summaryrefslogtreecommitdiffstats
path: root/src/H5Shyper.c
blob: 14d36dea659f1faba41ccc0c3196a621d3043d72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
/*
 * Copyright (C) 1998 NCSA
 *                    All rights reserved.
 *
 * Programmer:  Quincey Koziol <koziol@ncsa.uiuc.edu>
 *              Thursday, June 18, 1998
 *
 * Purpose:	Hyperslab selection data space I/O functions.
 */
#include <H5private.h>
#include <H5Dprivate.h>
#include <H5Eprivate.h>
#include <H5Iprivate.h>
#include <H5MMprivate.h>
#include <H5Pprivate.h>
#include <H5Sprivate.h>
#include <H5TBprivate.h>
#include <H5Vprivate.h>

/* Interface initialization */
#define PABLO_MASK      H5Shyper_mask
#define INTERFACE_INIT  NULL
static intn             interface_initialize_g = 0;

/* Local datatypes */
/* Parameter block for H5S_hyper_fread, H5S_hyper_fwrite, H5S_hyper_mread & H5S_hyper_mwrite */
typedef struct {
    H5F_t *f;
    const struct H5O_layout_t *layout;
    const struct H5O_pline_t *pline;
    const struct H5O_fill_t *fill;
    const struct H5O_efl_t *efl;
    size_t elmt_size;
    const H5S_t *space;
    H5S_sel_iter_t *iter;
	size_t nelmts;
    hid_t dxpl_id;
    const void *src;
    void *dst;
    hsize_t	mem_size[H5O_LAYOUT_NDIMS];
    hssize_t offset[H5O_LAYOUT_NDIMS];
    hsize_t	hsize[H5O_LAYOUT_NDIMS];
    H5S_hyper_bound_t **lo_bounds;
    H5S_hyper_bound_t **hi_bounds;
} H5S_hyper_io_info_t;

/* Parameter block for H5S_hyper_select_iter_mem */
typedef struct {
    hid_t dt;
    size_t elem_size;
    const H5S_t *space;
    H5S_sel_iter_t *iter;
    void *src;
    H5S_hyper_bound_t **lo_bounds;
    H5S_hyper_bound_t **hi_bounds;
    hsize_t	mem_size[H5O_LAYOUT_NDIMS];
    hssize_t mem_offset[H5O_LAYOUT_NDIMS];
    H5D_operator_t op;
    void * op_data;
} H5S_hyper_iter_info_t;

/* Static function prototypes */
static intn H5S_hyper_bsearch(hssize_t size, H5S_hyper_bound_t *barr,
			      size_t count);
static hid_t
H5S_hyper_get_regions (size_t *num_regions, intn dim, size_t bound_count,
		       H5S_hyper_bound_t **lo_bounds,
		       H5S_hyper_bound_t **hi_bounds, hssize_t *pos,
		       hssize_t *offset);
static size_t H5S_hyper_fread (intn dim, H5S_hyper_io_info_t *io_info);
static size_t H5S_hyper_fwrite (intn dim,
				H5S_hyper_io_info_t *io_info);
static herr_t H5S_hyper_init (const struct H5O_layout_t *layout,
			      const H5S_t *space, H5S_sel_iter_t *iter, size_t *min_elem_out);
static size_t H5S_hyper_favail (const H5S_t *space, const H5S_sel_iter_t *iter,
				size_t max);
static size_t H5S_hyper_fgath (H5F_t *f, const struct H5O_layout_t *layout,
			       const struct H5O_pline_t *pline,
			       const struct H5O_fill_t *fill,
			       const struct H5O_efl_t *efl, size_t elmt_size,
			       const H5S_t *file_space,
			       H5S_sel_iter_t *file_iter, size_t nelmts,
			       hid_t dxpl_id, void *buf/*out*/);
static herr_t H5S_hyper_fscat (H5F_t *f, const struct H5O_layout_t *layout,
			       const struct H5O_pline_t *pline,
			       const struct H5O_fill_t *fill,
			       const struct H5O_efl_t *efl, size_t elmt_size,
			       const H5S_t *file_space,
			       H5S_sel_iter_t *file_iter, size_t nelmts,
			       hid_t dxpl_id, const void *buf);
static size_t H5S_hyper_mgath (const void *_buf, size_t elmt_size,
			       const H5S_t *mem_space,
			       H5S_sel_iter_t *mem_iter, size_t nelmts,
			       void *_tconv_buf/*out*/);
static herr_t H5S_hyper_mscat (const void *_tconv_buf, size_t elmt_size,
			       const H5S_t *mem_space,
			       H5S_sel_iter_t *mem_iter, size_t nelmts,
			       void *_buf/*out*/);

const H5S_fconv_t	H5S_HYPER_FCONV[1] = {{
    "hslab",	 				/*name			*/
    H5S_SEL_HYPERSLABS,				/*selection type	*/
    H5S_hyper_init,				/*initialize		*/
    H5S_hyper_favail,				/*available		*/
    H5S_hyper_fgath,				/*gather		*/
    H5S_hyper_fscat,				/*scatter		*/
}};

const H5S_mconv_t	H5S_HYPER_MCONV[1] = {{
    "hslab",					/*name			*/
    H5S_SEL_HYPERSLABS,				/*selection type	*/
    H5S_hyper_init, 				/*initialize		*/
    H5S_hyper_mgath,				/*gather		*/
    H5S_hyper_mscat,				/*scatter		*/
}};

/* Array for use with I/O algorithms which frequently need array of zeros */
static const hssize_t	zero[H5O_LAYOUT_NDIMS]={0};		/* Array of zeros */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_init
 *
 * Purpose:	Initializes iteration information for hyperslab selection.
 *
 * Return:	non-negative on success, negative on failure.
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_init (const struct H5O_layout_t UNUSED *layout,
	       const H5S_t *space, H5S_sel_iter_t *sel_iter,
		size_t UNUSED *min_elem_out)
{
    FUNC_ENTER (H5S_hyper_init, FAIL);

    /* Check args */
    assert (space && H5S_SEL_HYPERSLABS==space->select.type);
    assert (sel_iter);

    /* Initialize the number of points to iterate over */
    sel_iter->hyp.elmt_left=space->select.num_elem;

    /* Allocate the position & initialize to invalid location */
    sel_iter->hyp.pos = H5MM_malloc(space->extent.u.simple.rank * sizeof(hssize_t));
    sel_iter->hyp.pos[0]=(-1);
    H5V_array_fill(sel_iter->hyp.pos, sel_iter->hyp.pos, sizeof(hssize_t),
		   space->extent.u.simple.rank);
    
    FUNC_LEAVE (SUCCEED);
}   /* H5S_hyper_init() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_favail
 *
 * Purpose:	Figure out the optimal number of elements to transfer to/from the file
 *
 * Return:	non-negative number of elements on success, negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_favail (const H5S_t UNUSED *space,
		  const H5S_sel_iter_t *sel_iter, size_t max)
{
    FUNC_ENTER (H5S_hyper_favail, FAIL);

    /* Check args */
    assert (space && H5S_SEL_HYPERSLABS==space->select.type);
    assert (sel_iter);

#ifdef QAK
    printf("%s: max=%u\n",FUNC,(unsigned)max);
#endif /* QAK */
    FUNC_LEAVE (MIN(sel_iter->hyp.elmt_left,max));
}   /* H5S_hyper_favail() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_compare_regions
 *
 * Purpose:	Compares two regions for equality (regions must not overlap!)
 *
 * Return:	an integer less than, equal to, or greater than zero if the
 *		first region is considered to be respectively less than,
 *		equal to, or greater than the second
 *
 * Programmer:	Quincey Koziol
 *              Friday, July 17, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
int
H5S_hyper_compare_regions (const void *r1, const void *r2)
{
    if (((const H5S_hyper_region_t *)r1)->start < ((const H5S_hyper_region_t *)r2)->start)
        return(-1);
    else if (((const H5S_hyper_region_t *)r1)->start > ((const H5S_hyper_region_t *)r2)->start)
        return(1);
    else
        return(0);
}   /* end H5S_hyper_compare_regions */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_get_regions
 *
 * Purpose:	Builds a sorted array of the overlaps in a dimension
 *
 * Return:	Success:	Pointer to valid array (num_regions parameter
 *				set to array size)
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Monday, June 29, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static hid_t
H5S_hyper_get_regions (size_t *num_regions, intn dim, size_t bound_count,
   H5S_hyper_bound_t **lo_bounds, H5S_hyper_bound_t **hi_bounds, hssize_t *pos,
   hssize_t *offset)
{
    hid_t ret_value=FAIL;	            /* Id of temporary buffer to return */
    H5S_hyper_region_t *reg=NULL;	    /* Pointer to array of regions */
    H5S_hyper_node_t *node;             /* Region node for a given boundary */
    size_t num_reg=0;                   /* Number of regions in array */
    size_t curr_reg=0;                  /* The current region we are working with */
    size_t uniq_reg;                    /* The number of unique regions */
    intn next_dim;                      /* Next fastest dimension */
    intn temp_dim;                      /* Temporary dim. holder */
    size_t i;                           /* Counters */

    FUNC_ENTER (H5S_hyper_get_regions, FAIL);
    
    assert(num_regions);
    assert(lo_bounds);
    assert(hi_bounds);
    assert(pos);

#ifdef QAK
    printf("%s: check 1.0, dim=%d\n",FUNC,dim);
    for(i=0; i<3; i++)
        printf("%s: %d - pos=%d, offset=%d\n",FUNC,i,(int)pos[i],offset!=NULL ? (int)offset[i] : 0);
#endif /* QAK */

    /* Check if we need to generate a list of regions for the 0th dim. */
    if(dim<0) {
#ifdef QAK
	printf("%s: check 1.1, bound_count=%d\n",FUNC,bound_count);
#endif /* QAK */
        for(i=0; i<bound_count; i++) {
#ifdef QAK
	printf("%s: check 1.2, lo_bounds[0][%d].bound=%d, hi_bounds[0][%d].bound=%d\n",FUNC,(int)i,(int)lo_bounds[0][i].bound,(int)i,(int)hi_bounds[0][i].bound);
#endif /* QAK */
            /* Skip past already iterated regions */
            if(pos[0]==(-1) || ((pos[0]+offset[0])>=lo_bounds[0][i].bound && (pos[0]+offset[0]) <= hi_bounds[0][i].bound)) {
                /* Check if we've allocated the array yet */
                if(num_reg==0) {
                    /* Allocate temporary buffer */
                    ret_value=H5TB_get_buf(sizeof(H5S_hyper_region_t),0,(void **)&reg);

                    /* Initialize with first region */
                    reg[0].start=MAX(lo_bounds[0][i].bound,pos[0])+offset[0];
                    reg[0].end=hi_bounds[0][i].bound+offset[0];
                    reg[0].node=hi_bounds[0][i].node;

                    /* Increment the number of regions */
                    num_reg++;
                } else {
                    /*
                     * Check if we should merge this region into the current
                     * region.
                     */
                    if(lo_bounds[0][i].bound<reg[curr_reg].end) {
                        reg[curr_reg].end=MAX(hi_bounds[0][i].bound,
						    reg[curr_reg].end)+(offset!=NULL ? offset[0] : 0 );
                    } else { /* no overlap with previous region, add new region */
                        /* Check if this is actually a different region */
                        if(lo_bounds[0][i].bound!=reg[curr_reg].start &&
                            hi_bounds[0][i].bound!=reg[curr_reg].end) {

                            /* Enlarge array */
                            H5TB_resize_buf(ret_value,(sizeof(H5S_hyper_region_t)*(num_reg+1)),(void **)&reg);

                            /* Initialize with new region */
                            reg[num_reg].start=lo_bounds[0][i].bound+offset[0];
                            reg[num_reg].end=hi_bounds[0][i].bound+offset[0];
                            reg[num_reg].node=hi_bounds[0][i].node;

                            /*
                             * Increment the number of regions & the current
                             * region.
                             */
                            num_reg++;
                            curr_reg++;
                        } /* end if */
                    } /* end else */
                } /* end else */
            } /* end if */
        } /* end for */
    } else {
	/* Generate list of regions based on the current position */
#ifdef QAK
	printf("%s: check 2.0, bound_count=%d\n",FUNC,bound_count);
	printf("%s: check 2.0, pos[%d]=%d, offset[%d]=%d, hi_bounds[%d][%d].bound=%d\n",FUNC,(int)dim,(int)pos[dim],(int)dim,(int)offset[dim],
        (int)dim,(int)0,(int)hi_bounds[dim][0].bound);
#endif /* QAK */
        next_dim=dim+1;
        /* Skip past bounds which don't overlap */
        i=0;
        while(pos[dim]>(hi_bounds[dim][i].bound+offset[dim]) && i<bound_count)
            i++;
#ifdef QAK
	printf("%s: check 2.0.5, lo_bounds[%d][%d].bound=%d\n",FUNC,
        (int)dim,(int)i,(int)lo_bounds[dim][i].bound);
#endif /* QAK */

        for (/*void*/;
             i<bound_count && pos[dim]>=lo_bounds[dim][i].bound+offset[dim];
	     i++) {
#ifdef QAK
	    printf("%s: check 2.1, i=%d, num_reg=%d, pos[%d]=%d\n",
		   FUNC,i,(int)num_reg,dim,(int)pos[dim]);
	    {
		intn j;
		node=lo_bounds[dim][i].node;
		for(j=next_dim; j>=0; j--)
		    printf("%s: lo_bound[%d]=%d, hi_bound[%d]=%d\n",
			   FUNC,j,(int)node->start[j],j,(int)node->end[j]);
	    }
#endif /* QAK */
            /* Check if each boundary overlaps in the higher dimensions */
            node=lo_bounds[dim][i].node;
            temp_dim=dim;
            while(temp_dim>=0 && pos[temp_dim]>=(node->start[temp_dim]+offset[temp_dim]) && pos[temp_dim]<=(node->end[temp_dim]+offset[temp_dim]))
                temp_dim--;

            /* Yes, all previous positions match, this is a valid region */
            if(temp_dim<0) {
#ifdef QAK
		printf("%s: check 3.0\n",FUNC);
#endif /* QAK */
                /* Check if we've allocated the array yet */
                if(num_reg==0) {
#ifdef QAK
		    printf("%s: check 3.1\n", FUNC);
#endif /* QAK */
                    /* Allocate temporary buffer */
                    ret_value=H5TB_get_buf(sizeof(H5S_hyper_region_t),0,(void **)&reg);

