1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
|
/*
* Copyright (C) 1998 NCSA
* All rights reserved.
*
* Programmer: Quincey Koziol <koziol@ncsa.uiuc.edu>
* Thursday, June 18, 1998
*
* Purpose: Hyperslab selection data space I/O functions.
*/
#include <H5private.h>
#include <H5Eprivate.h>
#include <H5Sprivate.h>
#include <H5Vprivate.h>
#include <H5MMprivate.h>
/* Interface initialization */
#define PABLO_MASK H5S_hyper_mask
#define INTERFACE_INIT NULL
static intn interface_initialize_g = FALSE;
/* Local datatypes */
/* Parameter block for H5S_hyper_fread & H5S_hyper_fwrite */
typedef struct {
H5F_t *f;
const struct H5O_layout_t *layout;
const struct H5O_pline_t *pline;
const struct H5O_efl_t *efl;
size_t elmt_size;
const H5S_t *space;
H5S_sel_iter_t *iter;
size_t nelmts;
H5D_transfer_t xfer_mode;
const void *src;
void *dst;
H5S_hyper_bound_t **lo_bounds;
H5S_hyper_bound_t **hi_bounds;
} H5S_hyper_fhyper_info_t;
/* Static function prototypes */
static intn H5S_hyper_bsearch(hssize_t size, H5S_hyper_bound_t *barr,
size_t count);
static H5S_hyper_region_t *
H5S_hyper_get_regions (size_t *num_regions, intn dim, size_t bound_count,
H5S_hyper_bound_t **lo_bounds, H5S_hyper_bound_t **hi_bounds, hssize_t *pos,
hssize_t *offset);
static size_t H5S_hyper_fread (intn dim, H5S_hyper_fhyper_info_t *fhyper_info);
static size_t H5S_hyper_fwrite (intn dim,
H5S_hyper_fhyper_info_t *fhyper_info);
/*-------------------------------------------------------------------------
* Function: H5S_hyper_init
*
* Purpose: Initializes iteration information for hyperslab selection.
*
* Return: non-negative on success, negative on failure.
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5S_hyper_init (const struct H5O_layout_t __unused__ *layout,
const H5S_t *space, H5S_sel_iter_t *sel_iter)
{
FUNC_ENTER (H5S_hyper_init, FAIL);
/* Check args */
assert (layout);
assert (space && H5S_SEL_HYPERSLABS==space->select.type);
assert (sel_iter);
/* Initialize the number of points to iterate over */
sel_iter->hyp.elmt_left=space->select.num_elem;
/* Allocate the position & initialize to invalid location */
sel_iter->hyp.pos = H5MM_malloc(space->extent.u.simple.rank *
sizeof(hssize_t));
sel_iter->hyp.pos[0]=(-1);
H5V_array_fill(sel_iter->hyp.pos, sel_iter->hyp.pos, sizeof(hssize_t),
space->extent.u.simple.rank);
FUNC_LEAVE (SUCCEED);
} /* H5S_hyper_init() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_favail
*
* Purpose: Figure out the optimal number of elements to transfer to/from the file
*
* Return: non-negative number of elements on success, negative on failure
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
size_t
H5S_hyper_favail (const H5S_t __unused__ *space,
const H5S_sel_iter_t *sel_iter, size_t max)
{
FUNC_ENTER (H5S_hyper_favail, FAIL);
/* Check args */
assert (space && H5S_SEL_HYPERSLABS==space->select.type);
assert (sel_iter);
#ifdef QAK
printf("%s: max=%d\n",FUNC,(int)max);
#endif /* QAK */
FUNC_LEAVE (MIN(sel_iter->hyp.elmt_left,max));
} /* H5S_hyper_favail() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_compare_regions
*
* Purpose: Compares two regions for equality (regions must not overlap!)
*
* Return: an integer less than, equal to, or greater than zero if the
* first region is considered to be respectively less than,
* equal to, or greater than the second
*
* Programmer: Quincey Koziol
* Friday, July 17, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
H5S_hyper_compare_regions (const void *r1, const void *r2)
{
if (((const H5S_hyper_region_t *)r1)->start <
((const H5S_hyper_region_t *)r2)->start)
return(-1);
else if (((const H5S_hyper_region_t *)r1)->start >
((const H5S_hyper_region_t *)r2)->start)
return(1);
else
return(0);
} /* end H5S_hyper_compare_regions */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_get_regions
*
* Purpose: Builds a sorted array of the overlaps in a dimension
*
* Return: Success: Pointer to valid array (num_regions parameter
* set to array size)
*
* Failure: 0
*
* Programmer: Quincey Koziol
* Monday, June 29, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static H5S_hyper_region_t *
H5S_hyper_get_regions (size_t *num_regions, intn dim, size_t bound_count,
H5S_hyper_bound_t **lo_bounds, H5S_hyper_bound_t **hi_bounds, hssize_t *pos,
hssize_t *offset)
{
H5S_hyper_region_t *ret_value=NULL; /* Pointer to array to return */
H5S_hyper_node_t *node; /* Region node for a given boundary */
size_t num_reg=0; /* Number of regions in array */
size_t curr_reg=0; /* The current region we are working with */
size_t uniq_reg; /* The number of unique regions */
intn next_dim; /* Next fastest dimension */
intn temp_dim; /* Temporary dim. holder */
size_t i; /* Counters */
FUNC_ENTER (H5S_hyper_get_regions, NULL);
assert(num_regions);
assert(lo_bounds);
assert(hi_bounds);
assert(pos);
#ifdef QAK
printf("%s: check 1.0, dim=%d\n",FUNC,dim);
for(i=0; i<2; i++)
printf("%s: %d - pos=%d\n",FUNC,i,(int)pos[i]);
#endif /* QAK */
/* Check if we need to generate a list of regions for the 0th dim. */
if(dim<0) {
#ifdef QAK
printf("%s: check 1.1, bound_count=%d\n",FUNC,bound_count);
#endif /* QAK */
for(i=0; i<bound_count; i++) {
/* Skip past already iterated regions */
if(pos[0]==(-1) || ((pos[0]+offset[0])>=lo_bounds[0][i].bound && (pos[0]+offset[0]) <= hi_bounds[0][i].bound)) {
/* Check if we've allocated the array yet */
if(num_reg==0) {
/* Allocate array */
ret_value=H5MM_malloc(sizeof(H5S_hyper_region_t));
/* Initialize with first region */
ret_value[0].start=MAX(lo_bounds[0][i].bound,pos[0])+offset[0];
ret_value[0].end=hi_bounds[0][i].bound+offset[0];
/* Increment the number of regions */
num_reg++;
} else {
/*
* Check if we should merge this region into the current
* region.
*/
if(lo_bounds[0][i].bound<ret_value[curr_reg].end) {
ret_value[curr_reg].end=MAX(hi_bounds[0][i].bound,
ret_value[curr_reg].end)+(offset!=NULL ? offset[0] : 0 );
} else { /* no overlap with previous region, add new region */
/* Check if this is actually a different region */
if(lo_bounds[0][i].bound!=ret_value[curr_reg].start &&
hi_bounds[0][i].bound!=ret_value[curr_reg].end) {
/* Enlarge array */
ret_value=H5MM_realloc(ret_value,(sizeof(H5S_hyper_region_t)*(num_reg+1)));
/* Initialize with new region */
ret_value[num_reg].start=lo_bounds[0][i].bound+offset[0];
ret_value[num_reg].end=hi_bounds[0][i].bound+offset[0];
/*
* Increment the number of regions & the current
* region.
