1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
|
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the COPYING file, which can be found at the root of the source code *
* distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases. *
* If you do not have access to either file, you may request a copy from *
* help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Programmer: Quincey Koziol <koziol@ncsa.uiuc.edu>
* Thursday, June 18, 1998
*
* Purpose: Hyperslab selection dataspace I/O functions.
*/
/****************/
/* Module Setup */
/****************/
#include "H5Smodule.h" /* This source code file is part of the H5S module */
/***********/
/* Headers */
/***********/
#include "H5private.h" /* Generic Functions */
#include "H5CXprivate.h" /* API Contexts */
#include "H5Eprivate.h" /* Error handling */
#include "H5FLprivate.h" /* Free Lists */
#include "H5Iprivate.h" /* ID Functions */
#include "H5MMprivate.h" /* Memory management */
#include "H5Spkg.h" /* Dataspace functions */
#include "H5VMprivate.h" /* Vector functions */
/****************/
/* Local Macros */
/****************/
/* Flags for which hyperslab fragments to compute */
#define H5S_HYPER_COMPUTE_B_NOT_A 0x01
#define H5S_HYPER_COMPUTE_A_AND_B 0x02
#define H5S_HYPER_COMPUTE_A_NOT_B 0x04
/* Macro to advance a span, possibly recycling it first */
#define H5S_HYPER_ADVANCE_SPAN(recover, curr_span, next_span) \
do { \
H5S_hyper_span_t *saved_next_span = (next_span); \
\
/* Check if the span should be recovered */ \
if(recover) { \
H5S__hyper_free_span(curr_span); \
(recover) = FALSE; \
} /* end if */ \
\
/* Set the current span to saved next span */ \
(curr_span) = saved_next_span; \
} while(0)
/* Macro to add "skipped" elements to projection during the execution of
* H5S__hyper_project_intersect() */
#define H5S_HYPER_PROJ_INT_ADD_SKIP(UDATA, ADD, ERR) \
do { \
/* If there are any elements to add, we must add them \
* to the projection first before adding skip */ \
if((UDATA)->nelem > 0) \
if(H5S__hyper_proj_int_build_proj(UDATA) < 0) \
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, ERR, "can't add elements to projected selection") \
(UDATA)->skip += (ADD); \
} while(0) /* end H5S_HYPER_PROJ_INT_ADD_SKIP() */
/******************/
/* Local Typedefs */
/******************/
/* Define alias for hsize_t, for allocating H5S_hyper_span_info_t + bounds objects */
/* (Makes it easier to understand the alloc / free calls) */
typedef hsize_t hbounds_t;
/* Struct for holding persistent information during iteration for
* H5S__hyper_project_intersect() */
typedef struct {
const H5S_hyper_span_t *ds_span[H5S_MAX_RANK]; /* Array of the current spans in the destination space in each dimension */
hsize_t ds_low[H5S_MAX_RANK]; /* Array of current low bounds (of iteration) for each element in ds_span */
H5S_hyper_span_info_t *ps_span_info[H5S_MAX_RANK]; /* Array of span info structs for projected space during iteration */
uint32_t ps_clean_bitmap; /* Bitmap of whether the nth rank has a clean projected space since the last time it was set to 1 */
unsigned ss_rank; /* Rank of source space */
unsigned ds_rank; /* Rank of destination space */
unsigned depth; /* Current depth of iterator in destination space */
hsize_t skip; /* Number of elements to skip in projected space */
hsize_t nelem; /* Number of elements to add to projected space (after skip) */
uint64_t op_gen; /* Operation generation for counting elements */
} H5S_hyper_project_intersect_ud_t;
/* Assert that H5S_MAX_RANK is <= 32 so our trick with using a 32 bit bitmap
* (ps_clean_bitmap) works. If H5S_MAX_RANK increases either increase the size
* of ps_clean_bitmap or change the algorithm to use an array. */
#if H5S_MAX_RANK > 32
#error H5S_MAX_RANK too large for ps_clean_bitmap field in H5S_hyper_project_intersect_ud_t struct
#endif
/********************/
/* Local Prototypes */
/********************/
static H5S_hyper_span_t *H5S__hyper_new_span(hsize_t low, hsize_t high,
H5S_hyper_span_info_t *down, H5S_hyper_span_t *next);
static H5S_hyper_span_info_t *H5S__hyper_new_span_info(unsigned rank);
static H5S_hyper_span_info_t *H5S__hyper_copy_span(H5S_hyper_span_info_t *spans,
unsigned rank);
static hbool_t H5S__hyper_cmp_spans(const H5S_hyper_span_info_t *span_info1,
const H5S_hyper_span_info_t *span_info2);
static void H5S__hyper_free_span_info(H5S_hyper_span_info_t *span_info);
static void H5S__hyper_free_span(H5S_hyper_span_t *span);
static herr_t H5S__hyper_span_blocklist(const H5S_hyper_span_info_t *spans,
hsize_t start[], hsize_t end[], hsize_t rank, hsize_t *startblock, hsize_t *numblocks,
hsize_t **buf);
static herr_t H5S__get_select_hyper_blocklist(H5S_t *space, hsize_t startblock,
hsize_t numblocks, hsize_t *buf);
static H5S_hyper_span_t *H5S__hyper_coord_to_span(unsigned rank, const hsize_t *coords);
static herr_t H5S__hyper_append_span(H5S_hyper_span_info_t **span_tree,
unsigned ndims, hsize_t low, hsize_t high, H5S_hyper_span_info_t *down);
static herr_t H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans,
H5S_hyper_span_info_t *b_spans, unsigned selector,
unsigned ndims, H5S_hyper_span_info_t **a_not_b,
H5S_hyper_span_info_t **a_and_b, H5S_hyper_span_info_t **b_not_a);
static herr_t H5S__hyper_merge_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans);
static hsize_t H5S__hyper_spans_nelem_helper(H5S_hyper_span_info_t *spans,
uint64_t op_gen);
static hsize_t H5S__hyper_spans_nelem(H5S_hyper_span_info_t *spans);
static herr_t H5S__hyper_add_disjoint_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans);
static H5S_hyper_span_info_t *H5S__hyper_make_spans(unsigned rank,
const hsize_t *start, const hsize_t *stride,
const hsize_t *count, const hsize_t *block);
static herr_t H5S__hyper_update_diminfo(H5S_t *space, H5S_seloper_t op,
const H5S_hyper_dim_t *new_hyper_diminfo);
static herr_t H5S__hyper_generate_spans(H5S_t *space);
static hbool_t H5S__check_spans_overlap(const H5S_hyper_span_info_t *spans1,
const H5S_hyper_span_info_t *spans2);
static herr_t H5S__fill_in_new_space(H5S_t *space1, H5S_seloper_t op,
H5S_hyper_span_info_t *space2_span_lst, hbool_t can_own_span2,
hbool_t *span2_owned, hbool_t *updated_spans, H5S_t **result);
static herr_t H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op,
const hsize_t start[], const hsize_t stride[], const hsize_t count[],
const hsize_t block[]);
static herr_t H5S__set_regular_hyperslab(H5S_t *space, const hsize_t start[],
const hsize_t *app_stride, const hsize_t app_count[], const hsize_t *app_block,
const hsize_t *opt_stride, const hsize_t opt_count[], const hsize_t *opt_block);
static herr_t H5S__fill_in_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2,
H5S_t **result);
static H5S_t *H5S__combine_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2);
static herr_t H5S__hyper_iter_get_seq_list_gen(H5S_sel_iter_t *iter, size_t maxseq,
size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len);
static herr_t H5S__hyper_iter_get_seq_list_opt(H5S_sel_iter_t *iter, size_t maxseq,
size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len);
static herr_t H5S__hyper_iter_get_seq_list_single(H5S_sel_iter_t *iter, size_t maxseq,
size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len);
static herr_t H5S__hyper_proj_int_build_proj(H5S_hyper_project_intersect_ud_t *udata);
static herr_t H5S__hyper_proj_int_iterate(const H5S_hyper_span_info_t *ss_span_info,
const H5S_hyper_span_info_t *sis_span_info, hsize_t count, unsigned depth,
H5S_hyper_project_intersect_ud_t *udata);
static void H5S__hyper_get_clip_diminfo(hsize_t start, hsize_t stride,
hsize_t *count, hsize_t *block, hsize_t clip_size);
static hsize_t H5S__hyper_get_clip_extent_real(const H5S_t *clip_space,
hsize_t num_slices, hbool_t incl_trail);
/* Selection callbacks */
static herr_t H5S__hyper_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection);
static herr_t H5S__hyper_release(H5S_t *space);
static htri_t H5S__hyper_is_valid(const H5S_t *space);
static hsize_t H5S__hyper_span_nblocks(H5S_hyper_span_info_t *spans);
static hssize_t H5S__hyper_serial_size(const H5S_t *space);
static herr_t H5S__hyper_serialize(const H5S_t *space, uint8_t **p);
static herr_t H5S__hyper_deserialize(H5S_t **space, const uint8_t **p);
static herr_t H5S__hyper_bounds(const H5S_t *space, hsize_t *start, hsize_t *end);
static herr_t H5S__hyper_offset(const H5S_t *space, hsize_t *offset);
static int H5S__hyper_unlim_dim(const H5S_t *space);
static herr_t H5S__hyper_num_elem_non_unlim(const H5S_t *space,
hsize_t *num_elem_non_unlim);
static htri_t H5S__hyper_is_contiguous(const H5S_t *space);
static htri_t H5S__hyper_is_single(const H5S_t *space);
static htri_t H5S__hyper_is_regular(const H5S_t *space);
static htri_t H5S__hyper_shape_same(const H5S_t *space1, const H5S_t *space2);
static htri_t H5S__hyper_intersect_block(const H5S_t *space, const hsize_t *start,
const hsize_t *end);
static herr_t H5S__hyper_adjust_u(H5S_t *space, const hsize_t *offset);
static herr_t H5S__hyper_project_scalar(const H5S_t *space, hsize_t *offset);
static herr_t H5S__hyper_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset);
static herr_t H5S__hyper_iter_init(const H5S_t *space, H5S_sel_iter_t *iter);
/* Selection iteration callbacks */
static herr_t H5S__hyper_iter_coords(const H5S_sel_iter_t *iter, hsize_t *coords);
static herr_t H5S__hyper_iter_block(const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end);
static hsize_t H5S__hyper_iter_nelmts(const H5S_sel_iter_t *iter);
static htri_t H5S__hyper_iter_has_next_block(const H5S_sel_iter_t *sel_iter);
static herr_t H5S__hyper_iter_next(H5S_sel_iter_t *sel_iter, size_t nelem);
static herr_t H5S__hyper_iter_next_block(H5S_sel_iter_t *sel_iter);
static herr_t H5S__hyper_iter_get_seq_list(H5S_sel_iter_t *iter, size_t maxseq,
size_t maxbytes, size_t *nseq, size_t *nbytes, hsize_t *off, size_t *len);
static herr_t H5S__hyper_iter_release(H5S_sel_iter_t *sel_iter);
/*****************************/
/* Library Private Variables */
/*****************************/
/*********************/
/* Package Variables */
/*********************/
/* Selection properties for hyperslab selections */
const H5S_select_class_t H5S_sel_hyper[1] = {{
H5S_SEL_HYPERSLABS,
/* Methods on selection */
H5S__hyper_copy,
H5S__hyper_release,
H5S__hyper_is_valid,
H5S__hyper_serial_size,
H5S__hyper_serialize,
H5S__hyper_deserialize,
H5S__hyper_bounds,
H5S__hyper_offset,
H5S__hyper_unlim_dim,
H5S__hyper_num_elem_non_unlim,
H5S__hyper_is_contiguous,
H5S__hyper_is_single,
H5S__hyper_is_regular,
H5S__hyper_shape_same,
H5S__hyper_intersect_block,
H5S__hyper_adjust_u,
H5S__hyper_project_scalar,
H5S__hyper_project_simple,
H5S__hyper_iter_init,
}};
/* Format version bounds for dataspace hyperslab selection */
const unsigned H5O_sds_hyper_ver_bounds[] = {
H5S_HYPER_VERSION_1, /* H5F_LIBVER_EARLIEST */
H5S_HYPER_VERSION_1, /* H5F_LIBVER_V18 */
H5S_HYPER_VERSION_2, /* H5F_LIBVER_V110 */
H5S_HYPER_VERSION_3, /* H5F_LIBVER_V112 */
H5S_HYPER_VERSION_3 /* H5F_LIBVER_LATEST */
};
/*******************/
/* Local Variables */
/*******************/
/* Iteration properties for hyperslab selections */
static const H5S_sel_iter_class_t H5S_sel_iter_hyper[1] = {{
H5S_SEL_HYPERSLABS,
/* Methods on selection iterator */
H5S__hyper_iter_coords,
H5S__hyper_iter_block,
H5S__hyper_iter_nelmts,
H5S__hyper_iter_has_next_block,
H5S__hyper_iter_next,
H5S__hyper_iter_next_block,
H5S__hyper_iter_get_seq_list,
H5S__hyper_iter_release,
}};
/* Arrays for default stride, block, etc. */
static const hsize_t H5S_hyper_zeros_g[H5S_MAX_RANK] = {
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0};
static const hsize_t H5S_hyper_ones_g[H5S_MAX_RANK] = {
1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1};
/* Declare a free list to manage the H5S_hyper_sel_t struct */
H5FL_DEFINE_STATIC(H5S_hyper_sel_t);
/* Declare a free list to manage the H5S_hyper_span_t struct */
H5FL_DEFINE_STATIC(H5S_hyper_span_t);
/* Declare a free list to manage the H5S_hyper_span_info_t + hsize_t array struct */
H5FL_BARR_DEFINE_STATIC(H5S_hyper_span_info_t, hbounds_t, H5S_MAX_RANK * 2);
/* Declare extern free list to manage the H5S_sel_iter_t struct */
H5FL_EXTERN(H5S_sel_iter_t);
/* Current operation generation */
/* (Start with '1' to avoid clashing with '0' value in newly allocated structs) */
static uint64_t H5S_hyper_op_gen_g = 1;
/* Uncomment this, to provide the debugging routines for printing selection info */
/* #define H5S_HYPER_DEBUG */
#ifdef H5S_HYPER_DEBUG
static herr_t
H5S__hyper_print_spans_helper(FILE *f, const H5S_hyper_span_t *span, unsigned depth)
{
FUNC_ENTER_STATIC_NOERR
while(span) {
HDfprintf(f,"%s: %*sdepth=%u, span=%p, (%Hu, %Hu), next=%p\n", FUNC, depth * 2, "", depth, span, span->low, span->high, span->next);
if(span->down) {
HDfprintf(f,"%s: %*sspans=%p, count=%u, bounds[0]={%Hu, %Hu}, head=%p\n", FUNC, (depth + 1) * 2, "", span->down, span->down->count, span->down->low_bounds[0], span->down->high_bounds[0], span->down->head);
H5S__hyper_print_spans_helper(f, span->down->head, depth + 1);
} /* end if */
span = span->next;
} /* end while */
FUNC_LEAVE_NOAPI(SUCCEED)
}
static herr_t
H5S__hyper_print_spans(FILE *f, const H5S_hyper_span_info_t *span_lst)
{
FUNC_ENTER_STATIC_NOERR
if(span_lst != NULL) {
HDfprintf(f, "%s: spans=%p, count=%u, bounds[0]={%Hu, %Hu}, head=%p\n", FUNC, span_lst, span_lst->count, span_lst->low_bounds[0], span_lst->high_bounds[0], span_lst->head);
H5S__hyper_print_spans_helper(f, span_lst->head, 0);
} /* end if */
FUNC_LEAVE_NOAPI(SUCCEED)
}
static herr_t
H5S__space_print_spans(FILE *f, const H5S_t *space)
{
FUNC_ENTER_STATIC_NOERR
H5S__hyper_print_spans(f, space->select.sel_info.hslab->span_lst);
FUNC_LEAVE_NOAPI(SUCCEED)
}
static herr_t
H5S__hyper_print_diminfo_helper(FILE *f, const char *field, unsigned ndims, const H5S_hyper_dim_t *dinfo)
{
unsigned u; /* Local index variable */
FUNC_ENTER_STATIC_NOERR
if(dinfo != NULL) {
HDfprintf(f, "%s: %s: start=[", FUNC, field);
for(u = 0; u < ndims; u++)
HDfprintf(f, "%Hd%s", dinfo[u].start, (u < (ndims - 1) ? ", " : "]\n"));
HDfprintf(f, "%s: %s: stride=[", FUNC, field);
for(u = 0; u < ndims; u++)
HDfprintf(f, "%Hu%s", dinfo[u].stride, (u < (ndims - 1) ? ", " : "]\n"));
HDfprintf(f, "%s: %s: count=[", FUNC, field);
for(u = 0; u < ndims; u++)
HDfprintf(f, "%Hu%s", dinfo[u].count, (u < (ndims - 1) ? ", " : "]\n"));
HDfprintf(f, "%s: %s: block=[", FUNC, field);
for(u = 0; u < ndims; u++)
HDfprintf(f, "%Hu%s", dinfo[u].block, (u < (ndims - 1) ? ", " : "]\n"));
} /* end if */
else
HDfprintf(f, "%s: %s==NULL\n", FUNC, field);
FUNC_LEAVE_NOAPI(SUCCEED)
}
static herr_t
H5S__hyper_print_diminfo(FILE *f, const H5S_t *space)
{
FUNC_ENTER_STATIC_NOERR
H5S__hyper_print_diminfo_helper(f, "diminfo.opt", space->extent.rank, space->select.sel_info.hslab->diminfo.opt);
H5S__hyper_print_diminfo_helper(f, "diminfo.app", space->extent.rank, space->select.sel_info.hslab->diminfo.app);
FUNC_LEAVE_NOAPI(SUCCEED)
}
/*--------------------------------------------------------------------------
NAME
H5S__hyper_print_spans_dfs
PURPOSE
Output the span elements for one span list in depth-first order
USAGE
herr_t H5S__hyper_print_spans_dfs(f, span_lst, depth)
FILE *f; IN: the file to output
const H5S_hyper_span_info_t *span_lst; IN: the span list to output
unsigned depth; IN: the level of this span list
RETURNS
non-negative on success, negative on failure
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_print_spans_dfs(FILE *f, const H5S_hyper_span_info_t *span_lst,
unsigned depth, unsigned dims)
{
H5S_hyper_span_t *actual_tail = NULL;
H5S_hyper_span_t *cur_elem;
unsigned num_elems = 0;
unsigned u, elem_idx;
FUNC_ENTER_STATIC_NOERR
/* get the actual tail from head */
cur_elem = span_lst->head;
HDassert(cur_elem); /* at least 1 element */
while(cur_elem) {
actual_tail = cur_elem;
cur_elem = cur_elem->next;
num_elems++;
} /* end while */
for(u = 0; u < depth; u++)
HDfprintf(f, "\t");
HDfprintf(f, "DIM[%u]: ref_count=%u, #elems=%u, head=%p, tail=%p, actual_tail=%p, matched=%t\n", depth,
span_lst->count, num_elems, span_lst->head,
span_lst->tail, actual_tail, (span_lst->tail == actual_tail));
for(u = 0; u < depth; u++)
HDfprintf(f, "\t");
HDfprintf(f, "low_bounds=[");
for(u = 0; u < dims - 1; u++)
HDfprintf(f, "%llu,", span_lst->low_bounds[u]);
HDfprintf(f, "%llu]\n", span_lst->low_bounds[dims - 1]);
for(u = 0; u < depth; u++)
HDfprintf(f, "\t");
HDfprintf(f, "high_bounds=[");
for(u = 0; u < dims - 1; u++)
HDfprintf(f, "%llu,", span_lst->high_bounds[u]);
HDfprintf(f, "%llu]\n", span_lst->high_bounds[dims - 1]);
cur_elem = span_lst->head;
elem_idx = 0;
while(cur_elem) {
for(u = 0; u < depth; u++)
HDfprintf(f, "\t");
HDfprintf(f, "ELEM[%u]: ptr=%p, low=%Hu, high=%Hu, down=%p\n",
elem_idx++, cur_elem, cur_elem->low, cur_elem->high, cur_elem->down);
if(cur_elem->down)
H5S__hyper_print_spans_dfs(f, cur_elem->down, depth + 1, dims);
cur_elem = cur_elem->next;
} /* end while */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_print_spans_dfs() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_print_space_dfs
PURPOSE
Output the span elements for one hyperslab selection space in depth-first order
USAGE
herr_t H5S__hyper_print_space_dfs(f, space)
FILE *f; IN: the file to output
const H5S_t *space; IN: the selection space to output
RETURNS
non-negative on success, negative on failure
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_print_space_dfs(FILE *f, const H5S_t *space)
{
const H5S_hyper_sel_t *hslab = space->select.sel_info.hslab;
const unsigned dims = space->extent.rank;
unsigned u;
FUNC_ENTER_STATIC_NOERR
HDassert(hslab);
HDfprintf(f, "=======================\n");
HDfprintf(f, "SPACE: span_lst=%p, #dims=%u, offset_changed=%d\n", hslab->span_lst, dims, space->select.offset_changed);
HDfprintf(f, " offset=[");
for(u = 0; u < dims - 1; u++)
HDfprintf(f, "%lld,", space->select.offset[u]);
HDfprintf(f, "%lld]\n", space->select.offset[dims - 1]);
HDfprintf(f, " low_bounds=[");
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
for(u = 0; u < dims - 1; u++)
HDfprintf(f, "%llu,", space->select.sel_info.hslab->diminfo.low_bounds[u]);
HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->diminfo.low_bounds[dims - 1]);
} /* end if */
else {
for(u = 0; u < dims - 1; u++)
HDfprintf(f, "%llu,", space->select.sel_info.hslab->span_lst->low_bounds[u]);
HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->span_lst->low_bounds[dims - 1]);
} /* end else */
HDfprintf(f, " high_bounds=[");
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
for(u = 0; u < dims - 1; u++)
HDfprintf(f, "%llu,", space->select.sel_info.hslab->diminfo.high_bounds[u]);
HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->diminfo.high_bounds[dims - 1]);
} /* end if */
else {
for(u = 0; u < dims - 1; u++)
HDfprintf(f, "%llu,", space->select.sel_info.hslab->span_lst->high_bounds[u]);
HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->span_lst->high_bounds[dims - 1]);
} /* end else */
/* Print out diminfo, if it's valid */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES)
H5S__hyper_print_diminfo(f, space);
/* Start print out the highest-order of dimension */
if(hslab->span_lst)
H5S__hyper_print_spans_dfs(f, hslab->span_lst, 0, dims);
HDfprintf(f, "=======================\n\n");
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_print_space_dfs() */
#endif /* H5S_HYPER_DEBUG */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_get_op_gen
*
* Purpose: Acquire a unique operation generation value
*
* Return: Operation generation value (can't fail)
*
* Programmer: Quincey Koziol
* Saturday, January 19, 2019
*
* Notes: Assumes that a 64-bit value will not wrap around during
* the lifespan of the process.
*
*-------------------------------------------------------------------------
*/
uint64_t
H5S__hyper_get_op_gen(void)
{
FUNC_ENTER_PACKAGE_NOERR
FUNC_LEAVE_NOAPI(H5S_hyper_op_gen_g++);
} /* end H5S__hyper_op_gen() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_iter_init
*
* Purpose: Initializes iteration information for hyperslab selection.
*
* Return: Non-negative on success, negative on failure.
*
* Programmer: Quincey Koziol
* Saturday, February 24, 2001
*
* Notes: If the 'iter->elmt_size' field is set to zero, the regular
* hyperslab selection iterator will not be 'flattened'. This
* is used by the H5S_select_shape_same() code to avoid changing
* the rank and appearance of the selection.
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_iter_init(const H5S_t *space, H5S_sel_iter_t *iter)
{
hsize_t *slab_size; /* Pointer to the dataspace dimensions to use for calc. slab */
hsize_t acc; /* Accumulator for computing cumulative sizes */
unsigned slab_dim; /* Rank of the fastest changing dimension for calc. slab */
unsigned rank; /* Dataspace's dimension rank */
unsigned u; /* Index variable */
int i; /* Index variable */
herr_t ret_value = SUCCEED; /* return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));
HDassert(iter);
HDassert(space->select.sel_info.hslab->unlim_dim < 0);
/* Initialize the hyperslab iterator's rank */
iter->u.hyp.iter_rank = 0;
/* Get the rank of the dataspace */
rank = iter->rank;
/* Attempt to rebuild diminfo if it is invalid and has not been confirmed
* to be impossible.
*/
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO)
H5S__hyper_rebuild((H5S_t *)space); /* Casting away const OK -NAF */
/* Check for the special case of just one H5Sselect_hyperslab call made */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
/* Initialize the information needed for regular hyperslab I/O */
const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */
const hsize_t *mem_size; /* Temporary pointer to dataspace extent's dimension sizes */
unsigned cont_dim = 0; /* # of contiguous dimensions */
/* Set the temporary pointer to the dimension information */
tdiminfo = space->select.sel_info.hslab->diminfo.opt;
/* Set the temporary pointer to the dataspace extent's dimension sizes */
mem_size = iter->dims;
/*
* For a regular hyperslab to be contiguous up to some dimension, it
* must have only one block (i.e. count==1 in all dimensions up to that
* dimension) and the block size must be the same as the dataspace's
* extent in that dimension and all dimensions up to that dimension.
*/
/* Don't flatten adjacent elements into contiguous block if the
* element size is 0. This is for the H5S_select_shape_same() code.
*/
if(iter->elmt_size > 0) {
/* Check for any "contiguous" blocks that can be flattened */
for(u = (rank - 1); u > 0; u--) {
if(tdiminfo[u].count == 1 && tdiminfo[u].block == mem_size[u]) {
cont_dim++;
iter->u.hyp.flattened[u] = TRUE;
} /* end if */
else
iter->u.hyp.flattened[u] = FALSE;
} /* end for */
iter->u.hyp.flattened[0] = FALSE;
} /* end if */
/* Check if the regular selection can be "flattened" */
if(cont_dim > 0) {
hbool_t last_dim_flattened = TRUE; /* Flag to indicate that the last dimension was flattened */
unsigned flat_rank = rank-cont_dim; /* Number of dimensions after flattening */
unsigned curr_dim; /* Current dimension */
/* Set the iterator's rank to the contiguous dimensions */
iter->u.hyp.iter_rank = flat_rank;
/* "Flatten" dataspace extent and selection information */
curr_dim = flat_rank - 1;
for(i = (int)rank - 1, acc = 1; i >= 0; i--) {
if(tdiminfo[i].block == mem_size[i] && i > 0) {
/* "Flatten" this dimension */
HDassert(tdiminfo[i].start == 0);
acc *= mem_size[i];
/* Indicate that the dimension was flattened */
last_dim_flattened = TRUE;
} /* end if */
else {
if(last_dim_flattened) {
/* First dimension after flattened dimensions */
iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start * acc;
/* Special case for single block regular selections */
if(tdiminfo[i].count == 1)
iter->u.hyp.diminfo[curr_dim].stride = 1;
else
iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride * acc;
iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count;
iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block * acc;
iter->u.hyp.size[curr_dim] = mem_size[i] * acc;
iter->u.hyp.sel_off[curr_dim] = iter->sel_off[i] * (hssize_t)acc;
/* Reset the "last dim flattened" flag to avoid flattened any further dimensions */
last_dim_flattened = FALSE;
/* Reset the "accumulator" for possible further dimension flattening */
acc = 1;
} /* end if */
else {
/* All other dimensions */
iter->u.hyp.diminfo[curr_dim].start = tdiminfo[i].start;
iter->u.hyp.diminfo[curr_dim].stride = tdiminfo[i].stride;
iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count;
iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block;
iter->u.hyp.size[curr_dim] = mem_size[i];
iter->u.hyp.sel_off[curr_dim] = iter->sel_off[i];
} /* end else */
/* Decrement "current" flattened dimension */
curr_dim--;
} /* end if */
} /* end for */
/* Initialize "flattened" iterator offset to initial location and dataspace extent and selection information to correct values */
for(u = 0; u < flat_rank; u++)
iter->u.hyp.off[u] = iter->u.hyp.diminfo[u].start;
/* Set up information for computing slab sizes */
slab_dim = iter->u.hyp.iter_rank - 1;
slab_size = iter->u.hyp.size;
} /* end if */
else {
/* Make local copy of the regular selection information */
HDcompile_assert(sizeof(iter->u.hyp.diminfo) == sizeof(space->select.sel_info.hslab->diminfo.opt));
H5MM_memcpy(iter->u.hyp.diminfo, tdiminfo, sizeof(iter->u.hyp.diminfo));
/* Initialize position to initial location */
for(u = 0; u < rank; u++)
iter->u.hyp.off[u] = tdiminfo[u].start;
/* Set up information for computing slab sizes */
slab_dim = iter->rank - 1;
slab_size = iter->dims;
} /* end else */
/* Flag the diminfo information as valid in the iterator */
iter->u.hyp.diminfo_valid = TRUE;
/* Initialize irregular region information also (for release) */
iter->u.hyp.spans = NULL;
} /* end if */
else { /* Initialize the information needed for non-regular hyperslab I/O */
H5S_hyper_span_info_t *spans; /* Pointer to hyperslab span info node */
/* If this iterator is created from an API call, by default we clone the
* selection now, as the dataspace could be modified or go out of scope.
*
* However, if the H5S_SEL_ITER_SHARE_WITH_DATASPACE flag is given,
* the selection is shared between the selection iterator and the
* dataspace. In this case, the application _must_not_ modify or
* close the dataspace that the iterator is operating on, or undefined
* behavior will occur.
*/
if((iter->flags & H5S_SEL_ITER_API_CALL) &&
!(iter->flags & H5S_SEL_ITER_SHARE_WITH_DATASPACE)) {
/* Copy the span tree */
if(NULL == (iter->u.hyp.spans = H5S__hyper_copy_span(space->select.sel_info.hslab->span_lst, space->extent.rank)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "can't copy span tree")
} /* end if */
else {
/* Share the source dataspace's span tree by incrementing the reference count on it */
HDassert(space->select.sel_info.hslab->span_lst);
iter->u.hyp.spans = space->select.sel_info.hslab->span_lst;
iter->u.hyp.spans->count++;
} /* end else */
/* Initialize the starting span_info's and spans */
spans = iter->u.hyp.spans;
for(u = 0; u < rank; u++) {
/* Set the pointers to the initial span in each dimension */
HDassert(spans);
HDassert(spans->head);
/* Set the pointer to the first span in the list for this node */
iter->u.hyp.span[u] = spans->head;
/* Set the initial offset to low bound of span */
iter->u.hyp.off[u] = iter->u.hyp.span[u]->low;
/* Get the pointer to the next level down */
spans = spans->head->down;
} /* end for */
/* Set up information for computing slab sizes */
slab_dim = iter->rank - 1;
slab_size = iter->dims;
/* Flag the diminfo information as not valid in the iterator */
iter->u.hyp.diminfo_valid = FALSE;
} /* end else */
/* Compute the cumulative size of dataspace dimensions */
for(i = (int)slab_dim, acc = iter->elmt_size; i >= 0; i--) {
iter->u.hyp.slab[i] = acc;
acc *= slab_size[i];
} /* end for */
/* Initialize more information for irregular hyperslab selections */
if(!iter->u.hyp.diminfo_valid) {
/* Set the offset of the first element iterated on, in each dimension */
for(u = 0; u < rank; u++)
/* Compute the sequential element offset */
iter->u.hyp.loc_off[u] = ((hsize_t)((hssize_t)iter->u.hyp.off[u] + iter->sel_off[u])) * iter->u.hyp.slab[u];
} /* end if */
/* Initialize type of selection iterator */
iter->type = H5S_sel_iter_hyper;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_iter_init() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_iter_coords
*
* Purpose: Retrieve the current coordinates of iterator for current
* selection
*
* Return: Non-negative on success, negative on failure
*
* Programmer: Quincey Koziol
* Tuesday, April 22, 2003
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_iter_coords(const H5S_sel_iter_t *iter, hsize_t *coords)
{
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
HDassert(coords);
/* Copy the offset of the current point */
/* Check for a single "regular" hyperslab */
if(iter->u.hyp.diminfo_valid) {
/* Check if this is a "flattened" regular hyperslab selection */
if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) {
int u, v; /* Dimension indices */
/* Set the starting rank of both the "natural" & "flattened" dimensions */
u = (int)iter->rank - 1;
v = (int)iter->u.hyp.iter_rank - 1;
/* Construct the "natural" dimensions from a set of flattened coordinates */
while(u >= 0) {
if(iter->u.hyp.flattened[u]) {
int begin = u; /* The rank of the first flattened dimension */
/* Walk up through as many flattened dimensions as possible */
do {
u--;
} while(u >= 0 && iter->u.hyp.flattened[u]);
/* Compensate for possibly overshooting dim 0 */
if(u < 0)
u = 0;
/* Sanity check */
HDassert(v >= 0);
/* Compute the coords for the flattened dimensions */
H5VM_array_calc(iter->u.hyp.off[v], (unsigned)((begin - u) + 1), &(iter->dims[u]), &(coords[u]));
/* Continue to faster dimension in both indices */
u--;
v--;
} /* end if */
else {
/* Walk up through as many non-flattened dimensions as possible */
while(u >= 0 && !iter->u.hyp.flattened[u]) {
/* Sanity check */
HDassert(v >= 0);
/* Copy the coordinate */
coords[u] = iter->u.hyp.off[v];
/* Continue to faster dimension in both indices */
u--;
v--;
} /* end while */
} /* end else */
} /* end while */
HDassert(v < 0);
} /* end if */
else
H5MM_memcpy(coords, iter->u.hyp.off, sizeof(hsize_t) * iter->rank);
} /* end if */
else
H5MM_memcpy(coords, iter->u.hyp.off, sizeof(hsize_t) * iter->rank);
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_coords() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_iter_block
*
* Purpose: Retrieve the current block of iterator for current
* selection
*
* Return: Non-negative on success, negative on failure
*
* Programmer: Quincey Koziol
* Monday, June 2, 2003
*
* Notes: This routine assumes that the iterator is always located at
* the beginning of a block.
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_iter_block(const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end)
{
unsigned u; /* Local index variable */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
HDassert(start);
HDassert(end);
/* Copy the offset of the current point */
/* Check for a single "regular" hyperslab */
if(iter->u.hyp.diminfo_valid) {
/* Copy the start and compute the end of the block */
for(u = 0; u < iter->rank; u++) {
start[u] = iter->u.hyp.off[u];
end[u] = (start[u] + iter->u.hyp.diminfo[u].block) - 1;
} /* end for */
} /* end if */
else {
/* Copy the start & end of the block */
for(u = 0; u < iter->rank; u++) {
start[u] = iter->u.hyp.span[u]->low;
end[u] = iter->u.hyp.span[u]->high;
} /* end for */
} /* end else */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_block() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_iter_nelmts
*
* Purpose: Return number of elements left to process in iterator
*
* Return: Non-negative number of elements on success, zero on failure
*
* Programmer: Quincey Koziol
* Tuesday, June 16, 1998
*
*-------------------------------------------------------------------------
*/
static hsize_t
H5S__hyper_iter_nelmts(const H5S_sel_iter_t *iter)
{
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
FUNC_LEAVE_NOAPI(iter->elmt_left)
} /* end H5S__hyper_iter_nelmts() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_iter_has_next_block
PURPOSE
Check if there is another block left in the current iterator
USAGE
htri_t H5S__hyper_iter_has_next_block(iter)
const H5S_sel_iter_t *iter; IN: Pointer to selection iterator
RETURNS
Non-negative (TRUE/FALSE) on success/Negative on failure
DESCRIPTION
Check if there is another block available in the selection iterator.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5_ATTR_PURE htri_t
H5S__hyper_iter_has_next_block(const H5S_sel_iter_t *iter)
{
unsigned u; /* Local index variable */
htri_t ret_value = FALSE; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
/* Check for a single "regular" hyperslab */
if(iter->u.hyp.diminfo_valid) {
const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */
const hsize_t *toff; /* Temporary offset in selection */
/* Check if the offset of the iterator is at the last location in all dimensions */
tdiminfo = iter->u.hyp.diminfo;
toff = iter->u.hyp.off;
for(u = 0; u < iter->rank; u++) {
/* If there is only one block, continue */
if(tdiminfo[u].count == 1)
continue;
if(toff[u] != (tdiminfo[u].start + ((tdiminfo[u].count - 1) * tdiminfo[u].stride)))
HGOTO_DONE(TRUE);
} /* end for */
} /* end if */
else {
/* Check for any levels of the tree with more sequences in them */
for(u = 0; u < iter->rank; u++)
if(iter->u.hyp.span[u]->next != NULL)
HGOTO_DONE(TRUE);
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_iter_has_next_block() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_iter_next
*
* Purpose: Moves a hyperslab iterator to the beginning of the next sequence
* of elements to read. Handles walking off the end in all dimensions.