                    /* Initialize with first region */
                    reg[0].start=MAX(node->start[next_dim],pos[next_dim])+offset[next_dim];
                    reg[0].end=node->end[next_dim]+offset[next_dim];
                    reg[0].node=node;
#ifdef QAK
		    printf("%s: check 3.2, lo_bounds=%d, start=%d, "
			   "hi_bounds=%d, end=%d\n",
			   FUNC, (int)node->start[next_dim],
			   (int)reg[curr_reg].start,
			   (int)node->end[next_dim],
			   (int)reg[curr_reg].end);
#endif /* QAK */

                    /* Increment the number of regions */
                    num_reg++;
                } else {
#ifdef QAK
		    printf("%s: check 4.0, lo_bounds=%d, start=%d, "
			   "hi_bounds=%d, end=%d\n",
			   FUNC, (int)node->start[next_dim],
			   (int)reg[curr_reg].start,
			   (int)node->end[next_dim],
			   (int)reg[curr_reg].end);
#endif /* QAK */
                    /* Enlarge array */
                    H5TB_resize_buf(ret_value,(sizeof(H5S_hyper_region_t)*(num_reg+1)),(void **)&reg);

                    /* Initialize with new region */
                    reg[num_reg].start=node->start[next_dim]+offset[next_dim];
                    reg[num_reg].end=node->end[next_dim]+offset[next_dim];
                    reg[num_reg].node=node;

                    /* Increment the number of regions & the current region */
                    num_reg++;
                    curr_reg++;
                } /* end else */
            } /* end if */
        } /* end for */

        /* Sort region list and eliminate duplicates if necessary */
        if(num_reg>1) {
            HDqsort(reg,num_reg,sizeof(H5S_hyper_region_t),H5S_hyper_compare_regions);
            for(i=1,curr_reg=0,uniq_reg=1; i<num_reg; i++) {
                if(reg[curr_reg].start!=reg[i].start &&
                        reg[curr_reg].end!=reg[i].end) {
                    uniq_reg++;
                    curr_reg++;
                    reg[curr_reg].start=reg[i].start;
                    reg[curr_reg].end=reg[i].end;
                    reg[curr_reg].node=reg[i].node;
                } /* end if */
            } /* end for */
            num_reg=uniq_reg;
        } /* end if */
    } /* end else */

    /* Save the number of regions we generated */
    *num_regions=num_reg;

#ifdef QAK
    printf("%s: check 10.0, reg=%p, num_reg=%d\n",
	   FUNC,reg,num_reg);
    for(i=0; i<num_reg; i++)
        printf("%s: start[%d]=%d, end[%d]=%d\n",
	       FUNC,i,(int)reg[i].start,i,(int)reg[i].end);
#endif /* QAK */

    FUNC_LEAVE (ret_value);
} /* end H5S_hyper_get_regions() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_block_cache
 *
 * Purpose:	Cache a hyperslab block for reading or writing.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Monday, September 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_block_cache (H5S_hyper_node_t *node,
		       H5S_hyper_io_info_t *io_info, uintn block_read)
{
    hssize_t	file_offset[H5O_LAYOUT_NDIMS];	/*offset of slab in file*/
    hsize_t	hsize[H5O_LAYOUT_NDIMS];	/*size of hyperslab	*/
    intn i;                   /* Counters */

    FUNC_ENTER (H5S_hyper_block_cache, SUCCEED);

    assert(node);
    assert(io_info);

    /* Allocate temporary buffer of proper size */
    if((node->cinfo.block_id=H5TB_get_buf(node->cinfo.size*io_info->elmt_size,1,(void **)&(node->cinfo.block)))<0)
        HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
            "can't allocate hyperslab cache block");

    /* Read in block, if we are read caching */
    if(block_read) {
        /* Copy the location of the region in the file */
        HDmemcpy(file_offset,node->start,(io_info->space->extent.u.simple.rank * sizeof(hssize_t)));
        file_offset[io_info->space->extent.u.simple.rank]=0;

        /* Set the hyperslab size to read */
        for(i=0; i<io_info->space->extent.u.simple.rank; i++)
            hsize[i]=(node->end[i]-node->start[i])+1;
        hsize[io_info->space->extent.u.simple.rank]=io_info->elmt_size;

        if (H5F_arr_read(io_info->f, io_info->dxpl_id,
			 io_info->layout, io_info->pline,
			 io_info->fill, io_info->efl, hsize, hsize,
			 zero, file_offset, node->cinfo.block/*out*/)<0)
            HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, FAIL, "read error");
    } /* end if */
    else {
/* keep information for writing block later? */
    } /* end else */
    
    /* Set up parameters for accessing block (starting the read and write information at the same point) */
    node->cinfo.wleft=node->cinfo.rleft=node->cinfo.size;
    node->cinfo.wpos=node->cinfo.rpos=node->cinfo.block;

    /* Set cached flag */
    node->cinfo.cached=1;

    FUNC_LEAVE (SUCCEED);
}   /* H5S_hyper_block_cache() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_block_read
 *
 * Purpose:	Read in data from a cached hyperslab block
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Monday, September 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_block_read (H5S_hyper_node_t *node, H5S_hyper_io_info_t *io_info, hsize_t region_size)
{
    FUNC_ENTER (H5S_hyper_block_read, SUCCEED);

    assert(node && node->cinfo.cached);
    assert(io_info);

    /* Copy the elements into the user's buffer */
    /*
        !! NOTE !! This will need to be changed for different dimension
            permutations from the standard 'C' ordering!
    */
    HDmemcpy(io_info->dst, node->cinfo.rpos, (size_t)(region_size*io_info->elmt_size));

    /*
     * Decrement the number of elements left in block to read & move the
     * offset
     */
    node->cinfo.rpos+=region_size*io_info->elmt_size;
    node->cinfo.rleft-=region_size;

    /* If we've read in all the elements from the block, throw it away */
    if(node->cinfo.rleft==0 && (node->cinfo.wleft==0 || node->cinfo.wleft==node->cinfo.size)) {
        /* Release the temporary buffer */
        H5TB_release_buf(node->cinfo.block_id);

        /* Reset the caching flag for next time */
        node->cinfo.cached=0;
    } /* end if */

    FUNC_LEAVE (SUCCEED);
}   /* H5S_hyper_block_read() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_block_write
 *
 * Purpose:	Write out data to a cached hyperslab block
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Monday, September 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_block_write (H5S_hyper_node_t *node,
		       H5S_hyper_io_info_t *io_info,
		       hsize_t region_size)
{
    hssize_t	file_offset[H5O_LAYOUT_NDIMS];	/*offset of slab in file*/
    hsize_t	hsize[H5O_LAYOUT_NDIMS];	/*size of hyperslab	*/
    intn i;                   /* Counters */

    FUNC_ENTER (H5S_hyper_block_write, SUCCEED);

    assert(node && node->cinfo.cached);
    assert(io_info);

    /* Copy the elements into the user's buffer */
    /*
        !! NOTE !! This will need to be changed for different dimension
            permutations from the standard 'C' ordering!
    */
    HDmemcpy(node->cinfo.wpos, io_info->src, (size_t)(region_size*io_info->elmt_size));

    /*
     * Decrement the number of elements left in block to read & move the
     * offset
     */
    node->cinfo.wpos+=region_size*io_info->elmt_size;
    node->cinfo.wleft-=region_size;

    /* If we've read in all the elements from the block, throw it away */
    if(node->cinfo.wleft==0 && (node->cinfo.rleft==0 || node->cinfo.rleft==node->cinfo.size)) {
        /* Copy the location of the region in the file */
        HDmemcpy(file_offset, node->start, (io_info->space->extent.u.simple.rank * sizeof(hssize_t)));
        file_offset[io_info->space->extent.u.simple.rank]=0;

        /* Set the hyperslab size to write */
        for(i=0; i<io_info->space->extent.u.simple.rank; i++)
            hsize[i]=(node->end[i]-node->start[i])+1;
        hsize[io_info->space->extent.u.simple.rank]=io_info->elmt_size;

        if (H5F_arr_write(io_info->f, io_info->dxpl_id, io_info->layout,
			  io_info->pline, io_info->fill, io_info->efl, hsize,
			  hsize, zero, file_offset,
			  node->cinfo.block/*out*/)<0)
            HRETURN_ERROR (H5E_DATASPACE, H5E_WRITEERROR, FAIL, "write error");

        /* Release the temporary buffer */
        H5TB_release_buf(node->cinfo.block_id);

        /* Reset the caching flag for next time */
        node->cinfo.cached=0;
    } /* end if */

    FUNC_LEAVE (SUCCEED);
}   /* H5S_hyper_block_write() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_fread
 *
 * Purpose:	Recursively gathers data points from a file using the
 *		parameters passed to H5S_hyper_fgath.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_fread (intn dim, H5S_hyper_io_info_t *io_info)
{
    hsize_t region_size;                /* Size of lowest region */
    uintn parm_init=0;          /* Whether one-shot parameters set up */
    hid_t reg_id;               /* ID of temporary region buffer */
    H5S_hyper_region_t *regions;  /* Pointer to array of hyperslab nodes overlapped */
    size_t num_regions;         /* number of regions overlapped */
    size_t i;                   /* Counters */
    intn j;
    size_t num_read=0;          /* Number of elements read */
    const H5F_xfer_t *xfer_parms;/* Data transfer property list */

    FUNC_ENTER (H5S_hyper_fread, 0);

    assert(io_info);
    if (H5P_DEFAULT==io_info->dxpl_id) {
	xfer_parms = &H5F_xfer_dflt;
    } else {
	xfer_parms = H5I_object(io_info->dxpl_id);
	assert(xfer_parms);
    }

#ifdef QAK
    printf("%s: check 1.0, dim=%d\n",FUNC,dim);
#endif /* QAK */

    /* Get a sorted list (in the next dimension down) of the regions which */
    /*  overlap the current index in this dim */
    if((reg_id=H5S_hyper_get_regions(&num_regions,dim,
            io_info->space->select.sel_info.hslab.hyper_lst->count,
            io_info->lo_bounds, io_info->hi_bounds,
            io_info->iter->hyp.pos,io_info->space->select.offset))>=0) {

        /* Get the pointer to the actual regions array */
        regions=H5TB_buf_ptr(reg_id);

        /*
	 * Check if this is the second to last dimension in dataset (Which
	 * means that we've got a list of the regions in the fastest changing
	 * dimension and should input those regions).
	 */
#ifdef QAK
	printf("%s: check 2.0, rank=%d, cache_hyper=%d\n",
	       FUNC,(int)io_info->space->extent.u.simple.rank,
           (int)io_info->xfer_parms->cache_hyper);
	for(i=0; i<num_regions; i++)
	    printf("%s: check 2.1, region #%d: start=%d, end=%d\n",
		   FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */
        if((dim+2)==io_info->space->extent.u.simple.rank) {
            /* perform I/O on data from regions */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                /* Compute the size of the region to read */
                region_size=MIN(io_info->nelmts,
				(regions[i].end-regions[i].start)+1);

                /* Check if this hyperslab block is cached or could be cached */
                if(!regions[i].node->cinfo.cached &&
		   (xfer_parms->cache_hyper &&
		    (xfer_parms->block_limit==0 ||
		     xfer_parms->block_limit>=(regions[i].node->cinfo.size*io_info->elmt_size)))) {
                    /* if we aren't cached, attempt to cache the block */
                    H5S_hyper_block_cache(regions[i].node,io_info,1);
                } /* end if */

                /* Read information from the cached block */
                if(regions[i].node->cinfo.cached) {
                    if(H5S_hyper_block_read(regions[i].node,io_info,region_size)<0)
                        HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0, "read error");
                }
                else {
                    /* Set up hyperslab I/O parameters which apply to all regions */
                    if(!parm_init) {
                        /* Copy the location of the region in the file */
                        HDmemcpy(io_info->offset,io_info->iter->hyp.pos,(io_info->space->extent.u.simple.rank * sizeof(hssize_t)));
                        io_info->offset[io_info->space->extent.u.simple.rank]=0;

                        /* Set flag */
                        parm_init=1;
                    } /* end if */

#ifdef QAK
    printf("%s: check 2.2, i=%d, region_size=%d\n",FUNC,(int)i,(int)region_size);
#endif /* QAK */
                    /* Fill in the region specific parts of the I/O request */
                    io_info->hsize[io_info->space->extent.u.simple.rank-1]=region_size;
                    io_info->offset[io_info->space->extent.u.simple.rank-1]=regions[i].start;

                    /*
                     * Gather from file.
                     */
                    if (H5F_arr_read(io_info->f, io_info->dxpl_id,
				     io_info->layout, io_info->pline,
				     io_info->fill, io_info->efl,
				     io_info->hsize, io_info->hsize,
				     zero, io_info->offset,
				     io_info->dst/*out*/)<0) {
                        HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0,
				       "read error");
                    }
#ifdef QAK
    printf("%s: check 2.3, region #%d\n",FUNC,(int)i);
    for(j=0; j<io_info->space->extent.u.simple.rank; j++)
    printf("%s: %d - pos=%d\n", FUNC,j,(int)io_info->iter->hyp.pos[j]);
#endif /* QAK */
                } /* end else */

                /* Advance the pointer in the buffer */
                io_info->dst = ((uint8_t *)io_info->dst) +
				   region_size*io_info->elmt_size;

                /* Increment the number of elements read */
                num_read+=region_size;

                /* Decrement the buffer left */
                io_info->nelmts-=region_size;

                /* Set the next position to start at */
                if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
                    io_info->iter->hyp.pos[dim+1]=(-1);
                else
                    io_info->iter->hyp.pos[dim+1] = regions[i].start + region_size;

                /* Decrement the iterator count */
                io_info->iter->hyp.elmt_left-=region_size;
            } /* end for */
        } else { /* recurse on each region to next dimension down */
#ifdef QAK
    printf("%s: check 3.0, num_regions=%d\n",FUNC,(int)num_regions);
    for(i=0; i<num_regions; i++)
        printf("%s: region %d={%d, %d}\n", FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */

            /* Increment the dimension we are working with */
            dim++;

            /* Step through each region in this dimension */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                /* Step through each location in each region */
                for(j=regions[i].start; j<=regions[i].end && io_info->nelmts>0; j++) {
#ifdef QAK
    printf("%s: check 4.0, dim=%d, location=%d\n",FUNC,dim,j);
#endif /* QAK */