*/
num_reg++;
curr_reg++;
} /* end if */
} /* end else */
} /* end else */
} /* end if */
} /* end for */
} else {
/* Generate list of regions based on the current position */
#ifdef QAK
printf("%s: check 2.0, bound_count=%d\n",FUNC,bound_count);
printf("%s: check 2.0, pos[%d]=%d, offset[%d]=%d, hi_bounds[%d][%d].bound=%d\n",FUNC,(int)dim,(int)pos[dim],(int)dim,(int)offset[dim],
(int)dim,(int)0,(int)hi_bounds[dim][0].bound);
#endif /* QAK */
next_dim=dim+1;
/* Skip past bounds which don't overlap */
i=0;
while(pos[dim]>(hi_bounds[dim][i].bound+offset[dim]) && i<bound_count)
i++;
#ifdef QAK
printf("%s: check 2.0.5, lo_bounds[%d][%d].bound=%d\n",FUNC,
(int)dim,(int)i,(int)lo_bounds[dim][i].bound);
#endif /* QAK */
for(; pos[dim]>=(lo_bounds[dim][i].bound+offset[dim]) && i<bound_count; i++) {
#ifdef QAK
printf("%s: check 2.1, i=%d, num_reg=%d, pos[%d]=%d\n",
FUNC,i,(int)num_reg,dim,(int)pos[dim]);
{
intn j;
node=lo_bounds[dim][i].node;
for(j=next_dim; j>=0; j--)
printf("%s: lo_bound[%d]=%d, hi_bound[%d]=%d\n",
FUNC,j,(int)node->start[j],j,(int)node->end[j]);
}
#endif /* QAK */
/* Check if each boundary overlaps in the higher dimensions */
node=lo_bounds[dim][i].node;
temp_dim=dim;
while(temp_dim>=0 && pos[temp_dim]>=(node->start[temp_dim]+offset[temp_dim]) && pos[temp_dim]<=(node->end[temp_dim]+offset[temp_dim]))
temp_dim--;
/* Yes, all previous positions match, this is a valid region */
if(temp_dim<0) {
#ifdef QAK
printf("%s: check 3.0\n",FUNC);
#endif /* QAK */
/* Check if we've allocated the array yet */
if(num_reg==0) {
#ifdef QAK
printf("%s: check 3.1\n", FUNC);
#endif /* QAK */
/* Allocate array */
ret_value=H5MM_malloc(sizeof(H5S_hyper_region_t));
/* Initialize with first region */
ret_value[0].start=MAX(node->start[next_dim],pos[next_dim])+offset[next_dim];
ret_value[0].end=node->end[next_dim]+offset[next_dim];
#ifdef QAK
printf("%s: check 3.2, lo_bounds=%d, start=%d, "
"hi_bounds=%d, end=%d\n",
FUNC, (int)node->start[next_dim],
(int)ret_value[curr_reg].start,
(int)node->end[next_dim],
(int)ret_value[curr_reg].end);
#endif /* QAK */
/* Increment the number of regions */
num_reg++;
} else {
#ifdef QAK
printf("%s: check 4.0, lo_bounds=%d, start=%d, "
"hi_bounds=%d, end=%d\n",
FUNC, (int)node->start[next_dim],
(int)ret_value[curr_reg].start,
(int)node->end[next_dim],
(int)ret_value[curr_reg].end);
#endif /* QAK */
/* Enlarge array */
ret_value=H5MM_realloc(ret_value,
(sizeof(H5S_hyper_region_t)*
(num_reg+1)));
/* Initialize with new region */
ret_value[num_reg].start=node->start[next_dim]+offset[next_dim];
ret_value[num_reg].end=node->end[next_dim]+offset[next_dim];
/* Increment the number of regions & the current region */
num_reg++;
curr_reg++;
} /* end else */
} /* end if */
} /* end for */
/* Sort region list and eliminate duplicates if necessary */
if(num_reg>1) {
qsort(ret_value,num_reg,sizeof(H5S_hyper_region_t),
H5S_hyper_compare_regions);
for(i=1,curr_reg=0,uniq_reg=1; i<num_reg; i++) {
if(ret_value[curr_reg].start!=ret_value[i].start &&
ret_value[curr_reg].end!=ret_value[i].end) {
uniq_reg++;
curr_reg++;
ret_value[curr_reg].start=ret_value[i].start;
ret_value[curr_reg].end=ret_value[i].end;
} /* end if */
} /* end for */
num_reg=uniq_reg;
} /* end if */
} /* end else */
/* Save the number of regions we generated */
*num_regions=num_reg;
#ifdef QAK
printf("%s: check 10.0, ret_value=%p, num_reg=%d\n",
FUNC,ret_value,num_reg);
for(i=0; i<num_reg; i++)
printf("%s: start[%d]=%d, end[%d]=%d\n",
FUNC,i,(int)ret_value[i].start,i,(int)ret_value[i].end);
#endif /* QAK */
FUNC_LEAVE (ret_value);
} /* end H5S_hyper_get_regions() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_fread
*
* Purpose: Recursively gathers data points from a file using the
* parameters passed to H5S_hyper_fgath.
*
* Return: Success: Number of elements copied.
*
* Failure: 0
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static size_t
H5S_hyper_fread (intn dim, H5S_hyper_fhyper_info_t *fhyper_info)
{
hssize_t file_offset[H5O_LAYOUT_NDIMS]; /*offset of slab in file*/
hsize_t hsize[H5O_LAYOUT_NDIMS]; /*size of hyperslab */
hsize_t region_size; /* Size of lowest region */
hssize_t zero[H5O_LAYOUT_NDIMS]; /*zero */
H5S_hyper_region_t *regions; /* Pointer to array of hyperslab nodes overlapped */
size_t num_regions; /* number of regions overlapped */
size_t i; /* Counters */
intn j;
size_t num_read=0; /* Number of elements read */
FUNC_ENTER (H5S_hyper_fread, 0);
assert(fhyper_info);
#ifdef QAK
printf("%s: check 1.0, dim=%d\n",FUNC,dim);
#endif /* QAK */
/* Get a sorted list (in the next dimension down) of the regions which */
/* overlap the current index in this dim */
if((regions=H5S_hyper_get_regions(&num_regions,dim,
fhyper_info->space->select.sel_info.hyper_lst->count,
fhyper_info->lo_bounds, fhyper_info->hi_bounds,
fhyper_info->iter->hyp.pos,fhyper_info->space->select.offset))!=NULL) {
/*
* Check if this is the second to last dimension in dataset (Which
* means that we've got a list of the regions in the fastest changing
* dimension and should input those regions).
*/
#ifdef QAK
printf("%s: check 2.0, rank=%d\n",
FUNC,(int)fhyper_info->space->extent.u.simple.rank);
for(i=0; i<num_regions; i++)
printf("%s: check 2.1, region #%d: start=%d, end=%d\n",
FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */
if((dim+2)==fhyper_info->space->extent.u.simple.rank) {
/* Set up hyperslab I/O parameters which apply to all regions */
/* Copy the location of the region in the file */
HDmemcpy(file_offset, fhyper_info->iter->hyp.pos,
(fhyper_info->space->extent.u.simple.rank *
sizeof(hssize_t)));
file_offset[fhyper_info->space->extent.u.simple.rank]=0;
/* Set the hyperslab size to copy */
hsize[0]=1;
H5V_array_fill(hsize, hsize, sizeof(hsize[0]),
fhyper_info->space->extent.u.simple.rank);
hsize[fhyper_info->space->extent.u.simple.rank]=fhyper_info->elmt_size;
/* Set the memory offset to the origin */
HDmemset (zero, 0, fhyper_info->layout->ndims*sizeof(*zero));
/* perform I/O on data from regions */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
#ifdef QAK
printf("%s: check 2.2, i=%d\n",FUNC,(int)i);
#endif /* QAK */
region_size=MIN(fhyper_info->nelmts,
(regions[i].end-regions[i].start)+1);
hsize[fhyper_info->space->extent.u.simple.rank-1]=region_size;
file_offset[fhyper_info->space->extent.u.simple.rank-1]=regions[i].start;
/*
* Gather from file.
*/
if (H5F_arr_read (fhyper_info->f, fhyper_info->layout,
fhyper_info->pline, fhyper_info->efl,
hsize, hsize, zero, file_offset,
fhyper_info->xfer_mode,
fhyper_info->dst/*out*/)<0) {
HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0,
"read error");
}
#ifdef QAK
printf("%s: check 2.3, region #%d\n",FUNC,(int)i);
for(j=0; j<fhyper_info->space->extent.u.simple.rank; j++)
printf("%s: %d - pos=%d\n",
FUNC,j,(int)fhyper_info->iter->hyp.pos[j]);
#endif /* QAK */
/* Advance the pointer in the buffer */
fhyper_info->dst = ((uint8 *)fhyper_info->dst) +
region_size*fhyper_info->elmt_size;
/* Increment the number of elements read */
num_read+=region_size;
/* Decrement the buffer left */
fhyper_info->nelmts-=region_size;
/* Set the next position to start at */
if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
fhyper_info->iter->hyp.pos[dim+1]=(-1);
else
fhyper_info->iter->hyp.pos[dim+1] = regions[i].start +
region_size;
/* Decrement the iterator count */
fhyper_info->iter->hyp.elmt_left-=region_size;
} /* end for */
} else { /* recurse on each region to next dimension down */
#ifdef QAK
printf("%s: check 3.0, num_regions=%d\n",FUNC,(int)num_regions);
#endif /* QAK */
/* Increment the dimension we are working with */
dim++;
/* Step through each region in this dimension */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
/* Step through each location in each region */
for(j=regions[i].start;
j<=regions[i].end && fhyper_info->nelmts>0;
j++) {
#ifdef QAK
printf("%s: check 4.0, dim=%d, location=%d\n",FUNC,dim,j);
#endif /* QAK */
/*
* If we are moving to a new position in this dim, reset
* the next lower dim. location.