*
* Return: Success: non-negative
* Failure: negative
*
* Programmer: Quincey Koziol
* Friday, September 8, 2000
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_iter_next(H5S_sel_iter_t *iter, size_t nelem)
{
unsigned ndims; /* Number of dimensions of dataset */
int fast_dim; /* Rank of the fastest changing dimension for the dataspace */
unsigned u; /* Counters */
FUNC_ENTER_STATIC_NOERR
/* Check for the special case of just one H5Sselect_hyperslab call made */
/* (i.e. a regular hyperslab selection */
if(iter->u.hyp.diminfo_valid) {
const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */
hsize_t iter_offset[H5S_MAX_RANK];
hsize_t iter_count[H5S_MAX_RANK];
int temp_dim; /* Temporary rank holder */
/* Check if this is a "flattened" regular hyperslab selection */
if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank)
/* Set the aliases for the dimension rank */
ndims = iter->u.hyp.iter_rank;
else
/* Set the aliases for the dimension rank */
ndims = iter->rank;
/* Set the fastest dimension rank */
fast_dim = (int)ndims - 1;
/* Set the local copy of the diminfo pointer */
tdiminfo = iter->u.hyp.diminfo;
/* Calculate the offset and block count for each dimension */
for(u = 0; u < ndims; u++) {
if(tdiminfo[u].count == 1) {
iter_offset[u] = iter->u.hyp.off[u] - tdiminfo[u].start;
iter_count[u] = 0;
} /* end if */
else {
iter_offset[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) % tdiminfo[u].stride;
iter_count[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) / tdiminfo[u].stride;
} /* end else */
} /* end for */
/* Loop through, advancing the offset & counts, until all the nelements are accounted for */
while(nelem > 0) {
/* Start with the fastest changing dimension */
temp_dim = fast_dim;
while(temp_dim >= 0) {
if(temp_dim == fast_dim) {
size_t actual_elem; /* Actual # of elements advanced on each iteration through loop */
hsize_t block_elem; /* Number of elements left in a block */
/* Compute the number of elements left in block */
block_elem = tdiminfo[temp_dim].block - iter_offset[temp_dim];
/* Compute the number of actual elements to advance */
actual_elem = (size_t)MIN(nelem, block_elem);
/* Move the iterator over as many elements as possible */
iter_offset[temp_dim] += actual_elem;
/* Decrement the number of elements advanced */
nelem -= actual_elem;
} /* end if */
else
/* Move to the next row in the current dimension */
iter_offset[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(iter_offset[temp_dim] < tdiminfo[temp_dim].block)
break;
else {
/* Move to the next block in the current dimension */
iter_offset[temp_dim] = 0;
iter_count[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(iter_count[temp_dim] < tdiminfo[temp_dim].count)
break;
else
iter_count[temp_dim] = 0; /* reset back to the beginning of the line */
} /* end else */
/* Decrement dimension count */
temp_dim--;
} /* end while */
} /* end while */
/* Translate current iter_offset and iter_count into iterator position */
for(u = 0; u < ndims; u++)
iter->u.hyp.off[u] = tdiminfo[u].start + (tdiminfo[u].stride * iter_count[u]) + iter_offset[u];
} /* end if */
/* Must be an irregular hyperslab selection */
else {
H5S_hyper_span_t *curr_span; /* Current hyperslab span node */
H5S_hyper_span_t **ispan; /* Iterator's hyperslab span nodes */
hsize_t *abs_arr; /* Absolute hyperslab span position */
int curr_dim; /* Temporary rank holder */
/* Set the rank of the fastest changing dimension */
ndims = iter->rank;
fast_dim = (int)ndims - 1;
/* Get the pointers to the current span info and span nodes */
abs_arr = iter->u.hyp.off;
ispan = iter->u.hyp.span;
/* Loop through, advancing the span information, until all the nelements are accounted for */
while(nelem > 0) {
/* Start at the fastest dim */
curr_dim = fast_dim;
/* Work back up through the dimensions */
while(curr_dim >= 0) {
/* Reset the current span */
curr_span = ispan[curr_dim];
/* Increment absolute position */
if(curr_dim == fast_dim) {
size_t actual_elem; /* Actual # of elements advanced on each iteration through loop */
hsize_t span_elem; /* Number of elements left in a span */
/* Compute the number of elements left in block */
span_elem = (curr_span->high - abs_arr[curr_dim]) + 1;
/* Compute the number of actual elements to advance */
actual_elem = (size_t)MIN(nelem, span_elem);
/* Move the iterator over as many elements as possible */
abs_arr[curr_dim] += actual_elem;
/* Decrement the number of elements advanced */
nelem -= actual_elem;
} /* end if */
else
/* Move to the next row in the current dimension */
abs_arr[curr_dim]++;
/* Check if we are still within the span */
if(abs_arr[curr_dim] <= curr_span->high)
break;
/* If we walked off that span, advance to the next span */
else {
/* Advance span in this dimension */
curr_span = curr_span->next;
/* Check if we have a valid span in this dimension still */
if(curr_span != NULL) {
/* Reset the span in the current dimension */
ispan[curr_dim] = curr_span;
/* Reset absolute position */
abs_arr[curr_dim] = curr_span->low;
break;
} /* end if */
else
/* If we finished the span list in this dimension, decrement the dimension worked on and loop again */
curr_dim--;
} /* end else */
} /* end while */
/* Check if we are finished with the spans in the tree */
if(curr_dim >= 0) {
/* Walk back down the iterator positions, resetting them */
while(curr_dim < fast_dim) {
HDassert(curr_span);
HDassert(curr_span->down);
HDassert(curr_span->down->head);
/* Increment current dimension */
curr_dim++;
/* Set the new span_info & span for this dimension */
ispan[curr_dim] = curr_span->down->head;
/* Advance span down the tree */
curr_span = curr_span->down->head;
/* Reset the absolute offset for the dim */
abs_arr[curr_dim] = curr_span->low;
} /* end while */
/* Verify that the curr_span points to the fastest dim */
HDassert(curr_span == ispan[fast_dim]);
} /* end if */
} /* end while */
} /* end else */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_next() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_iter_next_block
*
* Purpose: Moves a hyperslab iterator to the beginning of the next sequence
* of elements to read. Handles walking off the end in all dimensions.
*
* Return: Success: non-negative
* Failure: negative
*
* Programmer: Quincey Koziol
* Tuesday, June 3, 2003
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_iter_next_block(H5S_sel_iter_t *iter)
{
unsigned ndims; /* Number of dimensions of dataset */
int fast_dim; /* Rank of the fastest changing dimension for the dataspace */
unsigned u; /* Counters */
FUNC_ENTER_STATIC_NOERR
/* Check for the special case of just one H5Sselect_hyperslab call made */
/* (i.e. a regular hyperslab selection) */
if(iter->u.hyp.diminfo_valid) {
const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */
hsize_t iter_offset[H5S_MAX_RANK];
hsize_t iter_count[H5S_MAX_RANK];
int temp_dim; /* Temporary rank holder */
/* Check if this is a "flattened" regular hyperslab selection */
if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank)
/* Set the aliases for the dimension rank */
ndims = iter->u.hyp.iter_rank;
else
/* Set the aliases for the dimension rank */
ndims = iter->rank;
/* Set the fastest dimension rank */
fast_dim = (int)ndims - 1;
/* Set the local copy of the diminfo pointer */
tdiminfo = iter->u.hyp.diminfo;
/* Calculate the offset and block count for each dimension */
for(u = 0; u < ndims; u++) {
if(tdiminfo[u].count == 1) {
iter_offset[u] = iter->u.hyp.off[u] - tdiminfo[u].start;
iter_count[u] = 0;
} /* end if */
else {
iter_offset[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) % tdiminfo[u].stride;
iter_count[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) / tdiminfo[u].stride;
} /* end else */
} /* end for */
/* Advance one block */
temp_dim = fast_dim; /* Start with the fastest changing dimension */
while(temp_dim >= 0) {
if(temp_dim == fast_dim)
/* Move iterator over current block */
iter_offset[temp_dim] += tdiminfo[temp_dim].block;
else
/* Move to the next row in the current dimension */
iter_offset[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(iter_offset[temp_dim] < tdiminfo[temp_dim].block)
break;
else {
/* Move to the next block in the current dimension */
iter_offset[temp_dim] = 0;
iter_count[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(iter_count[temp_dim] < tdiminfo[temp_dim].count)
break;
else
iter_count[temp_dim] = 0; /* reset back to the beginning of the line */
} /* end else */
/* Decrement dimension count */
temp_dim--;
} /* end while */
/* Translate current iter_offset and iter_count into iterator position */
for(u = 0; u < ndims; u++)
iter->u.hyp.off[u] = tdiminfo[u].start + (tdiminfo[u].stride * iter_count[u]) + iter_offset[u];
} /* end if */
/* Must be an irregular hyperslab selection */
else {
H5S_hyper_span_t *curr_span; /* Current hyperslab span node */
H5S_hyper_span_t **ispan; /* Iterator's hyperslab span nodes */
hsize_t *abs_arr; /* Absolute hyperslab span position */
int curr_dim; /* Temporary rank holder */
/* Set the rank of the fastest changing dimension */
ndims = iter->rank;
fast_dim = (int)ndims - 1;
/* Get the pointers to the current span info and span nodes */
abs_arr = iter->u.hyp.off;
ispan = iter->u.hyp.span;
/* Loop through, advancing the span information, until all the nelements are accounted for */
curr_dim = fast_dim; /* Start at the fastest dim */
/* Work back up through the dimensions */
while(curr_dim >= 0) {
/* Reset the current span */
curr_span = ispan[curr_dim];
/* Increment absolute position */
if(curr_dim == fast_dim)
/* Move the iterator over rest of element in span */
abs_arr[curr_dim] = curr_span->high + 1;
else
/* Move to the next row in the current dimension */
abs_arr[curr_dim]++;
/* Check if we are still within the span */
if(abs_arr[curr_dim] <= curr_span->high)
break;
/* If we walked off that span, advance to the next span */
else {
/* Advance span in this dimension */
curr_span = curr_span->next;
/* Check if we have a valid span in this dimension still */
if(curr_span != NULL) {
/* Reset the span in the current dimension */
ispan[curr_dim] = curr_span;
/* Reset absolute position */
abs_arr[curr_dim] = curr_span->low;
break;
} /* end if */
else
/* If we finished the span list in this dimension, decrement the dimension worked on and loop again */
curr_dim--;
} /* end else */
} /* end while */
/* Check if we are finished with the spans in the tree */
if(curr_dim >= 0) {
/* Walk back down the iterator positions, resetting them */
while(curr_dim < fast_dim) {
HDassert(curr_span);
HDassert(curr_span->down);
HDassert(curr_span->down->head);
/* Increment current dimension */
curr_dim++;
/* Set the new span_info & span for this dimension */
ispan[curr_dim] = curr_span->down->head;
/* Advance span down the tree */
curr_span = curr_span->down->head;
/* Reset the absolute offset for the dim */
abs_arr[curr_dim] = curr_span->low;
} /* end while */
/* Verify that the curr_span points to the fastest dim */
HDassert(curr_span == ispan[fast_dim]);
} /* end if */
} /* end else */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_next_block() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_iter_get_seq_list_gen
PURPOSE
Create a list of offsets & lengths for a selection
USAGE
herr_t H5S__hyper_iter_get_seq_list_gen(iter,maxseq,maxelem,nseq,nelem,off,len)
H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last
position of interest in selection.
size_t maxseq; IN: Maximum number of sequences to generate
size_t maxelem; IN: Maximum number of elements to include in the
generated sequences
size_t *nseq; OUT: Actual number of sequences generated
size_t *nelem; OUT: Actual number of elements in sequences generated
hsize_t *off; OUT: Array of offsets
size_t *len; OUT: Array of lengths
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
Use the selection in the dataspace to generate a list of byte offsets and
lengths for the region(s) selected. Start/Restart from the position in the
ITER parameter. The number of sequences generated is limited by the MAXSEQ
parameter and the number of sequences actually generated is stored in the
NSEQ parameter.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_iter_get_seq_list_gen(H5S_sel_iter_t *iter, size_t maxseq, size_t maxelem,
size_t *nseq, size_t *nelem, hsize_t *off, size_t *len)
{
H5S_hyper_span_t *curr_span; /* Current hyperslab span node */
H5S_hyper_span_t **ispan; /* Iterator's hyperslab span nodes */
hsize_t *slab; /* Cumulative size of each dimension in bytes */
hsize_t loc_off; /* Byte offset in the dataspace */
hsize_t last_span_end = 0; /* The offset of the end of the last span */
hsize_t *abs_arr; /* Absolute hyperslab span position, in elements */
hsize_t *loc_arr; /* Byte offset of hyperslab span position within buffer */
const hssize_t *sel_off; /* Offset within the dataspace extent */
size_t span_elmts = 0; /* Number of elements to actually use for this span */
size_t span_size = 0; /* Number of bytes in current span to actually process */
size_t io_left; /* Initial number of elements to process */
size_t io_elmts_left; /* Number of elements left to process */
size_t io_used; /* Number of elements processed */
size_t curr_seq = 0; /* Number of sequence/offsets stored in the arrays */
size_t elem_size; /* Size of each element iterating over */
unsigned ndims; /* Number of dimensions of dataset */
unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */
int curr_dim; /* Current dimension being operated on */
unsigned u; /* Index variable */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
HDassert(maxseq > 0);
HDassert(maxelem > 0);
HDassert(nseq);
HDassert(nelem);
HDassert(off);
HDassert(len);
/* Set the rank of the fastest changing dimension */
ndims = iter->rank;
fast_dim = (ndims - 1);
/* Get the pointers to the current span info and span nodes */
curr_span = iter->u.hyp.span[fast_dim];
abs_arr = iter->u.hyp.off;
loc_arr = iter->u.hyp.loc_off;
slab = iter->u.hyp.slab;
sel_off = iter->sel_off;
ispan = iter->u.hyp.span;
elem_size = iter->elmt_size;
/* Set the amount of elements to perform I/O on, etc. */
H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t);
io_elmts_left = io_left = MIN(maxelem, (size_t)iter->elmt_left);
/* Set the offset of the first element iterated on */
for(u = 0, loc_off = 0; u < ndims; u++)
loc_off += loc_arr[u];
/* Take care of any partial spans leftover from previous I/Os */
if(abs_arr[fast_dim] != curr_span->low) {
/* Finish the span in the fastest changing dimension */
/* Compute the number of elements to attempt in this span */
H5_CHECKED_ASSIGN(span_elmts, size_t, ((curr_span->high - abs_arr[fast_dim]) + 1), hsize_t);
/* Check number of elements against upper bounds allowed */
if(span_elmts > io_elmts_left)
span_elmts = io_elmts_left;
/* Set the span_size, in bytes */
span_size = span_elmts * elem_size;
/* Add the partial span to the list of sequences */
off[curr_seq] = loc_off;
len[curr_seq] = span_size;
/* Increment sequence count */
curr_seq++;
/* Set the location of the last span's end */
last_span_end = loc_off + span_size;
/* Decrement I/O left to perform */
io_elmts_left -= span_elmts;
/* Check if we are done */
if(io_elmts_left > 0) {
/* Move to next span in fastest changing dimension */
curr_span = curr_span->next;
if(NULL != curr_span) {
/* Move location offset of destination */
loc_off += (curr_span->low - abs_arr[fast_dim]) * elem_size;
/* Move iterator for fastest changing dimension */
abs_arr[fast_dim] = curr_span->low;
loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[fast_dim])) * slab[fast_dim];
ispan[fast_dim] = curr_span;
} /* end if */
} /* end if */
else {
/* Advance the hyperslab iterator */
abs_arr[fast_dim] += span_elmts;
/* Check if we are still within the span */
if(abs_arr[fast_dim] <= curr_span->high) {
/* Sanity check */
HDassert(ispan[fast_dim] == curr_span);
/* Update byte offset */
loc_arr[fast_dim] += span_size;
} /* end if */
/* If we walked off that span, advance to the next span */
else {
/* Advance span in this dimension */
curr_span = curr_span->next;
/* Check if we have a valid span in this dimension still */
if(NULL != curr_span) {
/* Reset absolute position */
abs_arr[fast_dim] = curr_span->low;
/* Update location offset */
loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[fast_dim])) * slab[fast_dim];
/* Reset the span in the current dimension */
ispan[fast_dim] = curr_span;
} /* end if */
} /* end else */
} /* end else */
/* Adjust iterator pointers */
if(NULL == curr_span) {
/* Same as code in main loop */
/* Start at the next fastest dim */
curr_dim = (int)(fast_dim - 1);
/* Work back up through the dimensions */
while(curr_dim >= 0) {
/* Reset the current span */
curr_span = ispan[curr_dim];
/* Increment absolute position */
abs_arr[curr_dim]++;
/* Check if we are still within the span */
if(abs_arr[curr_dim] <= curr_span->high) {
/* Update location offset */
loc_arr[curr_dim] += slab[curr_dim];
break;
} /* end if */
/* If we walked off that span, advance to the next span */
else {
/* Advance span in this dimension */
curr_span = curr_span->next;
/* Check if we have a valid span in this dimension still */
if(NULL != curr_span) {
/* Reset the span in the current dimension */
ispan[curr_dim] = curr_span;
/* Reset absolute position */
abs_arr[curr_dim] = curr_span->low;
/* Update byte location */
loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim];
break;
} /* end if */
else
/* If we finished the span list in this dimension, decrement the dimension worked on and loop again */
curr_dim--;
} /* end else */
} /* end while */
/* Check if we have more spans in the tree */
if(curr_dim >= 0) {
/* Walk back down the iterator positions, resetting them */
while((unsigned)curr_dim < fast_dim) {
HDassert(curr_span);
HDassert(curr_span->down);
HDassert(curr_span->down->head);
/* Increment current dimension */
curr_dim++;
/* Set the new span_info & span for this dimension */
ispan[curr_dim] = curr_span->down->head;
/* Advance span down the tree */
curr_span = curr_span->down->head;
/* Reset the absolute offset for the dim */
abs_arr[curr_dim] = curr_span->low;
/* Update the location offset */
loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim];
} /* end while */
/* Verify that the curr_span points to the fastest dim */
HDassert(curr_span == ispan[fast_dim]);
/* Reset the buffer offset */
for(u = 0, loc_off = 0; u < ndims; u++)
loc_off += loc_arr[u];
} /* end else */
else
/* We had better be done with I/O or bad things are going to happen... */
HDassert(io_elmts_left == 0);
} /* end if */
} /* end if */
/* Perform the I/O on the elements, based on the position of the iterator */
while(io_elmts_left > 0 && curr_seq < maxseq) {
H5S_hyper_span_t *prev_span; /* Previous hyperslab span node */
/* Sanity check */
HDassert(curr_span);
/* Set to current span, so the first adjustment to loc_off is 0 */
prev_span = curr_span;
/* Loop over all the spans in the fastest changing dimension */
while(curr_span != NULL) {
hsize_t nelmts; /* # of elements covered by current span */
/* Move location offset of current span */
loc_off += (curr_span->low - prev_span->low) * elem_size;
/* Compute the number of elements to attempt in this span */
nelmts = (curr_span->high - curr_span->low) + 1;
H5_CHECKED_ASSIGN(span_elmts, size_t, nelmts, hsize_t);
/* Check number of elements against upper bounds allowed */
if(span_elmts >= io_elmts_left) {
/* Trim the number of elements to output */
span_elmts = io_elmts_left;
span_size = span_elmts * elem_size;
io_elmts_left = 0;
/* COMMON */
/* Store the I/O information for the span */
/* Check if this is appending onto previous sequence */
if(curr_seq > 0 && last_span_end == loc_off)
len[curr_seq - 1] += span_size;
else {
off[curr_seq] = loc_off;
len[curr_seq] = span_size;
/* Increment the number of sequences in arrays */
curr_seq++;
} /* end else */
/* end COMMON */
/* Break out now, we are finished with I/O */
break;
} /* end if */
else {
/* Decrement I/O left to perform */
span_size = span_elmts * elem_size;
io_elmts_left -= span_elmts;
/* COMMON */
/* Store the I/O information for the span */
/* Check if this is appending onto previous sequence */
if(curr_seq > 0 && last_span_end == loc_off)
len[curr_seq - 1] += span_size;
else {
off[curr_seq] = loc_off;
len[curr_seq] = span_size;
/* Increment the number of sequences in arrays */
curr_seq++;
} /* end else */
/* end COMMON */
/* If the sequence & offset arrays are full, do what? */
if(curr_seq >= maxseq)
/* Break out now, we are finished with sequences */
break;
} /* end else */
/* Set the location of the last span's end */
last_span_end = loc_off + span_size;
/* Move to next span in fastest changing dimension */
prev_span = curr_span;
curr_span = curr_span->next;
} /* end while */
/* Check if we are done */
if(io_elmts_left == 0 || curr_seq >= maxseq) {
/* Sanity checks */
HDassert(curr_span);
/* Update absolute position */
abs_arr[fast_dim] = curr_span->low + span_elmts;
/* Check if we are still within the span */
if(abs_arr[fast_dim] <= curr_span->high) {
/* Reset the span for the fast dimension */
ispan[fast_dim] = curr_span;
/* Update location offset */
loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + (hssize_t)span_elmts + sel_off[fast_dim])) * slab[fast_dim];
break;
} /* end if */
/* If we walked off that span, advance to the next span */
else {
/* Advance span in this dimension */
curr_span = curr_span->next;
/* Check if we have a valid span in this dimension still */
if(curr_span != NULL) {
/* Reset absolute position */
abs_arr[fast_dim] = curr_span->low;
loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[fast_dim])) * slab[fast_dim];
ispan[fast_dim] = curr_span;
break;
} /* end if */
} /* end else */
} /* end if */
/* Adjust iterator pointers */
/* Start at the next fastest dim */
curr_dim = (int)(fast_dim - 1);
/* Work back up through the dimensions */
while(curr_dim >= 0) {
/* Reset the current span */
curr_span = ispan[curr_dim];
/* Increment absolute position */
abs_arr[curr_dim]++;
/* Check if we are still within the span */
if(abs_arr[curr_dim] <= curr_span->high) {
/* Update location offset */
loc_arr[curr_dim] += slab[curr_dim];
break;
} /* end if */
/* If we walked off that span, advance to the next span */
else {
/* Advance span in this dimension */
curr_span = curr_span->next;
/* Check if we have a valid span in this dimension still */
if(curr_span != NULL) {
/* Reset the span in the current dimension */
ispan[curr_dim] = curr_span;
/* Reset absolute position */
abs_arr[curr_dim] = curr_span->low;
/* Update location offset */
loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim];
break;
} /* end if */
else
/* If we finished the span list in this dimension, decrement the dimension worked on and loop again */
curr_dim--;
} /* end else */
} /* end while */
/* Check if we are finished with the spans in the tree */
if(curr_dim < 0) {
/* We had better be done with I/O or bad things are going to happen... */
HDassert(io_elmts_left == 0);
break;
} /* end if */
else {
/* Walk back down the iterator positions, resetting them */
while((unsigned)curr_dim < fast_dim) {
HDassert(curr_span);
HDassert(curr_span->down);
HDassert(curr_span->down->head);
/* Increment current dimension to the next dimension down */
curr_dim++;
/* Set the new span for the next dimension down */
ispan[curr_dim] = curr_span->down->head;
/* Advance span down the tree */
curr_span = curr_span->down->head;
/* Reset the absolute offset for the dim */
abs_arr[curr_dim] = curr_span->low;
/* Update location offset */
loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim];
} /* end while */
/* Verify that the curr_span points to the fastest dim */
HDassert(curr_span == ispan[fast_dim]);
} /* end else */
/* Reset the buffer offset */
for(u = 0, loc_off = 0; u < ndims; u++)
loc_off += loc_arr[u];
} /* end while */
/* Decrement number of elements left in iterator */
io_used = io_left - io_elmts_left;
iter->elmt_left -= io_used;
/* Set the number of sequences generated */
*nseq = curr_seq;
/* Set the number of elements used */
*nelem = io_used;
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_get_seq_list_gen() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_iter_get_seq_list_opt
PURPOSE
Create a list of offsets & lengths for a selection
USAGE
herr_t H5S__hyper_iter_get_seq_list_opt(iter,maxseq,maxelem,nseq,nelem,off,len)
H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last
position of interest in selection.
size_t maxseq; IN: Maximum number of sequences to generate
size_t maxelem; IN: Maximum number of elements to include in the
generated sequences
size_t *nseq; OUT: Actual number of sequences generated
size_t *nelem; OUT: Actual number of elements in sequences generated
hsize_t *off; OUT: Array of offsets
size_t *len; OUT: Array of lengths
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
Use the selection in the dataspace to generate a list of byte offsets and
lengths for the region(s) selected. Start/Restart from the position in the
ITER parameter. The number of sequences generated is limited by the MAXSEQ
parameter and the number of sequences actually generated is stored in the
NSEQ parameter.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_iter_get_seq_list_opt(H5S_sel_iter_t *iter, size_t maxseq, size_t maxelem,
size_t *nseq, size_t *nelem, hsize_t *off, size_t *len)
{
hsize_t *mem_size; /* Size of the source buffer */
hsize_t *slab; /* Hyperslab size */
const hssize_t *sel_off; /* Selection offset in dataspace */
hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */
hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary block count */
hsize_t tmp_block[H5S_MAX_RANK]; /* Temporary block offset */
hsize_t wrap[H5S_MAX_RANK]; /* Bytes to wrap around at the end of a row */
hsize_t skip[H5S_MAX_RANK]; /* Bytes to skip between blocks */
const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */
hsize_t fast_dim_start, /* Local copies of fastest changing dimension info */
fast_dim_stride,
fast_dim_block,
fast_dim_offset;
size_t fast_dim_buf_off; /* Local copy of amount to move fastest dimension buffer offset */
size_t fast_dim_count; /* Number of blocks left in fastest changing dimension */
size_t tot_blk_count; /* Total number of blocks left to output */
size_t act_blk_count; /* Actual number of blocks to output */
size_t total_rows; /* Total number of entire rows to output */
size_t curr_rows; /* Current number of entire rows to output */
unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */
unsigned ndims; /* Number of dimensions of dataset */
int temp_dim; /* Temporary rank holder */
hsize_t loc; /* Coordinate offset */
size_t curr_seq = 0; /* Current sequence being operated on */
size_t actual_elem; /* The actual number of elements to count */
size_t actual_bytes;/* The actual number of bytes to copy */
size_t io_left; /* The number of elements left in I/O operation */
size_t start_io_left; /* The initial number of elements left in I/O operation */
size_t elem_size; /* Size of each element iterating over */
unsigned u; /* Local index variable */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
HDassert(maxseq > 0);
HDassert(maxelem > 0);
HDassert(nseq);
HDassert(nelem);
HDassert(off);
HDassert(len);
/* Set the local copy of the diminfo pointer */
tdiminfo = iter->u.hyp.diminfo;
/* Check if this is a "flattened" regular hyperslab selection */
if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) {
/* Set the aliases for a few important dimension ranks */
ndims = iter->u.hyp.iter_rank;
/* Set the local copy of the selection offset */
sel_off = iter->u.hyp.sel_off;
/* Set up the pointer to the size of the memory dataspace */
mem_size = iter->u.hyp.size;
} /* end if */
else {
/* Set the aliases for a few important dimension ranks */
ndims = iter->rank;
/* Set the local copy of the selection offset */
sel_off = iter->sel_off;
/* Set up the pointer to the size of the memory dataspace */
mem_size = iter->dims;
} /* end else */
/* Set up some local variables */
fast_dim = ndims - 1;
elem_size = iter->elmt_size;
slab = iter->u.hyp.slab;
/* Calculate the number of elements to sequence through */
H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t);
io_left = MIN((size_t)iter->elmt_left, maxelem);
/* Sanity check that there aren't any "remainder" sequences in process */
HDassert(!((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride != 0 ||
((iter->u.hyp.off[fast_dim] != tdiminfo[fast_dim].start) && tdiminfo[fast_dim].count == 1)));
/* We've cleared the "remainder" of the previous fastest dimension
* sequence before calling this routine, so we must be at the beginning of
* a sequence. Use the fancy algorithm to compute the offsets and run
* through as many as possible, until the buffer fills up.
*/
/* Keep the number of elements we started with */
start_io_left = io_left;
/* Compute the arrays to perform I/O on */
/* Copy the location of the point to get */
/* (Add in the selection offset) */
for(u = 0; u < ndims; u++)
offset[u] = (hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u]);
/* Compute the current "counts" for this location */
for(u = 0; u < ndims; u++) {
if(tdiminfo[u].count == 1) {
tmp_count[u] = 0;
tmp_block[u] = iter->u.hyp.off[u] - tdiminfo[u].start;
} /* end if */
else {
tmp_count[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) / tdiminfo[u].stride;
tmp_block[u] = (iter->u.hyp.off[u] - tdiminfo[u].start) % tdiminfo[u].stride;
} /* end else */
} /* end for */
/* Compute the initial buffer offset */
for(u = 0, loc = 0; u < ndims; u++)
loc += offset[u] * slab[u];
/* Set the number of elements to write each time */
H5_CHECKED_ASSIGN(actual_elem, size_t, tdiminfo[fast_dim].block, hsize_t);
/* Set the number of actual bytes */
actual_bytes = actual_elem * elem_size;
/* Set local copies of information for the fastest changing dimension */
fast_dim_start = tdiminfo[fast_dim].start;
fast_dim_stride = tdiminfo[fast_dim].stride;
fast_dim_block = tdiminfo[fast_dim].block;
H5_CHECKED_ASSIGN(fast_dim_buf_off, size_t, slab[fast_dim] * fast_dim_stride, hsize_t);
fast_dim_offset = (hsize_t)((hssize_t)fast_dim_start + sel_off[fast_dim]);
/* Compute the number of blocks which would fit into the buffer */
H5_CHECK_OVERFLOW(io_left / fast_dim_block, hsize_t, size_t);
tot_blk_count = (size_t)(io_left / fast_dim_block);
/* Don't go over the maximum number of sequences allowed */
tot_blk_count = MIN(tot_blk_count, (maxseq - curr_seq));
/* Compute the amount to wrap at the end of each row */
for(u = 0; u < ndims; u++)
wrap[u] = (mem_size[u] - (tdiminfo[u].stride * tdiminfo[u].count)) * slab[u];
/* Compute the amount to skip between blocks */
for(u = 0; u < ndims; u++)
skip[u] = (tdiminfo[u].stride - tdiminfo[u].block) * slab[u];
/* Check if there is a partial row left (with full blocks) */
if(tmp_count[fast_dim] > 0) {
/* Get number of blocks in fastest dimension */
H5_CHECKED_ASSIGN(fast_dim_count, size_t, tdiminfo[fast_dim].count - tmp_count[fast_dim], hsize_t);
/* Make certain this entire row will fit into buffer */
fast_dim_count = MIN(fast_dim_count, tot_blk_count);
/* Number of blocks to sequence over */
act_blk_count = fast_dim_count;
/* Loop over all the blocks in the fastest changing dimension */
while(fast_dim_count > 0) {
/* Store the sequence information */
off[curr_seq] = loc;
len[curr_seq] = actual_bytes;
/* Increment sequence count */
curr_seq++;
/* Increment information to reflect block just processed */
loc += fast_dim_buf_off;
/* Decrement number of blocks */
fast_dim_count--;
} /* end while */
/* Decrement number of elements left */
io_left -= actual_elem * act_blk_count;
/* Decrement number of blocks left */
tot_blk_count -= act_blk_count;
/* Increment information to reflect block just processed */
tmp_count[fast_dim] += act_blk_count;
/* Check if we finished the entire row of blocks */
if(tmp_count[fast_dim] >= tdiminfo[fast_dim].count) {
/* Increment offset in destination buffer */
loc += wrap[fast_dim];
/* Increment information to reflect block just processed */
offset[fast_dim] = fast_dim_offset; /* reset the offset in the fastest dimension */
tmp_count[fast_dim] = 0;
/* Increment the offset and count for the other dimensions */
temp_dim = (int)fast_dim - 1;
while(temp_dim >= 0) {
/* Move to the next row in the curent dimension */
offset[temp_dim]++;
tmp_block[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(tmp_block[temp_dim] < tdiminfo[temp_dim].block)
break;
else {
/* Move to the next block in the current dimension */
offset[temp_dim] += (tdiminfo[temp_dim].stride - tdiminfo[temp_dim].block);
loc += skip[temp_dim];
tmp_block[temp_dim] = 0;
tmp_count[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(tmp_count[temp_dim] < tdiminfo[temp_dim].count)
break;
else {
offset[temp_dim] = (hsize_t)((hssize_t)tdiminfo[temp_dim].start + sel_off[temp_dim]);
loc += wrap[temp_dim];
tmp_count[temp_dim] = 0; /* reset back to the beginning of the line */
tmp_block[temp_dim] = 0;
} /* end else */
} /* end else */
/* Decrement dimension count */
temp_dim--;
} /* end while */
} /* end if */
else {
/* Update the offset in the fastest dimension */
offset[fast_dim] += (fast_dim_stride * act_blk_count);
} /* end else */
} /* end if */
/* Compute the number of entire rows to read in */
H5_CHECK_OVERFLOW(tot_blk_count / tdiminfo[fast_dim].count, hsize_t, size_t);
curr_rows = total_rows = (size_t)(tot_blk_count / tdiminfo[fast_dim].count);
/* Reset copy of number of blocks in fastest dimension */
H5_CHECKED_ASSIGN(fast_dim_count, size_t, tdiminfo[fast_dim].count, hsize_t);
/* Read in data until an entire sequence can't be written out any longer */
while(curr_rows > 0) {
#define DUFF_GUTS \
/* Store the sequence information */ \
off[curr_seq] = loc; \
len[curr_seq] = actual_bytes; \
\
/* Increment sequence count */ \
curr_seq++; \
\
/* Increment information to reflect block just processed */ \
loc += fast_dim_buf_off;
#ifdef NO_DUFFS_DEVICE
/* Loop over all the blocks in the fastest changing dimension */
while(fast_dim_count > 0) {
DUFF_GUTS
/* Decrement number of blocks */
fast_dim_count--;
} /* end while */
#else /* NO_DUFFS_DEVICE */
{
size_t duffs_index; /* Counting index for Duff's device */
duffs_index = (fast_dim_count + 7) / 8;
switch (fast_dim_count % 8) {
default:
HDassert(0 && "This Should never be executed!");
break;
case 0:
do
{
DUFF_GUTS
H5_ATTR_FALLTHROUGH
case 7:
DUFF_GUTS
H5_ATTR_FALLTHROUGH
case 6:
DUFF_GUTS
H5_ATTR_FALLTHROUGH
case 5:
DUFF_GUTS
H5_ATTR_FALLTHROUGH
case 4:
DUFF_GUTS
H5_ATTR_FALLTHROUGH
case 3:
DUFF_GUTS
H5_ATTR_FALLTHROUGH
case 2:
DUFF_GUTS
H5_ATTR_FALLTHROUGH
case 1:
DUFF_GUTS
} while (--duffs_index > 0);
} /* end switch */
}
#endif /* NO_DUFFS_DEVICE */
#undef DUFF_GUTS
/* Increment offset in destination buffer */
loc += wrap[fast_dim];
/* Increment the offset and count for the other dimensions */
temp_dim = (int)fast_dim - 1;
while(temp_dim >= 0) {
/* Move to the next row in the curent dimension */
offset[temp_dim]++;
tmp_block[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(tmp_block[temp_dim] < tdiminfo[temp_dim].block)
break;
else {
/* Move to the next block in the current dimension */
offset[temp_dim] += (tdiminfo[temp_dim].stride - tdiminfo[temp_dim].block);
loc += skip[temp_dim];
tmp_block[temp_dim] = 0;
tmp_count[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(tmp_count[temp_dim] < tdiminfo[temp_dim].count)
break;
else {
offset[temp_dim] = (hsize_t)((hssize_t)tdiminfo[temp_dim].start + sel_off[temp_dim]);
loc += wrap[temp_dim];
tmp_count[temp_dim] = 0; /* reset back to the beginning of the line */
tmp_block[temp_dim] = 0;
} /* end else */
} /* end else */
/* Decrement dimension count */
temp_dim--;
} /* end while */
/* Decrement the number of rows left */
curr_rows--;
} /* end while */
/* Adjust the number of blocks & elements left to transfer */
/* Decrement number of elements left */
H5_CHECK_OVERFLOW(actual_elem * (total_rows * tdiminfo[fast_dim].count), hsize_t, size_t);
io_left -= (size_t)(actual_elem * (total_rows * tdiminfo[fast_dim].count));
/* Decrement number of blocks left */
H5_CHECK_OVERFLOW((total_rows * tdiminfo[fast_dim].count), hsize_t, size_t);
tot_blk_count -= (size_t)(total_rows * tdiminfo[fast_dim].count);
/* Read in partial row of blocks */
if(io_left > 0 && curr_seq < maxseq) {
/* Get remaining number of blocks left to output */
fast_dim_count = tot_blk_count;
/* Loop over all the blocks in the fastest changing dimension */
while(fast_dim_count > 0) {
/* Store the sequence information */
off[curr_seq] = loc;
len[curr_seq] = actual_bytes;
/* Increment sequence count */
curr_seq++;
/* Increment information to reflect block just processed */
loc += fast_dim_buf_off;
/* Decrement number of blocks */
fast_dim_count--;
} /* end while */
/* Decrement number of elements left */
io_left -= actual_elem * tot_blk_count;
/* Increment information to reflect block just processed */
offset[fast_dim] += (fast_dim_stride * tot_blk_count); /* move the offset in the fastest dimension */
/* Handle any leftover, partial blocks in this row */
if(io_left > 0 && curr_seq < maxseq) {
actual_elem = io_left;
actual_bytes = actual_elem * elem_size;
/* Store the sequence information */
off[curr_seq] = loc;
len[curr_seq] = actual_bytes;
/* Increment sequence count */
curr_seq++;
/* Decrement the number of elements left */
io_left -= actual_elem;
/* Increment buffer correctly */
offset[fast_dim] += actual_elem;
} /* end if */
/* don't bother checking slower dimensions */
HDassert(io_left == 0 || curr_seq == maxseq);
} /* end if */
/* Update the iterator */
/* Update the iterator with the location we stopped */
/* (Subtract out the selection offset) */
for(u = 0; u < ndims; u++)
iter->u.hyp.off[u] = (hsize_t)((hssize_t)offset[u] - sel_off[u]);
/* Decrement the number of elements left in selection */
iter->elmt_left -= (start_io_left - io_left);
/* Increment the number of sequences generated */
*nseq += curr_seq;
/* Increment the number of elements used */
*nelem += start_io_left - io_left;
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_get_seq_list_opt() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_iter_get_seq_list_single
PURPOSE
Create a list of offsets & lengths for a selection
USAGE
herr_t H5S__hyper_iter_get_seq_list_single(flags, iter, maxseq, maxelem, nseq, nelem, off, len)
unsigned flags; IN: Flags for extra information about operation
H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last
position of interest in selection.