                    /* Set the correct position we are working on */
                    io_info->iter->hyp.pos[dim]=j;

                    /* Go get the regions in the next lower dimension */
                    num_read+=H5S_hyper_fread(dim, io_info);

                    /* Advance to the next row if we got the whole region */
                    if(io_info->iter->hyp.pos[dim+1]==(-1))
                        io_info->iter->hyp.pos[dim]=j+1;
                } /* end for */
                if(j>regions[i].end && io_info->iter->hyp.pos[dim+1]==(-1))
                    io_info->iter->hyp.pos[dim]=(-1);
            } /* end for */
        } /* end else */

        /* Release the temporary buffer */
        H5TB_release_buf(reg_id);
    } /* end if */

    FUNC_LEAVE (num_read);
}   /* H5S_hyper_fread() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_fgath
 *
 * Purpose:	Gathers data points from file F and accumulates them in the
 *		type conversion buffer BUF.  The LAYOUT argument describes
 *		how the data is stored on disk and EFL describes how the data
 *		is organized in external files.  ELMT_SIZE is the size in
 *		bytes of a datum which this function treats as opaque.
 *		FILE_SPACE describes the data space of the dataset on disk
 *		and the elements that have been selected for reading (via
 *		hyperslab, etc).  This function will copy at most NELMTS elements.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *		Robb Matzke, 1999-08-03
 *		The data transfer properties are passed by ID since that's
 *		what the virtual file layer needs.
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_fgath (H5F_t *f, const struct H5O_layout_t *layout,
		 const struct H5O_pline_t *pline,
		 const struct H5O_fill_t *fill,
		 const struct H5O_efl_t *efl, size_t elmt_size,
		 const H5S_t *file_space, H5S_sel_iter_t *file_iter,
		 size_t nelmts, hid_t dxpl_id, void *_buf/*out*/)
{
    H5S_hyper_bound_t **lo_bounds;    /* Lower (closest to the origin) bound array for each dimension */
    H5S_hyper_bound_t **hi_bounds;    /* Upper (farthest from the origin) bound array for each dimension */
    H5S_hyper_io_info_t io_info;  /* Block of parameters to pass into recursive calls */
    intn	i;				/*counters		*/
    size_t  num_read;       /* number of elements read into buffer */

    FUNC_ENTER (H5S_hyper_fgath, 0);

    /* Check args */
    assert (f);
    assert (layout);
    assert (elmt_size>0);
    assert (file_space);
    assert (file_iter);
    assert (nelmts>0);
    assert (_buf);

#ifdef QAK
    printf("%s: check 1.0\n", FUNC);
#endif /* QAK */
    /* Allocate space for the low & high bound arrays */
    lo_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));
    hi_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));

    /* Initialize to correct order to walk through arrays.
        (When another iteration order besides the default 'C' order is chosen,
        this is the correct place to change the order of the array iterations)
    */
    for(i=0; i<file_space->extent.u.simple.rank; i++) {
        lo_bounds[i]=file_space->select.sel_info.hslab.hyper_lst->lo_bounds[i];
        hi_bounds[i]=file_space->select.sel_info.hslab.hyper_lst->hi_bounds[i];
    } /* end for */

    /* Initialize parameter block for recursive calls */
    io_info.f=f;
    io_info.layout=layout;
    io_info.pline=pline;
    io_info.fill=fill;
    io_info.efl=efl;
    io_info.elmt_size=elmt_size;
    io_info.space=file_space;
    io_info.iter=file_iter;
    io_info.nelmts=nelmts;
    io_info.dxpl_id = dxpl_id;
    io_info.src=NULL;
    io_info.dst=_buf;

    /* Set the hyperslab size to copy */
    io_info.hsize[0]=1;
    H5V_array_fill(io_info.hsize,io_info.hsize,sizeof(io_info.hsize[0]),file_space->extent.u.simple.rank);
    io_info.hsize[file_space->extent.u.simple.rank]=elmt_size;

    io_info.lo_bounds=lo_bounds;
    io_info.hi_bounds=hi_bounds;

    /* Recursively input the hyperslabs currently defined */
    /* starting with the slowest changing dimension */
#ifdef QAK
    printf("%s: check 4.0\n",FUNC);
#endif /* QAK */
    num_read=H5S_hyper_fread(-1,&io_info);
#ifdef QAK
    printf("%s: check 5.0, num_read=%d\n",FUNC,(int)num_read);
#endif /* QAK */

    /* Release the memory we allocated */
    H5MM_xfree(lo_bounds);
    H5MM_xfree(hi_bounds);
    
    FUNC_LEAVE (num_read);
} /* H5S_hyper_fgath() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_fwrite
 *
 * Purpose:	Recursively scatters data points to a file using the parameters
 *      passed to H5S_hyper_fscat.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_fwrite (intn dim, H5S_hyper_io_info_t *io_info)
{
    hsize_t region_size;                /* Size of lowest region */
    uintn parm_init=0;          /* Whether one-shot parameters set up */
    hid_t reg_id;               /* ID of temporary region buffer */
    H5S_hyper_region_t *regions;  /* Pointer to array of hyperslab nodes overlapped */
    size_t num_regions;         /* number of regions overlapped */
    size_t i;                   /* Counters */
    intn j;
    size_t num_written=0;          /* Number of elements read */
    const H5F_xfer_t *xfer_parms;	/* Data transfer properties */

    FUNC_ENTER (H5S_hyper_fwrite, 0);

    assert(io_info);
    if (H5P_DEFAULT==io_info->dxpl_id) {
	xfer_parms = &H5F_xfer_dflt;
    } else {
	xfer_parms = H5I_object(io_info->dxpl_id);
	assert(xfer_parms);
    }

#ifdef QAK
    printf("%s: check 1.0\n", FUNC);
#endif /* QAK */
    /* Get a sorted list (in the next dimension down) of the regions which */
    /*  overlap the current index in this dim */
    if((reg_id=H5S_hyper_get_regions(&num_regions,dim,
            io_info->space->select.sel_info.hslab.hyper_lst->count,
            io_info->lo_bounds, io_info->hi_bounds,
            io_info->iter->hyp.pos,io_info->space->select.offset))>=0) {

        /* Get the pointer to the actual regions array */
        regions=H5TB_buf_ptr(reg_id);
#ifdef QAK
    printf("%s: check 1.1, regions=%p\n", FUNC,regions);
	printf("%s: check 1.2, rank=%d\n",
	       FUNC,(int)io_info->space->extent.u.simple.rank);
	for(i=0; i<num_regions; i++)
	    printf("%s: check 2.1, region #%d: start=%d, end=%d\n",
		   FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */

        /* Check if this is the second to last dimension in dataset */
        /*  (Which means that we've got a list of the regions in the fastest */
        /*   changing dimension and should input those regions) */
        if((dim+2)==io_info->space->extent.u.simple.rank) {

            /* perform I/O on data from regions */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                /* Compute the size of the region to read */
                region_size=MIN(io_info->nelmts, (regions[i].end-regions[i].start)+1);

                /* Check if this hyperslab block is cached or could be cached */
                if(!regions[i].node->cinfo.cached && (xfer_parms->cache_hyper && (xfer_parms->block_limit==0 || xfer_parms->block_limit>=(regions[i].node->cinfo.size*io_info->elmt_size)))) {
                    /* if we aren't cached, attempt to cache the block */
                    H5S_hyper_block_cache(regions[i].node,io_info,0);
                } /* end if */

                /* Write information to the cached block */
                if(regions[i].node->cinfo.cached) {
                    if(H5S_hyper_block_write(regions[i].node,io_info,region_size)<0)
                        HRETURN_ERROR (H5E_DATASPACE, H5E_WRITEERROR, 0, "write error");
                }
                else {
                    /* Set up hyperslab I/O parameters which apply to all regions */
                    if(!parm_init) {
                        /* Copy the location of the region in the file */
                        HDmemcpy(io_info->offset, io_info->iter->hyp.pos, (io_info->space->extent.u.simple.rank * sizeof(hssize_t)));
                        io_info->offset[io_info->space->extent.u.simple.rank]=0;

                        /* Set flag */
                        parm_init=1;
                    } /* end if */

                    io_info->hsize[io_info->space->extent.u.simple.rank-1]=region_size;
                    io_info->offset[io_info->space->extent.u.simple.rank-1]=regions[i].start;

                    /*
                     * Scatter to file.
                     */
                    if (H5F_arr_write(io_info->f, io_info->dxpl_id,
				      io_info->layout, io_info->pline,
				      io_info->fill, io_info->efl,
				      io_info->hsize, io_info->hsize, zero,
				      io_info->offset, io_info->src)<0) {
                        HRETURN_ERROR (H5E_DATASPACE, H5E_WRITEERROR, 0, "write error");
                    }
                } /* end else */

                /* Advance the pointer in the buffer */
                io_info->src = ((const uint8_t *)io_info->src) +
				   region_size*io_info->elmt_size;

                /* Increment the number of elements read */
                num_written+=region_size;

                /* Decrement the buffer left */
                io_info->nelmts-=region_size;

                /* Set the next position to start at */
                if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
                    io_info->iter->hyp.pos[dim+1]=(-1);
                else
                    io_info->iter->hyp.pos[dim+1] = regions[i].start +
							region_size;

                /* Decrement the iterator count */
                io_info->iter->hyp.elmt_left-=region_size;
            } /* end for */
        } else { /* recurse on each region to next dimension down */

            /* Increment the dimension we are working with */
            dim++;

            /* Step through each region in this dimension */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                /* Step through each location in each region */
                for(j=regions[i].start; j<=regions[i].end && io_info->nelmts>0; j++) {
                    /* Set the correct position we are working on */
                    io_info->iter->hyp.pos[dim]=j;

                    /* Go get the regions in the next lower dimension */
                    num_written+=H5S_hyper_fwrite(dim, io_info);

                    /* Advance to the next row if we got the whole region */
                    if(io_info->iter->hyp.pos[dim+1]==(-1))
                        io_info->iter->hyp.pos[dim]=j+1;
                } /* end for */
                if(j>regions[i].end && io_info->iter->hyp.pos[dim+1]==(-1))
                    io_info->iter->hyp.pos[dim]=(-1);
            } /* end for */
        } /* end else */

        /* Release the temporary buffer */
        H5TB_release_buf(reg_id);
    } /* end if */

#ifdef QAK
    printf("%s: check 2.0\n", FUNC);
#endif /* QAK */
    FUNC_LEAVE (num_written);
}   /* H5S_hyper_fwrite() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_fscat
 *
 * Purpose:	Scatters dataset elements from the type conversion buffer BUF
 *		to the file F where the data points are arranged according to
 *		the file data space FILE_SPACE and stored according to
 *		LAYOUT and EFL. Each element is ELMT_SIZE bytes.
 *		The caller is requesting that NELMTS elements are copied.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *		Robb Matzke, 1999-08-03
 *		The data transfer properties are passed by ID since that's
 *		what the virtual file layer needs.
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_fscat (H5F_t *f, const struct H5O_layout_t *layout,
		 const struct H5O_pline_t *pline,
		 const struct H5O_fill_t *fill,
		 const struct H5O_efl_t *efl, size_t elmt_size,
		 const H5S_t *file_space, H5S_sel_iter_t *file_iter,
		 size_t nelmts, hid_t dxpl_id, const void *_buf)
{
    H5S_hyper_bound_t **lo_bounds;    /* Lower (closest to the origin) bound array for each dimension */
    H5S_hyper_bound_t **hi_bounds;    /* Upper (farthest from the origin) bound array for each dimension */
    H5S_hyper_io_info_t io_info;  /* Block of parameters to pass into recursive calls */
    intn	i;				/*counters		*/
    size_t  num_written;       /* number of elements read into buffer */

    FUNC_ENTER (H5S_hyper_fscat, 0);

    /* Check args */
    assert (f);
    assert (layout);
    assert (elmt_size>0);
    assert (file_space);
    assert (file_iter);
    assert (nelmts>0);
    assert (_buf);

#ifdef QAK
    printf("%s: check 1.0\n", FUNC);
#endif /* QAK */
    /* Allocate space for the low & high bound arrays */
    lo_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));
    hi_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));

    /*
     * Initialize to correct order to walk through arrays.  (When another
     * iteration order besides the default 'C' order is chosen, this is the
     * correct place to change the order of the array iterations)
     */
    for(i=0; i<file_space->extent.u.simple.rank; i++) {
        lo_bounds[i]=file_space->select.sel_info.hslab.hyper_lst->lo_bounds[i];
        hi_bounds[i]=file_space->select.sel_info.hslab.hyper_lst->hi_bounds[i];
    } /* end for */

    /* Initialize parameter block for recursive calls */
    io_info.f=f;
    io_info.layout=layout;
    io_info.pline=pline;
    io_info.fill=fill;
    io_info.efl=efl;
    io_info.elmt_size=elmt_size;
    io_info.space=file_space;
    io_info.iter=file_iter;
    io_info.nelmts=nelmts;
    io_info.dxpl_id = dxpl_id;
    io_info.src=_buf;
    io_info.dst=NULL;

    /* Set the hyperslab size to copy */
    io_info.hsize[0]=1;
    H5V_array_fill(io_info.hsize,io_info.hsize,sizeof(io_info.hsize[0]),file_space->extent.u.simple.rank);
    io_info.hsize[file_space->extent.u.simple.rank]=elmt_size;

    io_info.lo_bounds=lo_bounds;
    io_info.hi_bounds=hi_bounds;

    /* Recursively input the hyperslabs currently defined */
    /* starting with the slowest changing dimension */
    num_written=H5S_hyper_fwrite(-1,&io_info);

    /* Release the memory we allocated */
    H5MM_xfree(lo_bounds);
    H5MM_xfree(hi_bounds);
    
#ifdef QAK
    printf("%s: check 2.0\n", FUNC);
#endif /* QAK */
    FUNC_LEAVE (num_written >0 ? SUCCEED : FAIL);
} /* H5S_hyper_fscat() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_mread
 *
 * Purpose:	Recursively gathers data points from memory using the
 *		parameters passed to H5S_hyper_mgath.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_mread (intn dim, H5S_hyper_io_info_t *io_info)
{
    hsize_t region_size;                /* Size of lowest region */
    hid_t reg_id;               /* ID of temporary region buffer */
    H5S_hyper_region_t *regions;  /* Pointer to array of hyperslab nodes overlapped */
    size_t num_regions;         /* number of regions overlapped */
    size_t i;                   /* Counters */
    intn j;
    size_t num_read=0;          /* Number of elements read */

