, f->shared->sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "block read failed");
} /* end if */
/* Grab the data out of the buffer (must be first piece of data in buffer ) */
HDmemcpy(f->shared->sieve_buf,buf,size);
/* Set sieve buffer dirty flag */
f->shared->sieve_dirty=1;
} /* end else */
} /* end else */
/* Increment offset in buffer */
buf += size_arr[u];
/* Increment sequence number */
u++;
} /* end else */
} /* end for */
} /* end if */
/* No data sieve buffer yet, go allocate one */
else {
/* Set up the buffer parameters */
size=size_arr[u];
addr=_addr+offset_arr[u];
max_data=_max_data-offset_arr[u];
/* Check if we can actually hold the I/O request in the sieve buffer */
if(size>f->shared->sieve_buf_size) {
if (H5F_block_write(f, type, addr, size, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "block write failed");
} /* end if */
else {
/* Allocate room for the data sieve buffer */
if (NULL==(f->shared->sieve_buf=H5FL_BLK_MALLOC(sieve_buf,f->shared->sieve_buf_size)))
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed");
/* Determine the new sieve buffer size & location */
f->shared->sieve_loc=addr;
/* Make certain we don't read off the end of the file */
if (HADDR_UNDEF==(abs_eoa=H5FD_get_eoa(f->shared->lf)))
HGOTO_ERROR(H5E_FILE, H5E_CANTOPENFILE, FAIL, "unable to determine file size");
/* Adjust absolute EOA address to relative EOA address */
rel_eoa=abs_eoa-f->shared->base_addr;
/* Compute the size of the sieve buffer */
H5_ASSIGN_OVERFLOW(f->shared->sieve_size,MIN(rel_eoa-f->shared->sieve_loc,MIN(max_data,f->shared->sieve_buf_size)),hsize_t,size_t);
/* Check if there is any point in reading the data from the file */
if(f->shared->sieve_size>size) {
/* Read the new sieve buffer */
if (H5F_block_read(f, type, f->shared->sieve_loc, f->shared->sieve_size, dxpl_id, f->shared->sieve_buf)<0)
HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL, "block read failed");
} /* end if */
/* Grab the data out of the buffer (must be first piece of data in buffer ) */
HDmemcpy(f->shared->sieve_buf,buf,size);
/* Set sieve buffer dirty flag */
f->shared->sieve_dirty=1;
} /* end else */
/* Increment offset in buffer */
buf += size_arr[u];
/* Increment sequence number */
u++;
} /* end else */
} /* end for */
} /* end if */
else {
/* Work through all the sequences */
for(u=0; u<nseq; u++) {
size=size_arr[u];
addr=_addr+offset_arr[u];
if (H5F_block_write(f, type, addr, size, dxpl_id, buf)<0)
HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL, "block write failed");
/* Increment offset in buffer */
buf += size_arr[u];
} /* end for */
} /* end else */
done:
FUNC_LEAVE(ret_value);
} /* end H5F_contig_writev() */
|