size_t maxseq; IN: Maximum number of sequences to generate
size_t maxelem; IN: Maximum number of elements to include in the
generated sequences
size_t *nseq; OUT: Actual number of sequences generated
size_t *nelem; OUT: Actual number of elements in sequences generated
hsize_t *off; OUT: Array of offsets
size_t *len; OUT: Array of lengths
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
Use the selection in the dataspace to generate a list of byte offsets and
lengths for the region(s) selected. Start/Restart from the position in the
ITER parameter. The number of sequences generated is limited by the MAXSEQ
parameter and the number of sequences actually generated is stored in the
NSEQ parameter.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_iter_get_seq_list_single(H5S_sel_iter_t *iter, size_t maxseq, size_t maxelem,
size_t *nseq, size_t *nelem, hsize_t *off, size_t *len)
{
const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */
const hssize_t *sel_off; /* Selection offset in dataspace */
hsize_t *mem_size; /* Size of the source buffer */
hsize_t base_offset[H5S_MAX_RANK]; /* Base coordinate offset in dataspace */
hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */
hsize_t *slab; /* Hyperslab size */
hsize_t fast_dim_block; /* Local copies of fastest changing dimension info */
hsize_t loc; /* Coordinate offset */
size_t tot_blk_count; /* Total number of blocks left to output */
size_t elem_size; /* Size of each element iterating over */
size_t io_left; /* The number of elements left in I/O operation */
size_t actual_elem; /* The actual number of elements to count */
unsigned ndims; /* Number of dimensions of dataset */
unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */
unsigned skip_dim; /* Rank of the dimension to skip along */
unsigned u; /* Local index variable */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
HDassert(maxseq > 0);
HDassert(maxelem > 0);
HDassert(nseq);
HDassert(nelem);
HDassert(off);
HDassert(len);
/* Set a local copy of the diminfo pointer */
tdiminfo = iter->u.hyp.diminfo;
/* Check if this is a "flattened" regular hyperslab selection */
if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) {
/* Set the aliases for a few important dimension ranks */
ndims = iter->u.hyp.iter_rank;
/* Set the local copy of the selection offset */
sel_off = iter->u.hyp.sel_off;
/* Set up the pointer to the size of the memory dataspace */
mem_size = iter->u.hyp.size;
} /* end if */
else {
/* Set the aliases for a few important dimension ranks */
ndims = iter->rank;
/* Set the local copy of the selection offset */
sel_off = iter->sel_off;
/* Set up the pointer to the size of the memory dataspace */
mem_size = iter->dims;
} /* end else */
/* Set up some local variables */
fast_dim = ndims - 1;
elem_size = iter->elmt_size;
slab = iter->u.hyp.slab;
/* Copy the base location of the block */
/* (Add in the selection offset) */
for(u = 0; u < ndims; u++)
base_offset[u] = (hsize_t)((hssize_t)tdiminfo[u].start + sel_off[u]);
/* Copy the location of the point to get */
/* (Add in the selection offset) */
for(u = 0; u < ndims; u++)
offset[u] = (hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u]);
/* Compute the initial buffer offset */
for(u = 0, loc = 0; u < ndims; u++)
loc += offset[u] * slab[u];
/* Set local copies of information for the fastest changing dimension */
fast_dim_block = tdiminfo[fast_dim].block;
/* Calculate the number of elements to sequence through */
H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t);
io_left = MIN((size_t)iter->elmt_left, maxelem);
/* Compute the number of blocks which would fit into the buffer */
H5_CHECK_OVERFLOW(io_left / fast_dim_block, hsize_t, size_t);
tot_blk_count = (size_t)(io_left / fast_dim_block);
/* Don't go over the maximum number of sequences allowed */
tot_blk_count = MIN(tot_blk_count, maxseq);
/* Set the number of elements to write each time */
H5_CHECKED_ASSIGN(actual_elem, size_t, fast_dim_block, hsize_t);
/* Check for blocks to operate on */
if(tot_blk_count > 0) {
size_t actual_bytes; /* The actual number of bytes to copy */
/* Set the number of actual bytes */
actual_bytes = actual_elem * elem_size;
/* Check for 1-dim selection */
if(0 == fast_dim) {
/* Sanity checks */
HDassert(1 == tot_blk_count);
HDassert(io_left == actual_elem);
/* Store the sequence information */
*off++ = loc;
*len++ = actual_bytes;
} /* end if */
else {
hsize_t skip_slab; /* Temporary copy of slab[fast_dim - 1] */
size_t blk_count; /* Total number of blocks left to output */
int i; /* Local index variable */
/* Find first dimension w/block >1 */
skip_dim = fast_dim;
for(i = (int)(fast_dim - 1); i >= 0; i--)
if(tdiminfo[i].block > 1) {
skip_dim = (unsigned)i;
break;
} /* end if */
skip_slab = slab[skip_dim];
/* Check for being able to use fast algorithm for 1-D */
if(0 == skip_dim) {
/* Create sequences until an entire row can't be used */
blk_count = tot_blk_count;
while(blk_count > 0) {
/* Store the sequence information */
*off++ = loc;
*len++ = actual_bytes;
/* Increment offset in destination buffer */
loc += skip_slab;
/* Decrement block count */
blk_count--;
} /* end while */
/* Move to the next location */
offset[skip_dim] += tot_blk_count;
} /* end if */
else {
hsize_t tmp_block[H5S_MAX_RANK]; /* Temporary block offset */
hsize_t skip[H5S_MAX_RANK]; /* Bytes to skip between blocks */
int temp_dim; /* Temporary rank holder */
/* Set the starting block location */
for(u = 0; u < ndims; u++)
tmp_block[u] = iter->u.hyp.off[u] - tdiminfo[u].start;
/* Compute the amount to skip between sequences */
for(u = 0; u < ndims; u++)
skip[u] = (mem_size[u] - tdiminfo[u].block) * slab[u];
/* Create sequences until an entire row can't be used */
blk_count = tot_blk_count;
while(blk_count > 0) {
/* Store the sequence information */
*off++ = loc;
*len++ = actual_bytes;
/* Set temporary dimension for advancing offsets */
temp_dim = (int)skip_dim;
/* Increment offset in destination buffer */
loc += skip_slab;
/* Increment the offset and count for the other dimensions */
while(temp_dim >= 0) {
/* Move to the next row in the curent dimension */
offset[temp_dim]++;
tmp_block[temp_dim]++;
/* If this block is still in the range of blocks to output for the dimension, break out of loop */
if(tmp_block[temp_dim] < tdiminfo[temp_dim].block)
break;
else {
offset[temp_dim] = base_offset[temp_dim];
loc += skip[temp_dim];
tmp_block[temp_dim] = 0;
} /* end else */
/* Decrement dimension count */
temp_dim--;
} /* end while */
/* Decrement block count */
blk_count--;
} /* end while */
} /* end else */
} /* end else */
/* Update the iterator, if there were any blocks used */
/* Decrement the number of elements left in selection */
iter->elmt_left -= tot_blk_count * actual_elem;
/* Check if there are elements left in iterator */
if(iter->elmt_left > 0) {
/* Update the iterator with the location we stopped */
/* (Subtract out the selection offset) */
for(u = 0; u < ndims; u++)
iter->u.hyp.off[u] = (hsize_t)((hssize_t)offset[u] - sel_off[u]);
} /* end if */
/* Increment the number of sequences generated */
*nseq += tot_blk_count;
/* Increment the number of elements used */
*nelem += tot_blk_count * actual_elem;
} /* end if */
/* Check for partial block, with room for another sequence */
if(io_left > (tot_blk_count * actual_elem) && tot_blk_count < maxseq) {
size_t elmt_remainder; /* Elements remaining */
/* Compute elements left */
elmt_remainder = io_left - (tot_blk_count * actual_elem);
HDassert(elmt_remainder < fast_dim_block);
HDassert(elmt_remainder > 0);
/* Store the sequence information */
*off++ = loc;
*len++ = elmt_remainder * elem_size;
/* Update the iterator with the location we stopped */
iter->u.hyp.off[fast_dim] += (hsize_t)elmt_remainder;
/* Decrement the number of elements left in selection */
iter->elmt_left -= elmt_remainder;
/* Increment the number of sequences generated */
(*nseq)++;
/* Increment the number of elements used */
*nelem += elmt_remainder;
} /* end if */
/* Sanity check */
HDassert(*nseq > 0);
HDassert(*nelem > 0);
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_get_seq_list_single() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_iter_get_seq_list
PURPOSE
Create a list of offsets & lengths for a selection
USAGE
herr_t H5S__hyper_iter_get_seq_list(iter,maxseq,maxelem,nseq,nelem,off,len)
H5S_t *space; IN: Dataspace containing selection to use.
unsigned flags; IN: Flags for extra information about operation
H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last
position of interest in selection.
size_t maxseq; IN: Maximum number of sequences to generate
size_t maxelem; IN: Maximum number of elements to include in the
generated sequences
size_t *nseq; OUT: Actual number of sequences generated
size_t *nelem; OUT: Actual number of elements in sequences generated
hsize_t *off; OUT: Array of offsets (in bytes)
size_t *len; OUT: Array of lengths (in bytes)
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
Use the selection in the dataspace to generate a list of byte offsets and
lengths for the region(s) selected. Start/Restart from the position in the
ITER parameter. The number of sequences generated is limited by the MAXSEQ
parameter and the number of sequences actually generated is stored in the
NSEQ parameter.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_iter_get_seq_list(H5S_sel_iter_t *iter, size_t maxseq,
size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len)
{
herr_t ret_value = FAIL; /* return value */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
HDassert(iter->elmt_left > 0);
HDassert(maxseq > 0);
HDassert(maxelem > 0);
HDassert(nseq);
HDassert(nelem);
HDassert(off);
HDassert(len);
/* Check for the special case of just one H5Sselect_hyperslab call made */
if(iter->u.hyp.diminfo_valid) {
const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */
const hssize_t *sel_off; /* Selection offset in dataspace */
unsigned ndims; /* Number of dimensions of dataset */
unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */
hbool_t single_block; /* Whether the selection is a single block */
unsigned u; /* Local index variable */
/* Set a local copy of the diminfo pointer */
tdiminfo = iter->u.hyp.diminfo;
/* Check if this is a "flattened" regular hyperslab selection */
if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) {
/* Set the aliases for a few important dimension ranks */
ndims = iter->u.hyp.iter_rank;
/* Set the local copy of the selection offset */
sel_off = iter->u.hyp.sel_off;
} /* end if */
else {
/* Set the aliases for a few important dimension ranks */
ndims = iter->rank;
/* Set the local copy of the selection offset */
sel_off = iter->sel_off;
} /* end else */
fast_dim = ndims - 1;
/* Check if we stopped in the middle of a sequence of elements */
if((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride != 0 ||
((iter->u.hyp.off[fast_dim] != tdiminfo[fast_dim].start) && tdiminfo[fast_dim].count == 1)) {
hsize_t *slab; /* Hyperslab size */
hsize_t loc; /* Coordinate offset */
size_t leftover; /* The number of elements left over from the last sequence */
size_t actual_elem; /* The actual number of elements to count */
size_t elem_size; /* Size of each element iterating over */
/* Calculate the number of elements left in the sequence */
if(tdiminfo[fast_dim].count == 1) {
H5_CHECKED_ASSIGN(leftover, size_t, tdiminfo[fast_dim].block - (iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start), hsize_t);
} /* end if */
else {
H5_CHECKED_ASSIGN(leftover, size_t, tdiminfo[fast_dim].block - ((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride), hsize_t);
} /* end else */
/* Make certain that we don't write too many */
actual_elem = MIN3(leftover, (size_t)iter->elmt_left, maxelem);
/* Set up some local variables */
elem_size = iter->elmt_size;
slab = iter->u.hyp.slab;
/* Compute the initial buffer offset */
for(u = 0, loc = 0; u < ndims; u++)
loc += ((hsize_t)((hssize_t)iter->u.hyp.off[u] + sel_off[u])) * slab[u];
/* Add a new sequence */
off[0] = loc;
H5_CHECKED_ASSIGN(len[0], size_t, actual_elem * elem_size, hsize_t);
/* Increment sequence array locations */
off++;
len++;
/* Advance the hyperslab iterator */
H5S__hyper_iter_next(iter, actual_elem);
/* Decrement the number of elements left in selection */
iter->elmt_left -= actual_elem;
/* Decrement element/sequence limits */
maxelem -= actual_elem;
maxseq--;
/* Set the number of sequences generated and elements used */
*nseq = 1;
*nelem = actual_elem;
/* Check for using up all the sequences/elements */
if(0 == iter->elmt_left || 0 == maxelem || 0 == maxseq)
return(SUCCEED);
} /* end if */
else {
/* Reset the number of sequences generated and elements used */
*nseq = 0;
*nelem = 0;
} /* end else */
/* Check for a single block selected */
single_block = TRUE;
for(u = 0; u < ndims; u++)
if(1 != tdiminfo[u].count) {
single_block = FALSE;
break;
} /* end if */
/* Check for single block selection */
if(single_block)
/* Use single-block optimized call to generate sequence list */
ret_value = H5S__hyper_iter_get_seq_list_single(iter, maxseq, maxelem, nseq, nelem, off, len);
else
/* Use optimized call to generate sequence list */
ret_value = H5S__hyper_iter_get_seq_list_opt(iter, maxseq, maxelem, nseq, nelem, off, len);
} /* end if */
else
/* Call the general sequence generator routine */
ret_value = H5S__hyper_iter_get_seq_list_gen(iter, maxseq, maxelem, nseq, nelem, off, len);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_iter_get_seq_list() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_iter_release
PURPOSE
Release hyperslab selection iterator information for a dataspace
USAGE
herr_t H5S__hyper_iter_release(iter)
H5S_sel_iter_t *iter; IN: Pointer to selection iterator
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Releases all information for a dataspace hyperslab selection iterator
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_iter_release(H5S_sel_iter_t *iter)
{
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(iter);
/* Free the copy of the hyperslab selection span tree */
if(iter->u.hyp.spans != NULL)
H5S__hyper_free_span_info(iter->u.hyp.spans);
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_iter_release() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_new_span
PURPOSE
Make a new hyperslab span node
USAGE
H5S_hyper_span_t *H5S__hyper_new_span(low, high, down, next)
hsize_t low, high; IN: Low and high bounds for new span node
H5S_hyper_span_info_t *down; IN: Down span tree for new node
H5S_hyper_span_t *next; IN: Next span for new node
RETURNS
Pointer to new span node on success, NULL on failure
DESCRIPTION
Allocate and initialize a new hyperslab span node, filling in the low &
high bounds, the down span and next span pointers also. Increment the
reference count of the 'down span' if applicable.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_t *
H5S__hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down,
H5S_hyper_span_t *next)
{
H5S_hyper_span_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
/* Allocate a new span node */
if(NULL == (ret_value = H5FL_MALLOC(H5S_hyper_span_t)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Copy the span's basic information */
ret_value->low = low;
ret_value->high = high;
ret_value->down = down;
ret_value->next = next;
/* Increment the reference count of the 'down span' if there is one */
if(ret_value->down)
ret_value->down->count++;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_new_span() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_new_span_info
PURPOSE
Make a new hyperslab span info node
USAGE
H5S_hyper_span_info_t *H5S__hyper_new_span_info(rank)
unsigned rank; IN: Rank of span info, in selection
RETURNS
Pointer to new span node info on success, NULL on failure
DESCRIPTION
Allocate and initialize a new hyperslab span info node of a given rank,
setting up the low & high bound array pointers.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note that this uses the C99 "flexible array member" feature.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S__hyper_new_span_info(unsigned rank)
{
H5S_hyper_span_info_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(rank > 0);
HDassert(rank <= H5S_MAX_RANK);
/* Allocate a new span info node */
if(NULL == (ret_value = (H5S_hyper_span_info_t *)H5FL_ARR_CALLOC(hbounds_t, rank * 2)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span info")
/* Set low & high bound pointers into the 'bounds' array */
ret_value->low_bounds = ret_value->bounds;
ret_value->high_bounds = &ret_value->bounds[rank];
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_new_span_info() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_copy_span_helper
PURPOSE
Helper routine to copy a hyperslab span tree
USAGE
H5S_hyper_span_info_t * H5S__hyper_copy_span_helper(spans, rank)
H5S_hyper_span_info_t *spans; IN: Span tree to copy
unsigned rank; IN: Rank of span tree
uint64_t op_gen; IN: Operation generation
RETURNS
Pointer to the copied span tree on success, NULL on failure
DESCRIPTION
Copy a hyperslab span tree, using reference counting as appropriate.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S__hyper_copy_span_helper(H5S_hyper_span_info_t *spans, unsigned rank,
uint64_t op_gen)
{
H5S_hyper_span_t *span; /* Hyperslab span */
H5S_hyper_span_t *new_span; /* Temporary hyperslab span */
H5S_hyper_span_t *prev_span; /* Previous hyperslab span */
H5S_hyper_span_info_t *new_down; /* New down span tree */
H5S_hyper_span_info_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
/* Sanity checks */
HDassert(spans);
/* Check if the span tree was already copied */
if(spans->op_gen == op_gen) {
/* Just return the value of the already copied span tree */
ret_value = spans->u.copied;
/* Increment the reference count of the span tree */
ret_value->count++;
} /* end if */
else {
/* Allocate a new span_info node */
if(NULL == (ret_value = H5S__hyper_new_span_info(rank)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span info")
/* Set the non-zero span_info information */
H5MM_memcpy(ret_value->low_bounds, spans->low_bounds, rank * sizeof(hsize_t));
H5MM_memcpy(ret_value->high_bounds, spans->high_bounds, rank * sizeof(hsize_t));
ret_value->count = 1;
/* Set the operation generation for the span info, to avoid future copies */
spans->op_gen = op_gen;
/* Set the 'copied' pointer in the node being copied to the newly allocated node */
spans->u.copied = ret_value;
/* Copy over the nodes in the span list */
span = spans->head;
prev_span = NULL;
while(span != NULL) {
/* Allocate a new node */
if(NULL == (new_span = H5S__hyper_new_span(span->low, span->high, NULL, NULL)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Append to list of spans */
if(NULL == prev_span)
ret_value->head = new_span;
else
prev_span->next = new_span;
/* Recurse to copy the 'down' spans, if there are any */
if(span->down != NULL) {
if(NULL == (new_down = H5S__hyper_copy_span_helper(span->down, rank - 1, op_gen)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab spans")
new_span->down = new_down;
} /* end if */
/* Update the previous (new) span */
prev_span = new_span;
/* Advance to next span */
span = span->next;
} /* end while */
/* Retain a pointer to the last span */
ret_value->tail = prev_span;
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_copy_span_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_copy_span
PURPOSE
Copy a hyperslab span tree
USAGE
H5S_hyper_span_info_t * H5S__hyper_copy_span(span_info, rank)
H5S_hyper_span_info_t *span_info; IN: Span tree to copy
unsigned rank; IN: Rank of span tree
RETURNS
Pointer to the copied span tree on success, NULL on failure
DESCRIPTION
Copy a hyperslab span tree, using reference counting as appropriate.
(Which means that just the nodes in the top span tree are duplicated and
the reference counts of their 'down spans' are just incremented)
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S__hyper_copy_span(H5S_hyper_span_info_t *spans, unsigned rank)
{
uint64_t op_gen; /* Operation generation value */
H5S_hyper_span_info_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(spans);
/* Acquire an operation generation value for this operation */
op_gen = H5S__hyper_get_op_gen();
/* Copy the hyperslab span tree */
if(NULL == (ret_value = H5S__hyper_copy_span_helper(spans, rank, op_gen)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab span tree")
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_copy_span() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_cmp_spans
PURPOSE
Check if two hyperslab span trees are the same
USAGE
hbool_t H5S__hyper_cmp_spans(span1, span2)
H5S_hyper_span_info_t *span_info1; IN: First span tree to compare
H5S_hyper_span_info_t *span_info2; IN: Second span tree to compare
RETURNS
TRUE (1) or FALSE (0) on success, can't fail
DESCRIPTION
Compare two hyperslab span trees to determine if they refer to the same
selection. If span1 & span2 are both NULL, that counts as equal.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5_ATTR_PURE hbool_t
H5S__hyper_cmp_spans(const H5S_hyper_span_info_t *span_info1,
const H5S_hyper_span_info_t *span_info2)
{
hbool_t ret_value = TRUE; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Check for redundant comparison (or both spans being NULL) */
if(span_info1 != span_info2) {
/* Check for one span being NULL */
if(span_info1 == NULL || span_info2 == NULL)
HGOTO_DONE(FALSE)
else {
/* Compare low & high bounds for this span list */
/* (Could compare lower dimensions also, but not certain if
* that's worth it. - QAK, 2019/01/23)
*/
if(span_info1->low_bounds[0] != span_info2->low_bounds[0])
HGOTO_DONE(FALSE)
else if(span_info1->high_bounds[0] != span_info2->high_bounds[0])
HGOTO_DONE(FALSE)
else {
const H5S_hyper_span_t *span1;
const H5S_hyper_span_t *span2;
/* Get the pointers to the actual lists of spans */
span1 = span_info1->head;
span2 = span_info2->head;
/* Sanity checking */
HDassert(span1);
HDassert(span2);
/* infinite loop which must be broken out of */
while(1) {
/* Check for both spans being NULL */
if(span1 == NULL && span2 == NULL)
HGOTO_DONE(TRUE)
else {
/* Check for one span being NULL */
if(span1 == NULL || span2 == NULL)
HGOTO_DONE(FALSE)
else {
/* Check if the actual low & high span information is the same */
if(span1->low != span2->low || span1->high != span2->high)
HGOTO_DONE(FALSE)
else {
if(span1->down != NULL || span2->down != NULL) {
if(!H5S__hyper_cmp_spans(span1->down, span2->down))
HGOTO_DONE(FALSE)
else {
/* Keep going... */
} /* end else */
} /* end if */
else {
/* Keep going... */
} /* end else */
} /* end else */
} /* end else */
} /* end else */
/* Advance to the next nodes in the span list */
span1 = span1->next;
span2 = span2->next;
} /* end while */
} /* end else */
} /* end else */
} /* end if */
/* Fall through, with default return value of 'TRUE' if spans were already visited */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_cmp_spans() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_free_span_info
PURPOSE
Free a hyperslab span info node
USAGE
void H5S__hyper_free_span_info(span_info)
H5S_hyper_span_info_t *span_info; IN: Span info node to free
RETURNS
None
DESCRIPTION
Free a hyperslab span info node, along with all the span nodes and the
'down spans' from the nodes, if reducing their reference count to zero
indicates it is appropriate to do so.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static void
H5S__hyper_free_span_info(H5S_hyper_span_info_t *span_info)
{
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(span_info);
/* Decrement the span tree's reference count */
span_info->count--;
/* Free the span tree if the reference count drops to zero */
if(span_info->count == 0) {
H5S_hyper_span_t *span; /* Pointer to spans to iterate over */
/* Work through the list of spans pointed to by this 'info' node */
span = span_info->head;
while(span != NULL) {
H5S_hyper_span_t *next_span; /* Pointer to next span to iterate over */
/* Keep a pointer to the next span */
next_span = span->next;
/* Free the current span */
H5S__hyper_free_span(span);
/* Advance to next span */
span = next_span;
} /* end while */
/* Free this span info */
span_info = (H5S_hyper_span_info_t *)H5FL_ARR_FREE(hbounds_t, span_info);
} /* end if */
FUNC_LEAVE_NOAPI_VOID
} /* end H5S__hyper_free_span_info() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_free_span
PURPOSE
Free a hyperslab span node
USAGE
void H5S__hyper_free_span(span)
H5S_hyper_span_t *span; IN: Span node to free
RETURNS
None
DESCRIPTION
Free a hyperslab span node, along with the 'down spans' from the node,
if reducing their reference count to zero indicates it is appropriate to
do so.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static void
H5S__hyper_free_span(H5S_hyper_span_t *span)
{
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(span);
/* Decrement the reference count of the 'down spans', freeing them if appropriate */
if(span->down != NULL)
H5S__hyper_free_span_info(span->down);
/* Free this span */
span = H5FL_FREE(H5S_hyper_span_t, span);
FUNC_LEAVE_NOAPI_VOID
} /* end H5S__hyper_free_span() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_copy
PURPOSE
Copy a selection from one dataspace to another
USAGE
herr_t H5S__hyper_copy(dst, src, share_selection)
H5S_t *dst; OUT: Pointer to the destination dataspace
H5S_t *src; IN: Pointer to the source dataspace
hbool_t; IN: Whether to share the selection between the dataspaces
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Copies all the hyperslab selection information from the source
dataspace to the destination dataspace.
If the SHARE_SELECTION flag is set, then the selection can be shared
between the source and destination dataspaces. (This should only occur in
situations where the destination dataspace will immediately change to a new
selection)
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection)
{
H5S_hyper_sel_t *dst_hslab; /* Pointer to destination hyperslab info */
const H5S_hyper_sel_t *src_hslab; /* Pointer to source hyperslab info */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(src);
HDassert(dst);
/* Allocate space for the hyperslab selection information */
if(NULL == (dst->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab info")
/* Set temporary pointers */
dst_hslab = dst->select.sel_info.hslab;
src_hslab = src->select.sel_info.hslab;
/* Copy the hyperslab information */
dst_hslab->diminfo_valid = src_hslab->diminfo_valid;
if(src_hslab->diminfo_valid == H5S_DIMINFO_VALID_YES)
H5MM_memcpy(&dst_hslab->diminfo, &src_hslab->diminfo, sizeof(H5S_hyper_diminfo_t));
/* Check if there is hyperslab span information to copy */
/* (Regular hyperslab information is copied with the selection structure) */
if(src->select.sel_info.hslab->span_lst != NULL) {
if(share_selection) {
/* Share the source's span tree by incrementing the reference count on it */
dst->select.sel_info.hslab->span_lst = src->select.sel_info.hslab->span_lst;
dst->select.sel_info.hslab->span_lst->count++;
} /* end if */
else
/* Copy the hyperslab span information */
dst->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(src->select.sel_info.hslab->span_lst, src->extent.rank);
} /* end if */
else
dst->select.sel_info.hslab->span_lst = NULL;
/* Copy the unlimited dimension info */
dst_hslab->unlim_dim = src_hslab->unlim_dim;
dst_hslab->num_elem_non_unlim = src_hslab->num_elem_non_unlim;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_copy() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_is_valid
PURPOSE
Check whether the selection fits within the extent, with the current
offset defined.
USAGE
htri_t H5S__hyper_is_valid(space);
H5S_t *space; IN: Dataspace pointer to query
RETURNS
TRUE if the selection fits within the extent, FALSE if it does not and
Negative on an error.
DESCRIPTION
Determines if the current selection at the current offset fits within the
extent for the dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S__hyper_is_valid(const H5S_t *space)
{
const hsize_t *low_bounds, *high_bounds; /* Pointers to the correct pair of low & high bounds */
unsigned u; /* Counter */
htri_t ret_value = TRUE; /* return value */
FUNC_ENTER_STATIC_NOERR
HDassert(space);
/* Check for unlimited selection */
if(space->select.sel_info.hslab->unlim_dim >= 0)
HGOTO_DONE(FALSE)
/* Check which set of low & high bounds we should be using */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
low_bounds = space->select.sel_info.hslab->diminfo.low_bounds;
high_bounds = space->select.sel_info.hslab->diminfo.high_bounds;
} /* end if */
else {
low_bounds = space->select.sel_info.hslab->span_lst->low_bounds;
high_bounds = space->select.sel_info.hslab->span_lst->high_bounds;
} /* end else */
/* Check each dimension */
for(u = 0; u < space->extent.rank; u++) {
/* Bounds check the selected point + offset against the extent */
if(((hssize_t)low_bounds[u] + space->select.offset[u]) < 0)
HGOTO_DONE(FALSE)
if((high_bounds[u] + (hsize_t)space->select.offset[u]) >= space->extent.size[u])
HGOTO_DONE(FALSE)
} /* end for */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_is_valid() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_span_nblocks_helper
PURPOSE
Helper routine to count the number of blocks in a span tree
USAGE
hsize_t H5S__hyper_span_nblocks_helper(spans)
H5S_hyper_span_info_t *spans; IN: Hyperslab span tree to count blocks of
uint64_t op_gen; IN: Operation generation
RETURNS
Number of blocks in span tree on success; negative on failure
DESCRIPTION
Counts the number of blocks described by the spans in a span tree.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S__hyper_span_nblocks_helper(H5S_hyper_span_info_t *spans, uint64_t op_gen)
{
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(spans);
/* Check if the span tree was already counted */
if(spans->op_gen == op_gen)
/* Just return the # of blocks in the already counted span tree */
ret_value = spans->u.nblocks;
else { /* Count the number of elements in the span tree */
H5S_hyper_span_t *span; /* Hyperslab span */
span = spans->head;
if(span->down) {
while(span) {
/* If there are down spans, add the total down span blocks */
ret_value += H5S__hyper_span_nblocks_helper(span->down, op_gen);
/* Advance to next span */
span = span->next;
} /* end while */
} /* end if */
else {
while(span) {
/* If there are no down spans, just count the block in this span */
ret_value++;
/* Advance to next span */
span = span->next;
} /* end while */
} /* end else */
/* Set the operation generation for this span tree, to avoid re-computing */
spans->op_gen = op_gen;
/* Hold a copy of the # of blocks */
spans->u.nblocks = ret_value;
} /* end else */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_span_nblocks_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_span_nblocks
PURPOSE
Count the number of blocks in a span tree
USAGE
hsize_t H5S__hyper_span_nblocks(spans)
H5S_hyper_span_info_t *spans; IN: Hyperslab span tree to count blocks of
RETURNS
Number of blocks in span tree on success; negative on failure
DESCRIPTION
Counts the number of blocks described by the spans in a span tree.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S__hyper_span_nblocks(H5S_hyper_span_info_t *spans)
{
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Count the number of elements in the span tree */
if(spans != NULL) {
uint64_t op_gen; /* Operation generation value */
/* Acquire an operation generation value for this operation */
op_gen = H5S__hyper_get_op_gen();
ret_value = H5S__hyper_span_nblocks_helper(spans, op_gen);
} /* end if */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_span_nblocks() */
/*--------------------------------------------------------------------------
NAME
H5S__get_select_hyper_nblocks
PURPOSE
Get the number of hyperslab blocks in current hyperslab selection
USAGE
hsize_t H5S__get_select_hyper_nblocks(space, app_ref)
H5S_t *space; IN: Dataspace ptr of selection to query
hbool_t app_ref; IN: Whether this is an appl. ref. call
RETURNS
The number of hyperslab blocks in selection on success, negative on failure
DESCRIPTION
Returns the number of hyperslab blocks in current selection for dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S__get_select_hyper_nblocks(const H5S_t *space, hbool_t app_ref)
{
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_STATIC_NOERR
HDassert(space);
HDassert(space->select.sel_info.hslab->unlim_dim < 0);
/* Check for a "regular" hyperslab selection */
/* (No need to rebuild the dimension info yet -QAK) */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
unsigned u; /* Local index variable */
/* Check each dimension */
for(ret_value = 1, u = 0; u < space->extent.rank; u++)
ret_value *= (app_ref ? space->select.sel_info.hslab->diminfo.app[u].count :
space->select.sel_info.hslab->diminfo.opt[u].count);
} /* end if */
else
ret_value = H5S__hyper_span_nblocks(space->select.sel_info.hslab->span_lst);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__get_select_hyper_nblocks() */
/*--------------------------------------------------------------------------
NAME
H5Sget_select_hyper_nblocks
PURPOSE
Get the number of hyperslab blocks in current hyperslab selection
USAGE
hssize_t H5Sget_select_hyper_nblocks(dsid)
hid_t dsid; IN: Dataspace ID of selection to query
RETURNS
The number of hyperslab blocks in selection on success, negative on failure
DESCRIPTION
Returns the number of hyperslab blocks in current selection for dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hssize_t
H5Sget_select_hyper_nblocks(hid_t spaceid)
{
H5S_t *space; /* Dataspace to modify selection of */
hssize_t ret_value; /* return value */
FUNC_ENTER_API(FAIL)
H5TRACE1("Hs", "i", spaceid);
/* Check args */
if(NULL == (space = (H5S_t *)H5I_object_verify(spaceid, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace")
if(H5S_GET_SELECT_TYPE(space) != H5S_SEL_HYPERSLABS)
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a hyperslab selection")
if(space->select.sel_info.hslab->unlim_dim >= 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot get number of blocks for unlimited selection")
ret_value = (hssize_t)H5S__get_select_hyper_nblocks(space, TRUE);
done:
FUNC_LEAVE_API(ret_value)
} /* end H5Sget_select_hyper_nblocks() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_get_enc_size_real
PURPOSE
Determine the size to encode the hyperslab selection info
USAGE
hssize_t H5S__hyper_get_enc_size_real(max_size, enc_size)
hsize_t max_size: IN: The maximum size of the hyperslab selection info
unint8_t *enc_size: OUT:The encoding size
RETURNS
The size to encode hyperslab selection info
DESCRIPTION
Determine the size by comparing "max_size" with (2^32 - 1) and (2^16 - 1).
