summaryrefslogtreecommitdiffstats
path: root/src/H5Fistore.c
blob: b52288c941482de21a083dca1b3f12cda428540f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
/*
 * Copyright (C) 1997 Spizella Software
 *                    All rights reserved.
 *
 * Programmer: Robb Matzke <robb@arborea.spizella.com>
 *             Wednesday, October  8, 1997
 */
#include <H5private.h>
#include <H5Eprivate.h>
#include <H5Fprivate.h>
#include <H5MFprivate.h>
#include <H5MMprivate.h>
#include <H5Oprivate.h>
#include <H5Vprivate.h>

typedef enum H5F_isop_t {
   H5F_ISTORE_READ, 			/*read from file to memory	*/
   H5F_ISTORE_WRITE			/*write from memory to file	*/
} H5F_isop_t;

/* Does the array domain include negative indices? */
#undef H5F_ISTORE_NEGATIVE_DOMAIN


#define PABLO_MASK	H5F_istore_mask

/* Is the interface initialized? */
static hbool_t interface_initialize_g = FALSE;

/* PRIVATE PROTOTYPES */
static size_t H5F_istore_sizeof_rkey (H5F_t *f, const void *_udata);
static haddr_t H5F_istore_new (H5F_t *f, void *_lt_key, void *_udata,
			       void *_rt_key);
static intn H5F_istore_cmp (H5F_t *f, void *_lt_key, void *_udata,
			    void *_rt_key);
static herr_t H5F_istore_found (H5F_t *f, haddr_t addr, const void *_lt_key,
				void *_udata, const void *_rt_key);
static haddr_t H5F_istore_insert (H5F_t *f, haddr_t addr, H5B_ins_t *anchor,
				  void *_lt_key, hbool_t *lt_key_changed,
				  void *_md_key, void *_udata,
				  void *_rt_key, hbool_t *rt_key_changed);
static herr_t H5F_istore_decode_key (H5F_t *f, H5B_t *bt, uint8 *raw,
				     void *_key);
static herr_t H5F_istore_encode_key (H5F_t *f, H5B_t *bt, uint8 *raw,
				     void *_key);
static herr_t H5F_istore_copy_hyperslab (H5F_t *f, H5O_istore_t *istore,
					 H5F_isop_t op, size_t offset_f[],
					 size_t size[], size_t offset_m[],
					 size_t size_m[], void *buf);


/*
 * B-tree key.  A key contains the minimum logical N-dimensional address and
 * the logical size of the chunk to which this key refers.  The
 * fastest-varying dimension is assumed to reference individual bytes of the
 * array, so a 100-element 1-d array of 4-byte integers would really be a 2-d
 * array with the slow varying dimension of size 100 and the fast varying
 * dimension of size 4 (the storage dimensionality has very little to do with
 * the real dimensionality).
 *
 * Only the first few values of the OFFSET and SIZE fields are actually
 * stored on disk, depending on the dimensionality.
 *
 * The storage file address is part of the B-tree and not part of the key.
 */
typedef struct H5F_istore_key_t {
   size_t	offset[H5O_ISTORE_NDIMS];	/*logical offset to start*/
   size_t	size[H5O_ISTORE_NDIMS];		/*logical chunk size	*/
} H5F_istore_key_t;

typedef struct H5F_istore_ud1_t {
   H5F_istore_key_t key;			/*key values		*/
   haddr_t	addr;				/*file address of chunk	*/
   H5O_istore_t	mesg;				/*storage message	*/
} H5F_istore_ud1_t;
   
/* inherits B-tree like properties from H5B */
H5B_class_t H5B_ISTORE[1] = {{
   H5B_ISTORE_ID,				/*id			*/
   sizeof (H5F_istore_key_t),			/*sizeof_nkey		*/
   H5F_istore_sizeof_rkey,			/*get_sizeof_rkey	*/
   H5F_istore_new,				/*new			*/
   H5F_istore_cmp,				/*cmp			*/
   H5F_istore_found,				/*found			*/
   H5F_istore_insert,				/*insert		*/
   FALSE, 					/*follow min branch?	*/
   FALSE, 					/*follow max branch?	*/
   NULL,					/*list			*/
   H5F_istore_decode_key,			/*decode		*/
   H5F_istore_encode_key,			/*encode		*/
}};