*/
if(fhyper_info->iter->hyp.pos[dim]!=j)
fhyper_info->iter->hyp.pos[dim+1]=(-1);
/* Set the correct position we are working on */
fhyper_info->iter->hyp.pos[dim]=j;
/* Go get the regions in the next lower dimension */
num_read+=H5S_hyper_fread(dim, fhyper_info);
} /* end for */
} /* end for */
} /* end else */
/* Free the region space */
H5MM_xfree(regions);
} /* end if */
FUNC_LEAVE (num_read);
} /* H5S_hyper_fread() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_fgath
*
* Purpose: Gathers data points from file F and accumulates them in the
* type conversion buffer BUF. The LAYOUT argument describes
* how the data is stored on disk and EFL describes how the data
* is organized in external files. ELMT_SIZE is the size in
* bytes of a datum which this function treats as opaque.
* FILE_SPACE describes the data space of the dataset on disk
* and the elements that have been selected for reading (via
* hyperslab, etc). This function will copy at most NELMTS elements.
*
* Return: Success: Number of elements copied.
*
* Failure: 0
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
size_t
H5S_hyper_fgath (H5F_t *f, const struct H5O_layout_t *layout,
const struct H5O_pline_t *pline,
const struct H5O_efl_t *efl, size_t elmt_size,
const H5S_t *file_space, H5S_sel_iter_t *file_iter,
size_t nelmts, const H5D_transfer_t xfer_mode,
void *_buf/*out*/)
{
H5S_hyper_bound_t **lo_bounds; /* Lower (closest to the origin) bound array for each dimension */
H5S_hyper_bound_t **hi_bounds; /* Upper (farthest from the origin) bound array for each dimension */
H5S_hyper_fhyper_info_t fhyper_info; /* Block of parameters to pass into recursive calls */
intn i; /*counters */
size_t num_read; /* number of elements read into buffer */
FUNC_ENTER (H5S_hyper_fgath, 0);
/* Check args */
assert (f);
assert (layout);
assert (elmt_size>0);
assert (file_space);
assert (file_iter);
assert (nelmts>0);
assert (_buf);
#ifdef QAK
printf("%s: check 1.0\n", FUNC);
#endif /* QAK */
/* Allocate space for the low & high bound arrays */
lo_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
hi_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
/* Initialize to correct order to walk through arrays.
(When another iteration order besides the default 'C' order is chosen,
this is the correct place to change the order of the array iterations)
*/
for(i=0; i<file_space->extent.u.simple.rank; i++) {
lo_bounds[i]=file_space->select.sel_info.hyper_lst->lo_bounds[i];
hi_bounds[i]=file_space->select.sel_info.hyper_lst->hi_bounds[i];
} /* end for */
/* Initialize parameter block for recursive calls */
fhyper_info.f=f;
fhyper_info.layout=layout;
fhyper_info.pline=pline;
fhyper_info.efl=efl;
fhyper_info.elmt_size=elmt_size;
fhyper_info.space=file_space;
fhyper_info.iter=file_iter;
fhyper_info.nelmts=nelmts;
fhyper_info.xfer_mode=xfer_mode;
fhyper_info.src=NULL;
fhyper_info.dst=_buf;
fhyper_info.lo_bounds=lo_bounds;
fhyper_info.hi_bounds=hi_bounds;
/* Recursively input the hyperslabs currently defined */
/* starting with the slowest changing dimension */
#ifdef QAK
printf("%s: check 4.0\n",FUNC);
#endif /* QAK */
num_read=H5S_hyper_fread(-1,&fhyper_info);
#ifdef QAK
printf("%s: check 5.0, num_read=%d\n",FUNC,(int)num_read);
#endif /* QAK */
/* Release the memory we allocated */
H5MM_xfree(lo_bounds);
H5MM_xfree(hi_bounds);
FUNC_LEAVE (num_read);
} /* H5S_hyper_fgath() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_fwrite
*
* Purpose: Recursively scatters data points to a file using the parameters
* passed to H5S_hyper_fscat.
*
* Return: Success: Number of elements copied.
*
* Failure: 0
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static size_t
H5S_hyper_fwrite (intn dim, H5S_hyper_fhyper_info_t *fhyper_info)
{
hssize_t file_offset[H5O_LAYOUT_NDIMS]; /*offset of slab in file*/
hsize_t hsize[H5O_LAYOUT_NDIMS]; /*size of hyperslab */
hsize_t region_size; /* Size of lowest region */
hssize_t zero[H5O_LAYOUT_NDIMS]; /*zero */
H5S_hyper_region_t *regions; /* Pointer to array of hyperslab nodes overlapped */
size_t num_regions; /* number of regions overlapped */
size_t i; /* Counters */
intn j;
size_t num_written=0; /* Number of elements read */
FUNC_ENTER (H5S_hyper_fwrite, 0);
assert(fhyper_info);
/* Get a sorted list (in the next dimension down) of the regions which */
/* overlap the current index in this dim */
if((regions=H5S_hyper_get_regions(&num_regions,dim,
fhyper_info->space->select.sel_info.hyper_lst->count,
fhyper_info->lo_bounds, fhyper_info->hi_bounds,
fhyper_info->iter->hyp.pos,fhyper_info->space->select.offset))!=NULL) {
/* Check if this is the second to last dimension in dataset */
/* (Which means that we've got a list of the regions in the fastest */
/* changing dimension and should input those regions) */
if((dim+2)==fhyper_info->space->extent.u.simple.rank) {
/* Set up hyperslab I/O parameters which apply to all regions */
/* Copy the location of the region in the file */
HDmemcpy(file_offset, fhyper_info->iter->hyp.pos,
(fhyper_info->space->extent.u.simple.rank *
sizeof(hssize_t)));
file_offset[fhyper_info->space->extent.u.simple.rank]=0;
/* Set the hyperslab size to copy */
hsize[0]=1;
H5V_array_fill(hsize, hsize, sizeof(hsize[0]),
fhyper_info->space->extent.u.simple.rank);
hsize[fhyper_info->space->extent.u.simple.rank]=fhyper_info->elmt_size;
/* Set the memory offset to the origin */
HDmemset (zero, 0, fhyper_info->layout->ndims*sizeof(*zero));
/* perform I/O on data from regions */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
region_size=MIN(fhyper_info->nelmts,
(regions[i].end-regions[i].start)+1);
hsize[fhyper_info->space->extent.u.simple.rank-1]=region_size;
file_offset[fhyper_info->space->extent.u.simple.rank-1]=regions[i].start;
/*
* Scatter from file.
*/
if (H5F_arr_write (fhyper_info->f, fhyper_info->layout,
fhyper_info->pline, fhyper_info->efl,
hsize, hsize, zero, file_offset,
fhyper_info->xfer_mode,
fhyper_info->src)<0) {
HRETURN_ERROR (H5E_DATASPACE, H5E_WRITEERROR, 0, "write error");
}
/* Advance the pointer in the buffer */
fhyper_info->src = ((const uint8 *)fhyper_info->src) +
region_size*fhyper_info->elmt_size;
/* Increment the number of elements read */
num_written+=region_size;
/* Decrement the buffer left */
fhyper_info->nelmts-=region_size;
/* Set the next position to start at */
if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
fhyper_info->iter->hyp.pos[dim+1]=(-1);
else
fhyper_info->iter->hyp.pos[dim+1] = regions[i].start +
region_size;
/* Decrement the iterator count */
fhyper_info->iter->hyp.elmt_left-=region_size;
} /* end for */
} else { /* recurse on each region to next dimension down */
/* Increment the dimension we are working with */
dim++;
/* Step through each region in this dimension */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
/* Step through each location in each region */
for(j=regions[i].start;
j<=regions[i].end && fhyper_info->nelmts>0;
j++) {
/*
* If we are moving to a new position in this dim, reset
* the next lower dim. location.