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static uint8_t
H5S__hyper_get_enc_size_real(hsize_t max_size)
{
uint8_t ret_value = H5S_SELECT_INFO_ENC_SIZE_2;
FUNC_ENTER_STATIC_NOERR
if(max_size > H5S_UINT32_MAX)
ret_value = H5S_SELECT_INFO_ENC_SIZE_8;
else if(max_size > H5S_UINT16_MAX)
ret_value = H5S_SELECT_INFO_ENC_SIZE_4;
else
ret_value = H5S_SELECT_INFO_ENC_SIZE_2;
FUNC_LEAVE_NOAPI(ret_value)
} /* H5S__hyper_get_enc_size_real() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_get_version_enc_size
PURPOSE
Determine the version and encoded size to use for encoding hyperslab selection info
USAGE
hssize_t H5S__hyper_get_version_enc_size(space, block_count, version, enc_size)
const H5S_t *space: IN: The dataspace
hsize_t block_count: IN: The number of blocks in the selection
uint32_t *version: OUT: The version to use for encoding
uint8_t *enc_size: OUT: The encoded size to use
RETURNS
The version and the size to encode hyperslab selection info
DESCRIPTION
Determine the version to use for encoding hyperslab selection info based
on the following:
(1) the file format setting in fapl
(2) whether the number of blocks or selection high bounds exceeds H5S_UINT32_MAX or not
Determine the encoded size based on version:
For version 3, the encoded size is determined according to:
(a) regular hyperslab
(1) The maximum needed to store start/stride/count/block
(2) Special handling for count/block: need to provide room for H5S_UNLIMITED
(b) irregular hyperslab
The maximum size needed to store:
(1) the number of blocks
(2) the selection high bounds
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_get_version_enc_size(const H5S_t *space, hsize_t block_count, uint32_t *version, uint8_t *enc_size)
{
hsize_t bounds_start[H5S_MAX_RANK]; /* Starting coordinate of bounding box */
hsize_t bounds_end[H5S_MAX_RANK]; /* Opposite coordinate of bounding box */
hbool_t count_up_version = FALSE; /* Whether number of blocks exceed H5S_UINT32_MAX */
hbool_t bound_up_version = FALSE; /* Whether high bounds exceed H5S_UINT32_MAX */
H5F_libver_t low_bound; /* The 'low' bound of library format versions */
H5F_libver_t high_bound; /* The 'high' bound of library format versions */
htri_t is_regular; /* A regular hyperslab or not */
uint32_t tmp_version; /* Local temporay version */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Get bounding box for the selection */
HDmemset(bounds_end, 0, sizeof(bounds_end));
if(space->select.sel_info.hslab->unlim_dim < 0) /* ! H5S_UNLIMITED */
/* Get bounding box for the selection */
if(H5S__hyper_bounds(space, bounds_start, bounds_end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get selection bounds")
/* Determine whether the number of blocks or the high bounds in the selection exceed (2^32 - 1) */
if(block_count > H5S_UINT32_MAX)
count_up_version = TRUE;
else {
for(u = 0; u < space->extent.rank; u++)
if(bounds_end[u] > H5S_UINT32_MAX) {
bound_up_version = TRUE;
break;
} /* end if */
} /* end else */
/* Get the file's low_bound and high_bound */
if(H5CX_get_libver_bounds(&low_bound, &high_bound) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTGET, FAIL, "can't get low/high bounds from API context")
/* Determine regular hyperslab */
is_regular = H5S__hyper_is_regular(space);
if(low_bound >= H5F_LIBVER_V112 || space->select.sel_info.hslab->unlim_dim >= 0)
tmp_version = MAX(H5S_HYPER_VERSION_2, H5O_sds_hyper_ver_bounds[low_bound]);
else {
if(count_up_version || bound_up_version)
tmp_version = is_regular ? H5S_HYPER_VERSION_2 : H5S_HYPER_VERSION_3;
else
tmp_version = (is_regular && block_count >= 4) ? H5O_sds_hyper_ver_bounds[low_bound] : H5S_HYPER_VERSION_1;
} /* end else */
/* Version bounds check */
if(tmp_version > H5O_sds_hyper_ver_bounds[high_bound]) {
/* Fail for irregular hyperslab if exceeds 32 bits */
if(count_up_version)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "The number of blocks in hyperslab selection exceeds 2^32")
else if(bound_up_version)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "The end of bounding box in hyperslab selection exceeds 2^32")
else
HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "Dataspace hyperslab selection version out of bounds")
} /* end if */
/* Set the message version */
*version = tmp_version;
/* Determine the encoded size based on version */
switch(tmp_version) {
case H5S_HYPER_VERSION_1:
*enc_size = H5S_SELECT_INFO_ENC_SIZE_4;
break;
case H5S_HYPER_VERSION_2:
*enc_size = H5S_SELECT_INFO_ENC_SIZE_8;
break;
case H5S_HYPER_VERSION_3:
if(is_regular) {
uint8_t enc1, enc2;
hsize_t max1 = 0;
hsize_t max2 = 0;
/* Find max for count[] and block[] */
for(u = 0; u < space->extent.rank; u++) {
if(space->select.sel_info.hslab->diminfo.opt[u].count != H5S_UNLIMITED &&
space->select.sel_info.hslab->diminfo.opt[u].count > max1)
max1 = space->select.sel_info.hslab->diminfo.opt[u].count;
if(space->select.sel_info.hslab->diminfo.opt[u].block != H5S_UNLIMITED &&
space->select.sel_info.hslab->diminfo.opt[u].block > max1)
max1 = space->select.sel_info.hslab->diminfo.opt[u].block;
} /* end for */
/* +1 to provide room for H5S_UNLIMITED */
enc1 = H5S__hyper_get_enc_size_real(++max1);
/* Find max for start[] and stride[] */
for(u = 0; u < space->extent.rank; u++) {
if(space->select.sel_info.hslab->diminfo.opt[u].start > max2)
max2 = space->select.sel_info.hslab->diminfo.opt[u].start;
if(space->select.sel_info.hslab->diminfo.opt[u].stride > max2)
max2 = space->select.sel_info.hslab->diminfo.opt[u].stride;
} /* end for */
/* Determine the encoding size */
enc2 = H5S__hyper_get_enc_size_real(max2);
H5_CHECKED_ASSIGN(*enc_size, uint8_t, MAX(enc1, enc2), int);
} /* end if */
else {
hsize_t max_size = block_count;
HDassert(space->select.sel_info.hslab->unlim_dim < 0);
/* Find max for block_count and bounds_end[] */
for(u = 0; u < space->extent.rank; u++)
if(bounds_end[u] > max_size)
max_size = bounds_end[u];
/* Determine the encoding size */
*enc_size = H5S__hyper_get_enc_size_real(max_size);
} /* end else */
break;
default:
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown hyperslab selection version")
break;
} /* end switch */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* H5S__hyper_get_version_enc_size() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_serial_size
PURPOSE
Determine the number of bytes needed to store the serialized hyperslab
selection information.
USAGE
hssize_t H5S__hyper_serial_size(space)
H5S_t *space; IN: Dataspace pointer to query
RETURNS
The number of bytes required on success, negative on an error.
DESCRIPTION
Determines the number of bytes required to serialize the current hyperslab
selection information for storage on disk.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hssize_t
H5S__hyper_serial_size(const H5S_t *space)
{
hsize_t block_count = 0; /* block counter for regular hyperslabs */
uint32_t version; /* Version number */
uint8_t enc_size; /* Encoded size of hyerslab selection info */
hssize_t ret_value = -1; /* return value */
FUNC_ENTER_STATIC
HDassert(space);
if(space->select.sel_info.hslab->unlim_dim < 0) /* ! H5S_UNLIMITED */
block_count = H5S__get_select_hyper_nblocks(space, FALSE);
/* Determine the version and the encoded size */
if(H5S__hyper_get_version_enc_size(space, block_count, &version, &enc_size) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't determine hyper version & enc_size")
if(version == H5S_HYPER_VERSION_3) {
/* Version 3: regular */
/* Size required is always:
* <type (4 bytes)> + <version (4 bytes)> + <flags (1 byte)> +
* <size of offset info (1 byte)> + <rank (4 bytes)> +
* (4 (start/stride/count/block) * <enc_size> * <rank>) =
* 14 + (4 * enc_size * rank) bytes
*/
if(H5S__hyper_is_regular(space))
ret_value = (hssize_t)14 +
((hssize_t)4 * (hssize_t)enc_size * (hssize_t)space->extent.rank);
else {
/* Version 3: irregular */
/* Size required is always:
* <type (4 bytes)> + <version (4 bytes)> + <flags (1 byte)> +
* <size of offset info (1 byte)> + <rank (4 bytes)> +
* < # of blocks (depend on enc_size) > +
* (2 (starting/ending offset) * <rank> * <enc_size> * <# of blocks) =
* = 14 bytes + enc_size (block_count) + (2 * enc_size * rank * block_count) bytes
*/
ret_value = 14 + enc_size;
H5_CHECK_OVERFLOW(((unsigned)2 * enc_size * space->extent.rank * block_count), hsize_t, hssize_t);
ret_value += (hssize_t)((unsigned)2 * enc_size * space->extent.rank * block_count);
} /* end else */
} /* end if */
else if(version == H5S_HYPER_VERSION_2) {
/* Version 2 */
/* Size required is always:
* <type (4 bytes)> + <version (4 bytes)> + <flags (1 byte)> +
* <length (4 bytes)> + <rank (4 bytes)> +
* (4 (start/stride/count/block) * <enc_size (8 bytes)> * <rank>) =
* 17 + (4 * 8 * rank) bytes
*/
HDassert(enc_size == 8);
ret_value = (hssize_t)17 + ((hssize_t)4 * (hssize_t)8 * (hssize_t)space->extent.rank);
} /* end else-if */
else {
HDassert(version == H5S_HYPER_VERSION_1);
HDassert(enc_size == 4);
/* Version 1 */
/* Basic number of bytes required to serialize hyperslab selection:
* <type (4 bytes)> + <version (4 bytes)> + <padding (4 bytes)> +
* <length (4 bytes)> + <rank (4 bytes)> + <# of blocks (4 bytes)> +
* (2 (starting/ending offset) * <enc_size (4 bytes)> * <rank> * <# of blocks) =
* = 24 bytes + (2 * 4 * rank * block_count)
*/
ret_value = 24;
H5_CHECK_OVERFLOW((8 * space->extent.rank * block_count), hsize_t, hssize_t);
ret_value += (hssize_t)(8 * space->extent.rank * block_count);
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_serial_size() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_serialize_helper
PURPOSE
Serialize the current selection into a user-provided buffer.
USAGE
void H5S__hyper_serialize_helper(spans, start, end, rank, enc_size, buf)
H5S_hyper_span_info_t *spans; IN: Hyperslab span tree to serialize
hssize_t start[]; IN/OUT: Accumulated start points
hssize_t end[]; IN/OUT: Accumulated end points
hsize_t rank; IN: Current rank looking at
uint8_t enc_size IN: Encoded size of hyperslab selection info
uint8_t *buf; OUT: Buffer to put serialized selection into
RETURNS
None
DESCRIPTION
Serializes the current element selection into a buffer. (Primarily for
storing on disk).
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static void
H5S__hyper_serialize_helper(const H5S_hyper_span_info_t *spans,
hsize_t *start, hsize_t *end, hsize_t rank, uint8_t enc_size, uint8_t **p)
{
H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */
uint8_t *pp = (*p); /* Local pointer for decoding */
FUNC_ENTER_STATIC_NOERR
/* Sanity checks */
HDassert(spans);
HDassert(start);
HDassert(end);
HDassert(rank < H5S_MAX_RANK);
HDassert(p && pp);
/* Walk through the list of spans, recursing or outputting them */
curr = spans->head;
while(curr != NULL) {
/* Recurse if this node has down spans */
if(curr->down != NULL) {
/* Add the starting and ending points for this span to the list */
start[rank] = curr->low;
end[rank] = curr->high;
/* Recurse down to the next dimension */
H5S__hyper_serialize_helper(curr->down, start, end, rank + 1, enc_size, &pp);
} /* end if */
else {
hsize_t u; /* Index variable */
/* Encode all the previous dimensions starting & ending points */
switch(enc_size) {
case H5S_SELECT_INFO_ENC_SIZE_2:
/* Encode previous starting points */
for(u=0; u<rank; u++)
UINT16ENCODE(pp, (uint16_t)start[u]);
/* Encode starting point for this span */
UINT16ENCODE(pp, (uint16_t)curr->low);
/* Encode previous ending points */
for(u=0; u<rank; u++)
UINT16ENCODE(pp, (uint16_t)end[u]);
/* Encode starting point for this span */
UINT16ENCODE(pp, (uint16_t)curr->high);
break;
case H5S_SELECT_INFO_ENC_SIZE_4:
/* Encode previous starting points */
for(u=0; u<rank; u++)
UINT32ENCODE(pp, (uint32_t)start[u]);
/* Encode starting point for this span */
UINT32ENCODE(pp, (uint32_t)curr->low);
/* Encode previous ending points */
for(u=0; u<rank; u++)
UINT32ENCODE(pp, (uint32_t)end[u]);
/* Encode starting point for this span */
UINT32ENCODE(pp, (uint32_t)curr->high);
break;
case H5S_SELECT_INFO_ENC_SIZE_8:
/* Encode previous starting points */
for(u=0; u<rank; u++)
UINT64ENCODE(pp, (uint64_t)start[u]);
/* Encode starting point for this span */
UINT64ENCODE(pp, (uint64_t)curr->low);
/* Encode previous ending points */
for(u=0; u<rank; u++)
UINT64ENCODE(pp, (uint64_t)end[u]);
/* Encode starting point for this span */
UINT64ENCODE(pp, (uint64_t)curr->high);
break;
default:
HDassert(0 && "Unknown enc size?!?");
} /* end switch */
} /* end else */
/* Advance to next node */
curr = curr->next;
} /* end while */
/* Update encoding pointer */
*p = pp;
FUNC_LEAVE_NOAPI_VOID
} /* end H5S__hyper_serialize_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_serialize
PURPOSE
Serialize the current selection into a user-provided buffer.
USAGE
herr_t H5S_hyper_serialize(space, p)
const H5S_t *space; IN: Dataspace with selection to serialize
uint8_t **p; OUT: Pointer to buffer to put serialized
selection. Will be advanced to end of
serialized selection.
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Serializes the current element selection into a buffer. (Primarily for
storing on disk).
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_serialize(const H5S_t *space, uint8_t **p)
{
const H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */
hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary hyperslab counts */
hsize_t offset[H5S_MAX_RANK]; /* Offset of element in dataspace */
hsize_t start[H5S_MAX_RANK]; /* Location of start of hyperslab */
hsize_t end[H5S_MAX_RANK]; /* Location of end of hyperslab */
uint8_t *pp; /* Local pointer for decoding */
uint8_t *lenp = NULL; /* pointer to length location for later storage */
uint32_t len = 0; /* number of bytes used */
uint32_t version; /* Version number */
uint8_t flags = 0; /* Flags for message */
hsize_t block_count = 0; /* block counter for regular hyperslabs */
unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */
unsigned ndims; /* Rank of the dataspace */
unsigned u; /* Local counting variable */
hbool_t complete = FALSE; /* Whether we are done with the iteration */
hbool_t is_regular; /* Whether selection is regular */
uint8_t enc_size;
herr_t ret_value = SUCCEED; /* return value */
FUNC_ENTER_STATIC
/* Sanity checks */
HDassert(space);
HDassert(p);
pp = (*p);
HDassert(pp);
/* Set some convienence values */
ndims = space->extent.rank;
diminfo = space->select.sel_info.hslab->diminfo.opt;
if(space->select.sel_info.hslab->unlim_dim < 0) /* ! H5S_UNLIMITED */
block_count = H5S__get_select_hyper_nblocks(space, FALSE);
/* Determine the version and the encoded size */
if(H5S__hyper_get_version_enc_size(space, block_count, &version, &enc_size) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't determine hyper version & enc_size")
is_regular = H5S__hyper_is_regular(space);
if(is_regular &&
(version == H5S_HYPER_VERSION_2 || version == H5S_HYPER_VERSION_3))
flags |= H5S_HYPER_REGULAR;
/* Store the preamble information */
UINT32ENCODE(pp, (uint32_t)H5S_GET_SELECT_TYPE(space)); /* Store the type of selection */
UINT32ENCODE(pp, version); /* Store the version number */
if(version >= 3) {
*(pp)++ = flags; /* Store the flags */
*(pp)++ = enc_size; /* Store size of offset info */
} /* end if */
else {
if(version == 2)
*(pp)++ = flags; /* Store the flags */
else
UINT32ENCODE(pp, (uint32_t)0); /* Store the un-used padding */
lenp = pp; /* keep the pointer to the length location for later */
pp += 4; /* skip over space for length */
len += 4; /* ndims */
} /* end else */
/* Encode number of dimensions */
UINT32ENCODE(pp, (uint32_t)ndims);
if(is_regular) {
if(version >= H5S_HYPER_VERSION_2) {
HDassert(H5S_UNLIMITED == HSIZE_UNDEF);
/* Iterate over dimensions */
/* Encode start/stride/block/count */
switch(enc_size) {
case H5S_SELECT_INFO_ENC_SIZE_2:
HDassert(version == H5S_HYPER_VERSION_3);
for(u = 0; u < space->extent.rank; u++) {
UINT16ENCODE(pp, diminfo[u].start);
UINT16ENCODE(pp, diminfo[u].stride);
if(diminfo[u].count == H5S_UNLIMITED)
UINT16ENCODE(pp, H5S_UINT16_MAX)
else
UINT16ENCODE(pp, diminfo[u].count)
if(diminfo[u].block == H5S_UNLIMITED)
UINT16ENCODE(pp, H5S_UINT16_MAX)
else
UINT16ENCODE(pp, diminfo[u].block)
} /* end for */
break;
case H5S_SELECT_INFO_ENC_SIZE_4:
HDassert(version == H5S_HYPER_VERSION_3);
for(u = 0; u < space->extent.rank; u++) {
UINT32ENCODE(pp, diminfo[u].start);
UINT32ENCODE(pp, diminfo[u].stride);
if(diminfo[u].count == H5S_UNLIMITED)
UINT32ENCODE(pp, H5S_UINT32_MAX)
else
UINT32ENCODE(pp, diminfo[u].count)
if(diminfo[u].block == H5S_UNLIMITED)
UINT32ENCODE(pp, H5S_UINT32_MAX)
else
UINT32ENCODE(pp, diminfo[u].block)
} /* end for */
break;
case H5S_SELECT_INFO_ENC_SIZE_8:
HDassert(version == H5S_HYPER_VERSION_2 || version == H5S_HYPER_VERSION_3);
for(u = 0; u < space->extent.rank; u++) {
UINT64ENCODE(pp, diminfo[u].start);
UINT64ENCODE(pp, diminfo[u].stride);
if(diminfo[u].count == H5S_UNLIMITED)
UINT64ENCODE(pp, H5S_UINT64_MAX)
else
UINT64ENCODE(pp, diminfo[u].count)
if(diminfo[u].block == H5S_UNLIMITED)
UINT64ENCODE(pp, H5S_UINT64_MAX)
else
UINT64ENCODE(pp, diminfo[u].block)
} /* end for */
if(version == H5S_HYPER_VERSION_2)
len += (4 * space->extent.rank * 8);
break;
default:
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab")
break;
} /* end switch */
} /* end if */
else {
HDassert(version == H5S_HYPER_VERSION_1);
/* Set some convienence values */
fast_dim = ndims - 1;
/* Encode number of hyperslabs */
H5_CHECK_OVERFLOW(block_count, hsize_t, uint32_t);
UINT32ENCODE(pp, (uint32_t)block_count);
len += 4;
/* Now serialize the information for the regular hyperslab */
/* Build the tables of count sizes as well as the initial offset */
for(u = 0; u < ndims; u++) {
tmp_count[u] = diminfo[u].count;
offset[u] = diminfo[u].start;
} /* end for */
/* Go iterate over the hyperslabs */
while(complete == FALSE) {
/* Iterate over the blocks in the fastest dimension */
while(tmp_count[fast_dim] > 0) {
/* Add 8 bytes times the rank for each hyperslab selected */
len += 8 * ndims;
/* Encode hyperslab starting location */
for(u = 0; u < ndims; u++)
UINT32ENCODE(pp, (uint32_t)offset[u]);
/* Encode hyperslab ending location */
for(u = 0; u < ndims; u++)
UINT32ENCODE(pp, (uint32_t)(offset[u] + (diminfo[u].block - 1)));
/* Move the offset to the next sequence to start */
offset[fast_dim]+=diminfo[fast_dim].stride;
/* Decrement the block count */
tmp_count[fast_dim]--;
} /* end while */
/* Work on other dimensions if necessary */
if(fast_dim > 0) {
int temp_dim; /* Temporary rank holder */
/* Reset the block counts */
tmp_count[fast_dim] = diminfo[fast_dim].count;
/* Bubble up the decrement to the slower changing dimensions */
temp_dim = (int)fast_dim - 1;
while(temp_dim >= 0 && complete == FALSE) {
/* Decrement the block count */
tmp_count[temp_dim]--;
/* Check if we have more blocks left */
if(tmp_count[temp_dim] > 0)
break;
/* Check for getting out of iterator */
if(temp_dim == 0)
complete = TRUE;
/* Reset the block count in this dimension */
tmp_count[temp_dim] = diminfo[temp_dim].count;
/* Wrapped a dimension, go up to next dimension */
temp_dim--;
} /* end while */
} /* end if */
else
break; /* Break out now, for 1-D selections */
/* Re-compute offset array */
for(u = 0; u < ndims; u++)
offset[u] = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]);
} /* end while */
} /* end else */
} /* end if */
else { /* irregular */
/* Encode number of hyperslabs */
switch(enc_size) {
case H5S_SELECT_INFO_ENC_SIZE_2:
HDassert(version == H5S_HYPER_VERSION_3);
H5_CHECK_OVERFLOW(block_count, hsize_t, uint16_t);
UINT16ENCODE(pp, (uint16_t)block_count);
break;
case H5S_SELECT_INFO_ENC_SIZE_4:
HDassert(version == H5S_HYPER_VERSION_1 || version == H5S_HYPER_VERSION_3);
H5_CHECK_OVERFLOW(block_count, hsize_t, uint32_t);
UINT32ENCODE(pp, (uint32_t)block_count);
break;
case H5S_SELECT_INFO_ENC_SIZE_8:
HDassert(version == H5S_HYPER_VERSION_3);
UINT64ENCODE(pp, block_count);
break;
default:
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab")
break;
} /* end switch */
if(version == H5S_HYPER_VERSION_1) {
len += 4; /* block_count */
/* Add 8 bytes times the rank for each hyperslab selected */
H5_CHECK_OVERFLOW((8 * ndims * block_count), hsize_t, size_t);
len += (uint32_t)(8 * ndims * block_count);
} /* end if */
H5S__hyper_serialize_helper(space->select.sel_info.hslab->span_lst, start, end, (hsize_t)0, enc_size, &pp);
} /* end else */
/* Encode length */
if(version <= H5S_HYPER_VERSION_2)
UINT32ENCODE(lenp, (uint32_t)len); /* Store the length of the extra information */
/* Update encoding pointer */
*p = pp;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_serialize() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_deserialize
PURPOSE
Deserialize the current selection from a user-provided buffer.
USAGE
herr_t H5S__hyper_deserialize(space, p)
H5S_t **space; IN/OUT: Dataspace pointer to place
selection into
uint8 **p; OUT: Pointer to buffer holding serialized
selection. Will be advanced to end of
serialized selection.
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Deserializes the current selection into a buffer. (Primarily for retrieving
from disk).
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_deserialize(H5S_t **space, const uint8_t **p)
{
H5S_t *tmp_space = NULL; /* Pointer to actual dataspace to use,
either *space or a newly allocated one */
hsize_t dims[H5S_MAX_RANK]; /* Dimenion sizes */
hsize_t start[H5S_MAX_RANK]; /* hyperslab start information */
hsize_t block[H5S_MAX_RANK]; /* hyperslab block information */
uint32_t version; /* Version number */
uint8_t flags = 0; /* Flags */
uint8_t enc_size = 0; /* Encoded size of selection info */
unsigned rank; /* rank of points */
const uint8_t *pp; /* Local pointer for decoding */
unsigned u; /* Local counting variable */
herr_t ret_value=FAIL; /* return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(p);
pp = (*p);
HDassert(pp);
/* As part of the efforts to push all selection-type specific coding
to the callbacks, the coding for the allocation of a null dataspace
is moved from H5S_select_deserialize() in H5Sselect.c to here.
This is needed for decoding virtual layout in H5O__layout_decode() */
/* Allocate space if not provided */
if(!*space) {
if(NULL == (tmp_space = H5S_create(H5S_SIMPLE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, FAIL, "can't create dataspace")
} /* end if */
else
tmp_space = *space;
/* Decode version */
UINT32DECODE(pp, version);
if(version >= (uint32_t)H5S_HYPER_VERSION_2) {
/* Decode flags */
flags = *(pp)++;
if(version >= (uint32_t)H5S_HYPER_VERSION_3)
/* decode size of offset info */
enc_size = *(pp)++;
else {
/* Skip over the remainder of the header */
pp += 4;
enc_size = H5S_SELECT_INFO_ENC_SIZE_8;
} /* end else */
/* Check for unknown flags */
if(flags & ~H5S_SELECT_FLAG_BITS)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTLOAD, FAIL, "unknown flag for selection")
} /* end if */
else {
/* Skip over the remainder of the header */
pp += 8;
enc_size = H5S_SELECT_INFO_ENC_SIZE_4;
} /* end else */
/* Check encoded */
if(enc_size & ~H5S_SELECT_INFO_ENC_SIZE_BITS)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTLOAD, FAIL, "unknown size of point/offset info for selection")
/* Decode the rank of the point selection */
UINT32DECODE(pp,rank);
if(!*space) {
/* Patch the rank of the allocated dataspace */
(void)HDmemset(dims, 0, (size_t)rank * sizeof(dims[0]));
if(H5S_set_extent_simple(tmp_space, rank, dims, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "can't set dimensions")
} /* end if */
else
/* Verify the rank of the provided dataspace */
if(rank != tmp_space->extent.rank)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "rank of serialized selection does not match dataspace")
if(flags & H5S_HYPER_REGULAR) {
hsize_t stride[H5S_MAX_RANK]; /* Hyperslab stride information */
hsize_t count[H5S_MAX_RANK]; /* Hyperslab count information */
/* Sanity checks */
HDassert(H5S_UNLIMITED == HSIZE_UNDEF);
HDassert(version >= 2);
/* Decode start/stride/block/count */
switch(enc_size) {
case H5S_SELECT_INFO_ENC_SIZE_2:
for(u = 0; u < tmp_space->extent.rank; u++) {
UINT16DECODE(pp, start[u]);
UINT16DECODE(pp, stride[u]);
UINT16DECODE(pp, count[u]);
if((uint16_t)count[u] == H5S_UINT16_MAX)
count[u] = H5S_UNLIMITED;
UINT16DECODE(pp, block[u]);
if((uint16_t)block[u] == H5S_UINT16_MAX)
block[u] = H5S_UNLIMITED;
} /* end for */
break;
case H5S_SELECT_INFO_ENC_SIZE_4:
for(u = 0; u < tmp_space->extent.rank; u++) {
UINT32DECODE(pp, start[u]);
UINT32DECODE(pp, stride[u]);
UINT32DECODE(pp, count[u]);
if((uint32_t)count[u] == H5S_UINT32_MAX)
count[u] = H5S_UNLIMITED;
UINT32DECODE(pp, block[u]);
if((uint32_t)block[u] == H5S_UINT32_MAX)
block[u] = H5S_UNLIMITED;
} /* end for */
break;
case H5S_SELECT_INFO_ENC_SIZE_8:
for(u = 0; u < tmp_space->extent.rank; u++) {
UINT64DECODE(pp, start[u]);
UINT64DECODE(pp, stride[u]);
UINT64DECODE(pp, count[u]);
if((uint64_t)count[u] == H5S_UINT64_MAX)
count[u] = H5S_UNLIMITED;
UINT64DECODE(pp, block[u]);
if((uint64_t)block[u] == H5S_UINT64_MAX)
block[u] = H5S_UNLIMITED;
} /* end for */
break;
default:
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab")
break;
} /* end switch */
/* Select the hyperslab to the current selection */
if((ret_value = H5S_select_hyperslab(tmp_space, H5S_SELECT_SET, start, stride, count, block)) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't change selection")
} /* end if */
else {
const hsize_t *stride; /* Hyperslab stride information */
const hsize_t *count; /* Hyperslab count information */
hsize_t end[H5S_MAX_RANK]; /* Hyperslab end information */
hsize_t *tstart; /* Temporary hyperslab pointers */
hsize_t *tend; /* Temporary hyperslab pointers */
hsize_t *tblock; /* Temporary hyperslab pointers */
size_t num_elem; /* Number of elements in selection */
unsigned v; /* Local counting variable */
/* decode the number of blocks */
switch(enc_size) {
case H5S_SELECT_INFO_ENC_SIZE_2:
UINT16DECODE(pp, num_elem);
break;
case H5S_SELECT_INFO_ENC_SIZE_4:
UINT32DECODE(pp, num_elem);
break;
case H5S_SELECT_INFO_ENC_SIZE_8:
UINT64DECODE(pp, num_elem);
break;
default:
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab")
break;
} /* end switch */
/* Set the count & stride for all blocks */
stride = count = H5S_hyper_ones_g;
/* Retrieve the coordinates from the buffer */
for(u = 0; u < num_elem; u++) {
/* Decode the starting and ending points */
switch(enc_size) {
case H5S_SELECT_INFO_ENC_SIZE_2:
for(tstart = start, v = 0; v < rank; v++, tstart++)
UINT16DECODE(pp, *tstart);
for(tend = end, v = 0; v < rank; v++, tend++)
UINT16DECODE(pp, *tend);
break;
case H5S_SELECT_INFO_ENC_SIZE_4:
for(tstart = start,v = 0; v < rank; v++, tstart++)
UINT32DECODE(pp, *tstart);
for(tend = end, v = 0; v < rank; v++, tend++)
UINT32DECODE(pp, *tend);
break;
case H5S_SELECT_INFO_ENC_SIZE_8:
for(tstart = start, v = 0; v < rank; v++, tstart++)
UINT64DECODE(pp, *tstart);
for(tend = end, v = 0; v < rank; v++, tend++)
UINT64DECODE(pp, *tend);
break;
default:
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab")
break;
} /* end switch */
/* Change the ending points into blocks */
for(tblock = block, tstart = start, tend = end, v = 0; v < rank; v++, tstart++, tend++, tblock++)
*tblock = (*tend - *tstart) + 1;
/* Select or add the hyperslab to the current selection */
if((ret_value = H5S_select_hyperslab(tmp_space, (u == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, stride, count, block)) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't change selection")
} /* end for */
} /* end else */
/* Update decoding pointer */
*p = pp;
/* Return space to the caller if allocated */
if(!*space)
*space = tmp_space;
done:
/* Free temporary space if not passed to caller (only happens on error) */
if(!*space && tmp_space)
if(H5S_close(tmp_space) < 0)
HDONE_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "can't close dataspace")
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_deserialize() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_span_blocklist
PURPOSE
Get a list of hyperslab blocks currently selected
USAGE
herr_t H5S__hyper_span_blocklist(spans, start, end, rank, startblock, numblocks, buf)
H5S_hyper_span_info_t *spans; IN: Dataspace pointer of selection to query
hsize_t start[]; IN/OUT: Accumulated start points
hsize_t end[]; IN/OUT: Accumulated end points
hsize_t rank; IN: Rank of dataspace
hsize_t *startblock; IN/OUT: Hyperslab block to start with
hsize_t *numblocks; IN/OUT: Number of hyperslab blocks to get
hsize_t **buf; OUT: List of hyperslab blocks selected
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Puts a list of the hyperslab blocks into the user's buffer. The blocks
start with the '*startblock'th block in the list of blocks and put
'*numblocks' number of blocks into the user's buffer (or until the end of
the list of blocks, whichever happens first)
The block coordinates have the same dimensionality (rank) as the
dataspace they are located within. The list of blocks is formatted as
follows: <"start" coordinate> immediately followed by <"opposite" corner
coordinate>, followed by the next "start" and "opposite" coordinate, etc.
until all the block information requested has been put into the user's
buffer.
No guarantee of any order of the blocks is implied.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_span_blocklist(const H5S_hyper_span_info_t *spans, hsize_t start[],
hsize_t end[], hsize_t rank, hsize_t *startblock, hsize_t *numblocks,
hsize_t **buf)
{
const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */
herr_t ret_value = SUCCEED; /* return value */
FUNC_ENTER_STATIC
/* Sanity checks */
HDassert(spans);
HDassert(rank < H5S_MAX_RANK);
HDassert(start);
HDassert(end);
HDassert(startblock);
HDassert(numblocks && *numblocks > 0);
HDassert(buf && *buf);
/* Walk through the list of spans, recursing or outputting them */
curr = spans->head;
while(curr != NULL && *numblocks > 0) {
/* Recurse if this node has down spans */
if(curr->down != NULL) {
/* Add the starting and ending points for this span to the list */
start[rank] = curr->low;
end[rank] = curr->high;
/* Recurse down to the next dimension */
if(H5S__hyper_span_blocklist(curr->down, start, end, (rank + 1), startblock, numblocks, buf) < 0)
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans")
} /* end if */
else {
/* Skip this block if we haven't skipped all the startblocks yet */
if(*startblock > 0) {
/* Decrement the starting block */
(*startblock)--;
} /* end if */
/* Process this block */
else {
/* Encode all the previous dimensions starting & ending points */
/* Copy previous starting points */
H5MM_memcpy(*buf, start, rank * sizeof(hsize_t));
(*buf) += rank;
/* Copy starting point for this span */
**buf = curr->low;
(*buf)++;
/* Copy previous ending points */
H5MM_memcpy(*buf, end, rank * sizeof(hsize_t));
(*buf) += rank;
/* Copy ending point for this span */
**buf = curr->high;
(*buf)++;
/* Decrement the number of blocks processed */
(*numblocks)--;
} /* end else */
} /* end else */
/* Advance to next node */
curr = curr->next;
} /* end while */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_span_blocklist() */
/*--------------------------------------------------------------------------
NAME
H5S__get_select_hyper_blocklist
PURPOSE
Get the list of hyperslab blocks currently selected
USAGE
herr_t H5S__get_select_hyper_blocklist(space, startblock, numblocks, buf)
H5S_t *space; IN: Dataspace pointer of selection to query
hsize_t startblock; IN: Hyperslab block to start with
hsize_t numblocks; IN: Number of hyperslab blocks to get
hsize_t *buf; OUT: List of hyperslab blocks selected
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Puts a list of the hyperslab blocks into the user's buffer. The blocks
start with the 'startblock'th block in the list of blocks and put
'numblocks' number of blocks into the user's buffer (or until the end of
the list of blocks, whichever happens first)
The block coordinates have the same dimensionality (rank) as the
dataspace they are located within. The list of blocks is formatted as
follows: <"start" coordinate> immediately followed by <"opposite" corner
coordinate>, followed by the next "start" and "opposite" coordinate, etc.
until all the block information requested has been put into the user's
buffer.
No guarantee of any order of the blocks is implied.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__get_select_hyper_blocklist(H5S_t *space, hsize_t startblock,
hsize_t numblocks, hsize_t *buf)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC_NOERR
HDassert(space);
HDassert(buf);
HDassert(space->select.sel_info.hslab->unlim_dim < 0);
/* Attempt to rebuild diminfo if it is invalid and has not been confirmed
* to be impossible.
*/
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO)
H5S__hyper_rebuild(space);
/* Check for a "regular" hyperslab selection */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
const H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */
hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary hyperslab counts */
hsize_t offset[H5S_MAX_RANK]; /* Offset of element in dataspace */
hsize_t end[H5S_MAX_RANK]; /* End of elements in dataspace */
unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */
unsigned ndims; /* Rank of the dataspace */
hbool_t done; /* Whether we are done with the iteration */
unsigned u; /* Counter */
/* Set some convienence values */
ndims = space->extent.rank;
fast_dim = ndims - 1;
/* Check which set of dimension information to use */
if(space->select.sel_info.hslab->unlim_dim >= 0)
/*
* There is an unlimited dimension so we must use diminfo.opt as
* it has been "clipped" to the current extent.
*/
diminfo = space->select.sel_info.hslab->diminfo.opt;
else
/*
* Use the "application dimension information" to pass back to
* the user the blocks they set, not the optimized, internal
* information.
*/
diminfo = space->select.sel_info.hslab->diminfo.app;
/* Build the tables of count sizes as well as the initial offset */
for(u = 0; u < ndims; u++) {
tmp_count[u] = diminfo[u].count;
offset[u] = diminfo[u].start;
end[u] = diminfo[u].start + (diminfo[u].block - 1);
} /* end for */
/* We're not done with the iteration */
done = FALSE;
/* Go iterate over the hyperslabs */
while(!done && numblocks > 0) {
/* Skip over initial blocks */
if(startblock > 0) {
/* Skip all blocks in row */
if(startblock >= tmp_count[fast_dim]) {
startblock -= tmp_count[fast_dim];
tmp_count[fast_dim] = 0;
} /* end if */
else {
/* Move the offset to the next sequence to start */
offset[fast_dim] += diminfo[fast_dim].stride * startblock;
end[fast_dim] += diminfo[fast_dim].stride * startblock;
/* Decrement the block count */
tmp_count[fast_dim] -= startblock;
/* Done with starting blocks */
startblock = 0;
} /* end else */
} /* end if */
/* Iterate over the blocks in the fastest dimension */
while(tmp_count[fast_dim] > 0 && numblocks > 0) {
/* Sanity check */
HDassert(startblock == 0);
/* Copy the starting location */
H5MM_memcpy(buf, offset, sizeof(hsize_t) * ndims);
buf += ndims;
/* Compute the ending location */
H5MM_memcpy(buf, end, sizeof(hsize_t) * ndims);
buf += ndims;
/* Decrement the number of blocks to retrieve */
numblocks--;
/* Move the offset to the next sequence to start */
offset[fast_dim] += diminfo[fast_dim].stride;
end[fast_dim] += diminfo[fast_dim].stride;
/* Decrement the block count */
tmp_count[fast_dim]--;
} /* end while */
/* Work on other dimensions if necessary */
if(fast_dim > 0 && numblocks > 0) {
int temp_dim; /* Temporary rank holder */
/* Reset the block counts */
tmp_count[fast_dim] = diminfo[fast_dim].count;
/* Bubble up the decrement to the slower changing dimensions */
temp_dim = (int)(fast_dim - 1);
while(temp_dim >= 0 && !done) {
/* Decrement the block count */
tmp_count[temp_dim]--;
/* Check if we have more blocks left */
if(tmp_count[temp_dim] > 0)
break;
/* Reset the block count in this dimension */
tmp_count[temp_dim] = diminfo[temp_dim].count;
/* Check for getting out of iterator */
if(temp_dim == 0)
done = TRUE;
/* Wrapped a dimension, go up to next dimension */
temp_dim--;
} /* end while */
} /* end if */
/* Re-compute offset & end arrays */
if(!done)
for(u = 0; u < ndims; u++) {
offset[u] = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]);
end[u] = offset[u] + (diminfo[u].block - 1);
} /* end for */
} /* end while */
} /* end if */
else {
hsize_t start[H5S_MAX_RANK]; /* Location of start of hyperslab */
hsize_t end[H5S_MAX_RANK]; /* Location of end of hyperslab */
ret_value = H5S__hyper_span_blocklist(space->select.sel_info.hslab->span_lst, start, end, (hsize_t)0, &startblock, &numblocks, &buf);
} /* end else */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__get_select_hyper_blocklist() */
/*--------------------------------------------------------------------------
NAME
H5Sget_select_hyper_blocklist
PURPOSE
Get the list of hyperslab blocks currently selected
USAGE
herr_t H5Sget_select_hyper_blocklist(dsid, startblock, numblocks, buf)
hid_t dsid; IN: Dataspace ID of selection to query
hsize_t startblock; IN: Hyperslab block to start with
hsize_t numblocks; IN: Number of hyperslab blocks to get
hsize_t buf[]; OUT: List of hyperslab blocks selected
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Puts a list of the hyperslab blocks into the user's buffer. The blocks
start with the 'startblock'th block in the list of blocks and put
'numblocks' number of blocks into the user's buffer (or until the end of
the list of blocks, whichever happen first)
The block coordinates have the same dimensionality (rank) as the
dataspace they are located within. The list of blocks is formatted as
follows: <"start" coordinate> immediately followed by <"opposite" corner
coordinate>, followed by the next "start" and "opposite" coordinate, etc.
until all the block information requested has been put into the user's
buffer.