/*-------------------------------------------------------------------------
 * Function:	H5F_istore_sizeof_rkey
 *
 * Purpose:	Returns the size of a raw key for the specified UDATA.  The
 *		size of the key is dependent on the number of dimensions for
 *		the object to which this B-tree points.  The dimensionality
 *		of the UDATA is the only portion that's referenced here.
 *
 * Return:	Success:	Size of raw key in bytes.
 *
 *		Failure:	abort()
 *
 * Programmer:	Robb Matzke
 *              Wednesday, October  8, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5F_istore_sizeof_rkey (H5F_t *f, const void *_udata)
{
   const H5F_istore_ud1_t	*udata = (const H5F_istore_ud1_t *)_udata;

   assert (udata);
   assert (udata->mesg.ndims>0 && udata->mesg.ndims<=H5O_ISTORE_NDIMS);

   return udata->mesg.ndims * (4 + 4);
}



/*-------------------------------------------------------------------------
 * Function:	H5F_istore_decode_key
 *
 * Purpose:	Decodes a raw key into a native key for the B-tree
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_decode_key (H5F_t *f, H5B_t *bt, uint8 *raw, void *_key)
{
   H5F_istore_key_t	*key = (H5F_istore_key_t *)_key;
   int			i;
   int			ndims = bt->sizeof_rkey / 8;

   FUNC_ENTER (H5F_istore_decode_key, NULL, FAIL);

   /* check args */
   assert (f);
   assert (bt);
   assert (raw);
   assert (key);
   assert (ndims>0 && ndims<=H5O_ISTORE_NDIMS && 8*ndims==bt->sizeof_rkey);

   /* decode */
   for (i=0; i<ndims; i++) {
      UINT32DECODE (raw, key->offset[i]);
      UINT32DECODE (raw, key->size[i]);
   }

   FUNC_LEAVE (SUCCEED);

}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_encode_key
 *
 * Purpose:	Encode a key from native format to raw format.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_encode_key (H5F_t *f, H5B_t *bt, uint8 *raw, void *_key)
{
   H5F_istore_key_t	*key = (H5F_istore_key_t *)_key;
   intn			ndims = bt->sizeof_rkey / 8;
   intn			i;
   
   FUNC_ENTER (H5F_istore_encode_key, NULL, FAIL);

   /* check args */
   assert (f);
   assert (bt);
   assert (raw);
   assert (key);
   assert (ndims>0 && ndims<=H5O_ISTORE_NDIMS && 8*ndims==bt->sizeof_rkey);

   /* encode */
   for (i=0; i<ndims; i++) {
      UINT32ENCODE (raw, key->offset[i]);
      UINT32ENCODE (raw, key->size[i]);
   }

   FUNC_LEAVE (SUCCEED);
}
   

/*-------------------------------------------------------------------------
 * Function:	H5F_istore_cmp
 *
 * Purpose:	Compare the requested datum UDATA with the left and right
 *		keys of the B-tree.
 *
 * Return:	Success:	negative if the min_corner of UDATA is less
 *				than the min_corner of LT_KEY.
 *
 *				positive if the min_corner of UDATA is
 *				greater than or equal the min_corner of
 *				RT_KEY.
 *
 *				zero otherwise.  The min_corner of UDATA is
 *				not necessarily contained within the address
 *				space represented by LT_KEY, but a key that
 *				would describe the UDATA min_corner address
 *				would fall lexicographically between LT_KEY
 *				and RT_KEY.
 *				
 *		Failure:	FAIL (same as UDATA < LT_KEY)
 *
 * Programmer:	Robb Matzke
 *              Wednesday, October  8, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static intn
H5F_istore_cmp (H5F_t *f, void *_lt_key, void *_udata, void *_rt_key)
{
   H5F_istore_key_t	*lt_key = (H5F_istore_key_t *)_lt_key;
   H5F_istore_key_t	*rt_key = (H5F_istore_key_t *)_rt_key;
   H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *)_udata;