*/
if(fhyper_info->iter->hyp.pos[dim]!=j)
fhyper_info->iter->hyp.pos[dim+1]=(-1);
/* Set the correct position we are working on */
fhyper_info->iter->hyp.pos[dim]=j;
/* Go get the regions in the next lower dimension */
num_written+=H5S_hyper_fwrite(dim, fhyper_info);
} /* end for */
} /* end for */
} /* end else */
/* Free the region space */
H5MM_xfree(regions);
} /* end if */
FUNC_LEAVE (num_written);
} /* H5S_hyper_fwrite() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_fscat
*
* Purpose: Scatters dataset elements from the type conversion buffer BUF
* to the file F where the data points are arranged according to
* the file data space FILE_SPACE and stored according to
* LAYOUT and EFL. Each element is ELMT_SIZE bytes.
* The caller is requesting that NELMTS elements are copied.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5S_hyper_fscat (H5F_t *f, const struct H5O_layout_t *layout,
const struct H5O_pline_t *pline,
const struct H5O_efl_t *efl, size_t elmt_size,
const H5S_t *file_space, H5S_sel_iter_t *file_iter,
size_t nelmts, const H5D_transfer_t xfer_mode,
const void *_buf)
{
H5S_hyper_bound_t **lo_bounds; /* Lower (closest to the origin) bound array for each dimension */
H5S_hyper_bound_t **hi_bounds; /* Upper (farthest from the origin) bound array for each dimension */
H5S_hyper_fhyper_info_t fhyper_info; /* Block of parameters to pass into recursive calls */
intn i; /*counters */
size_t num_written; /* number of elements read into buffer */
FUNC_ENTER (H5S_hyper_fscat, 0);
/* Check args */
assert (f);
assert (layout);
assert (elmt_size>0);
assert (file_space);
assert (file_iter);
assert (nelmts>0);
assert (_buf);
#ifdef QAK
printf("%s: check 1.0\n", FUNC);
#endif /* QAK */
/* Allocate space for the low & high bound arrays */
lo_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
hi_bounds = H5MM_malloc(file_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
/*
* Initialize to correct order to walk through arrays. (When another
* iteration order besides the default 'C' order is chosen, this is the
* correct place to change the order of the array iterations)
*/
for(i=0; i<file_space->extent.u.simple.rank; i++) {
lo_bounds[i]=file_space->select.sel_info.hyper_lst->lo_bounds[i];
hi_bounds[i]=file_space->select.sel_info.hyper_lst->hi_bounds[i];
} /* end for */
/* Initialize parameter block for recursive calls */
fhyper_info.f=f;
fhyper_info.layout=layout;
fhyper_info.pline=pline;
fhyper_info.efl=efl;
fhyper_info.elmt_size=elmt_size;
fhyper_info.space=file_space;
fhyper_info.iter=file_iter;
fhyper_info.nelmts=nelmts;
fhyper_info.xfer_mode=xfer_mode;
fhyper_info.src=_buf;
fhyper_info.dst=NULL;
fhyper_info.lo_bounds=lo_bounds;
fhyper_info.hi_bounds=hi_bounds;
/* Recursively input the hyperslabs currently defined */
/* starting with the slowest changing dimension */
num_written=H5S_hyper_fwrite(-1,&fhyper_info);
/* Release the memory we allocated */
H5MM_xfree(lo_bounds);
H5MM_xfree(hi_bounds);
FUNC_LEAVE (num_written);
} /* H5S_hyper_fscat() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_mread
*
* Purpose: Recursively gathers data points from memory using the
* parameters passed to H5S_hyper_mgath.
*
* Return: Success: Number of elements copied.
*
* Failure: 0
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static size_t
H5S_hyper_mread (intn dim, H5S_hyper_fhyper_info_t *fhyper_info)
{
hsize_t mem_size[H5O_LAYOUT_NDIMS]; /*size of memory buffer*/
hssize_t mem_offset[H5O_LAYOUT_NDIMS]; /*offset of slab in memory*/
hsize_t hsize[H5O_LAYOUT_NDIMS]; /*size of hyperslab */
hsize_t region_size; /* Size of lowest region */
hssize_t zero[H5O_LAYOUT_NDIMS]; /*zero */
H5S_hyper_region_t *regions; /* Pointer to array of hyperslab nodes overlapped */
size_t num_regions; /* number of regions overlapped */
size_t i; /* Counters */
intn j;
size_t num_read=0; /* Number of elements read */
FUNC_ENTER (H5S_hyper_mread, 0);
assert(fhyper_info);
#ifdef QAK
printf("%s: check 1.0, dim=%d\n",FUNC,dim);
#endif /* QAK */
/* Get a sorted list (in the next dimension down) of the regions which */
/* overlap the current index in this dim */
if((regions=H5S_hyper_get_regions(&num_regions,dim,
fhyper_info->space->select.sel_info.hyper_lst->count,
fhyper_info->lo_bounds, fhyper_info->hi_bounds,
fhyper_info->iter->hyp.pos,fhyper_info->space->select.offset))!=NULL) {
/* Check if this is the second to last dimension in dataset */
/* (Which means that we've got a list of the regions in the fastest */
/* changing dimension and should input those regions) */
#ifdef QAK
printf("%s: check 2.0, rank=%d, num_regions=%d\n",
FUNC, (int)fhyper_info->space->extent.u.simple.rank,
(int)num_regions);
for(i=0; i<num_regions; i++)
printf("%s: check 2.1, region #%d: start=%d, end=%d\n",
FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */
if((dim+2)==fhyper_info->space->extent.u.simple.rank) {
/* Set up hyperslab I/O parameters which apply to all regions */
/* Set up the size of the memory space */
HDmemcpy(mem_size, fhyper_info->space->extent.u.simple.size,
fhyper_info->space->extent.u.simple.rank*sizeof(hsize_t));
mem_size[fhyper_info->space->extent.u.simple.rank]=fhyper_info->elmt_size;
/* Copy the location of the region in the file */
HDmemcpy(mem_offset, fhyper_info->iter->hyp.pos,
(fhyper_info->space->extent.u.simple.rank *
sizeof(hssize_t)));
mem_offset[fhyper_info->space->extent.u.simple.rank]=0;
/* Set the hyperslab size to copy */
hsize[0]=1;
H5V_array_fill(hsize, hsize, sizeof(hsize[0]),
fhyper_info->space->extent.u.simple.rank);
hsize[fhyper_info->space->extent.u.simple.rank]=fhyper_info->elmt_size;
/* Set the memory offset to the origin */
HDmemset (zero, 0, ((fhyper_info->space->extent.u.simple.rank+1)*
sizeof(*zero)));
/* perform I/O on data from regions */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
region_size=MIN(fhyper_info->nelmts,
(regions[i].end-regions[i].start)+1);
hsize[fhyper_info->space->extent.u.simple.rank-1]=region_size;
mem_offset[fhyper_info->space->extent.u.simple.rank-1]=regions[i].start;
#ifdef QAK
printf("%s: check 2.1, i=%d, region_size=%d\n",
FUNC,(int)i,(int)region_size);
#endif /* QAK */
/*
* Gather from memory.
*/
if (H5V_hyper_copy (fhyper_info->space->extent.u.simple.rank+1,
hsize, hsize, zero, fhyper_info->dst,
mem_size, mem_offset, fhyper_info->src)<0) {
HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0,
"unable to gather data from memory");
}
/* Advance the pointer in the buffer */
fhyper_info->dst = ((uint8 *)fhyper_info->dst) +
region_size*fhyper_info->elmt_size;
/* Increment the number of elements read */
num_read+=region_size;
/* Decrement the buffer left */
fhyper_info->nelmts-=region_size;
/* Set the next position to start at */
if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
fhyper_info->iter->hyp.pos[dim+1]=(-1);
else
fhyper_info->iter->hyp.pos[dim+1] =regions[i].start +
region_size;
/* Decrement the iterator count */
fhyper_info->iter->hyp.elmt_left-=region_size;
} /* end for */
} else { /* recurse on each region to next dimension down */
#ifdef QAK
printf("%s: check 3.0, num_regions=%d\n",FUNC,(int)num_regions);
#endif /* QAK */
/* Increment the dimension we are working with */
dim++;
/* Step through each region in this dimension */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
/* Step through each location in each region */
for(j=regions[i].start;
j<=regions[i].end && fhyper_info->nelmts>0;
j++) {
#ifdef QAK
printf("%s: check 4.0, dim=%d, location=%d\n",FUNC,dim,j);
#endif /* QAK */
/*
* If we are moving to a new position in this dim, reset
* the next lower dim. location.