    FUNC_ENTER (H5S_hyper_mread, 0);

    assert(io_info);

#ifdef QAK
    printf("%s: check 1.0, dim=%d\n",FUNC,dim);
#endif /* QAK */

    /* Get a sorted list (in the next dimension down) of the regions which */
    /*  overlap the current index in this dim */
    if((reg_id=H5S_hyper_get_regions(&num_regions,dim,
            io_info->space->select.sel_info.hslab.hyper_lst->count,
            io_info->lo_bounds, io_info->hi_bounds,
            io_info->iter->hyp.pos,io_info->space->select.offset))>=0) {

        /* Get the pointer to the actual regions array */
        regions=H5TB_buf_ptr(reg_id);

        /* Check if this is the second to last dimension in dataset */
        /*  (Which means that we've got a list of the regions in the fastest */
        /*   changing dimension and should input those regions) */
#ifdef QAK
	printf("%s: check 2.0, rank=%d, num_regions=%d\n",
	       FUNC, (int)io_info->space->extent.u.simple.rank,
	       (int)num_regions);
	for(i=0; i<num_regions; i++)
	    printf("%s: check 2.1, region #%d: start=%d, end=%d\n",
		   FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */

        if((dim+2)==io_info->space->extent.u.simple.rank) {

            /* Set up hyperslab I/O parameters which apply to all regions */

            /* Copy the location of the region in the file */
            HDmemcpy(io_info->offset, io_info->iter->hyp.pos, (io_info->space->extent.u.simple.rank * sizeof(hssize_t)));
            io_info->offset[io_info->space->extent.u.simple.rank]=0;

            /* perform I/O on data from regions */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                region_size=MIN(io_info->nelmts,(regions[i].end-regions[i].start)+1);
                io_info->hsize[io_info->space->extent.u.simple.rank-1]=region_size;
                io_info->offset[io_info->space->extent.u.simple.rank-1]=regions[i].start;
#ifdef QAK
		printf("%s: check 2.1, i=%d, region_size=%d\n",
		       FUNC,(int)i,(int)region_size);
#endif /* QAK */

                /*
                 * Gather from memory.
                 */
                if (H5V_hyper_copy (io_info->space->extent.u.simple.rank+1,
                        io_info->hsize, io_info->hsize, zero, io_info->dst,
                        io_info->mem_size, io_info->offset, io_info->src)<0) {
                    HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0,
				   "unable to gather data from memory");
                }

                /* Advance the pointer in the buffer */
                io_info->dst = ((uint8_t *)io_info->dst) + region_size*io_info->elmt_size;

                /* Increment the number of elements read */
                num_read+=region_size;

                /* Decrement the buffer left */
                io_info->nelmts-=region_size;

                /* Set the next position to start at */
                if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
                    io_info->iter->hyp.pos[dim+1]=(-1);
                else
                    io_info->iter->hyp.pos[dim+1] =regions[i].start +
						       region_size;

                /* Decrement the iterator count */
                io_info->iter->hyp.elmt_left-=region_size;
            } /* end for */
        } else { /* recurse on each region to next dimension down */
#ifdef QAK
	    printf("%s: check 3.0, num_regions=%d\n",FUNC,(int)num_regions);
#endif /* QAK */

            /* Increment the dimension we are working with */
            dim++;

            /* Step through each region in this dimension */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                /* Step through each location in each region */
                for(j=regions[i].start; j<=regions[i].end && io_info->nelmts>0; j++) {
#ifdef QAK
		    printf("%s: check 4.0, dim=%d, location=%d\n",FUNC,dim,j);
#endif /* QAK */

                    /*
                     * If we are moving to a new position in this dim, reset
                     * the next lower dim. location.
                     */
                    if(io_info->iter->hyp.pos[dim]!=j)
                        io_info->iter->hyp.pos[dim+1]=(-1);

                    /* Set the correct position we are working on */
                    io_info->iter->hyp.pos[dim]=j;

                    /* Go get the regions in the next lower dimension */
                    num_read+=H5S_hyper_mread(dim, io_info);
                } /* end for */
            } /* end for */
        } /* end else */

        /* Release the temporary buffer */
        H5TB_release_buf(reg_id);
    } /* end if */

    FUNC_LEAVE (num_read);
}   /* H5S_hyper_mread() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_mgath
 *
 * Purpose:	Gathers dataset elements from application memory BUF and
 *		copies them into the data type conversion buffer TCONV_BUF.
 *		Each element is ELMT_SIZE bytes and arranged in application
 *		memory according to MEM_SPACE.  
 *		The caller is requesting that at most NELMTS be gathered.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_mgath (const void *_buf, size_t elmt_size,
		 const H5S_t *mem_space, H5S_sel_iter_t *mem_iter,
		 size_t nelmts, void *_tconv_buf/*out*/)
{
    H5S_hyper_bound_t **lo_bounds;    /* Lower (closest to the origin) bound array for each dimension */
    H5S_hyper_bound_t **hi_bounds;    /* Upper (farthest from the origin) bound array for each dimension */
    H5S_hyper_io_info_t io_info;  /* Block of parameters to pass into recursive calls */
    intn	i;
#ifdef QAK
    intn    j;            /* Counters		*/
#endif /* QAK */
    size_t  num_read;       /* number of elements read into buffer */

    FUNC_ENTER (H5S_hyper_mgath, 0);

#ifdef QAK
    printf("%s: check 1.0, elmt_size=%d, mem_space=%p\n",
	   FUNC,(int)elmt_size,mem_space);
    printf("%s: check 1.0, mem_iter=%p, nelmts=%d\n",FUNC,mem_iter,nelmts);
    printf("%s: check 1.0, _buf=%p, _tconv_buf=%p\n",FUNC,_buf,_tconv_buf);
#endif /* QAK */

    /* Check args */
    assert (elmt_size>0);
    assert (mem_space);
    assert (mem_iter);
    assert (nelmts>0);
    assert (_buf);
    assert (_tconv_buf);

#ifdef QAK
    printf("%s: check 2.0, mem_space->extent.u.simple.rank=%d\n",
	   FUNC, (int)mem_space->extent.u.simple.rank);
#endif /* QAK */

    /* Allocate space for the low & high bound arrays */
    lo_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));
    hi_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));

    /*
     * Initialize to correct order to walk through arrays.  (When another
     * iteration order besides the default 'C' order is chosen, this is the
     * correct place to change the order of the array iterations)
     */
#ifdef QAK
    printf("%s: check 3.0\n",FUNC);
#endif /* QAK */
    for(i=0; i<mem_space->extent.u.simple.rank; i++) {
        lo_bounds[i]=mem_space->select.sel_info.hslab.hyper_lst->lo_bounds[i];
        hi_bounds[i]=mem_space->select.sel_info.hslab.hyper_lst->hi_bounds[i];
#ifdef QAK
	printf("%s: check 3.1, lo[%d]=%p, hi[%d]=%p\n",
	       FUNC,i,lo_bounds[i],i,hi_bounds[i]);
        for(j=0; j<(int)mem_space->select.sel_info.hslab.hyper_lst->count; j++)
	    printf("%s: check 3.2, lo[%d][%d]=%d, hi[%d][%d]=%d\n",
		   FUNC, i, j, (int)lo_bounds[i][j].bound, i, j,
		   (int)hi_bounds[i][j].bound);
#endif /* QAK */
    } /* end for */

    /* Initialize parameter block for recursive calls */
    io_info.elmt_size=elmt_size;
    io_info.space=mem_space;
    io_info.iter=mem_iter;
    io_info.nelmts=nelmts;
    io_info.src=_buf;
    io_info.dst=_tconv_buf;

    /* Set up the size of the memory space */
    HDmemcpy(io_info.mem_size, mem_space->extent.u.simple.size,mem_space->extent.u.simple.rank*sizeof(hsize_t));
    io_info.mem_size[mem_space->extent.u.simple.rank]=elmt_size;

    /* Set the hyperslab size to copy */
    io_info.hsize[0]=1;
    H5V_array_fill(io_info.hsize, io_info.hsize, sizeof(io_info.hsize[0]),mem_space->extent.u.simple.rank);
    io_info.hsize[mem_space->extent.u.simple.rank]=elmt_size;

    io_info.lo_bounds=lo_bounds;
    io_info.hi_bounds=hi_bounds;

    /* Recursively input the hyperslabs currently defined */
    /* starting with the slowest changing dimension */
#ifdef QAK
    printf("%s: check 4.0\n",FUNC);
#endif /* QAK */
    num_read=H5S_hyper_mread(-1,&io_info);
#ifdef QAK
    printf("%s: check 5.0, num_read=%d\n",FUNC,(int)num_read);
#endif /* QAK */

    /* Release the memory we allocated */
    H5MM_xfree(lo_bounds);
    H5MM_xfree(hi_bounds);

    FUNC_LEAVE (num_read);
}   /* H5S_hyper_mgath() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_mwrite
 *
 * Purpose:	Recursively scatters data points from memory using the parameters
 *      passed to H5S_hyper_mscat.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_mwrite (intn dim, H5S_hyper_io_info_t *io_info)
{
    hsize_t region_size;                /* Size of lowest region */
    hid_t reg_id;               /* ID of temporary region buffer */
    H5S_hyper_region_t *regions;  /* Pointer to array of hyperslab nodes overlapped */
    size_t num_regions;         /* number of regions overlapped */
    size_t i;                   /* Counters */
    intn j;
    size_t num_read=0;          /* Number of elements read */

    FUNC_ENTER (H5S_hyper_mwrite, 0);

    assert(io_info);
#ifdef QAK
    printf("%s: check 1.0\n",FUNC);
#endif /* QAK */

    /* Get a sorted list (in the next dimension down) of the regions which */
    /*  overlap the current index in this dim */
    if((reg_id=H5S_hyper_get_regions(&num_regions,dim,
            io_info->space->select.sel_info.hslab.hyper_lst->count,
            io_info->lo_bounds, io_info->hi_bounds,
            io_info->iter->hyp.pos,io_info->space->select.offset))>=0) {

        /* Get the pointer to the actual regions array */
        regions=H5TB_buf_ptr(reg_id);

#ifdef QAK
	printf("%s: check 2.0, rank=%d\n",
	       FUNC,(int)io_info->space->extent.u.simple.rank);
	for(i=0; i<num_regions; i++)
	    printf("%s: check 2.1, region #%d: start=%d, end=%d\n",
		   FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */
        /* Check if this is the second to last dimension in dataset */
        /*  (Which means that we've got a list of the regions in the fastest */
        /*   changing dimension and should input those regions) */
        if((dim+2)==io_info->space->extent.u.simple.rank) {

            /* Set up hyperslab I/O parameters which apply to all regions */

            /* Copy the location of the region in the file */
            HDmemcpy(io_info->offset, io_info->iter->hyp.pos, (io_info->space->extent.u.simple.rank* sizeof(hssize_t)));
            io_info->offset[io_info->space->extent.u.simple.rank]=0;

#ifdef QAK
	    printf("%s: check 3.0\n",FUNC);
#endif /* QAK */
            /* perform I/O on data from regions */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                region_size=MIN(io_info->nelmts, (regions[i].end-regions[i].start)+1);
                io_info->hsize[io_info->space->extent.u.simple.rank-1]=region_size;
                io_info->offset[io_info->space->extent.u.simple.rank-1]=regions[i].start;

                /*
                 * Gather from memory.
                 */
                if (H5V_hyper_copy (io_info->space->extent.u.simple.rank+1,
				    io_info->hsize, io_info->mem_size, io_info->offset,
				    io_info->dst, io_info->hsize, zero,
				    io_info->src)<0) {
                    HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0, "unable to gather data from memory");
                }

                /* Advance the pointer in the buffer */
                io_info->src = ((const uint8_t *)io_info->src) +
				   region_size*io_info->elmt_size;

                /* Increment the number of elements read */
                num_read+=region_size;

                /* Decrement the buffer left */
                io_info->nelmts-=region_size;

                /* Set the next position to start at */
                if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
                    io_info->iter->hyp.pos[dim+1]=(-1);
                else
                    io_info->iter->hyp.pos[dim+1] = regions[i].start +
							region_size;

                /* Decrement the iterator count */
                io_info->iter->hyp.elmt_left-=region_size;
            } /* end for */
        } else { /* recurse on each region to next dimension down */

            /* Increment the dimension we are working with */
            dim++;

#ifdef QAK
	    printf("%s: check 6.0, num_regions=%d\n",FUNC,(int)num_regions);
#endif /* QAK */
            /* Step through each region in this dimension */
            for(i=0; i<num_regions && io_info->nelmts>0; i++) {
                /* Step through each location in each region */
#ifdef QAK
		printf("%s: check 7.0, start[%d]=%d, end[%d]=%d, nelmts=%d\n",
		       FUNC, i, (int)regions[i].start, i,
		       (int)regions[i].end, (int)io_info->nelmts);
#endif /* QAK */
                for(j=regions[i].start;
		    j<=regions[i].end && io_info->nelmts>0;
		    j++) {

                    /*
		     * If we are moving to a new position in this dim, reset
		     * the next lower dim. location.
		     */
                    if(io_info->iter->hyp.pos[dim]!=j)
                        io_info->iter->hyp.pos[dim+1]=(-1);

                    /* Set the correct position we are working on */
                    io_info->iter->hyp.pos[dim]=j;

                    /* Go get the regions in the next lower dimension */
                    num_read+=H5S_hyper_mwrite(dim, io_info);
                } /* end for */
            } /* end for */
        } /* end else */

        /* Release the temporary buffer */
        H5TB_release_buf(reg_id);
    } /* end if */