   assert (lt_key);
   assert (rt_key);
   assert (udata);
   assert (udata->mesg.ndims>0 && udata->mesg.ndims<=H5O_ISTORE_NDIMS);

   if (H5V_vector_lt (udata->mesg.ndims, udata->key.offset, lt_key->offset)) {
      return -1;
   } else if (H5V_vector_ge (udata->mesg.ndims, udata->key.offset,
			     rt_key->offset)) {
      return 1;
   } else {
      return 0;
   }
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_new
 *
 * Purpose:	Adds a new entry to an i-storage B-tree.  We can assume that
 *		the domain represented by UDATA doesn't intersect the domain
 *		already represented by the B-tree.
 *
 * Return:	Success:	Address of leaf, which is passed in from the
 *				UDATA pointer.
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Tuesday, October 14, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static haddr_t
H5F_istore_new (H5F_t *f, void *_lt_key, void *_udata, void *_rt_key)
{
   H5F_istore_key_t	*lt_key = (H5F_istore_key_t *)_lt_key;
   H5F_istore_key_t	*rt_key = (H5F_istore_key_t *)_rt_key;
   H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *)_udata;
   size_t		nbytes;
   intn			i;

   FUNC_ENTER (H5F_istore_new, NULL, FAIL);

   /* check args */
   assert (f);
   assert (lt_key);
   assert (rt_key);
   assert (udata);
   assert (udata->mesg.ndims>=0 && udata->mesg.ndims<H5O_ISTORE_NDIMS);

   /* Allocate new storage */
   nbytes = H5V_vector_reduce_product (udata->mesg.ndims, udata->key.size);
   assert (nbytes>0);
   if ((udata->addr=H5MF_alloc (f, nbytes))<0) {
      /* Couldn't allocate new file storage */
      HRETURN_ERROR (H5E_IO, H5E_CANTINIT, FAIL);
   }
   
   /* left key describes the UDATA, right key is a zero-size "edge" */
   for (i=0; i<udata->mesg.ndims; i++) {
      lt_key->offset[i] = udata->key.offset[i];
      lt_key->size[i] = udata->key.size[i];
      assert (udata->key.size[i]>0);
      
      rt_key->offset[i] = udata->key.offset[i] + udata->key.size[i];
      rt_key->size[i] = 0;
   }


   FUNC_LEAVE (udata->addr);
}
      

/*-------------------------------------------------------------------------
 * Function:	H5F_istore_found
 *
 * Purpose:	This function is called when the B-tree search engine has
 *		found the leaf entry that points to a chunk of storage that
 *		contains the beginning of the logical address space
 *		represented by UDATA.  The LT_KEY is the left key (the one
 *		that describes the chunk) and RT_KEY is the right key (the
 *		one that describes the next or last chunk).
 *
 * Return:	Success:	SUCCEED with information about the chunk
 *				returned through the UDATA argument.
 *
 *		Failure:	FAIL if not found.
 *
 * Programmer:	Robb Matzke
 *              Thursday, October  9, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_found (H5F_t *f, haddr_t addr, const void *_lt_key,
		  void *_udata, const void *_rt_key)
{
   H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *)_udata;
   const H5F_istore_key_t *lt_key = (const H5F_istore_key_t *)_lt_key;
   const H5F_istore_key_t *rt_key = (const H5F_istore_key_t *)_rt_key;
   int			i;

   FUNC_ENTER (H5F_istore_found, NULL, FAIL);

   /* Check arguments */
   assert (f);
   assert (addr>=0);
   assert (udata);
   assert (lt_key);
   assert (rt_key);

   /* Initialize return values */
   udata->addr = addr;
   for (i=0; i<udata->mesg.ndims; i++) {
      udata->key.offset[i] = lt_key->offset[i];
      udata->key.size[i] = lt_key->size[i];
      assert (lt_key->size[i]>0);
   }