*/
if(fhyper_info->iter->hyp.pos[dim]!=j)
fhyper_info->iter->hyp.pos[dim+1]=(-1);
/* Set the correct position we are working on */
fhyper_info->iter->hyp.pos[dim]=j;
/* Go get the regions in the next lower dimension */
num_read+=H5S_hyper_mread(dim, fhyper_info);
} /* end for */
} /* end for */
} /* end else */
/* Free the region space */
H5MM_xfree(regions);
} /* end if */
FUNC_LEAVE (num_read);
} /* H5S_hyper_mread() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_mgath
*
* Purpose: Gathers dataset elements from application memory BUF and
* copies them into the data type conversion buffer TCONV_BUF.
* Each element is ELMT_SIZE bytes and arranged in application
* memory according to MEM_SPACE.
* The caller is requesting that at most NELMTS be gathered.
*
* Return: Success: Number of elements copied.
*
* Failure: 0
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
size_t
H5S_hyper_mgath (const void *_buf, size_t elmt_size,
const H5S_t *mem_space, H5S_sel_iter_t *mem_iter,
size_t nelmts, void *_tconv_buf/*out*/)
{
H5S_hyper_bound_t **lo_bounds; /* Lower (closest to the origin) bound array for each dimension */
H5S_hyper_bound_t **hi_bounds; /* Upper (farthest from the origin) bound array for each dimension */
H5S_hyper_fhyper_info_t fhyper_info; /* Block of parameters to pass into recursive calls */
intn i;
#ifdef QAK
intn j; /* Counters */
#endif /* QAK */
size_t num_read; /* number of elements read into buffer */
FUNC_ENTER (H5S_hyper_mgath, 0);
#ifdef QAK
printf("%s: check 1.0, elmt_size=%d, mem_space=%p\n",
FUNC,(int)elmt_size,mem_space);
printf("%s: check 1.0, mem_iter=%p, nelmts=%d\n",FUNC,mem_iter,nelmts);
printf("%s: check 1.0, _buf=%p, _tconv_buf=%p\n",FUNC,_buf,_tconv_buf);
#endif /* QAK */
/* Check args */
assert (elmt_size>0);
assert (mem_space);
assert (mem_iter);
assert (nelmts>0);
assert (_buf);
assert (_tconv_buf);
#ifdef QAK
printf("%s: check 2.0, mem_space->extent.u.simple.rank=%d\n",
FUNC, (int)mem_space->extent.u.simple.rank);
#endif /* QAK */
/* Allocate space for the low & high bound arrays */
lo_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
hi_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
/*
* Initialize to correct order to walk through arrays. (When another
* iteration order besides the default 'C' order is chosen, this is the
* correct place to change the order of the array iterations)
*/
#ifdef QAK
printf("%s: check 3.0\n",FUNC);
#endif /* QAK */
for(i=0; i<mem_space->extent.u.simple.rank; i++) {
lo_bounds[i]=mem_space->select.sel_info.hyper_lst->lo_bounds[i];
hi_bounds[i]=mem_space->select.sel_info.hyper_lst->hi_bounds[i];
#ifdef QAK
printf("%s: check 3.1, lo[%d]=%p, hi[%d]=%p\n",
FUNC,i,lo_bounds[i],i,hi_bounds[i]);
for(j=0; j<(int)mem_space->select.sel_info.hyper_lst->count; j++)
printf("%s: check 3.2, lo[%d][%d]=%d, hi[%d][%d]=%d\n",
FUNC, i, j, (int)lo_bounds[i][j].bound, i, j,
(int)hi_bounds[i][j].bound);
#endif /* QAK */
} /* end for */
/* Initialize parameter block for recursive calls */
fhyper_info.elmt_size=elmt_size;
fhyper_info.space=mem_space;
fhyper_info.iter=mem_iter;
fhyper_info.nelmts=nelmts;
fhyper_info.src=_buf;
fhyper_info.dst=_tconv_buf;
fhyper_info.lo_bounds=lo_bounds;
fhyper_info.hi_bounds=hi_bounds;
/* Recursively input the hyperslabs currently defined */
/* starting with the slowest changing dimension */
#ifdef QAK
printf("%s: check 4.0\n",FUNC);
#endif /* QAK */
num_read=H5S_hyper_mread(-1,&fhyper_info);
#ifdef QAK
printf("%s: check 5.0, num_read=%d\n",FUNC,(int)num_read);
#endif /* QAK */
/* Release the memory we allocated */
H5MM_xfree(lo_bounds);
H5MM_xfree(hi_bounds);
FUNC_LEAVE (num_read);
} /* H5S_hyper_mgath() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_mwrite
*
* Purpose: Recursively scatters data points from memory using the parameters
* passed to H5S_hyper_mscat.
*
* Return: Success: Number of elements copied.
*
* Failure: 0
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
static size_t
H5S_hyper_mwrite (intn dim, H5S_hyper_fhyper_info_t *fhyper_info)
{
hsize_t mem_size[H5O_LAYOUT_NDIMS]; /*size of memory buffer*/
hssize_t mem_offset[H5O_LAYOUT_NDIMS]; /*offset of slab in file*/
hsize_t hsize[H5O_LAYOUT_NDIMS]; /*size of hyperslab */
hsize_t region_size; /* Size of lowest region */
hssize_t zero[H5O_LAYOUT_NDIMS]; /*zero */
H5S_hyper_region_t *regions; /* Pointer to array of hyperslab nodes overlapped */
size_t num_regions; /* number of regions overlapped */
size_t i; /* Counters */
intn j;
size_t num_read=0; /* Number of elements read */
FUNC_ENTER (H5S_hyper_mwrite, 0);
assert(fhyper_info);
#ifdef QAK
printf("%s: check 1.0\n",FUNC);
#endif /* QAK */
/* Get a sorted list (in the next dimension down) of the regions which */
/* overlap the current index in this dim */
if((regions=H5S_hyper_get_regions(&num_regions,dim,
fhyper_info->space->select.sel_info.hyper_lst->count,
fhyper_info->lo_bounds, fhyper_info->hi_bounds,
fhyper_info->iter->hyp.pos,fhyper_info->space->select.offset))!=NULL) {
#ifdef QAK
printf("%s: check 2.0, rank=%d\n",
FUNC,(int)fhyper_info->space->extent.u.simple.rank);
for(i=0; i<num_regions; i++)
printf("%s: check 2.1, region #%d: start=%d, end=%d\n",
FUNC,i,(int)regions[i].start,(int)regions[i].end);
#endif /* QAK */
/* Check if this is the second to last dimension in dataset */
/* (Which means that we've got a list of the regions in the fastest */
/* changing dimension and should input those regions) */
if((dim+2)==fhyper_info->space->extent.u.simple.rank) {
/* Set up hyperslab I/O parameters which apply to all regions */
/* Set up the size of the memory space */
HDmemcpy(mem_size, fhyper_info->space->extent.u.simple.size,
fhyper_info->space->extent.u.simple.rank*sizeof(hsize_t));
mem_size[fhyper_info->space->extent.u.simple.rank]=fhyper_info->elmt_size;
/* Copy the location of the region in the file */
HDmemcpy(mem_offset, fhyper_info->iter->hyp.pos,
(fhyper_info->space->extent.u.simple.rank*
sizeof(hssize_t)));
mem_offset[fhyper_info->space->extent.u.simple.rank]=0;
/* Set the hyperslab size to copy */
hsize[0]=1;
H5V_array_fill(hsize, hsize, sizeof(hsize[0]),
fhyper_info->space->extent.u.simple.rank);
hsize[fhyper_info->space->extent.u.simple.rank]=fhyper_info->elmt_size;
/* Set the memory offset to the origin */
HDmemset (zero, 0, ((fhyper_info->space->extent.u.simple.rank+1)*
sizeof(*zero)));
#ifdef QAK
printf("%s: check 3.0\n",FUNC);
#endif /* QAK */
/* perform I/O on data from regions */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
region_size=MIN(fhyper_info->nelmts,
(regions[i].end-regions[i].start)+1);
hsize[fhyper_info->space->extent.u.simple.rank-1]=region_size;
mem_offset[fhyper_info->space->extent.u.simple.rank-1]=regions[i].start;
/*
* Gather from memory.