    FUNC_LEAVE (num_read);
}   /* H5S_hyper_mwrite() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_mscat
 *
 * Purpose:	Scatters NELMTS data points from the type conversion buffer
 *		TCONV_BUF to the application buffer BUF.  Each element is
 *		ELMT_SIZE bytes and they are organized in application memory
 *		according to MEM_SPACE.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *              Wednesday, June 17, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5S_hyper_mscat (const void *_tconv_buf, size_t elmt_size,
		 const H5S_t *mem_space, H5S_sel_iter_t *mem_iter,
		 size_t nelmts, void *_buf/*out*/)
{
    H5S_hyper_bound_t **lo_bounds;    /* Lower (closest to the origin) bound array for each dimension */
    H5S_hyper_bound_t **hi_bounds;    /* Upper (farthest from the origin) bound array for each dimension */
    H5S_hyper_io_info_t io_info;  /* Block of parameters to pass into recursive calls */
    intn	i;				/*counters		*/
    size_t  num_read;       /* number of elements read into buffer */

    FUNC_ENTER (H5S_hyper_mscat, 0);

    /* Check args */
    assert (elmt_size>0);
    assert (mem_space);
    assert (mem_iter);
    assert (nelmts>0);
    assert (_buf);
    assert (_tconv_buf);

    /* Allocate space for the low & high bound arrays */
    lo_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));
    hi_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
			    sizeof(H5S_hyper_bound_t *));

    /*
     * Initialize to correct order to walk through arrays.  (When another
     * iteration order besides the default 'C' order is chosen, this is the
     * correct place to change the order of the array iterations)
     */
    for(i=0; i<mem_space->extent.u.simple.rank; i++) {
        lo_bounds[i]=mem_space->select.sel_info.hslab.hyper_lst->lo_bounds[i];
        hi_bounds[i]=mem_space->select.sel_info.hslab.hyper_lst->hi_bounds[i];
    } /* end for */

    /* Initialize parameter block for recursive calls */
    io_info.elmt_size=elmt_size;
    io_info.space=mem_space;
    io_info.iter=mem_iter;
    io_info.nelmts=nelmts;
    io_info.src=_tconv_buf;
    io_info.dst=_buf;

    /* Set up the size of the memory space */
    HDmemcpy(io_info.mem_size, mem_space->extent.u.simple.size,mem_space->extent.u.simple.rank*sizeof(hsize_t));
    io_info.mem_size[mem_space->extent.u.simple.rank]=elmt_size;

    /* Set the hyperslab size to copy */
    io_info.hsize[0]=1;
    H5V_array_fill(io_info.hsize, io_info.hsize, sizeof(io_info.hsize[0]), mem_space->extent.u.simple.rank);
    io_info.hsize[mem_space->extent.u.simple.rank]=elmt_size;

    io_info.lo_bounds=lo_bounds;
    io_info.hi_bounds=hi_bounds;

    /* Recursively input the hyperslabs currently defined */
    /* starting with the slowest changing dimension */
#ifdef QAK
    printf("%s: check 1.0\n",FUNC);
#endif /* QAK */
    num_read=H5S_hyper_mwrite(-1,&io_info);
#ifdef QAK
    printf("%s: check 2.0\n",FUNC);
#endif /* QAK */

    /* Release the memory we allocated */
    H5MM_xfree(lo_bounds);
    H5MM_xfree(hi_bounds);

    FUNC_LEAVE (num_read>0 ? SUCCEED : FAIL);
}   /* H5S_hyper_mscat() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_bsearch
 PURPOSE
    Search for a boundary
 USAGE
    herr_t H5S_hyper_bsearch(key,barr,count)
        hssize_t size;              IN: Key we are searching for
        H5S_hyper_bount_t *barr;    IN: Pointer to the array of bounds
        size_t count;               IN: Number of elements in the bound array
 RETURNS
    The element number to insert in front of on success (the value in the 'count'
    parameter if the new bound should be added to end) or negative on failure.
 DESCRIPTION
    Finds the proper place to insert a boundary in a sorted boundary array.
    Uses a binary search algorithm for the actual searching.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static intn
H5S_hyper_bsearch(hssize_t size, H5S_hyper_bound_t *barr, size_t count)
{
    size_t lo, mid, hi;       /* Indices for the search */
    intn ret_value=-1;      /* Return value index */

    FUNC_ENTER (H5S_hyper_bsearch, FAIL);

    assert(barr);
    assert(count>0);

    /* Check bounds first */
    if(size<barr[0].bound)
        ret_value=0;
    else if(size>barr[count-1].bound)
        ret_value=(intn)count;
    else {      /* must be in the middle somewhere, go get it */
        lo=0;
        hi=count-1;
        do {
            /* Calc. the mid-point */
            mid=(hi+lo)/2;

            /* check for bounds only seperated by one element */
            if((hi-lo)<=1) {
                ret_value=(intn)hi;
                break;
            } else {    /* Divide and conquer! */
                if(size>barr[mid].bound)
                    lo=mid;
                else
                    hi=mid;
            } /* end else */
        } while(lo!=hi);
    } /* end else */
    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_bsearch() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_node_add
 PURPOSE
    Add a new node to a list of hyperslab nodes
 USAGE
    herr_t H5S_hyper_node_add(head, start, size)
        H5S_hyper_node_t *head;   IN: Pointer to head of hyperslab list
        intn endflag;             IN: "size" array actually contains "end" array
        intn rank;                IN: # of dimensions of the node
        const hssize_t *start;    IN: Offset of block
        const hsize_t *size;      IN: Size of block
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Adds a new hyperslab node to a list of them.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_node_add (H5S_hyper_node_t **head, intn endflag, intn rank, const hssize_t *start, const hsize_t *size)
{
    H5S_hyper_node_t *slab;     /* New hyperslab node to add */
    intn i;     /* Counters */
    herr_t ret_value=SUCCEED;

    FUNC_ENTER (H5S_hyper_node_add, FAIL);

    /* Check args */
    assert (head);
    assert (start);
    assert (size);

    /* Create new hyperslab node to insert */
    if((slab = H5MM_malloc(sizeof(H5S_hyper_node_t)))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab node");
    if((slab->start = H5MM_malloc(sizeof(hsize_t)* rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab start boundary");
    if((slab->end = H5MM_malloc(sizeof(hsize_t)* rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab end boundary");

    /* Set boundary on new node */
    for(i=0; i<rank; i++) {
        slab->start[i]=start[i];
        if(endflag)
            slab->end[i]=size[i];
        else
            slab->end[i]=start[i]+size[i]-1;
    } /* end for */

    /* Prepend on list of hyperslabs for this selection */
    slab->next=*head;
    *head=slab;

done:
    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_node_add() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_node_prepend
 PURPOSE
    Prepend an existing node to an existing list of hyperslab nodes
 USAGE
    herr_t H5S_hyper_node_prepend(head, node)
        H5S_hyper_node_t **head;  IN: Pointer to pointer to head of hyperslab list
        H5S_hyper_node_t *node;   IN: Pointer to node to prepend
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Prepends an existing hyperslab node to a list of them.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_node_prepend (H5S_hyper_node_t **head, H5S_hyper_node_t *node)
{
    herr_t ret_value=SUCCEED;

    FUNC_ENTER (H5S_hyper_node_prepend, FAIL);

    /* Check args */
    assert (head);
    assert (node);

    /* Prepend on list of hyperslabs for this selection */
    node->next=*head;
    *head=node;

    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_node_prepend() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_node_release
 PURPOSE
    Free the memory for a hyperslab node
 USAGE
    herr_t H5S_hyper_node_release(node)
        H5S_hyper_node_t *node;   IN: Pointer to node to free
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Frees a hyperslab node.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S_hyper_node_release (H5S_hyper_node_t *node)
{
    herr_t ret_value=SUCCEED;

    FUNC_ENTER (H5S_hyper_node_release, FAIL);

    /* Check args */
    assert (node);

    /* Free the hyperslab node */
    node->start = H5MM_xfree(node->start);
    node->end = H5MM_xfree(node->end);
    H5MM_xfree(node);

    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_node_release() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_add
 PURPOSE
    Add a block to hyperslab selection
 USAGE
    herr_t H5S_hyper_add(space, start, size)
        H5S_t *space;       	  IN: Pointer to dataspace
        const hssize_t *start;    IN: Offset of block
        const hsize_t *end;       IN: Offset of end of block
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Adds a block to an existing hyperslab selection.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_add (H5S_t *space, const hssize_t *start, const hsize_t *end)
{
    H5S_hyper_node_t *slab;     /* New hyperslab node to insert */
    H5S_hyper_bound_t *tmp;     /* Temporary pointer to an hyperslab bound array */
    intn bound_loc;             /* Boundary location to insert hyperslab */
    size_t elem_count;          /* Number of elements in hyperslab selection */
    intn i;     /* Counters */
    herr_t ret_value=SUCCEED;

    FUNC_ENTER (H5S_hyper_add, FAIL);

    /* Check args */
    assert (space);
    assert (start);
    assert (end);


#ifdef QAK
    printf("%s: check 1.0\n",FUNC);
#endif /* QAK */
    /* Create new hyperslab node to insert */
    if((slab = H5MM_malloc(sizeof(H5S_hyper_node_t)))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab node");
    if((slab->start = H5MM_malloc(sizeof(hsize_t)*space->extent.u.simple.rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab start boundary");
    if((slab->end = H5MM_malloc(sizeof(hsize_t)*space->extent.u.simple.rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab end boundary");

#ifdef QAK
    printf("%s: check 2.0\n",FUNC);
#endif /* QAK */
    /* Set boundary on new node */
    for(i=0,elem_count=1; i<space->extent.u.simple.rank; i++) {
#ifdef QAK
	printf("%s: check 2.1, %d: start=%d, end=%d, elem_count=%d\n",
	       FUNC,(int)i,(int)start[i],(int)end[i],(int)elem_count);
#endif /* QAK */
        slab->start[i]=start[i];
        slab->end[i]=end[i];
        elem_count*=(end[i]-start[i])+1;
    } /* end for */

    /* Initialize caching parameters */
    slab->cinfo.cached=0;
    slab->cinfo.size=elem_count;
    slab->cinfo.wleft=slab->cinfo.rleft=0;
    slab->cinfo.block_id=(-1);
    slab->cinfo.block=slab->cinfo.wpos=slab->cinfo.rpos=NULL;

#ifdef QAK
    printf("%s: check 3.0, lo_bounds=%p, hi_bounds=%p\n",
	   FUNC, space->select.sel_info.hslab.hyper_lst->lo_bounds,
	   space->select.sel_info.hslab.hyper_lst->hi_bounds);
#endif /* QAK */
    /* Increase size of boundary arrays for dataspace's selection */
    for(i=0; i<space->extent.u.simple.rank; i++) {
        tmp=space->select.sel_info.hslab.hyper_lst->lo_bounds[i];
#ifdef QAK
	printf("%s: check 3.1, i=%d, space->sel_info.count=%d, tmp=%p\n",FUNC,(int)i, space->select.sel_info.hslab.hyper_lst->count,tmp);
#endif /* QAK */
        if((space->select.sel_info.hslab.hyper_lst->lo_bounds[i]=H5MM_realloc(tmp,sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hslab.hyper_lst->count+1)))==NULL) {
            space->select.sel_info.hslab.hyper_lst->lo_bounds[i]=tmp;
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                "can't allocate hyperslab lo boundary array");
        } /* end if */
#ifdef QAK
	printf("%s: check 3.2, i=%d\n",FUNC,(int)i);
#endif /* QAK */
        tmp=space->select.sel_info.hslab.hyper_lst->hi_bounds[i];
        if((space->select.sel_info.hslab.hyper_lst->hi_bounds[i]=H5MM_realloc(tmp,sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hslab.hyper_lst->count+1)))==NULL) {
            space->select.sel_info.hslab.hyper_lst->hi_bounds[i]=tmp;
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                "can't allocate hyperslab hi boundary array");
        } /* end if */
    } /* end for */

#ifdef QAK
    printf("%s: check 4.0\n",FUNC);
    {
        intn j;
        
        for(i=0; i<space->extent.u.simple.rank; i++) {
            for(j=0; j<(int)space->select.sel_info.hslab.hyper_lst->count; j++) {
		printf("%s: lo_bound[%d][%d]=%d(%p), "
		       "hi_bound[%d][%d]=%d(%p)\n",FUNC,
        i,j,(int)space->select.sel_info.hslab.hyper_lst->lo_bounds[i][j].bound,
            space->select.sel_info.hslab.hyper_lst->lo_bounds[i][j].node,
        i,j,(int)space->select.sel_info.hslab.hyper_lst->hi_bounds[i][j].bound,
            space->select.sel_info.hslab.hyper_lst->hi_bounds[i][j].node);
            }
        }
    }
#endif /* QAK */
    /* Insert each boundary of the hyperslab into the sorted lists of bounds */
    for(i=0; i<space->extent.u.simple.rank; i++) {
        /* Check if this is the first hyperslab inserted */
        if(space->select.sel_info.hslab.hyper_lst->count==0) {
#ifdef QAK
	    printf("%s: check 4.1, start[%d]=%d, end[%d]=%d\n",
		   FUNC, i, (int)slab->start[i],i,(int)slab->end[i]);
	    printf("%s: check 4.1,.hslab.hyper_lst->count=%d\n",
		   FUNC,(int)space->select.sel_info.hslab.hyper_lst->count);
#endif /* QAK */
            space->select.sel_info.hslab.hyper_lst->lo_bounds[i][0].bound=slab->start[i];
            space->select.sel_info.hslab.hyper_lst->lo_bounds[i][0].node=slab;
            space->select.sel_info.hslab.hyper_lst->hi_bounds[i][0].bound=slab->end[i];
            space->select.sel_info.hslab.hyper_lst->hi_bounds[i][0].node=slab;
        } /* end if */
        else {
#ifdef QAK
	    printf("%s: check 4.3, start[%d]=%d, end[%d]=%d\n",
		   FUNC,i,(int)slab->start[i],i,(int)slab->end[i]);
	    printf("%s: check 4.3,.hslab.hyper_lst->count=%d\n",
		   FUNC,(int)space->select.sel_info.hslab.hyper_lst->count);
#endif /* QAK */
            /* Take care of the low boundary first */
            /* Find the location to insert in front of */
            if((bound_loc=H5S_hyper_bsearch(slab->start[i],space->select.sel_info.hslab.hyper_lst->lo_bounds[i],
                    space->select.sel_info.hslab.hyper_lst->count))<0)
                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                    "can't find location to insert hyperslab boundary");