   FUNC_LEAVE (SUCCEED);
}



/*-------------------------------------------------------------------------
 * Function:	H5F_istore_insert
 *
 * Purpose:	This function is called when the B-tree insert engine finds
 *		the node to use to insert new data.  The UDATA argument
 *		points to a struct that describes the logical addresses being
 *		added to the file.  This function allocates space for the
 *		data and returns information through UDATA describing a
 *		file chunk to receive (part of) the data.
 *
 *		The LT_KEY is always the key describing the chunk of file
 *		memory at address ADDR. On entry, UDATA describes the logical
 *		addresses for which storage is being requested (through the
 *		`offset' and `size' fields). On return, UDATA describes the
 *		logical addresses contained in a chunk on disk.
 *
 * Return:	Success:	SUCCEED, with UDATA containing information
 *				about the (newly allocated) chunk.
 *
 *				If the storage address has changed then the
 *				new address is returned.
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Thursday, October  9, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static haddr_t
H5F_istore_insert (H5F_t *f, haddr_t addr, H5B_ins_t *parent_ins,
		   void *_lt_key, hbool_t *lt_key_changed,
		   void *_md_key, void *_udata,
		   void *_rt_key, hbool_t *rt_key_changed)
{
   H5F_istore_key_t	*lt_key = (H5F_istore_key_t *)_lt_key;
   H5F_istore_key_t	*md_key = (H5F_istore_key_t *)_md_key;
   H5F_istore_key_t	*rt_key = (H5F_istore_key_t *)_rt_key;
   H5F_istore_ud1_t	*udata  = (H5F_istore_ud1_t *)_udata;
   intn			i, cmp;
   haddr_t		ret_value = 0;
   size_t		nbytes;

   FUNC_ENTER (H5F_istore_insert, NULL, FAIL);

   /* check args */
   assert (f);
   assert (addr>=0);
   assert (parent_ins);
   assert (lt_key);
   assert (lt_key_changed);
   assert (md_key);
   assert (udata);
   assert (rt_key);
   assert (rt_key_changed);

   cmp = H5F_istore_cmp (f, lt_key, udata, rt_key);
   assert (cmp<=0);

   if (cmp<0) {
      /* Negative indices not supported yet */
      assert ("HDF5 INTERNAL ERROR -- see rpm" && 0);
      HRETURN_ERROR (H5E_STORAGE, H5E_UNSUPPORTED, FAIL);
      
   } else if (H5V_hyper_eq (udata->mesg.ndims,
			    udata->key.offset,  udata->key.size, 
			    lt_key->offset,  lt_key->size)) {
      /*
       * Already exists.  Just return the info.
       */
      udata->addr = addr;
      *parent_ins = H5B_INS_NOOP;
      
   } else if (H5V_hyper_disjointp (udata->mesg.ndims,
				   lt_key->offset, lt_key->size,
				   udata->key.offset, udata->key.size)) {
      assert (H5V_hyper_disjointp (udata->mesg.ndims,
				   rt_key->offset, rt_key->size,
				   udata->key.offset, udata->key.size));

      /*
       * Split this node, inserting the new new node to the right of the
       * current node.  The MD_KEY is where the split occurs.
       */
      for (i=0, nbytes=1; i<udata->mesg.ndims; i++) {
	 assert (0==udata->key.offset[i] % udata->mesg.alignment[i]);
	 assert (udata->key.size[i] == udata->mesg.alignment[i]);
	 md_key->offset[i] = udata->key.offset[i];
	 md_key->size[i] = udata->key.size[i];
	 nbytes *= udata->key.size[i];
      }

      /*
       * Allocate storage for the new chunk
       */
      if ((udata->addr=ret_value=H5MF_alloc (f, nbytes))<=0) {
	 HRETURN_ERROR (H5E_IO, H5E_CANTINIT, FAIL);
      }
      
      *parent_ins = H5B_INS_RIGHT;
      
   } else {
      assert ("HDF5 INTERNAL ERROR -- see rpm" && 0);
      HRETURN_ERROR (H5E_IO, H5E_UNSUPPORTED, FAIL);
   }
   