No guarantee of any order of the blocks is implied.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5Sget_select_hyper_blocklist(hid_t spaceid, hsize_t startblock,
hsize_t numblocks, hsize_t buf[/*numblocks*/])
{
H5S_t *space; /* Dataspace to modify selection of */
herr_t ret_value; /* return value */
FUNC_ENTER_API(FAIL)
H5TRACE4("e", "ihh*[a2]h", spaceid, startblock, numblocks, buf);
/* Check args */
if(buf == NULL)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid pointer")
if(NULL == (space = (H5S_t *)H5I_object_verify(spaceid, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace")
if(H5S_GET_SELECT_TYPE(space)!=H5S_SEL_HYPERSLABS)
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a hyperslab selection")
if(space->select.sel_info.hslab->unlim_dim >= 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot get blocklist for unlimited selection")
/* Go get the correct number of blocks */
if(numblocks > 0)
ret_value = H5S__get_select_hyper_blocklist(space, startblock, numblocks, buf);
else
ret_value = SUCCEED; /* Successfully got 0 blocks... */
done:
FUNC_LEAVE_API(ret_value)
} /* end H5Sget_select_hyper_blocklist() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_bounds
PURPOSE
Gets the bounding box containing the selection.
USAGE
herr_t H5S__hyper_bounds(space, hsize_t *start, hsize_t *end)
H5S_t *space; IN: Dataspace pointer of selection to query
hsize_t *start; OUT: Starting coordinate of bounding box
hsize_t *end; OUT: Opposite coordinate of bounding box
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Retrieves the bounding box containing the current selection and places
it into the user's buffers. The start and end buffers must be large
enough to hold the dataspace rank number of coordinates. The bounding box
exactly contains the selection, ie. if a 2-D element selection is currently
defined with the following points: (4,5), (6,8) (10,7), the bounding box
with be (4, 5), (10, 8).
The bounding box calculations _does_ include the current offset of the
selection within the dataspace extent.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_bounds(const H5S_t *space, hsize_t *start, hsize_t *end)
{
const hsize_t *low_bounds, *high_bounds; /* Pointers to the correct pair of low & high bounds */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(space);
HDassert(start);
HDassert(end);
/* Check which set of low & high bounds we should be using */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
low_bounds = space->select.sel_info.hslab->diminfo.low_bounds;
high_bounds = space->select.sel_info.hslab->diminfo.high_bounds;
} /* end if */
else {
low_bounds = space->select.sel_info.hslab->span_lst->low_bounds;
high_bounds = space->select.sel_info.hslab->span_lst->high_bounds;
} /* end else */
/* Check for offset set */
if(space->select.offset_changed) {
unsigned u; /* Local index variable */
/* Loop over dimensions */
for(u = 0; u < space->extent.rank; u++) {
/* Sanity check */
HDassert(low_bounds[u] <= high_bounds[u]);
/* Check for offset moving selection negative */
if(((hssize_t)low_bounds[u] + space->select.offset[u]) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")
/* Set the low & high bounds in this dimension */
start[u] = (hsize_t)((hssize_t)low_bounds[u] + space->select.offset[u]);
if((int)u == space->select.sel_info.hslab->unlim_dim)
end[u] = H5S_UNLIMITED;
else
end[u] = (hsize_t)((hssize_t)high_bounds[u] + space->select.offset[u]);
} /* end for */
} /* end if */
else {
/* Offset vector is still zeros, just copy low & high bounds */
H5MM_memcpy(start, low_bounds, sizeof(hsize_t) * space->extent.rank);
H5MM_memcpy(end, high_bounds, sizeof(hsize_t) * space->extent.rank);
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_bounds() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_offset
PURPOSE
Gets the linear offset of the first element for the selection.
USAGE
herr_t H5S__hyper_offset(space, offset)
const H5S_t *space; IN: Dataspace pointer of selection to query
hsize_t *offset; OUT: Linear offset of first element in selection
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Retrieves the linear offset (in "units" of elements) of the first element
selected within the dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Calling this function on a "none" selection returns fail.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_offset(const H5S_t *space, hsize_t *offset)
{
const hssize_t *sel_offset; /* Pointer to the selection's offset */
const hsize_t *dim_size; /* Pointer to a dataspace's extent */
hsize_t accum; /* Accumulator for dimension sizes */
unsigned rank; /* Dataspace rank */
int i; /* index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
HDassert(space && space->extent.rank>0);
HDassert(offset);
/* Start at linear offset 0 */
*offset = 0;
/* Set up pointers to arrays of values */
rank = space->extent.rank;
sel_offset = space->select.offset;
dim_size = space->extent.size;
/* Check for a "regular" hyperslab selection */
/* (No need to rebuild the dimension info yet -QAK) */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->diminfo.opt; /* Local alias for diminfo */
/* Loop through starting coordinates, calculating the linear offset */
accum = 1;
for(i = (int)(rank - 1); i >= 0; i--) {
hssize_t hyp_offset = (hssize_t)diminfo[i].start + sel_offset[i]; /* Hyperslab's offset in this dimension */
/* Check for offset moving selection out of the dataspace */
if(hyp_offset < 0 || (hsize_t)hyp_offset >= dim_size[i])
HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")
/* Add the hyperslab's offset in this dimension to the total linear offset */
*offset += (hsize_t)(hyp_offset * (hssize_t)accum);
/* Increase the accumulator */
accum *= dim_size[i];
} /* end for */
} /* end if */
else {
const H5S_hyper_span_t *span; /* Hyperslab span node */
hsize_t dim_accum[H5S_MAX_RANK]; /* Accumulators, for each dimension */
/* Calculate the accumulator for each dimension */
accum = 1;
for(i = (int)(rank - 1); i >= 0; i--) {
/* Set the accumulator for this dimension */
dim_accum[i] = accum;
/* Increase the accumulator */
accum *= dim_size[i];
} /* end for */
/* Get information for the first span, in the slowest changing dimension */
span = space->select.sel_info.hslab->span_lst->head;
/* Work down the spans, computing the linear offset */
i = 0;
while(span) {
hssize_t hyp_offset = (hssize_t)span->low + sel_offset[i]; /* Hyperslab's offset in this dimension */
/* Check for offset moving selection out of the dataspace */
if(hyp_offset < 0 || (hsize_t)hyp_offset >= dim_size[i])
HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds")
/* Add the hyperslab's offset in this dimension to the total linear offset */
*offset += (hsize_t)(hyp_offset * (hssize_t)dim_accum[i]);
/* Advance to first span in "down" dimension */
if(span->down) {
HDassert(span->down->head);
span = span->down->head;
} /* end if */
else
span = NULL;
i++;
} /* end while */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_offset() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_unlim_dim
PURPOSE
Return unlimited dimension of selection, or -1 if none
USAGE
int H5S__hyper_unlim_dim(space)
H5S_t *space; IN: Dataspace pointer to check
RETURNS
Unlimited dimension of selection, or -1 if none (never fails).
DESCRIPTION
Returns the index of the unlimited dimension of the selection, or -1
if the selection has no unlimited dimension.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static int
H5S__hyper_unlim_dim(const H5S_t *space)
{
FUNC_ENTER_STATIC_NOERR
FUNC_LEAVE_NOAPI(space->select.sel_info.hslab->unlim_dim);
} /* end H5S__hyper_unlim_dim() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_num_elem_non_unlim
PURPOSE
Return number of elements in the non-unlimited dimensions
USAGE
herr_t H5S__hyper_num_elem_non_unlim(space,num_elem_non_unlim)
H5S_t *space; IN: Dataspace pointer to check
hsize_t *num_elem_non_unlim; OUT: Number of elements in the non-unlimited dimensions
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Returns the number of elements in a slice through the non-unlimited
dimensions of the selection. Fails if the selection has no unlimited
dimension.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_num_elem_non_unlim(const H5S_t *space, hsize_t *num_elem_non_unlim)
{
herr_t ret_value = SUCCEED;
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(space);
HDassert(num_elem_non_unlim);
/* Get number of elements in the non-unlimited dimensions */
if(space->select.sel_info.hslab->unlim_dim >= 0)
*num_elem_non_unlim = space->select.sel_info.hslab->num_elem_non_unlim;
else
HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "selection has no unlimited dimension")
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_num_elem_non_unlim() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_is_contiguous
PURPOSE
Check if a hyperslab selection is contiguous within the dataspace extent.
USAGE
htri_t H5S__hyper_is_contiguous(space)
H5S_t *space; IN: Dataspace pointer to check
RETURNS
TRUE/FALSE/FAIL
DESCRIPTION
Checks to see if the current selection in the dataspace is contiguous.
This is primarily used for reading the entire selection in one swoop.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5_ATTR_PURE htri_t
H5S__hyper_is_contiguous(const H5S_t *space)
{
hbool_t small_contiguous, /* Flag for small contiguous block */
large_contiguous; /* Flag for large contiguous block */
unsigned u; /* index variable */
htri_t ret_value = FALSE; /* Return value */
FUNC_ENTER_STATIC_NOERR
HDassert(space);
/* Check for a "regular" hyperslab selection */
/* (No need to rebuild the dimension info yet -QAK) */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
const H5S_hyper_dim_t *diminfo=space->select.sel_info.hslab->diminfo.opt; /* local alias for diminfo */
/*
* For a regular hyperslab to be contiguous, it must have only one
* block (i.e. count==1 in all dimensions) and the block size must be
* the same as the dataspace extent's in all but the slowest changing
* dimension. (dubbed "large contiguous" block)
*
* OR
*
* The selection must have only one block (i.e. count==1) in all
* dimensions and the block size must be 1 in all but the fastest
* changing dimension. (dubbed "small contiguous" block)
*/
/* Initialize flags */
large_contiguous = TRUE; /* assume true and reset if the dimensions don't match */
small_contiguous = FALSE; /* assume false initially */
/* Check for a "large contigous" block */
for(u = 0; u < space->extent.rank; u++) {
if(diminfo[u].count > 1) {
large_contiguous = FALSE;
break;
} /* end if */
if(u > 0 && diminfo[u].block != space->extent.size[u]) {
large_contiguous = FALSE;
break;
} /* end if */
} /* end for */
/* If we didn't find a large contiguous block, check for a small one */
if(!large_contiguous) {
small_contiguous = TRUE;
for(u = 0; u < space->extent.rank; u++) {
if(diminfo[u].count > 1) {
small_contiguous = FALSE;
break;
} /* end if */
if(u < (space->extent.rank - 1) && diminfo[u].block != 1) {
small_contiguous = FALSE;
break;
} /* end if */
} /* end for */
} /* end if */
/* Indicate true if it's either a large or small contiguous block */
if(large_contiguous || small_contiguous)
ret_value = TRUE;
} /* end if */
else {
H5S_hyper_span_info_t *spans; /* Hyperslab span info node */
H5S_hyper_span_t *span; /* Hyperslab span node */
/*
* For a hyperslab to be contiguous, it must have only one block and
* either it's size must be the same as the dataspace extent's in all
* but the slowest changing dimension
* OR
* block size must be 1 in all but the fastest changing dimension.
*/
/* Initialize flags */
large_contiguous = TRUE; /* assume true and reset if the dimensions don't match */
small_contiguous = FALSE; /* assume false initially */
/* Get information for slowest changing information */
spans = space->select.sel_info.hslab->span_lst;
span = spans->head;
/* If there are multiple spans in the slowest changing dimension, the selection isn't contiguous */
if(span->next != NULL)
large_contiguous = FALSE;
else {
/* Now check the rest of the dimensions */
if(span->down != NULL) {
u = 1; /* Current dimension working on */
/* Get the span information for the next fastest dimension */
spans = span->down;
/* Cycle down the spans until we run out of down spans or find a non-contiguous span */
while(spans != NULL) {
span = spans->head;
/* Check that this is the only span and it spans the entire dimension */
if(span->next != NULL) {
large_contiguous = FALSE;
break;
} /* end if */
else {
/* If this span doesn't cover the entire dimension, then this selection isn't contiguous */
if(((span->high - span->low) + 1) != space->extent.size[u]) {
large_contiguous = FALSE;
break;
} /* end if */
else {
/* Walk down to the next span */
spans = span->down;
/* Increment dimension */
u++;
} /* end else */
} /* end else */
} /* end while */
} /* end if */
} /* end else */
/* If we didn't find a large contiguous block, check for a small one */
if(!large_contiguous) {
small_contiguous = TRUE;
/* Get information for slowest changing information */
spans = space->select.sel_info.hslab->span_lst;
span = spans->head;
/* Current dimension working on */
u = 0;
/* Cycle down the spans until we run out of down spans or find a non-contiguous span */
while(spans != NULL) {
span = spans->head;
/* Check that this is the only span and it spans the entire dimension */
if(span->next != NULL) {
small_contiguous = FALSE;
break;
} /* end if */
else {
/* If this span doesn't cover the entire dimension, then this selection isn't contiguous */
if(u < (space->extent.rank - 1) && ((span->high-span->low) + 1) != 1) {
small_contiguous = FALSE;
break;
} /* end if */
else {
/* Walk down to the next span */
spans = span->down;
/* Increment dimension */
u++;
} /* end else */
} /* end else */
} /* end while */
} /* end if */
/* Indicate true if it's either a large or small contiguous block */
if(large_contiguous || small_contiguous)
ret_value = TRUE;
} /* end else */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_is_contiguous() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_is_single
PURPOSE
Check if a hyperslab selection is a single block within the dataspace extent.
USAGE
htri_t H5S__hyper_is_single(space)
H5S_t *space; IN: Dataspace pointer to check
RETURNS
TRUE/FALSE/FAIL
DESCRIPTION
Checks to see if the current selection in the dataspace is a single block.
This is primarily used for reading the entire selection in one swoop.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5_ATTR_PURE htri_t
H5S__hyper_is_single(const H5S_t *space)
{
htri_t ret_value = TRUE; /* return value */
FUNC_ENTER_STATIC_NOERR
HDassert(space);
/* Check for a "single" hyperslab selection */
/* (No need to rebuild the dimension info yet, since the span-tree
* algorithm is fast -QAK)
*/
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
unsigned u; /* index variable */
/*
* For a regular hyperslab to be single, it must have only one
* block (i.e. count==1 in all dimensions)
*/
/* Check for a single block */
for(u = 0; u < space->extent.rank; u++)
if(space->select.sel_info.hslab->diminfo.opt[u].count > 1)
HGOTO_DONE(FALSE)
} /* end if */
else {
H5S_hyper_span_info_t *spans; /* Hyperslab span info node */
/*
* For a region to be single, it must have only one block
*/
/* Get information for slowest changing information */
spans = space->select.sel_info.hslab->span_lst;
/* Cycle down the spans until we run out of down spans or find a non-contiguous span */
while(spans != NULL) {
H5S_hyper_span_t *span; /* Hyperslab span node */
span = spans->head;
/* Check that this is the only span and it spans the entire dimension */
if(span->next != NULL)
HGOTO_DONE(FALSE)
else
/* Walk down to the next span */
spans = span->down;
} /* end while */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_is_single() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_is_regular
PURPOSE
Check if a hyperslab selection is "regular"
USAGE
htri_t H5S__hyper_is_regular(space)
const H5S_t *space; IN: Dataspace pointer to check
RETURNS
TRUE/FALSE/FAIL
DESCRIPTION
Checks to see if the current selection in a dataspace is the a regular
pattern.
This is primarily used for reading the entire selection in one swoop.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S__hyper_is_regular(const H5S_t *space)
{
htri_t ret_value = FAIL; /* return value */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(space);
/* Attempt to rebuild diminfo if it is invalid and has not been confirmed
* to be impossible.
*/
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO)
H5S__hyper_rebuild((H5S_t *)space); /* Casting away const OK -NAF */
/* Only simple check for regular hyperslabs for now... */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES)
ret_value = TRUE;
else
ret_value = FALSE;
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_is_regular() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_spans_shape_same_helper
PURPOSE
Helper routine to check if two hyperslab span trees are the same shape
USAGE
hbool_t H5S__hyper_spans_shape_same_helper(span1, span2, offset, rest_zeros)
H5S_hyper_span_info_t *span_info1; IN: First span tree to compare
H5S_hyper_span_info_t *span_info2; IN: Second span tree to compare
hssize_t offset[]; IN: Offset between the span trees
hbool_t rest_zeros[]; IN: Array of flags which indicate
the rest of the offset[] array
is zero values.
RETURNS
TRUE (1) or FALSE (0) on success, can't fail
DESCRIPTION
Compare two hyperslab span trees to determine if they refer to a selection
with the same shape, with a possible (constant) offset between their
elements. Very similar to H5S__hyper_cmp_spans, except the selected
elements can be offset by a vector.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5_ATTR_PURE hbool_t
H5S__hyper_spans_shape_same_helper(const H5S_hyper_span_info_t *span_info1,
const H5S_hyper_span_info_t *span_info2, hssize_t offset[],
hbool_t rest_zeros[])
{
hbool_t ret_value = TRUE; /* Return value */
FUNC_ENTER_PACKAGE_NOERR
/* Sanity checks */
HDassert(span_info1);
HDassert(span_info2);
HDassert(offset);
HDassert(rest_zeros);
/* Compare low & high bounds for this span list */
/* (Could compare lower dimensions also, but not certain if
* that's worth it. - QAK, 2019/01/23)
*/
if((hsize_t)((hssize_t)span_info1->low_bounds[0] + offset[0]) != span_info2->low_bounds[0])
HGOTO_DONE(FALSE)
else if((hsize_t)((hssize_t)span_info1->high_bounds[0] + offset[0]) != span_info2->high_bounds[0])
HGOTO_DONE(FALSE)
else {
const H5S_hyper_span_t *span1;
const H5S_hyper_span_t *span2;
/* Get the pointers to the actual lists of spans */
span1 = span_info1->head;
span2 = span_info2->head;
/* Sanity checking */
HDassert(span1);
HDassert(span2);
/* infinite loop which must be broken out of */
while(1) {
/* Check for both spans being NULL */
if(span1 == NULL && span2 == NULL)
HGOTO_DONE(TRUE)
/* Check for one span being NULL */
if(span1 == NULL || span2 == NULL)
HGOTO_DONE(FALSE)
/* Check if the actual low & high span information is the same */
if((hsize_t)((hssize_t)span1->low + offset[0]) != span2->low || (hsize_t)((hssize_t)span1->high + offset[0]) != span2->high)
HGOTO_DONE(FALSE)
/* Check for down tree for this span */
if(span1->down != NULL || span2->down != NULL) {
/* If the rest of the span trees have a zero offset, use the faster comparison routine */
if(rest_zeros[0]) {
if(!H5S__hyper_cmp_spans(span1->down, span2->down))
HGOTO_DONE(FALSE)
else {
/* Keep going... */
} /* end else */
} /* end if */
else {
if(!H5S__hyper_spans_shape_same_helper(span1->down, span2->down, &offset[1], &rest_zeros[1]))
HGOTO_DONE(FALSE)
else {
/* Keep going... */
} /* end else */
} /* end else */
} /* end if */
else {
/* Keep going... */
} /* end else */
/* Advance to the next nodes in the span list */
span1 = span1->next;
span2 = span2->next;
} /* end while */
} /* end else */
/* Fall through, with default return value of 'TRUE' if spans were already visited */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_spans_shape_same_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_spans_shape_same
PURPOSE
Check if two hyperslab span trees are the same shape
USAGE
hbool_t H5S__hyper_spans_shape_same(span1, span2)
H5S_hyper_span_info_t *span_info1; IN: First span tree to compare
H5S_hyper_span_info_t *span_info2; IN: Second span tree to compare
RETURNS
TRUE (1) or FALSE (0) on success, can't fail
DESCRIPTION
Compare two hyperslab span trees to determine if they refer to a selection
with the same shape. Very similar to H5S__hyper_cmp_spans, except the
selected elements can be offset by a vector.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5_ATTR_PURE hbool_t
H5S__hyper_spans_shape_same(const H5S_hyper_span_info_t *span_info1,
const H5S_hyper_span_info_t *span_info2, unsigned ndims)
{
const H5S_hyper_span_t *span1; /* Pointer to spans in first span tree */
const H5S_hyper_span_t *span2; /* Pointer to spans in second span tree */
hssize_t offset[H5S_MAX_RANK]; /* Offset vector for selections */
hbool_t rest_zeros[H5S_MAX_RANK]; /* Vector of flags to indicate when remaining offset is all zero */
hbool_t zero_offset; /* Whether the two selections have a non-zero offset */
unsigned u; /* Local index variable */
hbool_t ret_value = TRUE; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(span_info1);
HDassert(span_info2);
HDassert(ndims > 0);
/* Initialize arrays */
HDmemset(offset, 0, sizeof(offset));
HDmemset(rest_zeros, 0, sizeof(rest_zeros));
/* Check for an offset between the two selections */
span1 = span_info1->head;
span2 = span_info2->head;
zero_offset = TRUE;
for(u = 0; u < ndims; u++) {
/* Check for offset in this dimension */
if(span1->low != span2->low) {
offset[u] = (hssize_t)span2->low - (hssize_t)span1->low;
/* Indicate that the offset vector is not all zeros */
if(zero_offset)
zero_offset = FALSE;
} /* end if */
/* Sanity check */
/* (Both span trees must have the same depth) */
HDassert((span1->down && span2->down) || (NULL == span1->down && NULL == span2->down));
/* Advance to next dimension */
if(span1->down) {
span1 = span1->down->head;
span2 = span2->down->head;
} /* end if */
} /* end for */
/* Check if there's a "tail" of all zeros in a non-zero offset vector */
if(!zero_offset) {
int i; /* Local index variable */
/* Find first non-zero offset, from the fastest dimension up */
for(i = (int)(ndims - 1); i >= 0; i--)
if(offset[i]) {
rest_zeros[i] = TRUE;
break;
} /* end if */
/* Sanity check */
/* (Must eventually have found a non-zero offset) */
HDassert(i >= 0);
} /* end if */
/* If the offset vector is all zero, we can use the faster span tree
* comparison routine. Otherwise, use a generalized version of that
* routine.
*/
if(zero_offset)
ret_value = H5S__hyper_cmp_spans(span_info1, span_info2);
else
ret_value = H5S__hyper_spans_shape_same_helper(span_info1, span_info2, offset, rest_zeros);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_spans_shape_same() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_shape_same
PURPOSE
Check if a two hyperslab selections are the same shape
USAGE
htri_t H5S__hyper_shape_same(space1, space2)
const H5S_t *space1; IN: First dataspace to check
const H5S_t *space2; IN: Second dataspace to check
RETURNS
TRUE / FALSE / FAIL
DESCRIPTION
Checks to see if the current selection in each dataspace are the same
shape.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Handles when both are regular in an efficient way, otherwise converts
both to span tree form (if necessary) and compares efficiently them in
that form.
Rank of space1 must always be >= to rank of space2.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S__hyper_shape_same(const H5S_t *space1, const H5S_t *space2)
{
unsigned space1_rank; /* Number of dimensions of first dataspace */
unsigned space2_rank; /* Number of dimensions of second dataspace */
htri_t ret_value = TRUE; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(space1);
HDassert(space2);
/* Get dataspace ranks */
space1_rank = space1->extent.rank;
space2_rank = space2->extent.rank;
/* Sanity check */
HDassert(space1_rank >= space2_rank);
HDassert(space2_rank > 0);
/* Rebuild diminfo if it is invalid and has not been confirmed to be
* impossible */
if(space1->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO)
H5S__hyper_rebuild((H5S_t *)space1); /* Casting away const OK -QAK */
if(space2->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO)
H5S__hyper_rebuild((H5S_t *)space2); /* Casting away const OK -QAK */
/* If both are regular hyperslabs, compare their diminfo values */
if(space1->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES
&& space2->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
int space1_dim; /* Current dimension in first dataspace */
int space2_dim; /* Current dimension in second dataspace */
/* Initialize dimensions */
space1_dim = (int)space1_rank - 1;
space2_dim = (int)space2_rank - 1;
/* Check that the shapes are the same in the common dimensions, and that
* block == 1 in all dimensions that appear only in space1.
*/
while(space2_dim >= 0) {
if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].stride !=
space2->select.sel_info.hslab->diminfo.opt[space2_dim].stride)
HGOTO_DONE(FALSE)
if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].count !=
space2->select.sel_info.hslab->diminfo.opt[space2_dim].count)
HGOTO_DONE(FALSE)
if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].block !=
space2->select.sel_info.hslab->diminfo.opt[space2_dim].block)
HGOTO_DONE(FALSE)
space1_dim--;
space2_dim--;
} /* end while */
while(space1_dim >= 0) {
if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].block != 1)
HGOTO_DONE(FALSE)
space1_dim--;
} /* end while */
} /* end if */
/* If both aren't regular, use fast irregular comparison */
else {
H5S_hyper_span_info_t *spans1; /* Hyperslab spans for first dataspace */
/* Make certain that both selections have span trees */
if(NULL == space1->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans((H5S_t *)space1) < 0) /* Casting away const OK -QAK */
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "can't construct span tree for hyperslab selection")
if(NULL == space2->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans((H5S_t *)space2) < 0) /* Casting away const OK -QAK */
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "can't construct span tree for hyperslab selection")
/* If rank of space A is different (guaranteed greater) than
* rank of space B, walk down the span tree, verifying
* that the block size is 1 on the way down.
*/
if(space1_rank > space2_rank) {
unsigned diff_rank = space1_rank - space2_rank; /* Difference in ranks */
/* Walk down the dimensions */
spans1 = space1->select.sel_info.hslab->span_lst;
while(diff_rank > 0) {
H5S_hyper_span_t *span; /* Span for this dimension */
/* Get pointer to first span in tree */
span = spans1->head;
/* Check for more spans in this dimension */
if(span->next)
HGOTO_DONE(FALSE)
/* Check for span size > 1 element */
if(span->low != span->high)
HGOTO_DONE(FALSE)
/* Walk down to the next dimension */
spans1 = span->down;
diff_rank--;
} /* end while */
/* Sanity check */
HDassert(spans1);
} /* end if */
else
spans1 = space1->select.sel_info.hslab->span_lst;
/* Compare the span trees */
ret_value = H5S__hyper_spans_shape_same(spans1, space2->select.sel_info.hslab->span_lst, space2_rank);
} /* end else */
/* Fall through with 'TRUE' value, if not set earlier */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_shape_same() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_release
PURPOSE
Release hyperslab selection information for a dataspace
USAGE
herr_t H5S__hyper_release(space)
H5S_t *space; IN: Pointer to dataspace
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Releases all hyperslab selection information for a dataspace
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_release(H5S_t *space)
{
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));
/* Reset the number of points selected */
space->select.num_elem = 0;
/* Release irregular hyperslab information */
if(space->select.sel_info.hslab) {
if(space->select.sel_info.hslab->span_lst != NULL)
H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst);
/* Release space for the hyperslab selection information */
space->select.sel_info.hslab = H5FL_FREE(H5S_hyper_sel_t, space->select.sel_info.hslab);
} /* end if */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_release() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_coord_to_span
PURPOSE
Create a span tree for a single element
USAGE
H5S_hyper_span_t *H5S__hyper_coord_to_span(rank, coords)
unsigned rank; IN: Number of dimensions of coordinate
hsize_t *coords; IN: Location of element
RETURNS
Non-NULL pointer to new span tree on success, NULL on failure
DESCRIPTION
Create a span tree for a single element
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_t *
H5S__hyper_coord_to_span(unsigned rank, const hsize_t *coords)
{
H5S_hyper_span_t *new_span; /* Pointer to new span tree for coordinate */
H5S_hyper_span_info_t *down = NULL; /* Pointer to new span tree for next level down */
H5S_hyper_span_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
HDassert(rank > 0);
HDassert(coords);
/* Search for location to insert new element in tree */
if(rank > 1) {
/* Allocate a span info node for coordinates below this one */
if(NULL == (down = H5S__hyper_new_span_info(rank - 1)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Set the low & high bounds for this span info node */
H5MM_memcpy(down->low_bounds, &coords[1], (rank - 1) * sizeof(hsize_t));
H5MM_memcpy(down->high_bounds, &coords[1], (rank - 1) * sizeof(hsize_t));
/* Build span tree for coordinates below this one */
if(NULL == (down->head = H5S__hyper_coord_to_span(rank - 1, &coords[1])))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Update the tail pointer of the down dimension, and it's a single span element */
down->tail = down->head;
} /* end if */
/* Build span for this coordinate */
if(NULL == (new_span = H5S__hyper_new_span(coords[0], coords[0], down, NULL)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Set return value */
ret_value = new_span;
done:
if(ret_value == NULL && down != NULL)
H5S__hyper_free_span_info(down);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_coord_to_span() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_add_span_element_helper
PURPOSE
Helper routine to add a single element to a span tree
USAGE
herr_t H5S__hyper_add_span_element_helper(span_tree, rank, coords, first_dim_modified)
H5S_hyper_span_info_t *span_tree; IN/OUT: Pointer to span tree to append to
unsigned rank; IN: Number of dimensions of coordinates
hsize_t *coords; IN: Location of element to add to span tree
int *first_dim_modified; IN: Index of the first dimension modified
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Add a single element to an existing span tree.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Assumes that the element is not already covered by the span tree
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_add_span_element_helper(H5S_hyper_span_info_t *span_tree,
unsigned rank, const hsize_t *coords, int *first_dim_modified)
{
H5S_hyper_span_t *tail_span; /* Pointer to the tail span of one dimension */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(span_tree);
HDassert(rank > 0);
HDassert(coords);
HDassert(first_dim_modified);
/* Get pointer to last span in span tree */
tail_span = span_tree->tail;
/* Determine if tail span includes a portion of the coordinate */
/* (Should never happen with the lowest level in the span tree) */
if(coords[0] >= tail_span->low && coords[0] <= tail_span->high) {
H5S_hyper_span_t *prev_down_tail_span; /* Pointer to previous down spans' tail pointer */
hsize_t prev_down_tail_span_high; /* Value of previous down spans' tail's high value */
/* Retain into about down spans' tail */
prev_down_tail_span = tail_span->down->tail;
prev_down_tail_span_high = tail_span->down->tail->high;
/* Drop down a dimension */
HDassert(rank > 1);
if(H5S__hyper_add_span_element_helper(tail_span->down, rank - 1, &coords[1], first_dim_modified) < 0)
HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL, "can't insert coordinate into span tree")
/* Check & update high bounds for lower dimensions */
if(*first_dim_modified >= 0) {
unsigned first_dim; /* First dimension modified, relative to this span tree */
hbool_t first_dim_set = FALSE; /* Whether first dimension modified is set */
unsigned u; /* Local index variable */
/* Adjust first dimension modified to be relative to this span tree */
first_dim = (unsigned)(*first_dim_modified + 1);
/* Reset modified dimension, in case no bounds in this span tree change */
*first_dim_modified = -1;
/* Iterate through coordinates */
for(u = first_dim; u < rank; u++) {
/* Check if coordinate is outside the bounds for this span tree */
if(coords[u] > span_tree->high_bounds[u]) {
/* Update high bounds for this tree */
span_tree->high_bounds[u] = coords[u];
/* Need to signal to higher dimensions if high bounds changed */
if(!first_dim_set) {
*first_dim_modified = (int)u;
first_dim_set = TRUE;
} /* end if */
} /* end if */
} /* end for */
} /* end if */
/* Check if previous tail span in down spans is different than current
* tail span, or if its high value changed, in which case we should
* check if the updated node can share down spans with other nodes.
*/
if(tail_span->down->tail != prev_down_tail_span ||
prev_down_tail_span_high != tail_span->down->tail->high) {
H5S_hyper_span_t *stop_span; /* Pointer to span to stop at */
H5S_hyper_span_t *tmp_span; /* Temporary pointer to a span */
uint64_t op_gen; /* Operation generation value */
/* Determine which span to stop at */
if(tail_span->down->tail != prev_down_tail_span) {
/* Sanity check */
HDassert(prev_down_tail_span->next == tail_span->down->tail);
/* Set the span to stop at */
stop_span = prev_down_tail_span;
} /* end if */
else {
/* Sanity check */
HDassert(prev_down_tail_span_high != tail_span->down->tail->high);
/* Set the span to stop at */
stop_span = tail_span->down->tail;
} /* end else */
/* Acquire an operation generation value for this operation */
op_gen = H5S__hyper_get_op_gen();
/* Check if the 'stop' span in the "down tree" is equal to any other
* spans in the list of spans in the span tree.
*
* If so, release last span information and make last span merge into
* previous span (if possible), or at least share their "down tree"
* information.
*/
tmp_span = tail_span->down->head;
while(tmp_span != stop_span) {
hbool_t attempt_merge_spans = FALSE; /* Whether to merge spans */
/* Different tests for when to run the 'merge' algorithm,
* depending whether there's "down trees" or not.
*/
if(NULL == tmp_span->down) {
/* Spin through spans until we find the one before the 'stop' span */
if(tmp_span->next == stop_span)
attempt_merge_spans = TRUE;
} /* end if */
else {
/* Check if we've compared the 'stop' span's "down tree" to
* this span's "down tree" already.
*/
if(tmp_span->down->op_gen != op_gen) {
if(H5S__hyper_cmp_spans(tmp_span->down, stop_span->down))
attempt_merge_spans = TRUE;
/* Remember that we visited this span's "down tree" already */
/* (Because it wasn't the same as the 'stop' span's down tree
* and we don't need to compare it again)
*/
tmp_span->down->op_gen = op_gen;
} /* end if */
} /* end else */
/* Check for merging into previous span */
if(attempt_merge_spans) {
if(tmp_span->high + 1 == stop_span->low) {
/* Increase size of previous span */
tmp_span->high++;
/* Update pointers appropriately */
if(stop_span == prev_down_tail_span) {
/* Sanity check */
HDassert(stop_span->next == tail_span->down->tail);
tmp_span->next = stop_span->next;
} /* end if */
else {
/* Sanity check */
HDassert(tmp_span->next == tail_span->down->tail);
tmp_span->next = NULL;
tail_span->down->tail = tmp_span;
} /* end else */
/* Release last span created */
H5S__hyper_free_span(stop_span);
} /* end if */
/* Span is disjoint, but has the same "down tree" selection */
/* (If it has a "down tree") */
else if(stop_span->down) {
/* Release "down tree" information */
H5S__hyper_free_span_info(stop_span->down);
/* Point at earlier span's "down tree" */
stop_span->down = tmp_span->down;
/* Increment reference count on shared "down tree" */
stop_span->down->count++;
} /* end else */
/* Found span to merge into, break out now */
break;
} /* end if */
/* Advance to next span to check */
tmp_span = tmp_span->next;
} /* end while */
} /* end if */
} /* end if */
else {
unsigned u; /* Local index variable */
/* Check if we made it all the way to the bottom span list in the tree
* and the new coordinate adjoins the current tail span.
*/
if(rank == 1 && (tail_span->high + 1) == coords[0])
/* Append element to current tail span */
tail_span->high++;
else {
H5S_hyper_span_t *new_span; /* New span created for element */
/* Make span tree for current coordinate(s) */
if(NULL == (new_span = H5S__hyper_coord_to_span(rank, coords)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab spans for coordinate")
/* Add new span to span tree list */
tail_span->next = new_span;
span_tree->tail = new_span;
} /* end else */
/* Update high bound for current span tree */
HDassert(coords[0] > span_tree->high_bounds[0]);
span_tree->high_bounds[0] = coords[0];
/* Update high bounds for dimensions below this one */
for(u = 1; u < rank; u++)
if(coords[u] > span_tree->high_bounds[u])
span_tree->high_bounds[u] = coords[u];
/* Need to signal to higher dimensions that high bounds changed */
*first_dim_modified = 0;
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_add_span_element_helper() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_add_span_element
PURPOSE
Add a single element to a span tree
USAGE
herr_t H5S_hyper_add_span_element(space, span_tree, rank, coords)
H5S_t *space; IN/OUT: Pointer to dataspace to add coordinate to
unsigned rank; IN: Number of dimensions of coordinates
hsize_t *coords; IN: Location of element to add to span tree
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Add a single element to an existing span tree.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Assumes that the element is not already in the dataspace's selection
NOTE: There's also an assumption about the context of this function call -
This function is only called is only being called from H5D_chunk_mem_cb
in src/H5Dchunk.c, when the library is iterating over a memory
selection, so the coordinates passed to H5S_hyper_add_span_element will
always be in increasing order (according to a row-major (i.e. C, not
FORTRAN) scan) over the dataset. Therefore, for every input of
coordinates, only the last span element (i.e., the tail pointer) in
one dimension is checked against the input.