#ifdef QAK
	    printf("%s: check 4.5, bound_loc=%d\n",FUNC,(int)bound_loc);
#endif /* QAK */
            /* Check if we need to move boundary elements */
            if(bound_loc!=(intn)space->select.sel_info.hslab.hyper_lst->count) {
                HDmemmove(&space->select.sel_info.hslab.hyper_lst->lo_bounds[i][bound_loc+1],
                    &space->select.sel_info.hslab.hyper_lst->lo_bounds[i][bound_loc],
                    sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hslab.hyper_lst->count-bound_loc));
            } /* end if */
            space->select.sel_info.hslab.hyper_lst->lo_bounds[i][bound_loc].bound=slab->start[i];
            space->select.sel_info.hslab.hyper_lst->lo_bounds[i][bound_loc].node=slab;

            /* Take care of the high boundary next */
            /* Find the location to insert in front of */
            if((bound_loc=H5S_hyper_bsearch(slab->end[i],space->select.sel_info.hslab.hyper_lst->hi_bounds[i],
                    space->select.sel_info.hslab.hyper_lst->count))<0)
                HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                    "can't find location to insert hyperslab boundary");

            /* Check if we need to move boundary elements */
            if(bound_loc!=(intn)space->select.sel_info.hslab.hyper_lst->count) {
                HDmemmove(&space->select.sel_info.hslab.hyper_lst->hi_bounds[i][bound_loc+1],
                    &space->select.sel_info.hslab.hyper_lst->hi_bounds[i][bound_loc],
                    sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hslab.hyper_lst->count-bound_loc));
            } /* end if */
            space->select.sel_info.hslab.hyper_lst->hi_bounds[i][bound_loc].bound=slab->end[i];
            space->select.sel_info.hslab.hyper_lst->hi_bounds[i][bound_loc].node=slab;
        } /* end else */
    } /* end for */

    /* Increment the number of bounds in the array */
    space->select.sel_info.hslab.hyper_lst->count++;
#ifdef QAK
    printf("%s: check 5.0, count=%d\n",FUNC,(int)space->select.sel_info.hslab.hyper_lst->count);
#endif /* QAK */
    
    /* Prepend on list of hyperslabs for this selection */
    slab->next=space->select.sel_info.hslab.hyper_lst->head;
    space->select.sel_info.hslab.hyper_lst->head=slab;

    /* Increment the number of elements in the hyperslab selection */
    space->select.num_elem+=elem_count;
#ifdef QAK
    printf("%s: check 6.0, elem_count=%d\n",FUNC,(int)elem_count);
    {
        intn j;
        
        for(i=0; i<space->extent.u.simple.rank; i++) {
            for(j=0; j<(int)space->select.sel_info.hslab.hyper_lst->count; j++) {
                printf("%s: lo_bound[%d][%d]=%d, hi_bound[%d][%d]=%d\n", FUNC,
                    i,j,(int)space->select.sel_info.hslab.hyper_lst->lo_bounds[i][j].bound,
                    i,j,(int)space->select.sel_info.hslab.hyper_lst->hi_bounds[i][j].bound);
            }
        }
    }
#endif /* QAK */

done:
    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_add() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_clip
 PURPOSE
    Clip a list of nodes against the current selection
 USAGE
    herr_t H5S_hyper_clip(space, nodes, uniq, overlap)
        H5S_t *space;       	  IN: Pointer to dataspace
        H5S_hyper_node_t *nodes;  IN: Pointer to list of nodes
        H5S_hyper_node_t **uniq;  IN: Handle to list of non-overlapping nodes
        H5S_hyper_node_t **overlap;  IN: Handle to list of overlapping nodes
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Clips a list of hyperslab nodes against the current hyperslab selection.
    The list of non-overlapping and overlapping nodes which are generated from
    this operation are returned in the 'uniq' and 'overlap' pointers.  If
    either of those lists are not needed, they may be set to NULL and the
    list will be released.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
    Clipping a multi-dimensional space against another multi-dimensional
    space generates at most 1 overlapping region and 2*<rank> non-overlapping
    regions, falling into the following categories in each dimension:
        Case 1 - A overlaps B on both sides:
            node            <----AAAAAAAA--->
                clipped against:
            existing        <-----BBBBB----->
                generates:
            overlapping     <-----CCCCC----->
            non-overlapping <----D---------->
            non-overlapping <----------EE--->

        Case 2 - A overlaps B on one side: (need to check both sides!)
            Case 2a:
                node            <------AAAAAA--->
                    clipped against:
                existing        <-----BBBBB----->
                    generates:
                overlapping     <------CCCC----->
                non-overlapping <----------EE--->
            Case 2b:
                node            <---AAAAA------->
                    clipped against:
                existing        <-----BBBBB----->
                    generates:
                overlapping     <-----CCC------->
                non-overlapping <---EE---------->

        Case 3 - A is entirely within B:
            node            <------AA------->
                clipped against:
            existing        <-----BBBBB----->
                generates:
            overlapping     <------CC------->

        Case 4 - A is entirely outside B: (doesn't matter which side)
            node            <-----------AAA->
                clipped against:
            existing        <-----BBBBB----->
                generates:
            non-overlapping <-----------AAA->

    This algorithm could be sped up by keeping track of the last (existing)
    region the new node was compared against when it was split and resume
    comparing against the region following that one when it's returned to
    later (for non-overlapping blocks).

    Another optimization is to build a n-tree (not certain about how many
    times each dimension should be cut, but at least once) for the dataspace
    and build a list of existing blocks which overlap each "n"-tant and only
    compare the new nodes against existing node in the region of the n-tree
    which the are located in.

 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_clip (H5S_t *space, H5S_hyper_node_t *nodes, H5S_hyper_node_t **uniq,
        H5S_hyper_node_t **overlap)
{
    H5S_hyper_node_t *region,   /* Temp. hyperslab selection region pointer */
        *node,                  /* Temp. hyperslab node pointer */
        *next_node;             /* Pointer to next node in node list */
    hssize_t *start;            /* Temporary arrays of start & sizes (for splitting nodes) */
    hsize_t *end=NULL;          /* Temporary arrays of start & sizes (for splitting nodes) */
    intn rank;                  /* Cached copy of the rank of the dataspace */
    intn overlapped;            /* Flag for overlapping nodes */
    intn non_intersect;         /* Flag for non-intersecting nodes */
    intn i;     /* Counters */
    enum               /* Cases for edge overlaps */
        {OVERLAP_BOTH,OVERLAP_LOWER,OVERLAP_UPPER,WITHIN,NO_OVERLAP} clip_case;
    herr_t ret_value=SUCCEED;

    FUNC_ENTER (H5S_hyper_clip, FAIL);

    /* Check args */
    assert (space);
    assert (nodes);
    assert (uniq || overlap);

    /* Allocate space for the temporary starts & sizes */
    if((start = H5MM_malloc(sizeof(hssize_t)*space->extent.u.simple.rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab start array");
    if((end = H5MM_malloc(sizeof(hsize_t)*space->extent.u.simple.rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab size array");

    /* Set up local variables */
    rank=space->extent.u.simple.rank;

    /*
     * Cycle through all the hyperslab nodes, clipping them against the 
     * existing hyperslab selection.
     */
    node=nodes;
    while(node!=NULL) {
        /* Remove current node from head of list to evaulate it */
        next_node=node->next;   /* retain next node in list */
        if(nodes==node)
            nodes=nodes->next;  /* Move head of list */
        node->next=NULL;    /* just to be safe */

        overlapped=0;       /* Reset overlapped flag */
        region=space->select.sel_info.hslab.hyper_lst->head;
        while(region!=NULL && overlapped==0) {
            /* Check for intersection */
            for(i=0, non_intersect=0; i<rank && non_intersect==0; i++) {
                if(node->end[i]<region->start[i] || node->start[i]>region->end[i])
                    non_intersect=1;
            } /* end for */

            /* Only compare node with regions that actually intersect */
            if(non_intersect==0) {
                /* Compare the boundaries of the two objects in each dimension */
                for(i=0; i<rank && overlapped==0; i++) {
                    /* Find overlap case we are in */

                    /* True if case 1, 4 or 2b */
                    if(node->start[i]<region->start[i]) {
                        /* Test for case 4 */
                        /* NO_OVERLAP cases could be taken out, but are left in for clarity */
                        if(node->end[i]<region->start[i]) {
                            clip_case=NO_OVERLAP;
                            assert("invalid clipping case" && 0);
                        } /* end if */
                        else {
                            /* Test for case 2b */
                            if(node->end[i]<=region->end[i]) {
                                clip_case=OVERLAP_LOWER;
                            } /* end if */
                            /* Must be case 1 */
                            else {
                                clip_case=OVERLAP_BOTH;
                            } /* end else */
                        } /* end else */
                    } /* end if */
                    /* Case 2a, 3 or 4 (on the other side)*/
                    else {
                        /* Test for case 4 */
                        if(node->start[i]>region->end[i]) {
                            clip_case=NO_OVERLAP;
                            assert("invalid clipping case" && 0);
                        } /* end if */
                        /* Case 2a or 3 */
                        else {
                            /* Test for case 2a */
                            if(node->end[i]>region->end[i]) {
                                clip_case=OVERLAP_UPPER;
                            } /* end if */
                            /* Must be case 3 */
                            else {
                                clip_case=WITHIN;
                            } /* end else */
                        } /* end else */
                    } /* end else */
                    
                    if(clip_case!=WITHIN) {
                        /* Copy all the dimensions start & end points */
                        HDmemcpy(start,node->start,rank*sizeof(hssize_t));
                        HDmemcpy(end,node->end,rank*sizeof(hssize_t));
                    } /* end if */

                    /* Work on upper overlapping block */
                    if(clip_case==OVERLAP_BOTH || clip_case==OVERLAP_LOWER) {
                        /* Modify the end point in the current dimension of the overlap */
                        end[i]=region->start[i]-1;
                        /* Clip the existing non-overlapped portion off the current node */
                        node->start[i]=region->start[i];
                        /* Add the non-overlapping portion to the list of new nodes */
                        if(H5S_hyper_node_add(&nodes,1,rank,(const hssize_t *)start,(const hsize_t *)end)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslab");
                    } /* end if */

                    /* Work on lower overlapping block */
                    if(clip_case==OVERLAP_BOTH || clip_case==OVERLAP_UPPER) {
                        /* Modify the start & end point in the current dimension of the overlap */
                        start[i]=region->end[i]+1;
                        end[i]=node->end[i];
                        /* Clip the existing non-overlapped portion off the current node */
                        node->end[i]=region->end[i];
                        /* Add the non-overlapping portion to the list of new nodes */
                        if(H5S_hyper_node_add(&nodes,1,rank,(const hssize_t *)start,(const hsize_t *)end)<0)
                            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslab");
                    } /* end if */

                    /* Check if this is the last dimension */
                    /* Add the block to the "overlapped" list, if so */
                    /* Allow the algorithm to proceed to the next dimension otherwise */
                    if(i==(rank-1)) {   
                        if(overlap!=NULL) {
                            if(H5S_hyper_node_prepend(overlap,node)<0)
                                HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslab");
                        }
                        else {  /* Free the node if we aren't going to keep it */
                            H5S_hyper_node_release(node);
                        } /* end else */
                        overlapped=1;   /* stop the algorithm for this block */
                    } /* end if */
                } /* end for */
            } /* end if */

            /* Advance to next hyperslab region */
            region=region->next;
        } /* end while */

        /* Check whether we should add the node to the non-overlapping list */
        if(!overlapped) {
            if(uniq!=NULL) {
                if(H5S_hyper_node_prepend(uniq,node)<0)
                    HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslab");
            }
            else {  /* Free the node if we aren't going to keep it */
                H5S_hyper_node_release(node);
            } /* end else */
        } /* end if */

        /* Advance to next hyperslab node */
        node=next_node;

        /* Check if we've added more nodes from splitting to the list */
        if(node==NULL && nodes!=NULL)
            node=nodes;
    } /* end while */

done:
    if(start!=NULL)
        H5MM_xfree(start);
    if(end!=NULL)
        H5MM_xfree(end);

    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_clip() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_release
 PURPOSE
    Release hyperslab selection information for a dataspace
 USAGE
    herr_t H5S_hyper_release(space)
        H5S_t *space;       IN: Pointer to dataspace
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Releases all hyperslab selection information for a dataspace
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
 * 	Robb Matzke, 1998-08-25
 *	The fields which are freed are set to NULL to prevent them from being
 *	freed again later.  This fixes some allocation problems where
 *	changing the hyperslab selection of one data space causes a core dump
 *	when closing some other data space.
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_release (H5S_t *space)
{
    H5S_hyper_node_t *curr,*next;   /* Pointer to hyperslab nodes */
    intn i;     /* Counters */

    FUNC_ENTER (H5S_hyper_release, FAIL);

    /* Check args */
    assert (space && H5S_SEL_HYPERSLABS==space->select.type);
#ifdef QAK
    printf("%s: check 1.0\n",FUNC);
#endif /* QAK */

    /* Reset the number of points selected */
    space->select.num_elem=0;

    /* Release the per-dimension selection info */
    if(space->select.sel_info.hslab.diminfo!=NULL)
        H5MM_xfree(space->select.sel_info.hslab.diminfo);
    space->select.sel_info.hslab.diminfo = NULL;

    /* Release hi and lo boundary information */
    for(i=0; i<space->extent.u.simple.rank; i++) {
        H5MM_xfree(space->select.sel_info.hslab.hyper_lst->lo_bounds[i]);
        space->select.sel_info.hslab.hyper_lst->lo_bounds[i] = NULL;
        H5MM_xfree(space->select.sel_info.hslab.hyper_lst->hi_bounds[i]);
        space->select.sel_info.hslab.hyper_lst->hi_bounds[i] = NULL;
    } /* end for */
    H5MM_xfree(space->select.sel_info.hslab.hyper_lst->lo_bounds);
    space->select.sel_info.hslab.hyper_lst->lo_bounds = NULL;
    H5MM_xfree(space->select.sel_info.hslab.hyper_lst->hi_bounds);
    space->select.sel_info.hslab.hyper_lst->hi_bounds = NULL;

    /* Release list of selected regions */
    curr=space->select.sel_info.hslab.hyper_lst->head;
    while(curr!=NULL) {
        next=curr->next;
        H5S_hyper_node_release(curr);
        curr=next;
    } /* end while */

    /* Release hyperslab selection node itself */
    H5MM_xfree(space->select.sel_info.hslab.hyper_lst);
    space->select.sel_info.hslab.hyper_lst=NULL;