   FUNC_LEAVE (ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_copy_hyperslab
 *
 * Purpose: 	Reads or writes a hyperslab to disk depending on whether OP
 * 		is H5F_ISTORE_READ or H5F_ISTORE_WRITE.  The hyperslab
 * 		storage is described with ISTORE and exists in file F. The
 * 		file hyperslab begins at location OFFSET_F[] (an N-dimensional
 *		point in the domain in terms of elements) in the file and
 *		OFFSET_M[] in memory pointed to by BUF.  Its size is SIZE[]
 *		elements.  The dimensionality of memory is assumed to be the
 *		same as the file and the total size of the multi-dimensional
 *		memory buffer is SIZE_M[].
 *
 *		The slowest varying dimension is always listed first in the
 *		various offset and size arrays.
 *
 *		A `chunk' is a hyperslab of the disk array which is stored
 *		contiguously. I/O occurs in units of chunks where the size of
 *		a chunk is determined by the alignment constraints specified
 *		in ISTORE.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Friday, October 17, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_copy_hyperslab (H5F_t *f, H5O_istore_t *istore, H5F_isop_t op,
			   size_t offset_f[], size_t size[],
			   size_t offset_m[], size_t size_m[], void *buf)
{
   intn			i, carry;
   size_t		idx_cur[H5O_ISTORE_NDIMS];
   size_t		idx_min[H5O_ISTORE_NDIMS];
   size_t		idx_max[H5O_ISTORE_NDIMS];
   size_t		sub_size[H5O_ISTORE_NDIMS];
   size_t		sub_offset_f[H5O_ISTORE_NDIMS];
   size_t		sub_offset_m[H5O_ISTORE_NDIMS];
   size_t		sub_offset_ch[H5O_ISTORE_NDIMS];
   size_t		chunk_size;
   uint8		*chunk=NULL;
   H5F_istore_ud1_t	udata;
   herr_t		status;
   herr_t		ret_value = FAIL;
   
   FUNC_ENTER (H5F_istore_copy_hyperslab, NULL, FAIL);

   /* check args */
   assert (f);
   assert (istore);
   assert (istore->ndims>0 && istore->ndims<=H5O_ISTORE_NDIMS);
   assert (H5F_ISTORE_READ==op || H5F_ISTORE_WRITE==op);
   assert (size);
   assert (size_m);
   assert (buf);
#ifndef NDEBUG
   for (i=0; i<istore->ndims; i++) {
      assert (!offset_f || offset_f[i]>=0);/*neg domains unsupported	*/
      assert (!offset_m || offset_m[i]>=0);/*mem array offset never neg	*/
      assert (size[i]>=0);	/*size may be zero, implies no-op	*/
      assert (size_m[i]>0);	/*destination must exist		*/
      /*hyperslab must fit in BUF*/
      assert ((offset_m?offset_m[i]:0)+size[i]<=size_m[i]);
      assert (istore->alignment[i]>0);
   }
#endif

   /*
    * Does the B-tree exist?
    */
   if (istore->btree_addr<=0) {
      if (H5F_ISTORE_WRITE==op) {
	 udata.mesg.ndims = istore->ndims;
	 if ((istore->btree_addr=H5B_new (f, H5B_ISTORE, &udata))<0) {
	    /* Can't create B-tree */
	    HGOTO_ERROR (H5E_IO, H5E_CANTINIT, FAIL);
	 }
      } else {
	 H5V_hyper_fill (istore->ndims, size, size_m, offset_m, buf, 0);
	 HRETURN (SUCCEED);
      }
   }

   /* Initialize indices */
   for (i=0; i<istore->ndims; i++) {
      idx_min[i] = (offset_f?offset_f[i]:0) / istore->alignment[i];
      idx_max[i] = ((offset_f?offset_f[i]:0)+size[i]-1)/istore->alignment[i]+1;
      idx_cur[i] = idx_min[i];
   }

   /* Allocate buffers */
   for (i=0, chunk_size=1; i<istore->ndims; i++) {
      chunk_size *= istore->alignment[i];
   }
   chunk = H5MM_xmalloc (chunk_size);

   /* Initialize non-changing part of udata */
   udata.mesg = *istore;
   