NOTE: This algorithm is definitely "correct" and tries to conserve memory
as much as possible, but it's doing a _lot_ of work that might be
better spent running a similar algorithm to "condense" the span tree
(possibly even back into a regular selection) just before the selection
is used for I/O on the chunk. I'm not going to spend the time on this
currently, but it does sound like a good direction to explore.
QAK, 2019/01/24
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_add_span_element(H5S_t *space, unsigned rank, const hsize_t *coords)
{
H5S_hyper_span_info_t *head = NULL; /* Pointer to new head of span tree */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
HDassert(space);
HDassert(rank > 0);
HDassert(coords);
HDassert(space->extent.rank == rank);
/* Check if this is the first element in the selection */
if(NULL == space->select.sel_info.hslab) {
/* Allocate a span info node */
if(NULL == (head = H5S__hyper_new_span_info(rank)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span info")
/* Set the low & high bounds for this span info node */
H5MM_memcpy(head->low_bounds, coords, rank * sizeof(hsize_t));
H5MM_memcpy(head->high_bounds, coords, rank * sizeof(hsize_t));
/* Set the reference count */
head->count = 1;
/* Build span tree for this coordinate */
if(NULL == (head->head = H5S__hyper_coord_to_span(rank, coords)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab spans for coordinate")
/* Update the tail pointer of this newly created span in dimension "rank" */
head->tail = head->head;
/* Allocate selection info */
if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab selection")
/* Set the selection to the new span tree */
space->select.sel_info.hslab->span_lst = head;
/* Set selection type */
space->select.type = H5S_sel_hyper;
/* Reset "regular" hyperslab flag */
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
/* Set unlim_dim */
space->select.sel_info.hslab->unlim_dim = -1;
/* Set # of elements in selection */
space->select.num_elem = 1;
} /* end if */
else {
int first_dim_modified = -1; /* Index of first dimension modified */
/* Add the element to the current set of spans */
if(H5S__hyper_add_span_element_helper(space->select.sel_info.hslab->span_lst, rank, coords, &first_dim_modified) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert coordinate into span tree")
/* Increment # of elements in selection */
space->select.num_elem++;
} /* end else */
done:
if(ret_value < 0)
if(head)
H5S__hyper_free_span_info(head);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_add_span_element() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_intersect_block_helper
PURPOSE
Helper routine to detect intersections in span trees
USAGE
hbool_t H5S__hyper_intersect_block_helper(spans, start, end)
H5S_hyper_span_info_t *spans; IN: First span tree to operate with
unsigned rank; IN: Number of dimensions for span tree
hsize_t *start; IN: Starting coordinate for block
hsize_t *end; IN: Ending coordinate for block
uint64_t op_gen; IN: Operation generation
RETURN
Non-negative (TRUE/FALSE) on success, can't fail
DESCRIPTION
Quickly detect intersections between span tree and block
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hbool_t
H5S__hyper_intersect_block_helper(H5S_hyper_span_info_t *spans,
unsigned rank, const hsize_t *start, const hsize_t *end, uint64_t op_gen)
{
hbool_t ret_value = FALSE; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(spans);
HDassert(start);
HDassert(end);
/* Check if we've already visited this span tree */
if(spans->op_gen != op_gen) {
H5S_hyper_span_t *curr; /* Pointer to current span in 1st span tree */
unsigned u; /* Local index variable */
/* Verify that there is a possibility of an overlap by checking the block
* against the low & high bounds for the span tree.
*/
for(u = 0; u < rank; u++)
if(start[u] > spans->high_bounds[u] || end[u] < spans->low_bounds[u])
HGOTO_DONE(FALSE)
/* Get the span list for spans in this tree */
curr = spans->head;
/* Iterate over the spans in the tree */
while(curr != NULL) {
/* Check for span entirely before block */
if(curr->high < *start)
/* Advance to next span in this dimension */
curr = curr->next;
/* If this span is past the end of the block, then we're done in this dimension */
else if(curr->low > *end)
HGOTO_DONE(FALSE)
/* block & span overlap */
else {
/* If this is the bottom dimension, then the span tree overlaps the block */
if(curr->down == NULL)
HGOTO_DONE(TRUE)
/* Recursively check spans in next dimension down */
else {
/* If there is an intersection in the "down" dimensions,
* the span trees overlap.
*/
if(H5S__hyper_intersect_block_helper(curr->down, rank - 1, start + 1, end + 1, op_gen))
HGOTO_DONE(TRUE)
/* No intersection in down dimensions, advance to next span */
curr = curr->next;
} /* end else */
} /* end else */
} /* end while */
/* Set the tree's operation generation */
spans->op_gen = op_gen;
} /* end if */
/* Fall through with 'FALSE' return value */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_intersect_block_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_intersect_block
PURPOSE
Detect intersections of selection with block
USAGE
htri_t H5S__hyper_intersect_block(space, start, end)
const H5S_t *space; IN: Dataspace with selection to use
const hsize_t *start; IN: Starting coordinate for block
const hsize_t *end; IN: Ending coordinate for block
RETURNS
Non-negative TRUE / FALSE on success, negative on failure
DESCRIPTION
Quickly detect intersections between both regular hyperslabs and span trees
with a block
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Does not use selection offset.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static htri_t
H5S__hyper_intersect_block(const H5S_t *space, const hsize_t *start, const hsize_t *end)
{
htri_t ret_value = FAIL; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(space);
HDassert(H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));
HDassert(start);
HDassert(end);
/* Attempt to rebuild diminfo if it is invalid and has not been confirmed
* to be impossible.
*/
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO)
H5S__hyper_rebuild((H5S_t *)space); /* Casting away const OK -QAK */
/* Check for regular hyperslab intersection */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
hbool_t single_block; /* Whether the regular selection is a single block */
unsigned u; /* Local index variable */
/* Check for a single block */
/* For a regular hyperslab to be single, it must have only one block
* (i.e. count == 1 in all dimensions).
*/
single_block = TRUE;
for(u = 0; u < space->extent.rank; u++)
if(space->select.sel_info.hslab->diminfo.opt[u].count > 1)
single_block = FALSE;
/* Single blocks have already been "compared" above, in the low / high
* bound checking, so just return TRUE if we've reached here - they
* would have been rejected earlier, if they didn't intersect.
*/
if(single_block)
HGOTO_DONE(TRUE)
else {
/* Loop over the dimensions, checking for an intersection */
for(u = 0; u < space->extent.rank; u++) {
/* If the block's start is <= the hyperslab start, they intersect */
/* (So, if the start is > the hyperslab start, check more conditions) */
if(start[u] > space->select.sel_info.hslab->diminfo.opt[u].start) {
hsize_t adj_start; /* Start coord, adjusted for hyperslab selection parameters */
hsize_t nstride; /* Number of strides into the selection */
/* Adjust start coord for selection's 'start' offset */
adj_start = start[u] - space->select.sel_info.hslab->diminfo.opt[u].start;
/* Compute # of strides into the selection */
if(space->select.sel_info.hslab->diminfo.opt[u].count > 1)
nstride = adj_start / space->select.sel_info.hslab->diminfo.opt[u].stride;
else
nstride = 0;
/* Sanity check */
HDassert(nstride <= space->select.sel_info.hslab->diminfo.opt[u].count);
/* "Rebase" the adjusted start coord into the same range
* range of values as the selections's first block.
*/
adj_start -= nstride * space->select.sel_info.hslab->diminfo.opt[u].stride;
/* If the adjusted start doesn't fall within the first hyperslab
* span, check for the block overlapping with the next one.
*/
if(adj_start >= space->select.sel_info.hslab->diminfo.opt[u].block) {
hsize_t adj_end; /* End coord, adjusted for hyperslab selection parameters */
/* Adjust end coord for selection's 'start' offset */
adj_end = end[u] - space->select.sel_info.hslab->diminfo.opt[u].start;
/* "Rebase" the adjusted end coord into the same range
* range of values as the selections's first block.
*/
adj_end -= nstride * space->select.sel_info.hslab->diminfo.opt[u].stride;
/* If block doesn't extend over beginning of next span,
* it doesn't intersect.
*/
if(adj_end < space->select.sel_info.hslab->diminfo.opt[u].stride)
HGOTO_DONE(FALSE)
} /* end if */
} /* end if */
} /* end for */
/* If we've looped through all dimensions and none of them didn't
* overlap, then all of them do, so we report TRUE.
*/
HGOTO_DONE(TRUE)
} /* end else */
} /* end if */
else {
uint64_t op_gen; /* Operation generation value */
/* Acquire an operation generation value for this operation */
op_gen = H5S__hyper_get_op_gen();
/* Perform the span-by-span intersection check */
ret_value = H5S__hyper_intersect_block_helper(space->select.sel_info.hslab->span_lst, space->extent.rank, start, end, op_gen);
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_intersect_block() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_adjust_u_helper
PURPOSE
Helper routine to adjust offsets in span trees
USAGE
void H5S__hyper_adjust_u_helper(spans, offset)
H5S_hyper_span_info_t *spans; IN: Span tree to operate with
unsigned rank; IN: Number of dimensions for span tree
const hsize_t *offset; IN: Offset to subtract
uint64_t op_gen; IN: Operation generation
RETURNS
None
DESCRIPTION
Adjust the location of the spans in a span tree by subtracting an offset
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static void
H5S__hyper_adjust_u_helper(H5S_hyper_span_info_t *spans, unsigned rank,
const hsize_t *offset, uint64_t op_gen)
{
FUNC_ENTER_STATIC_NOERR
/* Sanity checks */
HDassert(spans);
HDassert(offset);
/* Check if we've already set this span tree */
if(spans->op_gen != op_gen) {
H5S_hyper_span_t *span; /* Pointer to current span in span tree */
unsigned u; /* Local index variable */
/* Adjust the span tree's low & high bounds */
for(u = 0; u < rank; u++) {
HDassert(spans->low_bounds[u] >= offset[u]);
spans->low_bounds[u] -= offset[u];
spans->high_bounds[u] -= offset[u];
} /* end for */
/* Iterate over the spans in tree */
span = spans->head;
while(span != NULL) {
/* Adjust span offset */
HDassert(span->low >= *offset);
span->low -= *offset;
span->high -= *offset;
/* Recursively adjust spans in next dimension down */
if(span->down != NULL)
H5S__hyper_adjust_u_helper(span->down, rank - 1, offset + 1, op_gen);
/* Advance to next span in this dimension */
span = span->next;
} /* end while */
/* Set the tree's operation generation */
spans->op_gen = op_gen;
} /* end if */
FUNC_LEAVE_NOAPI_VOID
} /* end H5S__hyper_adjust_u_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_adjust_u
PURPOSE
Adjust a hyperslab selection by subtracting an offset
USAGE
void H5S__hyper_adjust_u(space,offset)
H5S_t *space; IN/OUT: Pointer to dataspace to adjust
const hsize_t *offset; IN: Offset to subtract
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Moves a hyperslab selection by subtracting an offset from it.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_adjust_u(H5S_t *space, const hsize_t *offset)
{
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(space);
HDassert(offset);
/* Subtract the offset from the "regular" coordinates, if they exist */
/* (No need to rebuild the dimension info yet -QAK) */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
unsigned u; /* Local index variable */
for(u = 0; u < space->extent.rank; u++) {
HDassert(space->select.sel_info.hslab->diminfo.opt[u].start >= offset[u]);
space->select.sel_info.hslab->diminfo.opt[u].start -= offset[u];
/* Adjust the low & high bounds */
HDassert(space->select.sel_info.hslab->diminfo.low_bounds[u] >= offset[u]);
space->select.sel_info.hslab->diminfo.low_bounds[u] -= offset[u];
space->select.sel_info.hslab->diminfo.high_bounds[u] -= offset[u];
} /* end for */
} /* end if */
/* Subtract the offset from the span tree coordinates, if they exist */
if(space->select.sel_info.hslab->span_lst) {
uint64_t op_gen; /* Operation generation value */
/* Acquire an operation generation value for this operation */
op_gen = H5S__hyper_get_op_gen();
H5S__hyper_adjust_u_helper(space->select.sel_info.hslab->span_lst, space->extent.rank, offset, op_gen);
} /* end if */
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_adjust_u() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_project_scalar
*
* Purpose: Projects a single element hyperslab selection into a scalar
* dataspace
*
* Return: Non-negative on success, negative on failure.
*
* Programmer: Quincey Koziol
* Sunday, July 18, 2010
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_project_scalar(const H5S_t *space, hsize_t *offset)
{
hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space));
HDassert(offset);
/* Check for a "regular" hyperslab selection */
/* (No need to rebuild the dimension info yet -QAK) */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->diminfo.opt; /* Alias for dataspace's diminfo information */
unsigned u; /* Counter */
/* Build the table of the initial offset */
for(u = 0; u < space->extent.rank; u++) {
/* Sanity check diminfo */
HDassert(1 == diminfo[u].count);
HDassert(1 == diminfo[u].block);
/* Sanity check bounds, while we're here */
HDassert(diminfo[u].start == space->select.sel_info.hslab->diminfo.low_bounds[u]);
/* Keep the offset for later */
block[u] = diminfo[u].start;
} /* end for */
} /* end if */
else {
const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */
unsigned curr_dim; /* Current dimension being operated on */
/* Advance down selected spans */
curr = space->select.sel_info.hslab->span_lst->head;
curr_dim = 0;
while(1) {
/* Sanity checks */
HDassert(NULL == curr->next);
HDassert(curr->low == curr->high);
HDassert(curr_dim < space->extent.rank);
/* Save the location of the selection in current dimension */
block[curr_dim] = curr->low;
/* Advance down to next dimension */
if(curr->down) {
curr = curr->down->head;
curr_dim++;
} /* end if */
else
break;
} /* end while */
} /* end else */
/* Calculate offset of selection in projected buffer */
*offset = H5VM_array_offset(space->extent.rank, space->extent.size, block);
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_project_scalar() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_project_simple_lower
*
* Purpose: Projects a hyperslab selection onto/into a simple dataspace
* of a lower rank
*
* Return: Non-negative on success, negative on failure.
*
* Programmer: Quincey Koziol
* Sunday, July 18, 2010
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_project_simple_lower(const H5S_t *base_space, H5S_t *new_space)
{
H5S_hyper_span_info_t *down; /* Pointer to list of spans */
unsigned curr_dim; /* Current dimension being operated on */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
HDassert(new_space);
HDassert(new_space->extent.rank < base_space->extent.rank);
/* Walk down the span tree until we reach the selection to project */
down = base_space->select.sel_info.hslab->span_lst;
curr_dim = 0;
while(down && curr_dim < (base_space->extent.rank - new_space->extent.rank)) {
/* Sanity check */
HDassert(NULL == down->head->next);
/* Advance down to next dimension */
down = down->head->down;
curr_dim++;
} /* end while */
HDassert(down);
/* Share the underlying hyperslab span information */
new_space->select.sel_info.hslab->span_lst = down;
new_space->select.sel_info.hslab->span_lst->count++;
FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5S__hyper_project_simple_lower() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_project_simple_higher
*
* Purpose: Projects a hyperslab selection onto/into a simple dataspace
* of a higher rank
*
* Return: Non-negative on success, negative on failure.
*
* Programmer: Quincey Koziol
* Sunday, July 18, 2010
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space)
{
H5S_hyper_span_t *prev_span = NULL; /* Pointer to previous list of spans */
unsigned delta_rank; /* Difference in dataspace ranks */
unsigned curr_dim; /* Current dimension being operated on */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
HDassert(new_space);
HDassert(new_space->extent.rank > base_space->extent.rank);
/* Create nodes until reaching the correct # of dimensions */
new_space->select.sel_info.hslab->span_lst = NULL;
curr_dim = 0;
delta_rank = (new_space->extent.rank - base_space->extent.rank);
while(curr_dim < delta_rank) {
H5S_hyper_span_info_t *new_span_info; /* Pointer to list of spans */
H5S_hyper_span_t *new_span; /* Temporary hyperslab span */
/* Allocate a new span_info node */
if(NULL == (new_span_info = H5S__hyper_new_span_info(new_space->extent.rank))) {
if(prev_span)
H5S__hyper_free_span(prev_span);
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span info")
} /* end if */
/* Check for linking into higher span */
if(prev_span)
prev_span->down = new_span_info;
/* Allocate a new node */
if(NULL == (new_span = H5S__hyper_new_span((hsize_t)0, (hsize_t)0, NULL, NULL))) {
HDassert(new_span_info);
if(!prev_span)
(void)H5FL_ARR_FREE(hbounds_t, new_span_info);
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
} /* end if */
/* Set the span_info information */
new_span_info->count = 1;
new_span_info->head = new_span;
new_span_info->tail = new_span;
/* Set the bounding box */
for(u = 0; u < delta_rank; u++) {
new_span_info->low_bounds[u] = 0;
new_span_info->high_bounds[u] = 0;
} /* end for */
for(; u < new_space->extent.rank; u++) {
new_span_info->low_bounds[u] = base_space->select.sel_info.hslab->span_lst->low_bounds[u - delta_rank];
new_span_info->high_bounds[u] = base_space->select.sel_info.hslab->span_lst->high_bounds[u - delta_rank];
} /* end for */
/* Attach to new space, if top span info */
if(NULL == new_space->select.sel_info.hslab->span_lst)
new_space->select.sel_info.hslab->span_lst = new_span_info;
/* Remember previous span info */
prev_span = new_span;
/* Advance to next dimension */
curr_dim++;
} /* end while */
HDassert(new_space->select.sel_info.hslab->span_lst);
HDassert(prev_span);
/* Share the underlying hyperslab span information */
prev_span->down = base_space->select.sel_info.hslab->span_lst;
prev_span->down->count++;
done:
if(ret_value < 0 && new_space->select.sel_info.hslab->span_lst) {
if(new_space->select.sel_info.hslab->span_lst->head)
H5S__hyper_free_span(new_space->select.sel_info.hslab->span_lst->head);
new_space->select.sel_info.hslab->span_lst = (H5S_hyper_span_info_t *)H5FL_ARR_FREE(hbounds_t, new_space->select.sel_info.hslab->span_lst);
} /* end if */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_project_simple_higher() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_project_simple
*
* Purpose: Projects a hyperslab selection onto/into a simple dataspace
* of a different rank
*
* Return: Non-negative on success, negative on failure.
*
* Programmer: Quincey Koziol
* Sunday, July 18, 2010
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_project_simple(const H5S_t *base_space, H5S_t *new_space,
hsize_t *offset)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(base_space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(base_space));
HDassert(new_space);
HDassert(offset);
/* We are setting a new selection, remove any current selection in new dataspace */
if(H5S_SELECT_RELEASE(new_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")
/* Allocate space for the hyperslab selection information */
if(NULL == (new_space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab info")
/* Set unlim_dim */
new_space->select.sel_info.hslab->unlim_dim = -1;
/* Check for a "regular" hyperslab selection */
/* (No need to rebuild the dimension info yet -QAK) */
if(base_space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
unsigned base_space_dim; /* Current dimension in the base dataspace */
unsigned new_space_dim; /* Current dimension in the new dataspace */
unsigned u; /* Local index variable */
/* Check if the new space's rank is < or > base space's rank */
if(new_space->extent.rank < base_space->extent.rank) {
const H5S_hyper_dim_t *opt_diminfo = base_space->select.sel_info.hslab->diminfo.opt; /* Alias for dataspace's diminfo information */
hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */
/* Compute the offset for the down-projection */
HDmemset(block, 0, sizeof(block));
for(u = 0; u < (base_space->extent.rank - new_space->extent.rank); u++)
block[u] = opt_diminfo[u].start;
*offset = H5VM_array_offset(base_space->extent.rank, base_space->extent.size, block);
/* Set the correct dimensions for the base & new spaces */
base_space_dim = base_space->extent.rank - new_space->extent.rank;
new_space_dim = 0;
} /* end if */
else {
HDassert(new_space->extent.rank > base_space->extent.rank);
/* The offset is zero when projected into higher dimensions */
*offset = 0;
/* Set the diminfo information for the higher dimensions */
for(new_space_dim = 0; new_space_dim < (new_space->extent.rank - base_space->extent.rank); new_space_dim++) {
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].start = 0;
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].stride = 1;
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].count = 1;
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].block = 1;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].start = 0;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].stride = 1;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].count = 1;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].block = 1;
} /* end for */
/* Start at beginning of base space's dimension info */
base_space_dim = 0;
} /* end else */
/* Copy the diminfo */
while(base_space_dim < base_space->extent.rank) {
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].start =
base_space->select.sel_info.hslab->diminfo.app[base_space_dim].start;
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].stride =
base_space->select.sel_info.hslab->diminfo.app[base_space_dim].stride;
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].count =
base_space->select.sel_info.hslab->diminfo.app[base_space_dim].count;
new_space->select.sel_info.hslab->diminfo.app[new_space_dim].block =
base_space->select.sel_info.hslab->diminfo.app[base_space_dim].block;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].start =
base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].start;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].stride =
base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].stride;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].count =
base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].count;
new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].block =
base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].block;
/* Advance to next dimensions */
base_space_dim++;
new_space_dim++;
} /* end for */
/* Update the bounding box */
for(u = 0; u < new_space->extent.rank; u++) {
new_space->select.sel_info.hslab->diminfo.low_bounds[u] = new_space->select.sel_info.hslab->diminfo.opt[u].start;
new_space->select.sel_info.hslab->diminfo.high_bounds[u] = new_space->select.sel_info.hslab->diminfo.low_bounds[u] + new_space->select.sel_info.hslab->diminfo.opt[u].stride * (new_space->select.sel_info.hslab->diminfo.opt[u].count - 1) + (new_space->select.sel_info.hslab->diminfo.opt[u].block - 1);
} /* end for */
/* Indicate that the dimension information is valid */
new_space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_YES;
/* Indicate that there's no slab information */
new_space->select.sel_info.hslab->span_lst = NULL;
} /* end if */
else {
/* Check if the new space's rank is < or > base space's rank */
if(new_space->extent.rank < base_space->extent.rank) {
const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */
hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */
unsigned curr_dim; /* Current dimension being operated on */
/* Clear the block buffer */
HDmemset(block, 0, sizeof(block));
/* Advance down selected spans */
curr = base_space->select.sel_info.hslab->span_lst->head;
curr_dim = 0;
while(curr && curr_dim < (base_space->extent.rank - new_space->extent.rank)) {
/* Save the location of the selection in current dimension */
block[curr_dim] = curr->low;
/* Advance down to next dimension */
curr = curr->down->head;
curr_dim++;
} /* end while */
/* Compute the offset for the down-projection */
*offset = H5VM_array_offset(base_space->extent.rank, base_space->extent.size, block);
/* Project the base space's selection down in less dimensions */
if(H5S__hyper_project_simple_lower(base_space, new_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions")
} /* end if */
else {
HDassert(new_space->extent.rank > base_space->extent.rank);
/* The offset is zero when projected into higher dimensions */
*offset = 0;
/* Project the base space's selection down in more dimensions */
if(H5S__hyper_project_simple_higher(base_space, new_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions")
} /* end else */
/* Copy the status of the dimension information */
new_space->select.sel_info.hslab->diminfo_valid = base_space->select.sel_info.hslab->diminfo_valid;
} /* end else */
/* Number of elements selected will be the same */
new_space->select.num_elem = base_space->select.num_elem;
/* Set selection type */
new_space->select.type = H5S_sel_hyper;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_project_simple() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_adjust_s_helper
PURPOSE
Helper routine to adjust offsets in span trees
USAGE
void H5S__hyper_adjust_s_helper(spans, offset)
H5S_hyper_span_info_t *spans; IN: Span tree to operate with
unsigned rank; IN: Number of dimensions for span tree
const hssize_t *offset; IN: Offset to subtract
uint64_t op_gen; IN: Operation generation
RETURNS
None
DESCRIPTION
Adjust the location of the spans in a span tree by subtracting an offset
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static void
H5S__hyper_adjust_s_helper(H5S_hyper_span_info_t *spans, unsigned rank,
const hssize_t *offset, uint64_t op_gen)
{
FUNC_ENTER_STATIC_NOERR
/* Sanity checks */
HDassert(spans);
HDassert(offset);
/* Check if we've already set this span tree */
if(spans->op_gen != op_gen) {
H5S_hyper_span_t *span; /* Pointer to current span in span tree */
unsigned u; /* Local index variable */
/* Adjust the span tree's low & high bounds */
for(u = 0; u < rank; u++) {
HDassert((hssize_t)spans->low_bounds[u] >= offset[u]);
spans->low_bounds[u] = (hsize_t)((hssize_t)spans->low_bounds[u] - offset[u]);
spans->high_bounds[u] = (hsize_t)((hssize_t)spans->high_bounds[u] - offset[u]);
} /* end for */
/* Iterate over the spans in tree */
span = spans->head;
while(span != NULL) {
/* Adjust span offset */
HDassert((hssize_t)span->low >= *offset);
span->low = (hsize_t)((hssize_t)span->low - *offset);
span->high = (hsize_t)((hssize_t)span->high - *offset);
/* Recursively adjust spans in next dimension down */
if(span->down != NULL)
H5S__hyper_adjust_s_helper(span->down, rank - 1, offset + 1, op_gen);
/* Advance to next span in this dimension */
span = span->next;
} /* end while */
/* Set the tree's operation generation */
spans->op_gen = op_gen;
} /* end if */
FUNC_LEAVE_NOAPI_VOID
} /* end H5S__hyper_adjust_s_helper() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_adjust_s
PURPOSE
Adjust a hyperslab selection by subtracting an offset
USAGE
herr_t H5S_hyper_adjust_s(space,offset)
H5S_t *space; IN/OUT: Pointer to dataspace to adjust
const hssize_t *offset; IN: Offset to subtract
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Moves a hyperslab selection by subtracting an offset from it.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_adjust_s(H5S_t *space, const hssize_t *offset)
{
hbool_t non_zero_offset = FALSE; /* Whether any offset is non-zero */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Sanity checks */
HDassert(space);
HDassert(offset);
/* Check for an all-zero offset vector */
for(u = 0; u < space->extent.rank; u++)
if(0 != offset[u]) {
non_zero_offset = TRUE;
break;
} /* end if */
/* Only perform operation if the offset is non-zero */
if(non_zero_offset) {
/* Subtract the offset from the "regular" coordinates, if they exist */
/* (No need to rebuild the dimension info yet -QAK) */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
for(u = 0; u < space->extent.rank; u++) {
HDassert((hssize_t)space->select.sel_info.hslab->diminfo.opt[u].start >= offset[u]);
space->select.sel_info.hslab->diminfo.opt[u].start = (hsize_t)((hssize_t)space->select.sel_info.hslab->diminfo.opt[u].start - offset[u]);
/* Adjust the low & high bounds */
HDassert((hssize_t)space->select.sel_info.hslab->diminfo.low_bounds[u] >= offset[u]);
space->select.sel_info.hslab->diminfo.low_bounds[u] = (hsize_t)((hssize_t)space->select.sel_info.hslab->diminfo.low_bounds[u] - offset[u]);
space->select.sel_info.hslab->diminfo.high_bounds[u] = (hsize_t)((hssize_t)space->select.sel_info.hslab->diminfo.high_bounds[u] - offset[u]);
} /* end for */
} /* end if */
/* Subtract the offset from the span tree coordinates, if they exist */
if(space->select.sel_info.hslab->span_lst) {
uint64_t op_gen; /* Operation generation value */
/* Acquire an operation generation value for this operation */
op_gen = H5S__hyper_get_op_gen();
H5S__hyper_adjust_s_helper(space->select.sel_info.hslab->span_lst, space->extent.rank, offset, op_gen);
} /* end if */
} /* end if */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_adjust_s() */
/*--------------------------------------------------------------------------
NAME
H5Shyper_adjust_s
PURPOSE
Adjust a hyperslab selection by subtracting an offset
USAGE
herr_t H5Shyper_adjust_s(space_id,offset)
hid_t space_id; IN: ID of the dataspace to adjust
const hssize_t *offset; IN: Offset to subtract
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Moves a hyperslab selection by subtracting an offset from it.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5Shyper_adjust_s(hid_t space_id, const hssize_t *offset)
{
H5S_t *space;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_API(FAIL)
H5TRACE2("e", "i*Hs", space_id, offset);
if(NULL == (space = (H5S_t *)H5I_object_verify(space_id, H5I_DATASPACE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "not a dataspace")
if(H5S_GET_SELECT_TYPE(space) != H5S_SEL_HYPERSLABS)
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a hyperslab selection")
if(NULL == offset)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADTYPE, FAIL, "NULL offset pointer")
if(H5S_hyper_adjust_s(space, offset) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't adjust selection")
done:
FUNC_LEAVE_API(ret_value)
} /* end H5Shyper_adjust_s() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_normalize_offset
PURPOSE
"Normalize" a hyperslab selection by adjusting it's coordinates by the
amount of the selection offset.
USAGE
htri_t H5S_hyper_normalize_offset(space, old_offset)
H5S_t *space; IN/OUT: Pointer to dataspace to move
hssize_t *old_offset; OUT: Pointer to space to store old offset
RETURNS
TRUE/FALSE for hyperslab selection, FAIL on error
DESCRIPTION
Copies the current selection offset into the array provided, then
inverts the selection offset, subtracts the offset from the hyperslab
selection and resets the offset to zero.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5S_hyper_normalize_offset(H5S_t *space, hssize_t *old_offset)
{
htri_t ret_value = FALSE; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Sanity checks */
HDassert(space);
HDassert(old_offset);
/* Check for hyperslab selection & offset changed */
if(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS && space->select.offset_changed) {
unsigned u; /* Local index variable */
/* Copy & invert the selection offset */
for(u = 0; u < space->extent.rank; u++) {
old_offset[u] = space->select.offset[u];
space->select.offset[u] = -space->select.offset[u];
} /* end for */
/* Call the 'adjust' routine */
if(H5S_hyper_adjust_s(space, space->select.offset) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't adjust selection")
/* Zero out the selection offset */
HDmemset(space->select.offset, 0, sizeof(hssize_t) * space->extent.rank);
/* Indicate that the offset was normalized */
ret_value = TRUE;
} /* end if */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_normalize_offset() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_denormalize_offset
PURPOSE
"Denormalize" a hyperslab selection by reverse adjusting it's coordinates
by the amount of the former selection offset.
USAGE
herr_t H5S_hyper_denormalize_offset(space, old_offset)
H5S_t *space; IN/OUT: Pointer to dataspace to move
hssize_t *old_offset; IN: Pointer to old offset array
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Subtracts the old offset from the current selection (canceling out the
effect of the "normalize" routine), then restores the old offset into
the dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_denormalize_offset(H5S_t *space, const hssize_t *old_offset)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Sanity checks */
HDassert(space);
HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);
/* Call the 'adjust' routine */
if(H5S_hyper_adjust_s(space, old_offset) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't adjust selection")
/* Copy the selection offset over */
H5MM_memcpy(space->select.offset, old_offset, sizeof(hssize_t) * space->extent.rank);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_denormalize_offset() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_append_span
PURPOSE
Create a new span and append to span list
USAGE
herr_t H5S__hyper_append_span(span_tree, ndims, low, high, down)
H5S_hyper_span_info_t **span_tree; IN/OUT: Pointer to span tree to append to
unsigned ndims; IN: Number of dimension for span
hsize_t low, high; IN: Low and high bounds for new span node
H5S_hyper_span_info_t *down; IN: Down span tree for new node
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Create a new span node and append to a span list. Update the previous
span in the list also.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_append_span(H5S_hyper_span_info_t **span_tree, unsigned ndims,
hsize_t low, hsize_t high, H5S_hyper_span_info_t *down)
{
H5S_hyper_span_t *new_span = NULL;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(span_tree);
/* Check for adding first node to merged spans */
if(*span_tree == NULL) {
/* Allocate new span node to append to list */
if(NULL == (new_span = H5S__hyper_new_span(low, high, down, NULL)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
/* Make new span the first node in span list */
/* Allocate a new span_info node */
if(NULL == (*span_tree = H5S__hyper_new_span_info(ndims)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
/* Set the span tree's basic information */
(*span_tree)->count = 1;
(*span_tree)->head = new_span;
(*span_tree)->tail = new_span;
/* Set low & high bounds for new span tree */
(*span_tree)->low_bounds[0] = low;
(*span_tree)->high_bounds[0] = high;
if(down) {
/* Sanity check */
HDassert(ndims > 1);
H5MM_memcpy(&((*span_tree)->low_bounds[1]), down->low_bounds, sizeof(hsize_t) * (ndims - 1));
H5MM_memcpy(&((*span_tree)->high_bounds[1]), down->high_bounds, sizeof(hsize_t) * (ndims - 1));
} /* end if */
} /* end if */
/* Merge or append to existing merged spans list */
else {
htri_t down_cmp = (-1); /* Comparison value for down spans */
/* Check if span can just extend the previous merged span */
if((((*span_tree)->tail->high + 1) == low) &&
(down_cmp = H5S__hyper_cmp_spans(down, (*span_tree)->tail->down))) {
/* Extend previous merged span to include new high bound */
(*span_tree)->tail->high = high;
/* Extend span tree's high bound in this dimension */
/* (No need to update lower dimensions, since this span shares them with previous span) */
(*span_tree)->high_bounds[0] = high;
} /* end if */
else {
H5S_hyper_span_info_t *new_down; /* Down pointer for new span node */
/* Sanity check */
/* (If down_cmp was set to TRUE above, we won't be in this branch) */
HDassert(down_cmp != TRUE);
/* Check if there is actually a down span */
if(down) {
/* Check if the down spans for the new span node are the same as the previous span node */
/* (Uses the 'down span comparison' from earlier, if already computed) */
if(down_cmp < 0 && (down_cmp = H5S__hyper_cmp_spans(down, (*span_tree)->tail->down)))
/* Share the previous span's down span tree */
new_down = (*span_tree)->tail->down;
else
new_down = down;
} /* end if */
else
new_down = NULL;
/* Allocate new span node to append to list */
if(NULL == (new_span = H5S__hyper_new_span(low, high, new_down, NULL)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
/* Update the high bounds for current dimension */
(*span_tree)->high_bounds[0] = high;
/* Update low & high bounds in lower dimensions, if there are any */
if(down) {
/* Sanity checks */
HDassert(ndims > 1);
HDassert(down_cmp >= 0);
/* Check if we are sharing down spans with a previous node */
/* (Only need to check for bounds changing if down spans aren't shared) */
if(down_cmp == FALSE) {
unsigned u; /* Local index variable */
/* Loop over lower dimensions, checking & updating low & high bounds */
for(u = 0; u < (ndims - 1); u++) {
if(down->low_bounds[u] < (*span_tree)->low_bounds[u + 1])
(*span_tree)->low_bounds[u + 1] = down->low_bounds[u];
if(down->high_bounds[u] > (*span_tree)->high_bounds[u + 1])
(*span_tree)->high_bounds[u + 1] = down->high_bounds[u];
} /* end for */
} /* end if */
} /* end if */
/* Append to end of merged spans list */
(*span_tree)->tail->next = new_span;
(*span_tree)->tail = new_span;
} /* end else */
} /* end else */
done:
if(ret_value < 0)
if(new_span)
H5S__hyper_free_span(new_span);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_append_span() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_clip_spans
PURPOSE
Clip a new span tree against the current spans in the hyperslab selection
USAGE
herr_t H5S__hyper_clip_spans(span_a, span_b, selector, curr_dim, dim_size,
span_a_b_bounds[4], all_clips_bound,
a_not_b, a_and_b, b_not_a)
H5S_hyper_span_t *a_spans; IN: Span tree 'a' to clip with.
H5S_hyper_span_t *b_spans; IN: Span tree 'b' to clip with.
unsigned selector; IN: The parameter deciding which output is needed
(only considering the last three bits ABC:
If A is set, then a_not_b is needed;
If B is set, then a_and_b is needed;
If C is set, then b_not_a is needed;
)
unsigned ndims; IN: Number of dimensions of this span tree
H5S_hyper_span_t **a_not_b; OUT: Span tree of 'a' hyperslab spans which
doesn't overlap with 'b' hyperslab
spans.
H5S_hyper_span_t **a_and_b; OUT: Span tree of 'a' hyperslab spans which
overlaps with 'b' hyperslab spans.
H5S_hyper_span_t **b_not_a; OUT: Span tree of 'b' hyperslab spans which
doesn't overlap with 'a' hyperslab
spans.