#ifdef QAK
    printf("%s: check 2.0\n",FUNC);
#endif /* QAK */

    FUNC_LEAVE (SUCCEED);
}   /* H5S_hyper_release() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_npoints
 PURPOSE
    Compute number of elements in current selection
 USAGE
    hsize_t H5S_hyper_npoints(space)
        H5S_t *space;       IN: Pointer to dataspace
 RETURNS
    The number of elements in selection on success, 0 on failure
 DESCRIPTION
    Compute number of elements in current selection.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
hsize_t
H5S_hyper_npoints (const H5S_t *space)
{
    FUNC_ENTER (H5S_hyper_npoints, 0);

    /* Check args */
    assert (space);

    FUNC_LEAVE (space->select.num_elem);
}   /* H5S_hyper_npoints() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_sel_iter_release
 PURPOSE
    Release hyperslab selection iterator information for a dataspace
 USAGE
    herr_t H5S_hyper_sel_iter_release(sel_iter)
        H5S_t *space;                   IN: Pointer to dataspace iterator is for
        H5S_sel_iter_t *sel_iter;       IN: Pointer to selection iterator
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Releases all information for a dataspace hyperslab selection iterator
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_sel_iter_release (H5S_sel_iter_t *sel_iter)
{
    FUNC_ENTER (H5S_hyper_sel_iter_release, FAIL);

    /* Check args */
    assert (sel_iter);

    if(sel_iter->hyp.pos!=NULL)
        H5MM_xfree(sel_iter->hyp.pos);

    FUNC_LEAVE (SUCCEED);
}   /* H5S_hyper_sel_iter_release() */

/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_compare_bounds
 *
 * Purpose:	Compares two bounds for equality
 *
 * Return:	an integer less than, equal to, or greater than zero if the first
 *          region is considered to be respectively less than, equal to, or
 *          greater than the second
 *
 * Programmer:	Quincey Koziol
 *              Friday, July 17, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
int
H5S_hyper_compare_bounds (const void *r1, const void *r2)
{
    if(((const H5S_hyper_bound_t *)r1)->bound<((const H5S_hyper_bound_t *)r2)->bound)
        return(-1);
    else
        if(((const H5S_hyper_bound_t *)r1)->bound>((const H5S_hyper_bound_t *)r2)->bound)
            return(1);
        else
            return(0);
}   /* end H5S_hyper_compare_bounds */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_copy
 PURPOSE
    Copy a selection from one dataspace to another
 USAGE
    herr_t H5S_hyper_copy(dst, src)
        H5S_t *dst;  OUT: Pointer to the destination dataspace
        H5S_t *src;  IN: Pointer to the source dataspace
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Copies all the hyperslab selection information from the source
    dataspace to the destination dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_copy (H5S_t *dst, const H5S_t *src)
{
    H5S_hyper_list_t *new_hyper;    /* New hyperslab selection */
    H5S_hyper_node_t *curr, *new, *new_head;    /* Hyperslab information nodes */
    H5S_hyper_dim_t *new_diminfo=NULL;	/* New per-dimension info array[rank] */
    intn i;                     /* Counters */
    size_t u;                   /* Counters */
    herr_t ret_value=SUCCEED;   /* return value */

    FUNC_ENTER (H5S_hyper_copy, FAIL);

    assert(src);
    assert(dst);

#ifdef QAK
    printf("%s: check 3.0\n", FUNC);
#endif /* QAK */
    if(src->select.sel_info.hslab.diminfo!=NULL) {
        /* Create the per-dimension selection info */
        if((new_diminfo = H5MM_malloc(sizeof(H5S_hyper_dim_t)*src->extent.u.simple.rank))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate per-dimension array");

        /* Copy the per-dimension selection info */
        for(i=0; i<src->extent.u.simple.rank; i++) {
            new_diminfo[i].start = src->select.sel_info.hslab.diminfo[i].start;
            new_diminfo[i].stride = src->select.sel_info.hslab.diminfo[i].stride;
            new_diminfo[i].count = src->select.sel_info.hslab.diminfo[i].count;
            new_diminfo[i].block = src->select.sel_info.hslab.diminfo[i].block;
        } /* end for */
    } /* end if */
    dst->select.sel_info.hslab.diminfo = new_diminfo;

    /* Create the new hyperslab information node */
    if((new_hyper = H5MM_malloc(sizeof(H5S_hyper_list_t)))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
            "can't allocate point node");

    /* Copy the basic hyperslab selection information */
    *new_hyper=*(src->select.sel_info.hslab.hyper_lst);

    /* Attach the hyperslab information to the destination dataspace */
    dst->select.sel_info.hslab.hyper_lst=new_hyper;
    
#ifdef QAK
    printf("%s: check 4.0\n", FUNC);
#endif /* QAK */
    /* Allocate space for the low & high bound arrays */
    if((new_hyper->lo_bounds = H5MM_malloc(sizeof(H5S_hyper_bound_t *)*src->extent.u.simple.rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
            "can't allocate point node");
    if((new_hyper->hi_bounds = H5MM_malloc(sizeof(H5S_hyper_bound_t *)*src->extent.u.simple.rank))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
            "can't allocate point node");
    for(i=0; i<src->extent.u.simple.rank; i++) {
        if((new_hyper->lo_bounds[i] = H5MM_malloc(sizeof(H5S_hyper_bound_t)*src->select.sel_info.hslab.hyper_lst->count))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                "can't allocate point node");
        if((new_hyper->hi_bounds[i] = H5MM_malloc(sizeof(H5S_hyper_bound_t)*src->select.sel_info.hslab.hyper_lst->count))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                "can't allocate point node");
    } /* end for */

#ifdef QAK
    printf("%s: check 5.0\n", FUNC);
#endif /* QAK */
    /* Copy the hyperslab selection nodes, adding them to the lo & hi bound arrays also */
    curr=src->select.sel_info.hslab.hyper_lst->head;
    new_head=NULL;
    u=0;
    while(curr!=NULL) {
#ifdef QAK
    printf("%s: check 5.1\n", FUNC);
#endif /* QAK */
        /* Create each point */
        if((new = H5MM_malloc(sizeof(H5S_hyper_node_t)))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                "can't allocate point node");
        HDmemcpy(new,curr,sizeof(H5S_hyper_node_t));    /* copy caching information */
        if((new->start = H5MM_malloc(src->extent.u.simple.rank*sizeof(hssize_t)))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                "can't allocate coordinate information");
        if((new->end = H5MM_malloc(src->extent.u.simple.rank*sizeof(hssize_t)))==NULL)
            HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                "can't allocate coordinate information");
        HDmemcpy(new->start,curr->start,(src->extent.u.simple.rank*sizeof(hssize_t)));
        HDmemcpy(new->end,curr->end,(src->extent.u.simple.rank*sizeof(hssize_t)));
        new->next=NULL;

        /* Insert into low & high bound arrays */
        for(i=0; i<src->extent.u.simple.rank; i++) {
            new_hyper->lo_bounds[i][u].bound=new->start[i];
            new_hyper->lo_bounds[i][u].node=new;
            new_hyper->hi_bounds[i][u].bound=new->end[i];
            new_hyper->hi_bounds[i][u].node=new;
        } /* end for */
        u++;    /* Increment the location of the next node in the boundary arrays */

        /* Keep the order the same when copying */
        if(new_head==NULL)
            new_head=new_hyper->head=new;
        else {
            new_head->next=new;
            new_head=new;
        } /* end else */

        curr=curr->next;
    } /* end while */
#ifdef QAK
    printf("%s: check 6.0\n", FUNC);
#endif /* QAK */

    /* Sort the boundary arrays */
    for(i=0; i<src->extent.u.simple.rank; i++) {
        HDqsort(new_hyper->lo_bounds[i], new_hyper->count,
		sizeof(H5S_hyper_bound_t), H5S_hyper_compare_bounds);
        HDqsort(new_hyper->hi_bounds[i], new_hyper->count,
		sizeof(H5S_hyper_bound_t), H5S_hyper_compare_bounds);
    } /* end for */
#ifdef QAK
    printf("%s: check 7.0\n", FUNC);
#endif /* QAK */

done:
    FUNC_LEAVE (ret_value);
} /* end H5S_hyper_copy() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_select_valid
 PURPOSE
    Check whether the selection fits within the extent, with the current
    offset defined.
 USAGE
    htri_t H5S_hyper_select_valid(space);
        H5S_t *space;             IN: Dataspace pointer to query
 RETURNS
    TRUE if the selection fits within the extent, FALSE if it does not and
        Negative on an error.
 DESCRIPTION
    Determines if the current selection at the current offet fits within the
    extent for the dataspace.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_select_valid (const H5S_t *space)
{
    H5S_hyper_node_t *curr;     /* Hyperslab information nodes */
    intn i;                     /* Counter */
    htri_t ret_value=TRUE;     /* return value */

    FUNC_ENTER (H5S_hyper_select_valid, FAIL);

    assert(space);

    /* Check each point to determine whether selection+offset is within extent */
    curr=space->select.sel_info.hslab.hyper_lst->head;
    while(curr!=NULL && ret_value==TRUE) {
        /* Check each dimension */
        for(i=0; i<space->extent.u.simple.rank; i++) {
            /* Check if an offset has been defined */
            /* Bounds check the selected point + offset against the extent */
            if(((curr->start[i]+space->select.offset[i])>(hssize_t)space->extent.u.simple.size[i])
                    || ((curr->start[i]+space->select.offset[i])<0)
                || ((curr->end[i]+space->select.offset[i])>(hssize_t)space->extent.u.simple.size[i])
                    || ((curr->end[i]+space->select.offset[i])<0)) {
                ret_value=FALSE;
                break;
            } /* end if */
        } /* end for */

        curr=curr->next;
    } /* end while */

    FUNC_LEAVE (ret_value);
} /* end H5S_hyper_select_valid() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_select_serial_size
 PURPOSE
    Determine the number of bytes needed to store the serialized hyperslab
        selection information.
 USAGE
    hssize_t H5S_hyper_select_serial_size(space)
        H5S_t *space;             IN: Dataspace pointer to query
 RETURNS
    The number of bytes required on success, negative on an error.
 DESCRIPTION
    Determines the number of bytes required to serialize the current hyperslab
    selection information for storage on disk.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
hssize_t
H5S_hyper_select_serial_size (const H5S_t *space)
{
    H5S_hyper_node_t *curr;     /* Hyperslab information nodes */
    hssize_t ret_value=FAIL;    /* return value */

    FUNC_ENTER (H5S_hyper_select_serial_size, FAIL);

    assert(space);

    /* Basic number of bytes required to serialize point selection:
     *  <type (4 bytes)> + <version (4 bytes)> + <padding (4 bytes)> + 
     *      <length (4 bytes)> + <rank (4 bytes)> + <# of blocks (4 bytes)> = 24 bytes
     */
    ret_value=24;

    /* Spin through hyperslabs to total the space needed to store them */
    curr=space->select.sel_info.hslab.hyper_lst->head;
    while(curr!=NULL) {
        /* Add 8 bytes times the rank for each element selected */
        ret_value+=8*space->extent.u.simple.rank;
        curr=curr->next;
    } /* end while */

    FUNC_LEAVE (ret_value);
} /* end H5S_hyper_select_serial_size() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_select_serialize
 PURPOSE
    Serialize the current selection into a user-provided buffer.
 USAGE
    herr_t H5S_hyper_select_serialize(space, buf)
        H5S_t *space;           IN: Dataspace pointer of selection to serialize
        uint8 *buf;             OUT: Buffer to put serialized selection into
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Serializes the current element selection into a buffer.  (Primarily for
    storing on disk).
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_select_serialize (const H5S_t *space, uint8_t *buf)
{
    H5S_hyper_node_t *curr;     /* Hyperslab information nodes */
    uint8_t *lenp;          /* pointer to length location for later storage */
    uint32_t len=0;         /* number of bytes used */
    intn i;                 /* local counting variable */
    herr_t ret_value=FAIL;  /* return value */

    FUNC_ENTER (H5S_point_select_serialize, FAIL);

    assert(space);

    /* Store the preamble information */
    UINT32ENCODE(buf, (uint32_t)space->select.type);  /* Store the type of selection */
    UINT32ENCODE(buf, (uint32_t)1);  /* Store the version number */
    UINT32ENCODE(buf, (uint32_t)0);  /* Store the un-used padding */
    lenp=buf;           /* keep the pointer to the length location for later */
    buf+=4;             /* skip over space for length */

    /* Encode number of dimensions */
    UINT32ENCODE(buf, (uint32_t)space->extent.u.simple.rank);
    len+=4;

    /* Encode number of elements */
    UINT32ENCODE(buf, (uint32_t)space->select.sel_info.hslab.hyper_lst->count);
    len+=4;

    /* Encode each point in selection */
    curr=space->select.sel_info.hslab.hyper_lst->head;
    while(curr!=NULL) {
        /* Add 8 bytes times the rank for each element selected */
        len+=8*space->extent.u.simple.rank;

        /* Encode starting point */
        for(i=0; i<space->extent.u.simple.rank; i++)
            UINT32ENCODE(buf, (uint32_t)curr->start[i]);

        /* Encode ending point */
        for(i=0; i<space->extent.u.simple.rank; i++)
            UINT32ENCODE(buf, (uint32_t)curr->end[i]);

        curr=curr->next;
    } /* end while */

    /* Encode length */
    UINT32ENCODE(lenp, (uint32_t)len);  /* Store the length of the extra information */
    
    /* Set success */
    ret_value=SUCCEED;

    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_select_serialize() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_select_deserialize
 PURPOSE
    Deserialize the current selection from a user-provided buffer.
 USAGE
    herr_t H5S_hyper_select_deserialize(space, buf)
        H5S_t *space;           IN/OUT: Dataspace pointer to place selection into
        uint8 *buf;             IN: Buffer to retrieve serialized selection from
 RETURNS
    Non-negative on success/Negative on failure
 DESCRIPTION
    Deserializes the current selection into a buffer.  (Primarily for retrieving
    from disk).
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_select_deserialize (H5S_t *space, const uint8_t *buf)
{
    int32_t rank;           	/* rank of points */
    size_t num_elem=0;      	/* number of elements in selection */
    hssize_t *start=NULL;	/* hyperslab start information */
    hsize_t *count=NULL;    	/* hyperslab count information */
    hssize_t *tstart=NULL;	/* temporary hyperslab pointers */
    hsize_t *tcount=NULL;	/* temporary hyperslab pointers */
    uintn i,j;              	/* local counting variables */
    herr_t ret_value=FAIL;  	/* return value */