   /* Loop over all chunks */
   while (1) {

      /* Read/Write chunk  or create it if it doesn't exist */
      udata.mesg.ndims = istore->ndims;
      for (i=0; i<istore->ndims; i++) {
	 udata.key.offset[i] = idx_cur[i] * istore->alignment[i];
	 udata.key.size[i] = istore->alignment[i];
	 sub_offset_f[i] = MAX ((offset_f?offset_f[i]:0), udata.key.offset[i]);
	 sub_offset_m[i] = (offset_m?offset_m[i]:0) +
			   sub_offset_f[i] - (offset_f?offset_f[i]:0);
	 sub_size[i] = (idx_cur[i]+1)*istore->alignment[i]-sub_offset_f[i];
	 sub_offset_ch[i] = sub_offset_f[i] - udata.key.offset[i];
      }
      if (H5F_ISTORE_WRITE==op) {
	 status = H5B_insert (f, H5B_ISTORE, istore->btree_addr, &udata);
	 assert (status>=0);
      } else {
	 status = H5B_find (f, H5B_ISTORE, istore->btree_addr, &udata);
      }

      /*
       * If the operation is reading from the disk or if we are writing a
       * partial chunk then load the chunk from disk. 
       */
      if (H5F_ISTORE_READ==op ||
	  !H5V_hyper_eq (istore->ndims,
			 udata.key.offset, udata.key.size,
			 sub_offset_f, sub_size)) {
	 if (status>=0) {
	    if (H5F_block_read (f, udata.addr, chunk_size, chunk)<0) {
	       HGOTO_ERROR (H5E_IO, H5E_READERROR, FAIL);
	    }
	 } else {
	    HDmemset (chunk, 0, chunk_size);
	 }
      }

      /* Transfer data to/from the chunk */
      if (H5F_ISTORE_WRITE==op) {
	 H5V_hyper_copy (istore->ndims, sub_size,
			 udata.key.size, sub_offset_ch, chunk,
			 size_m, sub_offset_m, buf);
	 if (H5F_block_write (f, udata.addr, chunk_size, chunk)<0) {
	    HGOTO_ERROR (H5E_IO, H5E_WRITEERROR, FAIL);
	 }
      } else {
	 H5V_hyper_copy (istore->ndims, sub_size,
			 size_m, sub_offset_m, buf,
			 udata.key.size, sub_offset_ch, chunk);
      }
	 
      /* Increment indices */
      for (i=istore->ndims-1, carry=1; i>=0 && carry; --i) {
	 if (++idx_cur[i]>=idx_max[i]) idx_cur[i] = idx_min[i];
	 else carry = 0;
      }
      if (carry) break;
   }
   ret_value = SUCCEED;
   

 done:
   chunk = H5MM_xfree (chunk);
   FUNC_LEAVE (ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_read
 *
 * Purpose:	Reads a multi-dimensional buffer from (part of) an indexed raw
 *		storage array.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Wednesday, October 15, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_read (H5F_t *f, struct H5O_istore_t *istore,
		 size_t offset[], size_t size[], void *buf)
{
   FUNC_ENTER (H5F_istore_read, NULL, FAIL);

   /* Check args */
   assert (f);
   assert (istore);
   assert (istore->ndims>0 && istore->ndims<=H5O_ISTORE_NDIMS);
   assert (size);
   assert (buf);

   if (H5F_istore_copy_hyperslab (f, istore, H5F_ISTORE_READ,
				  offset, size, H5V_ZERO, size, buf)<0) {
      /* hyperslab output failure */
      HRETURN_ERROR (H5E_IO, H5E_READERROR, FAIL);
   }

   FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_write
 *
 * Purpose:	Writes a multi-dimensional buffer to (part of) an indexed raw
 *		storage array.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Wednesday, October 15, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_write (H5F_t *f, struct H5O_istore_t *istore,
		  size_t offset[], size_t size[], void *buf)
{
   FUNC_ENTER (H5F_istore_write, NULL, FAIL);

   /* Check args */
   assert (f);
   assert (istore);
   assert (istore->ndims>0 && istore->ndims<=H5O_ISTORE_NDIMS);
   assert (size);
   assert (buf);

   if (H5F_istore_copy_hyperslab (f, istore, H5F_ISTORE_WRITE,
				  offset, size, H5V_ZERO, size, buf)<0) {
      /* hyperslab output failure */
      HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL);
   }

   FUNC_LEAVE (SUCCEED);
}