RETURNS
non-negative on success, negative on failure
DESCRIPTION
Clip one span tree ('a') against another span tree ('b'). Creates span
trees for the area defined by the 'a' span tree which does not overlap the
'b' span tree ("a not b"), the area defined by the overlap of the 'a'
hyperslab span tree and the 'b' span tree ("a and b"), and the area defined
by the 'b' hyperslab span tree which does not overlap the 'a' span
tree ("b not a").
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_spans,
unsigned selector, unsigned ndims,
H5S_hyper_span_info_t **a_not_b, H5S_hyper_span_info_t **a_and_b,
H5S_hyper_span_info_t **b_not_a)
{
hbool_t need_a_not_b; /* Whether to generate a_not_b list */
hbool_t need_a_and_b; /* Whether to generate a_and_b list */
hbool_t need_b_not_a; /* Whether to generate b_not_a list */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(a_spans);
HDassert(b_spans);
HDassert(a_not_b);
HDassert(a_and_b);
HDassert(b_not_a);
/* Set which list(s) to be generated, based on selector */
need_a_not_b = ((selector & H5S_HYPER_COMPUTE_A_NOT_B) != 0);
need_a_and_b = ((selector & H5S_HYPER_COMPUTE_A_AND_B) != 0);
need_b_not_a = ((selector & H5S_HYPER_COMPUTE_B_NOT_A) != 0);
/* Check if both span trees are not defined */
if(a_spans == NULL && b_spans == NULL) {
*a_not_b = NULL;
*a_and_b = NULL;
*b_not_a = NULL;
} /* end if */
/* If span 'a' is not defined, but 'b' is, copy 'b' and set the other return span trees to empty */
else if(a_spans == NULL) {
*a_not_b = NULL;
*a_and_b = NULL;
if(need_b_not_a) {
if(NULL == (*b_not_a = H5S__hyper_copy_span(b_spans, ndims)))
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree")
} /* end if */
else
*b_not_a = NULL;
} /* end if */
/* If span 'b' is not defined, but 'a' is, copy 'a' and set the other return span trees to empty */
else if(b_spans == NULL) {
*a_and_b = NULL;
*b_not_a = NULL;
if(need_a_not_b) {
if(NULL == (*a_not_b = H5S__hyper_copy_span(a_spans, ndims)))
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree")
} /* end if */
else
*a_not_b = NULL;
} /* end if */
/* If span 'a' and 'b' are both defined, calculate the proper span trees */
else {
/* Check if both span trees completely overlap */
if(H5S__hyper_cmp_spans(a_spans, b_spans)) {
*a_not_b = NULL;
*b_not_a = NULL;
if(need_a_and_b) {
if(NULL == (*a_and_b = H5S__hyper_copy_span(a_spans, ndims)))
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree")
} /* end if */
else
*a_and_b = NULL;
} /* end if */
else {
H5S_hyper_span_t *span_a; /* Pointer to a node in span tree 'a' */
H5S_hyper_span_t *span_b; /* Pointer to a node in span tree 'b' */
hbool_t recover_a, recover_b; /* Flags to indicate when to recover temporary spans */
/* Get the pointers to the new and old span lists */
span_a = a_spans->head;
span_b = b_spans->head;
/* No spans to recover yet */
recover_a = recover_b = FALSE;
/* Work through the list of spans in the new list */
while(span_a != NULL && span_b != NULL) {
H5S_hyper_span_info_t *down_a_not_b; /* Temporary pointer to a_not_b span tree of down spans for overlapping nodes */
H5S_hyper_span_info_t *down_a_and_b; /* Temporary pointer to a_and_b span tree of down spans for overlapping nodes */
H5S_hyper_span_info_t *down_b_not_a; /* Temporary pointer to b_and_a span tree of down spans for overlapping nodes */
H5S_hyper_span_t *tmp_span; /* Temporary pointer to new span */
/* Check if span 'a' is completely before span 'b' */
/* AAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
if(span_a->high < span_b->low) {
/* Copy span 'a' and add to a_not_b list */
/* Merge/add span 'a' with/to a_not_b list */
if(need_a_not_b)
if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_a->high, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Advance span 'a', leave span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
} /* end if */
/* Check if span 'a' overlaps only the lower bound */
/* of span 'b' , up to the upper bound of span 'b' */
/* AAAAAAAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if(span_a->low < span_b->low && (span_a->high >= span_b->low && span_a->high <= span_b->high)) {
/* Split span 'a' into two parts at the low bound of span 'b' */
/* Merge/add lower part of span 'a' with/to a_not_b list */
if(need_a_not_b)
if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_b->low - 1, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Check for overlaps between upper part of span 'a' and lower part of span 'b' */
/* Make certain both spans either have a down span or both don't have one */
HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));
/* If there are no down spans, just add the overlapping area to the a_and_b list */
if(span_a->down == NULL) {
/* Merge/add overlapped part with/to a_and_b list */
if(need_a_and_b)
if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_a->high, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
} /* end if */
/* If there are down spans, check for the overlap in them and add to each appropriate list */
else {
/* NULL out the temporary pointers to clipped areas in down spans */
down_a_not_b = NULL;
down_a_and_b = NULL;
down_b_not_a = NULL;
/* Check for overlaps in the 'down spans' of span 'a' & 'b' */
/** Note: since the bound box of remaining dimensions
* has been updated in the following clip function (via
* all_clips_bounds), there's no need updating the bound box
* after each append call in the following codes */
if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")
/* Check for additions to the a_not_b list */
if(down_a_not_b) {
HDassert(need_a_not_b == TRUE);
/* Merge/add overlapped part with/to a_not_b list */
if(H5S__hyper_append_span(a_not_b, ndims, span_b->low, span_a->high, down_a_not_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_not_b);
} /* end if */
/* Check for additions to the a_and_b list */
if(down_a_and_b) {
HDassert(need_a_and_b == TRUE);
/* Merge/add overlapped part with/to a_and_b list */
if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_a->high, down_a_and_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_and_b);
} /* end if */
/* Check for additions to the b_not_a list */
if(down_b_not_a) {
HDassert(need_b_not_a == TRUE);
/* Merge/add overlapped part with/to b_not_a list */
if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_a->high, down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_b_not_a);
} /* end if */
} /* end else */
/* Split off upper part of span 'b' at upper span of span 'a' */
/* Check if there is actually an upper part of span 'b' to split off */
if(span_a->high < span_b->high) {
/* Allocate new span node for upper part of span 'b' */
if(NULL == (tmp_span = H5S__hyper_new_span(span_a->high + 1, span_b->high, span_b->down, span_b->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
/* Advance span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
/* Make upper part of span 'b' into new span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span);
recover_b = TRUE;
} /* end if */
/* No upper part of span 'b' to split */
else {
/* Advance both 'a' and 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end else */
} /* end if */
/* Check if span 'a' overlaps the lower & upper bound */
/* of span 'b' */
/* AAAAAAAAAAAAAAAAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if(span_a->low < span_b->low && span_a->high > span_b->high) {
/* Split off lower part of span 'a' at lower span of span 'b' */
/* Merge/add lower part of span 'a' with/to a_not_b list */
if(need_a_not_b)
if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_b->low - 1, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Check for overlaps between middle part of span 'a' and span 'b' */
/* Make certain both spans either have a down span or both don't have one */
HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));
/* If there are no down spans, just add the overlapping area to the a_and_b list */
if(span_a->down == NULL) {
/* Merge/add overlapped part with/to a_and_b list */
if(need_a_and_b)
if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_b->high, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
} /* end if */
/* If there are down spans, check for the overlap in them and add to each appropriate list */
else {
/* NULL out the temporary pointers to clipped areas in down spans */
down_a_not_b = NULL;
down_a_and_b = NULL;
down_b_not_a = NULL;
/* Check for overlaps in the 'down spans' of span 'a' & 'b' */
if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")
/* Check for additions to the a_not_b list */
if(down_a_not_b) {
HDassert(need_a_not_b == TRUE);
/* Merge/add overlapped part with/to a_not_b list */
if(H5S__hyper_append_span(a_not_b, ndims, span_b->low, span_b->high, down_a_not_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_not_b);
} /* end if */
/* Check for additions to the a_and_b list */
if(down_a_and_b) {
HDassert(need_a_and_b == TRUE);
/* Merge/add overlapped part with/to a_and_b list */
if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_b->high, down_a_and_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_and_b);
} /* end if */
/* Check for additions to the b_not_a list */
if(down_b_not_a) {
HDassert(need_b_not_a == TRUE);
/* Merge/add overlapped part with/to b_not_a list */
if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_b->high, down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_b_not_a);
} /* end if */
} /* end else */
/* Split off upper part of span 'a' at upper span of span 'b' */
/* Allocate new span node for upper part of span 'a' */
if(NULL == (tmp_span = H5S__hyper_new_span(span_b->high + 1, span_a->high, span_a->down, span_a->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span")
/* Make upper part of span 'a' the new span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span);
recover_a = TRUE;
/* Advance span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end if */
/* Check if span 'a' is entirely within span 'b' */
/* AAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if(span_a->low >= span_b->low && span_a->high <= span_b->high) {
/* Split off lower part of span 'b' at lower span of span 'a' */
/* Check if there is actually a lower part of span 'b' to split off */
if(span_a->low > span_b->low) {
/* Merge/add lower part of span 'b' with/to b_not_a list */
if(need_b_not_a)
if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_a->low - 1, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
} /* end if */
else {
/* Keep going, nothing to split off */
} /* end else */
/* Check for overlaps between span 'a' and midle of span 'b' */
/* Make certain both spans either have a down span or both don't have one */
HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));
/* If there are no down spans, just add the overlapping area to the a_and_b list */
if(span_a->down == NULL) {
/* Merge/add overlapped part with/to a_and_b list */
if(need_a_and_b)
if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_a->high, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
} /* end if */
/* If there are down spans, check for the overlap in them and add to each appropriate list */
else {
/* NULL out the temporary pointers to clipped areas in down spans */
down_a_not_b = NULL;
down_a_and_b = NULL;
down_b_not_a = NULL;
/* Check for overlaps in the 'down spans' of span 'a' & 'b' */
if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")
/* Check for additions to the a_not_b list */
if(down_a_not_b) {
HDassert(need_a_not_b == TRUE);
/* Merge/add overlapped part with/to a_not_b list */
if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_a->high, down_a_not_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_not_b);
} /* end if */
/* Check for additions to the a_and_b list */
if(down_a_and_b) {
HDassert(need_a_and_b == TRUE);
/* Merge/add overlapped part with/to a_and_b list */
if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_a->high, down_a_and_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_and_b);
} /* end if */
/* Check for additions to the b_not_a list */
if(down_b_not_a) {
HDassert(need_b_not_a == TRUE);
/* Merge/add overlapped part with/to b_not_a list */
if(H5S__hyper_append_span(b_not_a, ndims, span_a->low, span_a->high, down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_b_not_a);
} /* end if */
} /* end else */
/* Check if there is actually an upper part of span 'b' to split off */
if(span_a->high < span_b->high) {
/* Split off upper part of span 'b' at upper span of span 'a' */
/* Allocate new span node for upper part of spans 'a' */
if(NULL == (tmp_span = H5S__hyper_new_span(span_a->high + 1, span_b->high, span_b->down, span_b->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
/* And advance span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
/* Make upper part of span 'b' the new span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span);
recover_b = TRUE;
} /* end if */
else {
/* Advance both span 'a' & span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end else */
} /* end if */
/* Check if span 'a' overlaps only the upper bound */
/* of span 'b' */
/* AAAAAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if((span_a->low >= span_b->low && span_a->low <= span_b->high) && span_a->high > span_b->high) {
/* Check if there is actually a lower part of span 'b' to split off */
if(span_a->low > span_b->low) {
/* Split off lower part of span 'b' at lower span of span 'a' */
/* Merge/add lower part of span 'b' with/to b_not_a list */
if(need_b_not_a)
if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_a->low - 1, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
} /* end if */
else {
/* Keep going, nothing to split off */
} /* end else */
/* Check for overlaps between lower part of span 'a' and upper part of span 'b' */
/* Make certain both spans either have a down span or both don't have one */
HDassert((span_a->down != NULL && span_b->down != NULL) || (span_a->down == NULL && span_b->down == NULL));
/* If there are no down spans, just add the overlapping area to the a_and_b list */
if(span_a->down == NULL) {
/* Merge/add overlapped part with/to a_and_b list */
if(need_a_and_b)
if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_b->high, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
} /* end if */
/* If there are down spans, check for the overlap in them and add to each appropriate list */
else {
/* NULL out the temporary pointers to clipped areas in down spans */
down_a_not_b = NULL;
down_a_and_b = NULL;
down_b_not_a = NULL;
/* Check for overlaps in the 'down spans' of span 'a' & 'b' */
if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")
/* Check for additions to the a_not_b list */
if(down_a_not_b) {
HDassert(need_a_not_b == TRUE);
/* Merge/add overlapped part with/to a_not_b list */
if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_b->high, down_a_not_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_not_b);
} /* end if */
/* Check for additions to the a_and_b list */
if(down_a_and_b) {
HDassert(need_a_and_b == TRUE);
/* Merge/add overlapped part with/to a_and_b list */
if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_b->high, down_a_and_b) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_a_and_b);
} /* end if */
/* Check for additions to the b_not_a list */
if(down_b_not_a) {
HDassert(need_b_not_a == TRUE);
/* Merge/add overlapped part with/to b_not_a list */
if(H5S__hyper_append_span(b_not_a, ndims, span_a->low, span_b->high, down_b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Release the down span tree generated */
H5S__hyper_free_span_info(down_b_not_a);
} /* end if */
} /* end else */
/* Split off upper part of span 'a' at upper span of span 'b' */
/* Allocate new span node for upper part of span 'a' */
if(NULL == (tmp_span = H5S__hyper_new_span(span_b->high + 1, span_a->high, span_a->down, span_a->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span")
/* Make upper part of span 'a' into new span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span);
recover_a = TRUE;
/* Advance span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end if */
/* span 'a' must be entirely above span 'b' */
/* AAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else {
/* Copy span 'b' and add to b_not_a list */
/* Merge/add span 'b' with/to b_not_a list */
if(need_b_not_a)
if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_b->high, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Advance span 'b', leave span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end else */
} /* end while */
/* Clean up 'a' spans which haven't been covered yet */
if(span_a != NULL && span_b == NULL) {
/* Check if need to merge/add 'a' spans with/to a_not_b list */
if(need_a_not_b) {
/* (This loop, and the similar one below for 'b' spans,
* could be replaced with an optimized routine that quickly
* appended the remaining spans to the 'not' list, but
* until it looks like it's taking a lot of time for an
* important use case, it's been left generic, and similar
* to other code above. -QAK, 2019/02/01)
*/
while(span_a != NULL) {
/* Copy span 'a' and add to a_not_b list */
if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_a->high, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Advance to the next 'a' span */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
} /* end while */
} /* end if */
else {
/* Free the span, if it's generated */
if(recover_a)
H5S__hyper_free_span(span_a);
} /* end else */
} /* end if */
/* Clean up 'b' spans which haven't been covered yet */
else if(span_a == NULL && span_b != NULL) {
/* Check if need to merge/add 'b' spans with/to b_not_a list */
if(need_b_not_a) {
/* (This loop, and the similar one above for 'a' spans,
* could be replaced with an optimized routine that quickly
* appended the remaining spans to the 'not' list, but
* until it looks like it's taking a lot of time for an
* important use case, it's been left generic, and similar
* to other code above. -QAK, 2019/02/01)
*/
while(span_b != NULL) {
/* Copy span 'b' and add to b_not_a list */
if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_b->high, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
/* Advance to the next 'b' span */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end while */
} /* end if */
else {
/* Free the span, if it's generated */
if(recover_b)
H5S__hyper_free_span(span_b);
} /* end else */
} /* end if */
else
/* Sanity check */
HDassert(span_a == NULL && span_b == NULL);
} /* end else */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_clip_spans() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_merge_spans_helper
PURPOSE
Merge two hyperslab span tree together
USAGE
H5S_hyper_span_info_t *H5S__hyper_merge_spans_helper(a_spans, b_spans)
H5S_hyper_span_info_t *a_spans; IN: First hyperslab spans to merge
together
H5S_hyper_span_info_t *b_spans; IN: Second hyperslab spans to merge
together
unsigned ndims; IN: Number of dimensions of this span tree
RETURNS
Pointer to span tree containing the merged spans on success, NULL on failure
DESCRIPTION
Merge two sets of hyperslab spans together and return the span tree from
the merged set.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Handles merging span trees that overlap.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_spans,
unsigned ndims)
{
H5S_hyper_span_info_t *merged_spans = NULL; /* Pointer to the merged span tree */
H5S_hyper_span_info_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
/* Make certain both 'a' & 'b' spans have down span trees or neither does */
HDassert((a_spans != NULL && b_spans != NULL) || (a_spans == NULL && b_spans == NULL));
/* Check if the span trees for the 'a' span and the 'b' span are the same */
if(H5S__hyper_cmp_spans(a_spans, b_spans)) {
if(a_spans == NULL)
merged_spans = NULL;
else {
/* Copy one of the span trees to return */
if(NULL == (merged_spans = H5S__hyper_copy_span(a_spans, ndims)))
HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, NULL, "can't copy hyperslab span tree")
} /* end else */
} /* end if */
else {
H5S_hyper_span_t *span_a; /* Pointer to current span 'a' working on */
H5S_hyper_span_t *span_b; /* Pointer to current span 'b' working on */
hbool_t recover_a, recover_b; /* Flags to indicate when to recover temporary spans */
/* Get the pointers to the 'a' and 'b' span lists */
span_a = a_spans->head;
span_b = b_spans->head;
/* No spans to recover yet */
recover_a = recover_b = FALSE;
/* Work through the list of spans in the new list */
while(span_a != NULL && span_b != NULL) {
H5S_hyper_span_info_t *tmp_spans; /* Pointer to temporary new span tree */
H5S_hyper_span_t *tmp_span; /* Pointer to temporary new span */
/* Check if the 'a' span is completely before 'b' span */
/* AAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
if(span_a->high < span_b->low) {
/* Merge/add span 'a' with/to the merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Advance span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
} /* end if */
/* Check if span 'a' overlaps only the lower bound */
/* of span 'b', up to the upper bound of span 'b' */
/* AAAAAAAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if(span_a->low < span_b->low && (span_a->high >= span_b->low && span_a->high <= span_b->high)) {
/* Check if span 'a' and span 'b' down spans are equal */
if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) {
/* Merge/add copy of span 'a' with/to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
} /* end if */
else {
/* Merge/add lower part of span 'a' with/to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->low - 1, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Get merged span tree for overlapped section */
tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1);
/* Merge/add overlapped section to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->high, tmp_spans) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Release merged span tree for overlapped section */
H5S__hyper_free_span_info(tmp_spans);
} /* end else */
/* Check if there is an upper part of span 'b' */
if(span_a->high < span_b->high) {
/* Copy upper part of span 'b' as new span 'b' */
/* Allocate new span node to append to list */
if(NULL == (tmp_span = H5S__hyper_new_span(span_a->high + 1, span_b->high, span_b->down, span_b->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Advance span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
/* Set new span 'b' to tmp_span */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span);
recover_b = TRUE;
} /* end if */
else {
/* Advance both span 'a' & 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end else */
} /* end if */
/* Check if span 'a' overlaps the lower & upper bound */
/* of span 'b' */
/* AAAAAAAAAAAAAAAAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if(span_a->low < span_b->low && span_a->high > span_b->high) {
/* Check if span 'a' and span 'b' down spans are equal */
if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) {
/* Merge/add copy of lower & middle parts of span 'a' to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->high, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
} /* end if */
else {
/* Merge/add lower part of span 'a' to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->low - 1, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Get merged span tree for overlapped section */
tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1);
/* Merge/add overlapped section to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, tmp_spans) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Release merged span tree for overlapped section */
H5S__hyper_free_span_info(tmp_spans);
} /* end else */
/* Copy upper part of span 'a' as new span 'a' (remember to free) */
/* Allocate new span node to append to list */
if(NULL == (tmp_span = H5S__hyper_new_span(span_b->high + 1, span_a->high, span_a->down, span_a->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Set new span 'a' to tmp_span */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span);
recover_a = TRUE;
/* Advance span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end if */
/* Check if span 'a' is entirely within span 'b' */
/* AAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if(span_a->low >= span_b->low && span_a->high <= span_b->high) {
/* Check if span 'a' and span 'b' down spans are equal */
if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) {
/* Merge/add copy of lower & middle parts of span 'b' to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->high, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
} /* end if */
else {
/* Check if there is a lower part of span 'b' */
if(span_a->low > span_b->low) {
/* Merge/add lower part of span 'b' to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->low - 1, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
} /* end if */
else {
/* No lower part of span 'b' , keep going... */
} /* end else */
/* Get merged span tree for overlapped section */
tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1);
/* Merge/add overlapped section to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, tmp_spans) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Release merged span tree for overlapped section */
H5S__hyper_free_span_info(tmp_spans);
} /* end else */
/* Check if there is an upper part of span 'b' */
if(span_a->high < span_b->high) {
/* Copy upper part of span 'b' as new span 'b' (remember to free) */
/* Allocate new span node to append to list */
if(NULL == (tmp_span = H5S__hyper_new_span(span_a->high + 1, span_b->high, span_b->down, span_b->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Advance span 'a' */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
/* Set new span 'b' to tmp_span */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span);
recover_b = TRUE;
} /* end if */
else {
/* Advance both spans */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end else */
} /* end if */
/* Check if span 'a' overlaps only the upper bound */
/* of span 'b' */
/* AAAAAAAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else if((span_a->low >= span_b->low && span_a->low <= span_b->high) && span_a->high > span_b->high) {
/* Check if span 'a' and span 'b' down spans are equal */
if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) {
/* Merge/add copy of span 'b' to merged spans if so */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
} /* end if */
else {
/* Check if there is a lower part of span 'b' */
if(span_a->low > span_b->low) {
/* Merge/add lower part of span 'b' to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->low - 1, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
} /* end if */
else {
/* No lower part of span 'b' , keep going... */
} /* end else */
/* Get merged span tree for overlapped section */
tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1);
/* Merge/add overlapped section to merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->high, tmp_spans) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Release merged span tree for overlapped section */
H5S__hyper_free_span_info(tmp_spans);
} /* end else */
/* Copy upper part of span 'a' as new span 'a' */
/* Allocate new span node to append to list */
if(NULL == (tmp_span = H5S__hyper_new_span(span_b->high + 1, span_a->high, span_a->down, span_a->next)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Set new span 'a' to tmp_span */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span);
recover_a = TRUE;
/* Advance span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end if */
/* Span 'a' must be entirely above span 'b' */
/* AAAAA */
/* <-----------------------------------> */
/* BBBBBBBBBB */
else {
/* Merge/add span 'b' with the merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Advance span 'b' */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end else */
} /* end while */
/* Clean up 'a' spans which haven't been added to the list of merged spans */
if(span_a != NULL && span_b == NULL) {
while(span_a != NULL) {
/* Merge/add all 'a' spans into the merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, span_a->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Advance to next 'a' span, until all processed */
H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next);
} /* end while */
} /* end if */
/* Clean up 'b' spans which haven't been added to the list of merged spans */
if(span_a == NULL && span_b != NULL) {
while(span_b != NULL) {
/* Merge/add all 'b' spans into the merged spans */
if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, span_b->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span")
/* Advance to next 'b' span, until all processed */
H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next);
} /* end while */
} /* end if */
} /* end else */
/* Set return value */
ret_value = merged_spans;
done:
if(ret_value == NULL)
if(merged_spans)
H5S__hyper_free_span_info(merged_spans);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_merge_spans_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_merge_spans
PURPOSE
Merge new hyperslab spans to existing hyperslab selection
USAGE
herr_t H5S__hyper_merge_spans(space, new_spans, can_own)
H5S_t *space; IN: Dataspace to add new spans to hyperslab
selection.
H5S_hyper_span_t *new_spans; IN: Span tree of new spans to add to
hyperslab selection
RETURNS
non-negative on success, negative on failure
DESCRIPTION
Add a set of hyperslab spans to an existing hyperslab selection.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_merge_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Sanity checks */
HDassert(space);
HDassert(new_spans);
/* If this is the first span tree in the hyperslab selection, just use it */
if(space->select.sel_info.hslab->span_lst == NULL) {
space->select.sel_info.hslab->span_lst = new_spans;
space->select.sel_info.hslab->span_lst->count++;
} /* end if */
else {
H5S_hyper_span_info_t *merged_spans;
/* Get the merged spans */
if(NULL == (merged_spans = H5S__hyper_merge_spans_helper(space->select.sel_info.hslab->span_lst, new_spans, space->extent.rank)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTMERGE, FAIL, "can't merge hyperslab spans")
/* Free the previous spans */
H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst);
/* Point to the new merged spans */
space->select.sel_info.hslab->span_lst = merged_spans;
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_merge_spans() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_spans_nelem_helper
PURPOSE
Count the number of elements in a span tree
USAGE
hsize_t H5S__hyper_spans_nelem_helper(spans, op_gen)
const H5S_hyper_span_info_t *spans; IN: Hyperslan span tree to count elements of
uint64_t op_gen; IN: Operation generation
RETURNS
Number of elements in span tree on success; negative on failure
DESCRIPTION
Counts the number of elements described by the spans in a span tree.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S__hyper_spans_nelem_helper(H5S_hyper_span_info_t *spans, uint64_t op_gen)
{
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(spans);
/* Check if the span tree was already counted */
if(spans->op_gen == op_gen)
/* Just return the # of elements in the already counted span tree */
ret_value = spans->u.nelmts;
else { /* Count the number of elements in the span tree */
const H5S_hyper_span_t *span; /* Hyperslab span */
span = spans->head;
if(NULL == span->down) {
while(span != NULL) {
/* Compute # of elements covered */
ret_value += (span->high - span->low) + 1;
/* Advance to next span */
span = span->next;
} /* end while */
} /* end if */
else {
while(span != NULL) {
hsize_t nelmts; /* # of elements covered by current span */
/* Compute # of elements covered */
nelmts = (span->high - span->low) + 1;
/* Multiply the size of this span by the total down span elements */
ret_value += nelmts * H5S__hyper_spans_nelem_helper(span->down, op_gen);
/* Advance to next span */
span = span->next;
} /* end while */
} /* end else */
/* Set the operation generation for this span tree, to avoid re-computing */
spans->op_gen = op_gen;
/* Hold a copy of the # of elements */
spans->u.nelmts = ret_value;
} /* end else */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_spans_nelem_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_spans_nelem
PURPOSE
Count the number of elements in a span tree
USAGE
hsize_t H5S__hyper_spans_nelem(spans)
const H5S_hyper_span_info_t *spans; IN: Hyperslan span tree to count elements of
RETURNS
Number of elements in span tree on success; negative on failure
DESCRIPTION
Counts the number of elements described by the spans in a span tree.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S__hyper_spans_nelem(H5S_hyper_span_info_t *spans)
{
uint64_t op_gen; /* Operation generation value */
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(spans);
/* Acquire an operation generation value for this operation */
op_gen = H5S__hyper_get_op_gen();
/* Count the number of elements in the span tree */
ret_value = H5S__hyper_spans_nelem_helper(spans, op_gen);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_spans_nelem() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_add_disjoint_spans
PURPOSE
Add new hyperslab spans to existing hyperslab selection in the case the
new hyperslab spans don't overlap with the existing hyperslab selection
USAGE
herr_t H5S__hyper_add_disjoint_spans(space, new_spans)
H5S_t *space; IN: Dataspace to add new spans to hyperslab
selection.
H5S_hyper_span_t *new_spans; IN: Span tree of new spans to add to
hyperslab selection
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Add a set of hyperslab spans to an existing hyperslab selection. The
new spans are required not to overlap with the existing spans in the
dataspace's current hyperslab selection in terms of bound box.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_add_disjoint_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(space);
HDassert(new_spans);
/* Update the number of elements in the selection */
space->select.num_elem += H5S__hyper_spans_nelem(new_spans);
/* Add the new spans to the existing selection in the dataspace */
if(H5S__hyper_merge_spans(space, new_spans) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't merge hyperslabs")
/* Free the memory space for new spans */
H5S__hyper_free_span_info(new_spans);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_add_disjoint_spans */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_make_spans
PURPOSE
Create a span tree
USAGE
H5S_hyper_span_t *H5S__hyper_make_spans(rank, start, stride, count, block)
unsigned rank; IN: # of dimensions of the space
const hsize_t *start; IN: Starting location of the hyperslabs
const hsize_t *stride; IN: Stride from the beginning of one block to
the next
const hsize_t *count; IN: Number of blocks
const hsize_t *block; IN: Size of hyperslab block
RETURNS
Pointer to new span tree on success, NULL on failure
DESCRIPTION
Generates a new span tree for the hyperslab parameters specified.
Each span tree has a list of the elements spanned in each dimension, with
each span node containing a pointer to the list of spans in the next
dimension down.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5S_hyper_span_info_t *
H5S__hyper_make_spans(unsigned rank, const hsize_t *start, const hsize_t *stride,
const hsize_t *count, const hsize_t *block)
{
H5S_hyper_span_info_t *down = NULL; /* Pointer to spans in next dimension down */
H5S_hyper_span_t *last_span; /* Current position in hyperslab span list */
H5S_hyper_span_t *head = NULL; /* Head of new hyperslab span list */
int i; /* Counters */
H5S_hyper_span_info_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(rank > 0);
HDassert(start);
HDassert(stride);
HDassert(count);
HDassert(block);
/* Start creating spans in fastest changing dimension */
for(i = (int)(rank - 1); i >= 0; i--) {
hsize_t curr_low, curr_high; /* Current low & high values */
hsize_t dim_stride; /* Current dim's stride */
unsigned u; /* Local index variable */
/* Sanity check */
if(0 == count[i])
HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, NULL, "count == 0 is invalid")
/* Start a new list in this dimension */
head = NULL;
last_span = NULL;
/* Generate all the span segments for this dimension */
curr_low = start[i];
curr_high = start[i] + (block[i] - 1);
dim_stride = stride[i];
for(u = 0; u < count[i]; u++, curr_low += dim_stride, curr_high += dim_stride) {
H5S_hyper_span_t *span; /* New hyperslab span */
/* Allocate a span node */
if(NULL == (span = H5FL_MALLOC(H5S_hyper_span_t)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Set the span's basic information */
span->low = curr_low;
span->high = curr_high;
span->next = NULL;
/* Set the information for the next dimension down's spans */
/* (Will be NULL for fastest changing dimension) */
span->down = down;
/* Append to the list of spans in this dimension */
if(head == NULL)
head = span;
else
last_span->next = span;
/* Move current pointer */
last_span = span;
} /* end for */
/* Increment ref. count of shared span */
if(down != NULL)
down->count = (unsigned)count[i];
/* Allocate a span info node */
if(NULL == (down = H5S__hyper_new_span_info(rank)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span")
/* Keep the pointer to the next dimension down's completed list */
down->head = head;
/* Keep the tail pointer to the next dimension down's completed list */
down->tail = last_span;
/* Set the low & high bounds for this dimension */
down->low_bounds[0] = down->head->low;
down->high_bounds[0] = down->tail->high;
/* Copy bounds from lower dimensions */
/* (head & tail pointers share lower dimensions, so using either is OK) */
if(head->down) {
H5MM_memcpy(&down->low_bounds[1], &head->down->low_bounds[0], sizeof(hsize_t) * ((rank - 1) - (unsigned)i));
H5MM_memcpy(&down->high_bounds[1], &head->down->high_bounds[0], sizeof(hsize_t) * ((rank - 1) - (unsigned)i));
} /* end if */
} /* end for */
/* Indicate that there is a pointer to this tree */
if(down)
down->count = 1;
/* Success! Return the head of the list in the slowest changing dimension */
ret_value = down;
done:
/* cleanup if error (ret_value will be NULL) */
if(!ret_value) {
if(head || down) {
if(head && down)
if(down->head != head)
down = NULL;
do {
if(down) {
head = down->head;
down = (H5S_hyper_span_info_t *)H5FL_ARR_FREE(hbounds_t, down);
} /* end if */
down = head->down;
while(head) {
last_span = head->next;
head = H5FL_FREE(H5S_hyper_span_t, head);
head = last_span;
} /* end while */
} while(down);
} /* end if */
} /* end if */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_make_spans() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_update_diminfo
PURPOSE
Attempt to update optimized hyperslab information quickly. (It can be
recovered with regular selection). If this algorithm cannot determine
the optimized dimension info quickly, this function will simply mark it
as invalid and unknown if it can be built (H5S_DIMINFO_VALID_NO), so
H5S__hyper_rebuild can be run later to determine for sure.
USAGE
herr_t H5S__hyper_update_diminfo(space, op, new_hyper_diminfo)
H5S_t *space; IN: Dataspace to check
H5S_seloper_t op; IN: The operation being performed on the
selection
const H5S_hyper_dim_t new_hyper_diminfo; IN: The new selection that
is being combined with
the current
RETURNS
>=0 on success, <0 on failure
DESCRIPTION
Examine the span tree for a hyperslab selection and rebuild
the start/stride/count/block information for the selection, if possible.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_update_diminfo(H5S_t *space, H5S_seloper_t op,
const H5S_hyper_dim_t *new_hyper_diminfo)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Check args */
HDassert(space);
HDassert(new_hyper_diminfo);
/* Check for conditions that prevent us from using the fast algorithm here */
/* (and instead require H5S__hyper_rebuild) */
if(!((op == H5S_SELECT_OR) || (op == H5S_SELECT_XOR))
|| space->select.sel_info.hslab->diminfo_valid != H5S_DIMINFO_VALID_YES
|| !space->select.sel_info.hslab->span_lst->head)
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
else {
H5S_hyper_dim_t tmp_diminfo[H5S_MAX_RANK]; /* Temporary dimension info */
hbool_t found_nonidentical_dim = FALSE;
unsigned curr_dim;
/* Copy current diminfo.opt values */
H5MM_memcpy(tmp_diminfo, space->select.sel_info.hslab->diminfo.opt, sizeof(tmp_diminfo));
/* Loop over dimensions */
for(curr_dim = 0; curr_dim < space->extent.rank; curr_dim++) {
/* Check for this being identical */
if((tmp_diminfo[curr_dim].start != new_hyper_diminfo[curr_dim].start)
|| (tmp_diminfo[curr_dim].stride != new_hyper_diminfo[curr_dim].stride)
|| (tmp_diminfo[curr_dim].count != new_hyper_diminfo[curr_dim].count)
|| (tmp_diminfo[curr_dim].block != new_hyper_diminfo[curr_dim].block)) {
hsize_t high_start, high_count, high_block; /* The start, count & block values for the higher block */
/* Dimension is not identical */
/* Check if we already found a nonidentical dim - only one is
* allowed */
if(found_nonidentical_dim) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
/* Check that strides are the same, or count is 1 for one of the
* slabs */
if((tmp_diminfo[curr_dim].stride != new_hyper_diminfo[curr_dim].stride)
&& (tmp_diminfo[curr_dim].count > 1)
&& (new_hyper_diminfo[curr_dim].count > 1)) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
/* Patch tmp_diminfo.stride if its count is 1 */
if((tmp_diminfo[curr_dim].count == 1)
&& (new_hyper_diminfo[curr_dim].count > 1))
tmp_diminfo[curr_dim].stride = new_hyper_diminfo[curr_dim].stride;
/* Determine lowest start, and set tmp_diminfo.start, count and
* block to use the lowest, and high_start, high_count and
* high_block to use the highest
*/
if(tmp_diminfo[curr_dim].start < new_hyper_diminfo[curr_dim].start) {
high_start = new_hyper_diminfo[curr_dim].start;
high_count = new_hyper_diminfo[curr_dim].count;
high_block = new_hyper_diminfo[curr_dim].block;
} /* end if */
else {
high_start = tmp_diminfo[curr_dim].start;
tmp_diminfo[curr_dim].start = new_hyper_diminfo[curr_dim].start;
high_count = tmp_diminfo[curr_dim].count;
tmp_diminfo[curr_dim].count = new_hyper_diminfo[curr_dim].count;
high_block = tmp_diminfo[curr_dim].block;
tmp_diminfo[curr_dim].block = new_hyper_diminfo[curr_dim].block;
} /* end else */
/* If count is 1 for both slabs, take different actions */
if((tmp_diminfo[curr_dim].count == 1) && (high_count == 1)) {
/* Check for overlap */
if((tmp_diminfo[curr_dim].start + tmp_diminfo[curr_dim].block)
> high_start) {
/* Check operation type */
if(op == H5S_SELECT_OR)
/* Merge blocks */
tmp_diminfo[curr_dim].block = ((high_start + high_block)
>= (tmp_diminfo[curr_dim].start + tmp_diminfo[curr_dim].block))
? (high_start + high_block - tmp_diminfo[curr_dim].start)
: tmp_diminfo[curr_dim].block;
else {
/* Block values must be the same */
if(tmp_diminfo[curr_dim].block != high_block) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
/* XOR - overlap creates 2 blocks */
tmp_diminfo[curr_dim].stride = high_block;
tmp_diminfo[curr_dim].count = 2;
tmp_diminfo[curr_dim].block = high_start - tmp_diminfo[curr_dim].start;
} /* end else */
} /* end if */
else if((tmp_diminfo[curr_dim].start + tmp_diminfo[curr_dim].block)
== high_start)
/* Blocks border, merge them */
tmp_diminfo[curr_dim].block += high_block;
else {
/* Distinct blocks */
/* Block values must be the same */
if(tmp_diminfo[curr_dim].block != high_block) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
/* Create strided selection */
tmp_diminfo[curr_dim].stride = high_start - tmp_diminfo[curr_dim].start;
tmp_diminfo[curr_dim].count = 2;
} /* end else */
} /* end if */
else {
/* Check if block values are the same */
if(tmp_diminfo[curr_dim].block != new_hyper_diminfo[curr_dim].block) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
/* Check phase of strides */
if((tmp_diminfo[curr_dim].start % tmp_diminfo[curr_dim].stride)
!= (new_hyper_diminfo[curr_dim].start % tmp_diminfo[curr_dim].stride)) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
/* Check operation type */
if(op == H5S_SELECT_OR) {
/* Make sure the slabs border or overlap */
if(high_start > (tmp_diminfo[curr_dim].start
+ (tmp_diminfo[curr_dim].count
* tmp_diminfo[curr_dim].stride))) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
} /* end if */
else
/* XOR: Make sure the slabs border */
if(high_start != (tmp_diminfo[curr_dim].start
+ (tmp_diminfo[curr_dim].count
* tmp_diminfo[curr_dim].stride))) {
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
break;
} /* end if */
/* Set count for combined selection */
tmp_diminfo[curr_dim].count = ((high_start
- tmp_diminfo[curr_dim].start)
/ tmp_diminfo[curr_dim].stride) + high_count;
} /* end else */
/* Indicate that we found a nonidentical dim */
found_nonidentical_dim = TRUE;
} /* end if */
} /* end for */
/* Check if we succeeded, if so, set the new diminfo values */
if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES)
for(curr_dim = 0; curr_dim < space->extent.rank; curr_dim++) {
hsize_t tmp_high_bound;
/* Set the new diminfo values */
space->select.sel_info.hslab->diminfo.app[curr_dim].start = space->select.sel_info.hslab->diminfo.opt[curr_dim].start = tmp_diminfo[curr_dim].start;
HDassert(tmp_diminfo[curr_dim].stride > 0);
space->select.sel_info.hslab->diminfo.app[curr_dim].stride = space->select.sel_info.hslab->diminfo.opt[curr_dim].stride = tmp_diminfo[curr_dim].stride;
HDassert(tmp_diminfo[curr_dim].count > 0);
space->select.sel_info.hslab->diminfo.app[curr_dim].count = space->select.sel_info.hslab->diminfo.opt[curr_dim].count = tmp_diminfo[curr_dim].count;
HDassert(tmp_diminfo[curr_dim].block > 0);
space->select.sel_info.hslab->diminfo.app[curr_dim].block = space->select.sel_info.hslab->diminfo.opt[curr_dim].block = tmp_diminfo[curr_dim].block;
/* Check for updating the low & high bounds */
if(tmp_diminfo[curr_dim].start < space->select.sel_info.hslab->diminfo.low_bounds[curr_dim])
space->select.sel_info.hslab->diminfo.low_bounds[curr_dim] = tmp_diminfo[curr_dim].start;
tmp_high_bound = tmp_diminfo[curr_dim].start +
(tmp_diminfo[curr_dim].block - 1) +
(tmp_diminfo[curr_dim].stride * (tmp_diminfo[curr_dim].count - 1));
if(tmp_high_bound > space->select.sel_info.hslab->diminfo.low_bounds[curr_dim])
space->select.sel_info.hslab->diminfo.high_bounds[curr_dim] = tmp_high_bound;
} /* end for */
} /* end else */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_update_diminfo() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_rebuild_helper
PURPOSE
Helper routine to rebuild optimized hyperslab information if possible.