    FUNC_ENTER (H5S_hyper_select_deserialize, FAIL);

    /* Check args */
    assert(space);
    assert(buf);

    /* Deserialize slabs to select */
    buf+=16;    /* Skip over selection header */
    INT32DECODE(buf,rank);  /* decode the rank of the point selection */
    if(rank!=space->extent.u.simple.rank)
        HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "rank of pointer does not match dataspace");
    UINT32DECODE(buf,num_elem);  /* decode the number of points */

    /* Allocate space for the coordinates */
    if((start = H5MM_malloc(rank*sizeof(hssize_t)))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab information");
    if((count = H5MM_malloc(rank*sizeof(hssize_t)))==NULL)
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab information");
    
    /* Retrieve the coordinates from the buffer */
    for(i=0; i<num_elem; i++) {
        /* Decode the starting points */
        for(tstart=start,j=0; j<(unsigned)rank; j++,tstart++)
            UINT32DECODE(buf, *tstart);

        /* Decode the ending points */
        for(tcount=count,j=0; j<(unsigned)rank; j++,tcount++)
            UINT32DECODE(buf, *tcount);

        /* Change the ending points into counts */
        for(tcount=count,tstart=start,j=0; j<(unsigned)rank; j++,tcount++)
            *tcount=(*tcount-*tstart)+1;

        /* Select or add the hyperslab to the current selection */
        if((ret_value=H5S_select_hyperslab(space,(i==0 ? H5S_SELECT_SET : H5S_SELECT_OR),start,NULL,count,NULL))<0) {
            HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't change selection");
        } /* end if */
    } /* end for */

    /* Free temporary buffers */
    H5MM_xfree(start);
    H5MM_xfree(count);

done:
    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_select_deserialize() */

/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_bounds
 PURPOSE
    Gets the bounding box containing the selection.
 USAGE
    herr_t H5S_hyper_bounds(space, hsize_t *start, hsize_t *end)
        H5S_t *space;           IN: Dataspace pointer of selection to query
        hsize_t *start;         OUT: Starting coordinate of bounding box
        hsize_t *end;           OUT: Opposite coordinate of bounding box
 RETURNS
    Non-negative on success, negative on failure
 DESCRIPTION
    Retrieves the bounding box containing the current selection and places
    it into the user's buffers.  The start and end buffers must be large
    enough to hold the dataspace rank number of coordinates.  The bounding box
    exactly contains the selection, ie. if a 2-D element selection is currently
    defined with the following points: (4,5), (6,8) (10,7), the bounding box
    with be (4, 5), (10, 8).
        The bounding box calculations _does_ include the current offset of the
    selection within the dataspace extent.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_bounds(H5S_t *space, hsize_t *start, hsize_t *end)
{
    H5S_hyper_node_t *node;     /* Hyperslab node */
    intn rank;                  /* Dataspace rank */
    intn i;                     /* index variable */
    herr_t ret_value=SUCCEED;   /* return value */

    FUNC_ENTER (H5S_hyper_bounds, FAIL);

    assert(space);
    assert(start);
    assert(end);

    /* Get the dataspace extent rank */
    rank=space->extent.u.simple.rank;

    /* Iterate through the node, copying each hyperslab's information */
    node=space->select.sel_info.hslab.hyper_lst->head;
    while(node!=NULL) {
        for(i=0; i<rank; i++) {
            if(start[i]>(hsize_t)(node->start[i]+space->select.offset[i]))
                start[i]=node->start[i]+space->select.offset[i];
            if(end[i]<(hsize_t)(node->end[i]+space->select.offset[i]))
                end[i]=node->end[i]+space->select.offset[i];
        } /* end for */
        node=node->next;
      } /* end while */

    FUNC_LEAVE (ret_value);
}   /* H5Sget_hyper_bounds() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_select_contiguous
 PURPOSE
    Check if a hyperslab selection is contiguous within the dataspace extent.
 USAGE
    htri_t H5S_select_contiguous(space)
        H5S_t *space;           IN: Dataspace pointer to check
 RETURNS
    TRUE/FALSE/FAIL
 DESCRIPTION
    Checks to see if the current selection in the dataspace is contiguous.
    This is primarily used for reading the entire selection in one swoop.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_select_contiguous(const H5S_t *space)
{
    htri_t ret_value=FAIL;  /* return value */
    H5S_hyper_node_t *node;     /* Hyperslab node */
    intn rank;                  /* Dataspace rank */
    intn i;                     /* index variable */

    FUNC_ENTER (H5S_hyper_select_contiguous, FAIL);

    assert(space);

    /* If there is more than one hyperslab in the selection, they are not contiguous */
    if(space->select.sel_info.hslab.hyper_lst->count>1)
    	ret_value=FALSE;
    else {	/* If there is one hyperslab, then it might be contiguous */
	/* Get the dataspace extent rank */
	rank=space->extent.u.simple.rank;

	/* Get the hyperslab node */
	node=space->select.sel_info.hslab.hyper_lst->head;

	/*
	 * For a hyperslab to be contiguous, it's size must be the same as the
	 * dataspace extent's in all but the slowest changing dimension
	 */
	ret_value=TRUE;	/* assume true and reset if the dimensions don't match */
	for(i=1; i<rank; i++) {
		if(((node->end[i]-node->start[i])+1)!=(hssize_t)space->extent.u.simple.size[i]) {
			ret_value=FALSE;
			break;
		} /* end if */
	}
    } /* end else */
    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_select_contiguous() */


/*-------------------------------------------------------------------------
 * Function:	H5S_hyper_select_iterate_mem
 *
 * Purpose:	Recursively iterates over data points in memory using the parameters
 *      passed to H5S_hyper_select_iterate.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Quincey Koziol
 *              Tuesday, June 22, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5S_hyper_select_iterate_mem (intn dim, H5S_hyper_iter_info_t *iter_info)
{
    hsize_t offset;             /* offset of region in buffer */
    void *tmp_buf;              /* temporary location of the element in the buffer */
    hid_t reg_id;               /* ID of temporary region buffer */
    H5S_hyper_region_t *regions;  /* Pointer to array of hyperslab nodes overlapped */
    size_t num_regions;         /* number of regions overlapped */
    herr_t user_ret=0;          /* User's return value */
    size_t i;                   /* Counters */
    intn j;

    FUNC_ENTER (H5S_hyper_select_iterate_mem, 0);

    assert(iter_info);

    /* Get a sorted list (in the next dimension down) of the regions which */
    /*  overlap the current index in this dim */
    if((reg_id=H5S_hyper_get_regions(&num_regions,dim,
            iter_info->space->select.sel_info.hslab.hyper_lst->count,
            iter_info->lo_bounds, iter_info->hi_bounds,
            iter_info->iter->hyp.pos,iter_info->space->select.offset))>=0) {

        /* Get the pointer to the actual regions array */
        regions=H5TB_buf_ptr(reg_id);

        /* Check if this is the second to last dimension in dataset */
        /*  (Which means that we've got a list of the regions in the fastest */
        /*   changing dimension and should input those regions) */
        if((dim+2)==iter_info->space->extent.u.simple.rank) {
            HDmemcpy(iter_info->mem_offset, iter_info->iter->hyp.pos,(iter_info->space->extent.u.simple.rank*sizeof(hssize_t)));
            iter_info->mem_offset[iter_info->space->extent.u.simple.rank]=0;

            /* Iterate over data from regions */
            for(i=0; i<num_regions && user_ret==0; i++) {
                /* Set the location of the current hyperslab */
                iter_info->mem_offset[iter_info->space->extent.u.simple.rank-1]=regions[i].start;

                /* Get the offset in the memory buffer */
                offset=H5V_array_offset(iter_info->space->extent.u.simple.rank+1,
                    iter_info->mem_size,iter_info->mem_offset);
                tmp_buf=((char *)iter_info->src+offset);

                /* Iterate over each element in the current region */
                for(j=regions[i].start; j<=regions[i].end && user_ret==0; j++) {
                    /* Call the user's function */
                    user_ret=(*(iter_info->op))(tmp_buf,iter_info->dt,iter_info->space->extent.u.simple.rank,iter_info->mem_offset,iter_info->op_data);

                    /* Subtract the element from the selected region (not implemented yet) */

                    /* Increment the coordinate offset */
                    iter_info->mem_offset[iter_info->space->extent.u.simple.rank-1]=j;

                    /* Advance the pointer in the buffer */
                    tmp_buf=((char *)tmp_buf+iter_info->elem_size);
                } /* end for */

                /* Decrement the iterator count */
                iter_info->iter->hyp.elmt_left-=((regions[i].end-regions[i].start)+1);
            } /* end for */

            /* Set the next position to start at */
            iter_info->iter->hyp.pos[dim+1]=(-1);
        } else { /* recurse on each region to next dimension down */

            /* Increment the dimension we are working with */
            dim++;

            /* Step through each region in this dimension */
            for(i=0; i<num_regions && user_ret==0; i++) {
                /* Step through each location in each region */
                for(j=regions[i].start; j<=regions[i].end && user_ret==0; j++) {

                    /*
                     * If we are moving to a new position in this dim, reset
                     * the next lower dim. location.
                     */
                    if(iter_info->iter->hyp.pos[dim]!=j)
                        iter_info->iter->hyp.pos[dim+1]=(-1);

                    /* Set the correct position we are working on */
                    iter_info->iter->hyp.pos[dim]=j;

                    /* Go get the regions in the next lower dimension */
                    user_ret=H5S_hyper_select_iterate_mem(dim, iter_info);
                } /* end for */
            } /* end for */
        } /* end else */

        /* Release the temporary buffer */
        H5TB_release_buf(reg_id);
    } /* end if */

    FUNC_LEAVE (user_ret);
}   /* H5S_hyper_select_iterate_mem() */


/*--------------------------------------------------------------------------
 NAME
    H5S_hyper_select_iterate
 PURPOSE
    Iterate over a hyperslab selection, calling a user's function for each
        element.
 USAGE
    herr_t H5S_hyper_select_iterate(buf, type_id, space, op, operator_data)
        void *buf;      IN/OUT: Buffer containing elements to iterate over
        hid_t type_id;  IN: Datatype ID of BUF array.
        H5S_t *space;   IN: Dataspace object containing selection to iterate over
        H5D_operator_t op; IN: Function pointer to the routine to be
                                called for each element in BUF iterated over.
        void *operator_data;    IN/OUT: Pointer to any user-defined data
                                associated with the operation.
 RETURNS
    Returns the return value of the last operator if it was non-zero, or zero
    if all elements were processed. Otherwise returns a negative value.
 DESCRIPTION
    Iterates over the selected elements in a memory buffer, calling the user's
    callback function for each element.  The selection in the dataspace is
    modified so that any elements already iterated over are removed from the
    selection if the iteration is interrupted (by the H5D_operator_t function
    returning non-zero) in the "middle" of the iteration and may be re-started
    by the user where it left off.

    NOTE: Until "subtracting" elements from a selection is implemented,
        the selection is not modified.
 GLOBAL VARIABLES
 COMMENTS, BUGS, ASSUMPTIONS
 EXAMPLES
 REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_select_iterate(void *buf, hid_t type_id, H5S_t *space, H5D_operator_t op,
        void *operator_data)
{
    H5S_hyper_bound_t **lo_bounds;    /* Lower (closest to the origin) bound array for each dimension */
    H5S_hyper_bound_t **hi_bounds;    /* Upper (farthest from the origin) bound array for each dimension */
    H5S_hyper_iter_info_t iter_info;  /* Block of parameters to pass into recursive calls */
    H5S_sel_iter_t	iter;   /* selection iteration info*/
    size_t	min_elem_out=1; /* Minimum # of elements to output*/
    intn	i;				/*counters		*/
    herr_t ret_value=FAIL;      /* return value */

    FUNC_ENTER (H5S_hyper_select_iterate, FAIL);

    assert(buf);
    assert(space);
    assert(op);
    assert(H5I_DATATYPE == H5I_get_type(type_id));

    /* Initialize these before any errors can occur */
    HDmemset(&iter,0,sizeof(H5S_sel_iter_t));

    /* Initialize the selection iterator */
    if (H5S_hyper_init(NULL, space, &iter, &min_elem_out)<0) {
        HGOTO_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL,
		     "unable to initialize selection information");
    } 

    /* Allocate space for the low & high bound arrays */
    lo_bounds = H5MM_malloc(space->extent.u.simple.rank * sizeof(H5S_hyper_bound_t *));
    hi_bounds = H5MM_malloc(space->extent.u.simple.rank * sizeof(H5S_hyper_bound_t *));

    /*
     * Initialize to correct order to walk through arrays.  (When another
     * iteration order besides the default 'C' order is chosen, this is the
     * correct place to change the order of the array iterations)
     */
    for(i=0; i<space->extent.u.simple.rank; i++) {
        lo_bounds[i]=space->select.sel_info.hslab.hyper_lst->lo_bounds[i];
        hi_bounds[i]=space->select.sel_info.hslab.hyper_lst->hi_bounds[i];
    } /* end for */

    /* Initialize parameter block for recursive calls */
    iter_info.dt=type_id;
    iter_info.elem_size=H5Tget_size(type_id);
    iter_info.space=space;
    iter_info.iter=&iter;
    iter_info.src=buf;
    iter_info.lo_bounds=lo_bounds;
    iter_info.hi_bounds=hi_bounds;

    /* Set up the size of the memory space */
    HDmemcpy(iter_info.mem_size, space->extent.u.simple.size, space->extent.u.simple.rank*sizeof(hsize_t));
    iter_info.mem_size[space->extent.u.simple.rank]=iter_info.elem_size;

    /* Copy the location of the region in the file */
    iter_info.op=op;
    iter_info.op_data=operator_data;

    /* Recursively input the hyperslabs currently defined */
    /* starting with the slowest changing dimension */
    ret_value=H5S_hyper_select_iterate_mem(-1,&iter_info);

    /* Release the memory we allocated */
    H5MM_xfree(lo_bounds);
    H5MM_xfree(hi_bounds);

    /* Release selection iterator */
    H5S_sel_iter_release(space,&iter);

done:
    FUNC_LEAVE (ret_value);
}   /* H5S_hyper_select_iterate() */