*/
if (H5V_hyper_copy (fhyper_info->space->extent.u.simple.rank+1,
hsize, mem_size, mem_offset,
fhyper_info->dst, hsize, zero,
fhyper_info->src)<0) {
HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0,
"unable to gather data from memory");
}
/* Advance the pointer in the buffer */
fhyper_info->src = ((const uint8 *)fhyper_info->src) +
region_size*fhyper_info->elmt_size;
/* Increment the number of elements read */
num_read+=region_size;
/* Decrement the buffer left */
fhyper_info->nelmts-=region_size;
/* Set the next position to start at */
if(region_size==(hsize_t)((regions[i].end-regions[i].start)+1))
fhyper_info->iter->hyp.pos[dim+1]=(-1);
else
fhyper_info->iter->hyp.pos[dim+1] = regions[i].start +
region_size;
/* Decrement the iterator count */
fhyper_info->iter->hyp.elmt_left-=region_size;
} /* end for */
} else { /* recurse on each region to next dimension down */
/* Increment the dimension we are working with */
dim++;
#ifdef QAK
printf("%s: check 6.0, num_regions=%d\n",FUNC,(int)num_regions);
#endif /* QAK */
/* Step through each region in this dimension */
for(i=0; i<num_regions && fhyper_info->nelmts>0; i++) {
/* Step through each location in each region */
#ifdef QAK
printf("%s: check 7.0, start[%d]=%d, end[%d]=%d, nelmts=%d\n",
FUNC, i, (int)regions[i].start, i,
(int)regions[i].end, (int)fhyper_info->nelmts);
#endif /* QAK */
for(j=regions[i].start;
j<=regions[i].end && fhyper_info->nelmts>0;
j++) {
/*
* If we are moving to a new position in this dim, reset
* the next lower dim. location.
*/
if(fhyper_info->iter->hyp.pos[dim]!=j)
fhyper_info->iter->hyp.pos[dim+1]=(-1);
/* Set the correct position we are working on */
fhyper_info->iter->hyp.pos[dim]=j;
/* Go get the regions in the next lower dimension */
num_read+=H5S_hyper_mwrite(dim, fhyper_info);
} /* end for */
} /* end for */
} /* end else */
/* Free the region space */
H5MM_xfree(regions);
} /* end if */
FUNC_LEAVE (num_read);
} /* H5S_hyper_mwrite() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_mscat
*
* Purpose: Scatters NELMTS data points from the type conversion buffer
* TCONV_BUF to the application buffer BUF. Each element is
* ELMT_SIZE bytes and they are organized in application memory
* according to MEM_SPACE.
*
* Return: Success: SUCCEED
*
* Failure: FAIL
*
* Programmer: Quincey Koziol
* Wednesday, June 17, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
herr_t
H5S_hyper_mscat (const void *_tconv_buf, size_t elmt_size,
const H5S_t *mem_space, H5S_sel_iter_t *mem_iter,
size_t nelmts, void *_buf/*out*/)
{
H5S_hyper_bound_t **lo_bounds; /* Lower (closest to the origin) bound array for each dimension */
H5S_hyper_bound_t **hi_bounds; /* Upper (farthest from the origin) bound array for each dimension */
H5S_hyper_fhyper_info_t fhyper_info; /* Block of parameters to pass into recursive calls */
intn i; /*counters */
size_t num_read; /* number of elements read into buffer */
FUNC_ENTER (H5S_hyper_mscat, 0);
/* Check args */
assert (elmt_size>0);
assert (mem_space);
assert (mem_iter);
assert (nelmts>0);
assert (_buf);
assert (_tconv_buf);
/* Allocate space for the low & high bound arrays */
lo_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
hi_bounds = H5MM_malloc(mem_space->extent.u.simple.rank *
sizeof(H5S_hyper_bound_t *));
/*
* Initialize to correct order to walk through arrays. (When another
* iteration order besides the default 'C' order is chosen, this is the
* correct place to change the order of the array iterations)
*/
for(i=0; i<mem_space->extent.u.simple.rank; i++) {
lo_bounds[i]=mem_space->select.sel_info.hyper_lst->lo_bounds[i];
hi_bounds[i]=mem_space->select.sel_info.hyper_lst->hi_bounds[i];
} /* end for */
/* Initialize parameter block for recursive calls */
fhyper_info.elmt_size=elmt_size;
fhyper_info.space=mem_space;
fhyper_info.iter=mem_iter;
fhyper_info.nelmts=nelmts;
fhyper_info.src=_tconv_buf;
fhyper_info.dst=_buf;
fhyper_info.lo_bounds=lo_bounds;
fhyper_info.hi_bounds=hi_bounds;
/* Recursively input the hyperslabs currently defined */
/* starting with the slowest changing dimension */
#ifdef QAK
printf("%s: check 1.0\n",FUNC);
#endif /* QAK */
num_read=H5S_hyper_mwrite(-1,&fhyper_info);
#ifdef QAK
printf("%s: check 2.0\n",FUNC);
#endif /* QAK */
/* Release the memory we allocated */
H5MM_xfree(lo_bounds);
H5MM_xfree(hi_bounds);
FUNC_LEAVE (SUCCEED);
} /* H5S_hyper_mscat() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_bsearch
PURPOSE
Search for a boundary
USAGE
herr_t H5S_hyper_bsearch(key,barr,count)
hssize_t size; IN: Key we are searching for
H5S_hyper_bount_t *barr; IN: Pointer to the array of bounds
size_t count; IN: Number of elements in the bound array
RETURNS
The element number to insert in front of on success (the value in the 'count'
parameter if the new bound should be added to end) or negative on failure.
DESCRIPTION
Finds the proper place to insert a boundary in a sorted boundary array.
Uses a binary search algorithm for the actual searching.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static intn
H5S_hyper_bsearch(hssize_t size, H5S_hyper_bound_t *barr, size_t count)
{
intn lo, mid, hi; /* Indices for the search */
intn ret_value=-1; /* Return value index */
FUNC_ENTER (H5S_hyper_bsearch, FAIL);
assert(barr);
assert(count>0);
/* Check bounds first */
if(size<barr[0].bound)
ret_value=0;
else if(size>barr[count-1].bound)
ret_value=count;
else { /* must be in the middle somewhere, go get it */
lo=0;
hi=count-1;
do {
/* Calc. the mid-point */
mid=(hi+lo)/2;
/* check for bounds only seperated by one element */
if((hi-lo)<=1) {
ret_value=hi;
break;
} else { /* Divide and conquer! */
if(size>barr[mid].bound)
lo=mid;
else
hi=mid;
} /* end else */
} while(lo!=hi);
} /* end else */
FUNC_LEAVE (ret_value);
} /* H5S_hyper_bsearch() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_add
PURPOSE
Add a block to hyperslab selection
USAGE
herr_t H5S_hyper_add(space, start, size)
H5S_t *space; IN: Pointer to dataspace
const hssize_t *start; IN: Offset of block
const hsize_t *size; IN: Size of block
RETURNS
SUCCEED/FAIL
DESCRIPTION
Adds a block to an existing hyperslab selection.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_add (H5S_t *space, const hssize_t *start, const hsize_t *size)
{
H5S_hyper_node_t *slab; /* New hyperslab node to insert */
H5S_hyper_bound_t *tmp; /* Temporary pointer to an hyperslab bound array */
intn bound_loc; /* Boundary location to insert hyperslab */
size_t elem_count; /* Number of elements in hyperslab selection */
intn i; /* Counters */
herr_t ret_value=FAIL;
#ifdef QAK
extern int qak_debug;
#endif /* QAK */
FUNC_ENTER (H5S_hyper_add, FAIL);
/* Check args */
assert (space);
assert (start);
assert (size);
#ifdef QAK
qak_debug=1;
#endif /* QAK */
#ifdef QAK
printf("%s: check 1.0\n",FUNC);
#endif /* QAK */
/* Create new hyperslab node to insert */
if((slab = H5MM_malloc(sizeof(H5S_hyper_node_t)))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate hyperslab node");
if((slab->start = H5MM_malloc(sizeof(hsize_t)*
space->extent.u.simple.rank))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate hyperslab start boundary");
if((slab->end = H5MM_malloc(sizeof(hsize_t)*
space->extent.u.simple.rank))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate hyperslab end boundary");
#ifdef QAK
printf("%s: check 2.0\n",FUNC);
#endif /* QAK */
/* Set boundary on new node */
for(i=0,elem_count=1; i<space->extent.u.simple.rank; i++) {
#ifdef QAK
printf("%s: check 2.1, %d: start=%d, size=%d, elem_count=%d\n",
FUNC,(int)i,(int)start[i],(int)size[i],(int)elem_count);
#endif /* QAK */
slab->start[i]=start[i];
slab->end[i]=start[i]+size[i]-1;
elem_count*=size[i];
} /* end for */
#ifdef QAK
printf("%s: check 3.0, lo_bounds=%p, hi_bounds=%p\n",
FUNC, space->select.sel_info.hyper_lst->lo_bounds,
space->select.sel_info.hyper_lst->hi_bounds);
#endif /* QAK */
/* Increase size of boundary arrays for dataspace's selection */
for(i=0; i<space->extent.u.simple.rank; i++) {
#ifdef QAK
printf("%s: check 3.1, i=%d\n",FUNC,(int)i);
#endif /* QAK */
tmp=space->select.sel_info.hyper_lst->lo_bounds[i];
if((space->select.sel_info.hyper_lst->lo_bounds[i]=H5MM_realloc(tmp,sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hyper_lst->count+1)))==NULL) {
space->select.sel_info.hyper_lst->lo_bounds[i]=tmp;
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate hyperslab lo boundary array");
} /* end if */
#ifdef QAK
printf("%s: check 3.2, i=%d\n",FUNC,(int)i);
#endif /* QAK */
tmp=space->select.sel_info.hyper_lst->hi_bounds[i];
if((space->select.sel_info.hyper_lst->hi_bounds[i]=H5MM_realloc(tmp,sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hyper_lst->count+1)))==NULL) {
space->select.sel_info.hyper_lst->hi_bounds[i]=tmp;
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate hyperslab hi boundary array");
} /* end if */
} /* end for */
#ifdef QAK
printf("%s: check 4.0\n",FUNC);
{
intn j;
for(i=0; i<space->extent.u.simple.rank; i++) {
for(j=0; j<(int)space->select.sel_info.hyper_lst->count; j++) {
printf("%s: lo_bound[%d][%d]=%d(%p), "
"hi_bound[%d][%d]=%d(%p)\n",FUNC,
i,j,(int)space->select.sel_info.hyper_lst->lo_bounds[i][j].bound,
space->select.sel_info.hyper_lst->lo_bounds[i][j].node,
i,j,(int)space->select.sel_info.hyper_lst->hi_bounds[i][j].bound,
space->select.sel_info.hyper_lst->hi_bounds[i][j].node);
}
}
}
#endif /* QAK */
/* Insert each boundary of the hyperslab into the sorted lists of bounds */
for(i=0; i<space->extent.u.simple.rank; i++) {
/* Check if this is the first hyperslab inserted */
if(space->select.sel_info.hyper_lst->count==0) {
#ifdef QAK
printf("%s: check 4.1, start[%d]=%d, end[%d]=%d\n",
FUNC, i, (int)slab->start[i],i,(int)slab->end[i]);
printf("%s: check 4.1, hyper_lst->count=%d\n",
FUNC,(int)space->select.sel_info.hyper_lst->count);
#endif /* QAK */
space->select.sel_info.hyper_lst->lo_bounds[i][0].bound=slab->start[i];
space->select.sel_info.hyper_lst->lo_bounds[i][0].node=slab;
space->select.sel_info.hyper_lst->hi_bounds[i][0].bound=slab->end[i];
space->select.sel_info.hyper_lst->hi_bounds[i][0].node=slab;
} /* end if */
else {
#ifdef QAK
printf("%s: check 4.3, start[%d]=%d, end[%d]=%d\n",
FUNC,i,(int)slab->start[i],i,(int)slab->end[i]);
printf("%s: check 4.3, hyper_lst->count=%d\n",
FUNC,(int)space->select.sel_info.hyper_lst->count);
#endif /* QAK */
/* Take care of the low boundary first */
/* Find the location to insert in front of */
if((bound_loc=H5S_hyper_bsearch(slab->start[i],space->select.sel_info.hyper_lst->lo_bounds[i],
space->select.sel_info.hyper_lst->count))<0)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't find location to insert hyperslab boundary");
#ifdef QAK
printf("%s: check 4.5, bound_loc=%d\n",FUNC,(int)bound_loc);
#endif /* QAK */
/* Check if we need to move boundary elements */
if(bound_loc!=(intn)space->select.sel_info.hyper_lst->count) {
HDmemmove(&space->select.sel_info.hyper_lst->lo_bounds[i][bound_loc+1],
&space->select.sel_info.hyper_lst->lo_bounds[i][bound_loc],
sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hyper_lst->count-bound_loc));
} /* end if */
space->select.sel_info.hyper_lst->lo_bounds[i][bound_loc].bound=slab->start[i];
space->select.sel_info.hyper_lst->lo_bounds[i][bound_loc].node=slab;
/* Take care of the high boundary next */
/* Find the location to insert in front of */
if((bound_loc=H5S_hyper_bsearch(slab->end[i],space->select.sel_info.hyper_lst->hi_bounds[i],
space->select.sel_info.hyper_lst->count))<0)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't find location to insert hyperslab boundary");
/* Check if we need to move boundary elements */
if(bound_loc!=(intn)space->select.sel_info.hyper_lst->count) {
HDmemmove(&space->select.sel_info.hyper_lst->hi_bounds[i][bound_loc+1],
&space->select.sel_info.hyper_lst->hi_bounds[i][bound_loc],
sizeof(H5S_hyper_bound_t)*(space->select.sel_info.hyper_lst->count-bound_loc));
} /* end if */
space->select.sel_info.hyper_lst->hi_bounds[i][bound_loc].bound=slab->end[i];
space->select.sel_info.hyper_lst->hi_bounds[i][bound_loc].node=slab;
} /* end else */
} /* end for */
#ifdef QAK
printf("%s: check 5.0\n",FUNC);
#endif /* QAK */
/* Increment the number of bounds in the array */
space->select.sel_info.hyper_lst->count++;
/* Prepend on list of hyperslabs for this selection */
slab->next=space->select.sel_info.hyper_lst->head;
space->select.sel_info.hyper_lst->head=slab;
/* Increment the number of elements in the hyperslab selection */
space->select.num_elem+=elem_count;
#ifdef QAK
printf("%s: check 6.0\n",FUNC);
{
intn j;
for(i=0; i<space->extent.u.simple.rank; i++) {
for(j=0; j<(int)space->select.sel_info.hyper_lst->count; j++) {
printf("%s: lo_bound[%d][%d]=%d, hi_bound[%d][%d]=%d\n",
FUNC,i,j,
(int)space->select.sel_info.hyper_lst->lo_bounds[i][j].bound,i,j,
(int)space->select.sel_info.hyper_lst->hi_bounds[i][j].bound);
}
}
}
#endif /* QAK */
done:
FUNC_LEAVE (SUCCEED);
} /* H5S_hyper_add() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_release
PURPOSE
Release hyperslab selection information for a dataspace
USAGE
herr_t H5S_hyper_release(space)
H5S_t *space; IN: Pointer to dataspace
RETURNS
SUCCEED/FAIL
DESCRIPTION
Releases all hyperslab selection information for a dataspace
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_release (H5S_t *space)
{
H5S_hyper_node_t *curr,*next; /* Pointer to hyperslab nodes */
intn i; /* Counters */
FUNC_ENTER (H5S_hyper_release, FAIL);
/* Check args */
assert (space && H5S_SEL_HYPERSLABS==space->select.type);
#ifdef QAK
printf("%s: check 1.0\n",FUNC);
#endif /* QAK */
/* Reset the number of points selected */
space->select.num_elem=0;
/* Release hi and lo boundary information */
for(i=0; i<space->extent.u.simple.rank; i++) {
H5MM_xfree(space->select.sel_info.hyper_lst->lo_bounds[i]);
H5MM_xfree(space->select.sel_info.hyper_lst->hi_bounds[i]);
} /* end for */
H5MM_xfree(space->select.sel_info.hyper_lst->lo_bounds);
H5MM_xfree(space->select.sel_info.hyper_lst->hi_bounds);
/* Release list of selected regions */
curr=space->select.sel_info.hyper_lst->head;
while(curr!=NULL) {
next=curr->next;
H5MM_xfree(curr->start);
H5MM_xfree(curr->end);
H5MM_xfree(curr);
curr=next;
} /* end while */
/* Release hyperslab selection node itself */
H5MM_xfree(space->select.sel_info.hyper_lst);
space->select.sel_info.hyper_lst=NULL;
#ifdef QAK
printf("%s: check 2.0\n",FUNC);
#endif /* QAK */
FUNC_LEAVE (SUCCEED);
} /* H5S_hyper_release() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_npoints
PURPOSE
Compute number of elements in current selection
USAGE
hsize_t H5S_hyper_npoints(space)
H5S_t *space; IN: Pointer to dataspace
RETURNS
The number of elements in selection on success, 0 on failure
DESCRIPTION
Compute number of elements in current selection.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hsize_t
H5S_point_npoints (const H5S_t *space)
{
FUNC_ENTER (H5S_point_npoints, 0);
/* Check args */
assert (space);
#ifdef QAK
printf("%s: check 1.0, nelmts=%d\n",FUNC,(int)space->select.num_elem);
#endif /* QAK */
FUNC_LEAVE (space->select.num_elem);
} /* H5S_point_npoints() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_sel_iter_release
PURPOSE
Release hyperslab selection iterator information for a dataspace
USAGE
herr_t H5S_hyper_sel_iter_release(sel_iter)
H5S_t *space; IN: Pointer to dataspace iterator is for
H5S_sel_iter_t *sel_iter; IN: Pointer to selection iterator
RETURNS
SUCCEED/FAIL
DESCRIPTION
Releases all information for a dataspace hyperslab selection iterator
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_sel_iter_release (H5S_sel_iter_t *sel_iter)
{
FUNC_ENTER (H5S_hyper_sel_iter_release, FAIL);
/* Check args */
assert (sel_iter);
if(sel_iter->hyp.pos!=NULL)
H5MM_xfree(sel_iter->hyp.pos);
FUNC_LEAVE (SUCCEED);
} /* H5S_hyper_sel_iter_release() */
/*-------------------------------------------------------------------------
* Function: H5S_hyper_compare_bounds
*
* Purpose: Compares two bounds for equality
*
* Return: an integer less than, equal to, or greater than zero if the first
* region is considered to be respectively less than, equal to, or
* greater than the second
*
* Programmer: Quincey Koziol
* Friday, July 17, 1998
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
int
H5S_hyper_compare_bounds (const void *r1, const void *r2)
{
if(((const H5S_hyper_bound_t *)r1)->bound<((const H5S_hyper_bound_t *)r2)->bound)
return(-1);
else
if(((const H5S_hyper_bound_t *)r1)->bound>((const H5S_hyper_bound_t *)r2)->bound)
return(1);
else
return(0);
} /* end H5S_hyper_compare_bounds */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_copy
PURPOSE
Copy a selection from one dataspace to another
USAGE
herr_t H5S_hyper_copy(dst, src)
H5S_t *dst; OUT: Pointer to the destination dataspace
H5S_t *src; IN: Pointer to the source dataspace
RETURNS
SUCCEED/FAIL
DESCRIPTION
Copies all the hyperslab selection information from the source
dataspace to the destination dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_copy (H5S_t *dst, const H5S_t *src)
{
H5S_hyper_list_t *new_hyper; /* New hyperslab selection */
H5S_hyper_node_t *curr, *new, *new_head; /* Hyperslab information nodes */
intn i; /* Counters */
size_t u; /* Counters */
herr_t ret_value=SUCCEED; /* return value */
FUNC_ENTER (H5S_hyper_copy, FAIL);
assert(src);
assert(dst);
#ifdef QAK
printf("%s: check 3.0\n", FUNC);
#endif /* QAK */
/* Create the new hyperslab information node */
if((new_hyper = H5MM_malloc(sizeof(H5S_hyper_list_t)))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate point node");
/* Copy the basic hyperslab selection information */
*new_hyper=*(src->select.sel_info.hyper_lst);
/* Attach the hyperslab information to the destination dataspace */
dst->select.sel_info.hyper_lst=new_hyper;
#ifdef QAK
printf("%s: check 4.0\n", FUNC);
#endif /* QAK */
/* Allocate space for the low & high bound arrays */
if((new_hyper->lo_bounds = H5MM_malloc(sizeof(H5S_hyper_bound_t *)*src->extent.u.simple.rank))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate point node");
if((new_hyper->hi_bounds = H5MM_malloc(sizeof(H5S_hyper_bound_t *)*src->extent.u.simple.rank))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate point node");
for(i=0; i<src->extent.u.simple.rank; i++) {
if((new_hyper->lo_bounds[i] = H5MM_malloc(sizeof(H5S_hyper_bound_t)*src->select.sel_info.hyper_lst->count))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate point node");
if((new_hyper->hi_bounds[i] = H5MM_malloc(sizeof(H5S_hyper_bound_t)*src->select.sel_info.hyper_lst->count))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate point node");
} /* end for */
#ifdef QAK
printf("%s: check 5.0\n", FUNC);
#endif /* QAK */
/* Copy the hyperslab selection nodes, adding them to the lo & hi bound arrays also */
curr=src->select.sel_info.hyper_lst->head;
new_head=NULL;
u=0;
while(curr!=NULL) {
#ifdef QAK
printf("%s: check 5.1\n", FUNC);
#endif /* QAK */
/* Create each point */
if((new = H5MM_malloc(sizeof(H5S_hyper_node_t)))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate point node");
if((new->start = H5MM_malloc(src->extent.u.simple.rank*sizeof(hssize_t)))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate coordinate information");
if((new->end = H5MM_malloc(src->extent.u.simple.rank*sizeof(hssize_t)))==NULL)
HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
"can't allocate coordinate information");
HDmemcpy(new->start,curr->start,(src->extent.u.simple.rank*sizeof(hssize_t)));
HDmemcpy(new->end,curr->end,(src->extent.u.simple.rank*sizeof(hssize_t)));
new->next=NULL;
/* Insert into low & high bound arrays */
for(i=0; i<src->extent.u.simple.rank; i++) {
new_hyper->lo_bounds[i][u].bound=new->start[i];
new_hyper->lo_bounds[i][u].node=new;
new_hyper->hi_bounds[i][u].bound=new->end[i];
new_hyper->hi_bounds[i][u].node=new;
} /* end for */
u++; /* Increment the location of the next node in the boundary arrays */
/* Keep the order the same when copying */
if(new_head==NULL)
new_head=new_hyper->head=new;
else {
new_head->next=new;
new_head=new;
} /* end else */
curr=curr->next;
} /* end while */
#ifdef QAK
printf("%s: check 6.0\n", FUNC);
#endif /* QAK */
/* Sort the boundary arrays */
for(i=0; i<src->extent.u.simple.rank; i++) {
qsort(new_hyper->lo_bounds[i],new_hyper->count,sizeof(H5S_hyper_bound_t),H5S_hyper_compare_bounds);
qsort(new_hyper->hi_bounds[i],new_hyper->count,sizeof(H5S_hyper_bound_t),H5S_hyper_compare_bounds);
} /* end for */
#ifdef QAK
printf("%s: check 7.0\n", FUNC);
#endif /* QAK */
done:
FUNC_LEAVE (ret_value);
} /* end H5S_hyper_copy() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_select_valid
PURPOSE
Check whether the selection fits within the extent, with the current
offset defined.
USAGE
hbool_t H5S_hyper_select_valid(space);
H5S_t *space; IN: Dataspace pointer to query
RETURNS
TRUE if the selection fits within the extent, FALSE if it does not and
FAIL on an error.
DESCRIPTION
Determines if the current selection at the current offet fits within the
extent for the dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hbool_t
H5S_hyper_select_valid (const H5S_t *space)
{
H5S_hyper_node_t *curr; /* Hyperslab information nodes */
intn i; /* Counter */
hbool_t ret_value=TRUE; /* return value */
FUNC_ENTER (H5S_hyper_select_valid, FAIL);
assert(space);
/* Check each point to determine whether selection+offset is within extent */
curr=space->select.sel_info.hyper_lst->head;
while(curr!=NULL && ret_value==TRUE) {
/* Check each dimension */
for(i=0; i<space->extent.u.simple.rank; i++) {
/* Check if an offset has been defined */
/* Bounds check the selected point + offset against the extent */
if(((curr->start[i]+space->select.offset[i])>(hssize_t)space->extent.u.simple.size[i])
|| ((curr->start[i]+space->select.offset[i])<0)
|| ((curr->end[i]+space->select.offset[i])>(hssize_t)space->extent.u.simple.size[i])
|| ((curr->end[i]+space->select.offset[i])<0)) {
ret_value=FALSE;
break;
} /* end if */
} /* end for */
curr=curr->next;
} /* end while */
FUNC_LEAVE (ret_value);
} /* end H5S_hyper_select_valid() */
|