(It can be recovered with regular selection)
USAGE
herr_t H5S__hyper_rebuild_helper(space)
const H5S_hyper_span_t *span; IN: Portion of span tree to check
H5S_hyper_dim_t span_slab[]; OUT: Rebuilt section of hyperslab description
unsigned rank; IN: Current dimension to work on
uint64_t op_gen; IN: Operation generation
RETURNS
TRUE/FALSE for hyperslab selection rebuilt
DESCRIPTION
Examine the span tree for a hyperslab selection and rebuild
the start/stride/count/block information for the selection, if possible.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
To be able to recover the optimized information, the span tree must conform
to span tree able to be generated from a single H5S_SELECT_SET operation.
EXAMPLES
REVISION LOG
KY, 2005/9/22
--------------------------------------------------------------------------*/
static hbool_t
H5S__hyper_rebuild_helper(const H5S_hyper_span_info_t *spans, H5S_hyper_dim_t span_slab_info[])
{
const H5S_hyper_span_t *span; /* Hyperslab span */
const H5S_hyper_span_t *prev_span; /* Previous span in list */
hsize_t start; /* Starting element for this dimension */
hsize_t stride; /* Stride for this dimension */
hsize_t block; /* Block size for this dimension */
hsize_t prev_low; /* Low bound for previous span */
size_t spancount; /* Number of spans encountered in this dimension */
hbool_t ret_value = TRUE; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Sanity check */
HDassert(spans);
/* Initialization */
span = spans->head;
stride = 1;
prev_low = 0;
spancount = 0;
/* Get "canonical" down span information */
if(span->down)
/* Go to the next down span and check whether the selection can be rebuilt */
if(!H5S__hyper_rebuild_helper(span->down, &span_slab_info[1]))
HGOTO_DONE(FALSE)
/* Assign the initial starting point & block size for this dimension */
start = span->low;
block = (span->high - span->low) + 1;
/* Loop the spans */
prev_span = NULL;
while(span) {
if(spancount > 0) {
hsize_t curr_stride; /* Current stride from previous span */
hsize_t curr_block; /* Block size of current span */
/* Sanity check */
HDassert(prev_span);
/* Check that down spans match current slab info */
/* (Can skip check if previous span's down pointer is same as current one) */
if(span->down && prev_span->down != span->down)
if(!H5S__hyper_cmp_spans(span->down, prev_span->down))
HGOTO_DONE(FALSE)
/* Obtain values for stride and block */
curr_stride = span->low - prev_low;
curr_block = (span->high - span->low) + 1;
/* Compare stride and block for this span. To compare stride,
* three spans are needed. Account for the first two spans.
*/
if(curr_block != block)
HGOTO_DONE(FALSE)
if(spancount > 1) {
if(stride != curr_stride)
HGOTO_DONE(FALSE)
} /* end if */
else
stride = curr_stride;
} /* end if */
/* Keep current starting point */
prev_low = span->low;
/* Advance to next span */
prev_span = span;
span = span->next;
spancount++;
} /* end while */
/* Save the span information. */
span_slab_info[0].start = start;
span_slab_info[0].count = spancount;
span_slab_info[0].block = block;
span_slab_info[0].stride = stride;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_rebuild_helper() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_rebuild
PURPOSE
Rebuild optimized hyperslab information if possible.
(It can be recovered with regular selection)
USAGE
void H5S__hyper_rebuild(space)
H5S_t *space; IN: Dataspace to check
RETURNS
None
DESCRIPTION
Examine the span tree for a hyperslab selection and rebuild a regular
start/stride/count/block hyperslab selection, if possible.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
To be able to recover the optimized information, the span tree must conform
to span tree able to be generated from a single H5S_SELECT_SET operation.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
void
H5S__hyper_rebuild(H5S_t *space)
{
H5S_hyper_dim_t rebuilt_slab_info[H5S_MAX_RANK];
FUNC_ENTER_PACKAGE_NOERR
/* Check args */
HDassert(space);
HDassert(space->select.sel_info.hslab->span_lst);
/* Check whether the slab can be rebuilt */
/* (Only regular selection can be rebuilt. If yes, fill in correct values) */
if(FALSE == H5S__hyper_rebuild_helper(space->select.sel_info.hslab->span_lst, rebuilt_slab_info))
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_IMPOSSIBLE;
else {
/* Set the dimension info & bounds for the dataspace, from the rebuilt info */
H5MM_memcpy(space->select.sel_info.hslab->diminfo.app, rebuilt_slab_info, sizeof(rebuilt_slab_info));
H5MM_memcpy(space->select.sel_info.hslab->diminfo.opt, rebuilt_slab_info, sizeof(rebuilt_slab_info));
H5MM_memcpy(space->select.sel_info.hslab->diminfo.low_bounds, space->select.sel_info.hslab->span_lst->low_bounds, sizeof(hsize_t) * space->extent.rank);
H5MM_memcpy(space->select.sel_info.hslab->diminfo.high_bounds, space->select.sel_info.hslab->span_lst->high_bounds, sizeof(hsize_t) * space->extent.rank);
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_YES;
} /* end else */
FUNC_LEAVE_NOAPI_VOID
} /* end H5S__hyper_rebuild() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_generate_spans
PURPOSE
Create span tree for a regular hyperslab selection
USAGE
herr_t H5S__hyper_generate_spans(space)
H5S_t *space; IN/OUT: Pointer to dataspace
RETURNS
Non-negative on success, negative on failure
DESCRIPTION
Create a span tree representation of a regular hyperslab selection and
add it to the information for the hyperslab selection.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_generate_spans(H5S_t *space)
{
hsize_t tmp_start[H5S_MAX_RANK]; /* Temporary start information */
hsize_t tmp_stride[H5S_MAX_RANK]; /* Temporary stride information */
hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary count information */
hsize_t tmp_block[H5S_MAX_RANK]; /* Temporary block information */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
HDassert(space);
HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);
/* Get the diminfo */
for(u = 0; u < space->extent.rank; u++) {
/* Check for unlimited dimension and return error */
/* These should be able to be converted to assertions once everything
* that calls this function checks for unlimited selections first
* (especially the new hyperslab API) -NAF */
if(space->select.sel_info.hslab->diminfo.opt[u].count == H5S_UNLIMITED)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "can't generate spans with unlimited count")
if(space->select.sel_info.hslab->diminfo.opt[u].block == H5S_UNLIMITED)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "can't generate spans with unlimited block")
tmp_start[u] = space->select.sel_info.hslab->diminfo.opt[u].start;
tmp_stride[u] = space->select.sel_info.hslab->diminfo.opt[u].stride;
tmp_count[u] = space->select.sel_info.hslab->diminfo.opt[u].count;
tmp_block[u] = space->select.sel_info.hslab->diminfo.opt[u].block;
} /* end for */
/* Build the hyperslab information also */
if(H5S__generate_hyperslab(space, H5S_SELECT_SET, tmp_start, tmp_stride, tmp_count, tmp_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs")
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_generate_spans() */
/*--------------------------------------------------------------------------
NAME
H5S__check_spans_overlap
PURPOSE
Check if two selections' bounds overlap.
USAGE
hbool_t H5S__check_spans_overlap(spans1, spans2)
const H5S_hyper_span_info_t *spans1; IN: Second span list
const H5S_hyper_span_info_t *spans2; IN: Second span list
RETURNS
TRUE for overlap, FALSE for no overlap
PROGRAMMER
Quincey Koziol - January 24, 2019
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static H5_ATTR_PURE hbool_t
H5S__check_spans_overlap(const H5S_hyper_span_info_t *spans1,
const H5S_hyper_span_info_t *spans2)
{
hbool_t ret_value = FALSE; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Sanity checks */
HDassert(spans1);
HDassert(spans2);
/* Use low & high bounds to try to avoid spinning through the span lists */
if(H5S_RANGE_OVERLAP(spans1->low_bounds[0], spans1->high_bounds[0],
spans2->low_bounds[0], spans2->high_bounds[0])) {
H5S_hyper_span_t *span1, *span2; /* Hyperslab spans */
/* Walk over spans, comparing them for overlap */
span1 = spans1->head;
span2 = spans2->head;
while(span1 && span2) {
/* Check current two spans for overlap */
if(H5S_RANGE_OVERLAP(span1->low, span1->high, span2->low, span2->high)) {
/* Check for spans in lowest dimension already */
if(span1->down) {
/* Sanity check */
HDassert(span2->down);
/* Check lower dimensions for overlap */
if(H5S__check_spans_overlap(span1->down, span2->down))
HGOTO_DONE(TRUE);
} /* end if */
else
HGOTO_DONE(TRUE);
} /* end if */
/* Advance one of the spans */
if(span1->high <= span2->high) {
/* Advance span1, unless it would be off the list and span2 has more nodes */
if(NULL == span1->next && NULL != span2->next)
span2 = span2->next;
else
span1 = span1->next;
} /* end if */
else {
/* Advance span2, unless it would be off the list and span1 has more nodes */
if(NULL == span2->next && NULL != span1->next)
span1 = span1->next;
else
span2 = span2->next;
} /* end else */
} /* end while */
/* Make certain we've exhausted our comparisons */
HDassert((NULL == span1 && (NULL != span2 && NULL == span2->next)) ||
((NULL != span1 && NULL == span1->next) && NULL == span2));
} /* end of */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__check_spans_overlap() */
/*--------------------------------------------------------------------------
NAME
H5S__fill_in_new_space
PURPOSE
Combine two span lists, one from an existing dataspace and the
other from input arguments, into a new selection depending on the
selection operator. The new selection is put into a resulting dataspace
which could be allocated inside the function.
USAGE
herr_t H5S__fill_in_new_space(space1, op, space2_span_lst, can_own_span2,
span2_owned, result)
H5S_t *space1; IN: Dataspace containing the first span list
H5S_seloper_t op; IN: Selection operation
H5S_hyper_span_info_t *space2_span_lst; IN: Second span list
hbool_t can_own_span2; IN: Indicates whether the 2nd span list could be
owned by the result. If not, the 2nd span list
has to be copied.
hbool_t *span2_owned; OUT: Indicates if the 2nd span list is actually owned
H5S_t **result; OUT: The dataspace containing the the new selection. It
could be same with the 1st dataspace.
RETURNS
Non-negative on success, negative on failure
PROGRAMMER
Chao Mei July 8, 2011
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__fill_in_new_space(H5S_t *space1, H5S_seloper_t op,
H5S_hyper_span_info_t *space2_span_lst, hbool_t can_own_span2,
hbool_t *span2_owned, hbool_t *updated_spans, H5S_t **result)
{
H5S_hyper_span_info_t *a_not_b = NULL; /* Span tree for hyperslab spans in old span tree and not in new span tree */
H5S_hyper_span_info_t *a_and_b = NULL; /* Span tree for hyperslab spans in both old and new span trees */
H5S_hyper_span_info_t *b_not_a = NULL; /* Span tree for hyperslab spans in new span tree and not in old span tree */
hbool_t overlapped = FALSE; /* Whether selections overlap */
hbool_t is_result_new = FALSE;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
HDassert(space1);
HDassert(space2_span_lst);
HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA);
/* The result is either a to-be-created space or an empty one */
HDassert(*result == NULL || *result == space1);
HDassert(space1->select.sel_info.hslab->span_lst);
HDassert(span2_owned);
/* Reset flags to return */
*span2_owned = FALSE;
*updated_spans = FALSE;
/* The result shares the same info from space1 */
if(*result == NULL) {
if(NULL == ((*result) = H5S_copy(space1, TRUE, TRUE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace")
space1->select.sel_info.hslab->span_lst->count--;
(*result)->select.sel_info.hslab->span_lst = NULL;
is_result_new = TRUE;
} /* end if */
/* Check both spaces to see if they overlap */
overlapped = H5S__check_spans_overlap(space1->select.sel_info.hslab->span_lst, space2_span_lst);
if(!overlapped) {
switch(op) {
case H5S_SELECT_OR:
case H5S_SELECT_XOR:
/* Add the new disjoint spans to the space */
/* Copy of space1's spans to *result, and another copy of space2's spans */
if(is_result_new)
(*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space1->select.sel_info.hslab->span_lst, space1->extent.rank);
if(!can_own_span2) {
b_not_a = H5S__hyper_copy_span(space2_span_lst, space1->extent.rank);
if(H5S__hyper_add_disjoint_spans(*result, b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't append hyperslabs")
/* The new_spans are now owned by 'space', so they should not be released */
b_not_a = NULL;
} /* end if */
else {
if(H5S__hyper_add_disjoint_spans(*result, space2_span_lst) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't append hyperslabs")
*span2_owned = TRUE;
} /* end else */
/* Indicate that the spans changed */
*updated_spans = TRUE;
break;
case H5S_SELECT_AND:
/* Convert *result to "none" selection */
if(H5S_select_none(*result) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
HGOTO_DONE(SUCCEED);
case H5S_SELECT_NOTB:
/* Copy space1's spans to *result */
if(is_result_new)
(*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space1->select.sel_info.hslab->span_lst, space1->extent.rank);
/* Indicate that the spans changed */
*updated_spans = TRUE;
break;
case H5S_SELECT_NOTA:
if(!is_result_new) {
HDassert(space1 == *result);
/* Free the current selection */
H5S__hyper_free_span_info(space1->select.sel_info.hslab->span_lst);
space1->select.sel_info.hslab->span_lst = NULL;
} /* end if */
/* Copy space2's spans to *result */
if(!can_own_span2)
(*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space2_span_lst, space1->extent.rank);
else {
(*result)->select.sel_info.hslab->span_lst = space2_span_lst;
*span2_owned = TRUE;
} /* end else */
/* Reset the number of items in selection */
(*result)->select.num_elem = H5S__hyper_spans_nelem(space2_span_lst);
/* Indicate that the spans changed */
*updated_spans = TRUE;
break;
case H5S_SELECT_NOOP:
case H5S_SELECT_SET:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
} /* end if */
else {
unsigned selector = 0; /* Select which clipping spans to generate */
/* Generate mask for clip operation depending on the op */
switch(op) {
case H5S_SELECT_OR: /* a + b_not_a */
selector = H5S_HYPER_COMPUTE_B_NOT_A;
break;
case H5S_SELECT_XOR: /* a_not_b + b_not_a */
selector = H5S_HYPER_COMPUTE_A_NOT_B | H5S_HYPER_COMPUTE_B_NOT_A;
break;
case H5S_SELECT_AND: /* a_and_b */
selector = H5S_HYPER_COMPUTE_A_AND_B;
break;
case H5S_SELECT_NOTB: /* a_not_b */
selector = H5S_HYPER_COMPUTE_A_NOT_B;
break;
case H5S_SELECT_NOTA: /* b_not_a */
selector = H5S_HYPER_COMPUTE_B_NOT_A;
break;
case H5S_SELECT_NOOP:
case H5S_SELECT_SET:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
/* Generate lists of spans which overlap and don't overlap */
if(H5S__hyper_clip_spans(space1->select.sel_info.hslab->span_lst,
space2_span_lst, selector, space1->extent.rank,
&a_not_b, &a_and_b, &b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information")
switch(op) {
case H5S_SELECT_OR:
if(is_result_new)
(*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space1->select.sel_info.hslab->span_lst, space1->extent.rank);
break;
case H5S_SELECT_AND:
case H5S_SELECT_XOR:
case H5S_SELECT_NOTB:
case H5S_SELECT_NOTA:
if(!is_result_new) {
HDassert(space1 == *result);
/* Free the current selection */
H5S__hyper_free_span_info(space1->select.sel_info.hslab->span_lst);
space1->select.sel_info.hslab->span_lst = NULL;
} /* end if */
/* Reset the number of items in selection */
/* (Will be set below) */
(*result)->select.num_elem = 0;
break;
case H5S_SELECT_NOOP:
case H5S_SELECT_SET:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
/* Check if there are any non-overlapped selections */
if(a_not_b) {
/* Other than OR, the span_lst is set to NULL. And in OR,
* a_not_b is not needed
*/
HDassert(NULL == (*result)->select.sel_info.hslab->span_lst);
/* The results dataspace takes ownership of the spans */
/* (Since it must be NULL) */
(*result)->select.sel_info.hslab->span_lst = a_not_b;
/* Update the number of elements in current selection */
(*result)->select.num_elem = H5S__hyper_spans_nelem(a_not_b);
/* Indicate that the spans were updated */
*updated_spans = TRUE;
/* Indicate that the a_not_b spans are owned */
a_not_b = NULL;
} /* end if */
if(a_and_b) {
/**
* 1. Other than OR, the span_lst is set to NULL. And in OR,
* a_and_b is not needed
* 2. a_not_b will never be computed together with a_and_b
* because merging these two equals to a.
*/
HDassert(NULL == (*result)->select.sel_info.hslab->span_lst);
/* The results dataspace takes ownership of the spans */
/* (Since it must be NULL) */
(*result)->select.sel_info.hslab->span_lst = a_and_b;
/* Update the number of elements in current selection */
(*result)->select.num_elem = H5S__hyper_spans_nelem(a_and_b);
/* Indicate that the spans were updated */
*updated_spans = TRUE;
/* Indicate that the a_and_b spans are owned */
a_and_b = NULL;
} /* end if */
if(b_not_a) {
/* Merge the b_not_a spans into the result dataspace */
if(H5S__hyper_merge_spans(*result, b_not_a) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs")
/* Update the number of elements in current selection */
(*result)->select.num_elem += H5S__hyper_spans_nelem(b_not_a);
/* Indicate that the spans were updated */
*updated_spans = TRUE;
} /* end if */
} /* end else for the case the new span overlaps with the old (i.e. space) */
/* Check if the spans weren't updated, and reset selection if so */
if(!*updated_spans) {
/* If updated_spans remains FALSE as in this branch, it means the
* result has been cleared in XOR / AND / NOTB / NOTA cases, and the
* result is a copy of the dataspace in the OR case.
*
* If two dataspaces have generated any of the three clipped
* span trees (i.e. a_not_b, a_and_b, and b_not_a), the
* updated_spans must be TRUE.
*/
if(H5S_SELECT_OR != op) {
/* Convert *result to "none" selection */
if(H5S_select_none(*result) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
} /* end else */
} /* end if */
done:
/* Free resources */
if(a_not_b)
H5S__hyper_free_span_info(a_not_b);
if(a_and_b)
H5S__hyper_free_span_info(a_and_b);
if(b_not_a)
H5S__hyper_free_span_info(b_not_a);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__fill_in_new_space() */
/*-------------------------------------------------------------------------
* Function: H5S__generate_hyperlab
*
* Purpose: Generate hyperslab information from H5S_select_hyperslab()
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Tuesday, September 12, 2000
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[],
const hsize_t stride[], const hsize_t count[], const hsize_t block[])
{
H5S_hyper_span_info_t *new_spans = NULL; /* Span tree for new hyperslab */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(space);
HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID);
HDassert(start);
HDassert(stride);
HDassert(count);
HDassert(block);
/* Generate span tree for new hyperslab information */
if(NULL == (new_spans = H5S__hyper_make_spans(space->extent.rank, start, stride, count, block)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't create hyperslab information")
/* Generate list of blocks to add/remove based on selection operation */
if(op == H5S_SELECT_SET) {
/* Free current selection */
if(NULL != space->select.sel_info.hslab->span_lst)
H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst);
/* Set the hyperslab selection to the new span tree */
space->select.sel_info.hslab->span_lst = new_spans;
/* Set the number of elements in current selection */
space->select.num_elem = H5S__hyper_spans_nelem(new_spans);
/* Indicate that the new_spans are owned */
new_spans = NULL;
} /* end if */
else {
hbool_t new_spans_owned = FALSE;
hbool_t updated_spans = FALSE;
/* Generate new spans for space */
if(H5S__fill_in_new_space(space, op, new_spans, TRUE, &new_spans_owned, &updated_spans, &space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't generate the specified hyperslab")
/* Check if the spans were updated by H5S__fill_in_new_space */
if(updated_spans) {
H5S_hyper_dim_t new_hyper_diminfo[H5S_MAX_RANK];
unsigned u; /* Local index variable */
/* Sanity check */
HDassert(space->select.sel_info.hslab->span_lst->head);
/* Build diminfo struct */
for(u = 0; u <space->extent.rank; u++) {
new_hyper_diminfo[u].start = start[u];
new_hyper_diminfo[u].stride = stride[u];
new_hyper_diminfo[u].count = count[u];
new_hyper_diminfo[u].block = block[u];
} /* end for */
/* Update space's dim info */
if(H5S__hyper_update_diminfo(space, op, new_hyper_diminfo) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't update hyperslab info")
} /* end if */
/* Indicate that the new_spans are owned, there's no need to free */
if(new_spans_owned)
new_spans = NULL;
} /* end else */
done:
if(new_spans)
H5S__hyper_free_span_info(new_spans);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__generate_hyperslab() */
/*-------------------------------------------------------------------------
* Function: H5S__set_regular_hyperslab
*
* Purpose: Set a regular hyperslab
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Thursday, October 2, 2014
*
*-------------------------------------------------------------------------
*/
herr_t
H5S__set_regular_hyperslab(H5S_t *space, const hsize_t start[],
const hsize_t *app_stride, const hsize_t app_count[], const hsize_t *app_block,
const hsize_t *opt_stride, const hsize_t opt_count[], const hsize_t *opt_block)
{
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(space);
HDassert(start);
HDassert(app_stride);
HDassert(app_count);
HDassert(app_block);
HDassert(opt_stride);
HDassert(opt_count);
HDassert(opt_block);
/* If we are setting a new selection, remove current selection first */
if(H5S_SELECT_RELEASE(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")
/* Allocate space for the hyperslab selection information */
if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab info")
/* Set the diminfo */
space->select.num_elem = 1;
space->select.sel_info.hslab->unlim_dim = -1;
for(u = 0; u < space->extent.rank; u++) {
/* Set application and optimized hyperslab info */
space->select.sel_info.hslab->diminfo.app[u].start = start[u];
space->select.sel_info.hslab->diminfo.app[u].stride = app_stride[u];
space->select.sel_info.hslab->diminfo.app[u].count = app_count[u];
space->select.sel_info.hslab->diminfo.app[u].block = app_block[u];
space->select.sel_info.hslab->diminfo.opt[u].start = start[u];
space->select.sel_info.hslab->diminfo.opt[u].stride = opt_stride[u];
space->select.sel_info.hslab->diminfo.opt[u].count = opt_count[u];
space->select.sel_info.hslab->diminfo.opt[u].block = opt_block[u];
/* Update # of elements selected */
space->select.num_elem *= (opt_count[u] * opt_block[u]);
/* Set low bound of bounding box for the hyperslab selection */
space->select.sel_info.hslab->diminfo.low_bounds[u] = start[u];
/* Check for unlimited dimension & set high bound */
if((app_count[u] == H5S_UNLIMITED) || (app_block[u] == H5S_UNLIMITED)) {
space->select.sel_info.hslab->unlim_dim = (int)u;
space->select.sel_info.hslab->diminfo.high_bounds[u] = H5S_UNLIMITED;
} /* end if */
else
space->select.sel_info.hslab->diminfo.high_bounds[u] = start[u] + opt_stride[u] * (opt_count[u] - 1) + (opt_block[u] - 1);
} /* end for */
/* Handle unlimited selections */
if(space->select.sel_info.hslab->unlim_dim >= 0) {
/* Calculate num_elem_non_unlim */
space->select.sel_info.hslab->num_elem_non_unlim = (hsize_t)1;
for(u = 0; u < space->extent.rank; u++)
if((int)u != space->select.sel_info.hslab->unlim_dim)
space->select.sel_info.hslab->num_elem_non_unlim *= (opt_count[u] * opt_block[u]);
/* Update num_elem */
space->select.num_elem = H5S_UNLIMITED;
} /* end if */
/* Indicate that the dimension information is valid */
space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_YES;
/* Indicate that there's no slab information */
space->select.sel_info.hslab->span_lst = NULL;
/* Set selection type */
space->select.type = H5S_sel_hyper;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__set_regular_hyperslab() */
/*-------------------------------------------------------------------------
* Function: H5S__hyper_regular_and_single_block
*
* Purpose: Optimized routine to perform "AND" operation of a single
* block against a regular hyperslab selection.
*
* Note: This algorithm is invoked when constructing the chunk map
* and a regular hyperslab is selected in the file's dataspace.
*
* Return: Non-negative on success / Negative on failure
*
* Programmer: Quincey Koziol
* Saturday, February 9, 2019
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__hyper_regular_and_single_block(H5S_t *space, const hsize_t start[],
const hsize_t block[])
{
hsize_t select_end, block_end; /* End of block & selection */
hbool_t single_block; /* Whether the selection is a single block */
hbool_t overlap; /* Whether block & selection overlap */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Check args */
HDassert(space);
HDassert(start);
HDassert(block);
/* Check for single block selection in dataspace */
single_block = TRUE;
for(u = 0; u < space->extent.rank; u++)
if(1 != space->select.sel_info.hslab->diminfo.opt[u].count) {
single_block = FALSE;
break;
} /* end if */
/* Perform different optimizations, based on type of regular selection */
if(single_block) {
hsize_t new_start[H5S_MAX_RANK]; /* New starting coordinate */
hsize_t new_block[H5S_MAX_RANK]; /* New block size */
/* Check for overlap and compute new start offset & block sizes */
overlap = TRUE;
for(u = 0; u < space->extent.rank; u++) {
/* Compute the end of the selection & block in this dimension */
select_end = space->select.sel_info.hslab->diminfo.high_bounds[u];
block_end = (start[u] + block[u]) - 1;
/* Check for overlap */
if(!H5S_RANGE_OVERLAP(space->select.sel_info.hslab->diminfo.opt[u].start, select_end, start[u], block_end)) {
overlap = FALSE;
break;
} /* end if */
/* Set new start & block size in this dimension */
new_start[u] = MAX(space->select.sel_info.hslab->diminfo.opt[u].start, start[u]);
new_block[u] = (MIN(select_end, block_end) - new_start[u]) + 1;
} /* end for */
/* Check for overlap of selection & block */
if(overlap) {
/* Set selection to regular hyperslab */
if(H5S__set_regular_hyperslab(space, new_start, H5S_hyper_ones_g, H5S_hyper_ones_g, new_block,
H5S_hyper_ones_g, H5S_hyper_ones_g, new_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular hyperslab selection")
} /* end if */
else
/* Selection & block don't overlap, set to "none" selection */
if(H5S_select_none(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
} /* end if */
else {
hsize_t new_start[H5S_MAX_RANK]; /* New start for hyperslab selection */
hsize_t new_count[H5S_MAX_RANK]; /* New count for hyperslab selection */
hsize_t stride[H5S_MAX_RANK]; /* Stride for hyperslab selection */
hsize_t new_block[H5S_MAX_RANK]; /* New block for hyperslab selection */
hbool_t partial_first_span; /* Whether first span in intersection is partial */
hbool_t partial_last_span; /* Whether last span in intersection is partial */
/* Iterate over selection, checking for overlap and computing first / last
* span that intersects with the block.
*/
overlap = TRUE;
partial_first_span = FALSE;
partial_last_span = FALSE;
for(u = 0; u < space->extent.rank; u++) {
hsize_t first_span_start, first_span_end; /* Start / end of first span */
hsize_t last_span_start, last_span_end; /* Start / end of last span */
hsize_t nstride; /* Number of strides into the selection */
/* Compute the end of the selection & block in this dimension */
select_end = space->select.sel_info.hslab->diminfo.high_bounds[u];
block_end = (start[u] + block[u]) - 1;
/* Check for overlap */
if(!H5S_RANGE_OVERLAP(space->select.sel_info.hslab->diminfo.opt[u].start, select_end, start[u], block_end)) {
overlap = FALSE;
break;
} /* end if */
/* Find first span that is before or overlaps with start of block */
if(space->select.sel_info.hslab->diminfo.opt[u].start >= start[u]) {
/* Calculate start & end of first span */
first_span_start = space->select.sel_info.hslab->diminfo.opt[u].start;
first_span_end = (first_span_start +
space->select.sel_info.hslab->diminfo.opt[u].block) - 1;
/* Check if first span overlaps _end_ of block */
if(block_end >= first_span_start && block_end <= first_span_end)
partial_first_span = TRUE;
} /* end if */
else {
hsize_t adj_start; /* Start coord, adjusted for hyperslab selection parameters */
/* Adjust start coord for selection's 'start' offset */
adj_start = start[u] - space->select.sel_info.hslab->diminfo.opt[u].start;
/* Compute # of strides into the selection */
if(space->select.sel_info.hslab->diminfo.opt[u].count > 1)
nstride = adj_start / space->select.sel_info.hslab->diminfo.opt[u].stride;
else
nstride = 0;
/* Calculate start & end of first span */
first_span_start = space->select.sel_info.hslab->diminfo.opt[u].start +
(nstride * space->select.sel_info.hslab->diminfo.opt[u].stride);
first_span_end = (first_span_start +
space->select.sel_info.hslab->diminfo.opt[u].block) - 1;
/* Check if first span overlaps start of block */
if(first_span_start < start[u] && first_span_end >= start[u])
partial_first_span = TRUE;
/* Advance first span to start higher than block's start,
* if it's not partial.
*/
if(first_span_end < start[u]) {
first_span_start += space->select.sel_info.hslab->diminfo.opt[u].stride;
first_span_end += space->select.sel_info.hslab->diminfo.opt[u].stride;
} /* end if */
} /* end else */
/* Find last span that is before or overlaps with end of block */
if(select_end < block_end) {
/* Calculate start & end of last span */
last_span_start = (select_end -
space->select.sel_info.hslab->diminfo.opt[u].block) + 1;
last_span_end = select_end;
/* Check if last span overlaps _start_ of block */
if(start[u] >= last_span_start && start[u] <= last_span_end)
partial_last_span = TRUE;
} /* end if */
else {
hsize_t adj_end; /* End coord, adjusted for hyperslab selection parameters */
/* Adjust end coord for selection's 'start' offset */
adj_end = block_end - space->select.sel_info.hslab->diminfo.opt[u].start;
/* Compute # of strides into the selection */
if(space->select.sel_info.hslab->diminfo.opt[u].count > 1)
nstride = adj_end / space->select.sel_info.hslab->diminfo.opt[u].stride;
else
nstride = 0;
/* Calculate start & end of last span */
last_span_start = space->select.sel_info.hslab->diminfo.opt[u].start +
(nstride * space->select.sel_info.hslab->diminfo.opt[u].stride);
last_span_end = (last_span_start +
space->select.sel_info.hslab->diminfo.opt[u].block) - 1;
/* Check if last span overlaps end of block */
if(block_end >= last_span_start && block_end <= last_span_end)
partial_last_span = TRUE;
} /* end else */
/* Check if no spans are inside block */
/* (Can happen when block falls in "gap" between spans) */
if(last_span_end < start[u]) {
overlap = FALSE;
break;
} /* end if */
/* Sanity check */
HDassert(first_span_start <= last_span_start);
/* Compute new start / count / block values */
new_start[u] = first_span_start;
if(last_span_start != first_span_start)
new_count[u] = ((last_span_start - first_span_start) /
space->select.sel_info.hslab->diminfo.opt[u].stride) + 1;
else
new_count[u] = 1;
new_block[u] = space->select.sel_info.hslab->diminfo.opt[u].block;
/* Keep same stride */
stride[u] = space->select.sel_info.hslab->diminfo.opt[u].stride;
} /* end for */
/* Check for overlap of selection & block */
if(overlap) {
/* Set selection to regular hyperslab */
if(H5S__set_regular_hyperslab(space, new_start, stride, new_count, new_block,
stride, new_count, new_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular hyperslab selection")
/* If there's a partial first or last span, have to 'AND' against selection */
if(partial_first_span || partial_last_span) {
/* Generate span tree for regular selection */
if(H5S__hyper_generate_spans(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree")
/* 'AND' against block */
if(H5S__generate_hyperslab(space, H5S_SELECT_AND, start, H5S_hyper_ones_g, H5S_hyper_ones_g, block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs")
} /* end if */
} /* end if */
else {
/* Selection & block don't overlap, set to "none" selection */
if(H5S_select_none(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
} /* end else */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_regular_and_single_block() */
/*-------------------------------------------------------------------------
* Function: H5S_select_hyperslab
*
* Purpose: Internal version of H5Sselect_hyperslab().
*
* Return: Non-negative on success/Negative on failure
*
* Programmer: Quincey Koziol
* Wednesday, January 10, 2001
*
*-------------------------------------------------------------------------
*/
herr_t
H5S_select_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[],
const hsize_t *stride, const hsize_t count[], const hsize_t *block)
{
hsize_t int_stride[H5S_MAX_RANK]; /* Internal storage for stride information */
hsize_t int_count[H5S_MAX_RANK]; /* Internal storage for count information */
hsize_t int_block[H5S_MAX_RANK]; /* Internal storage for block information */
const hsize_t *opt_stride; /* Optimized stride information */
const hsize_t *opt_count; /* Optimized count information */
const hsize_t *opt_block; /* Optimized block information */
int unlim_dim = -1; /* Unlimited dimension in selection, of -1 if none */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Check args */
HDassert(space);
HDassert(start);
HDassert(count);
HDassert(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID);
/* Point to the correct stride values */
if(stride == NULL)
stride = H5S_hyper_ones_g;
/* Point to the correct block values */
if(block == NULL)
block = H5S_hyper_ones_g;
/* Check new selection */
for(u = 0; u < space->extent.rank; u++) {
/* Check for overlapping hyperslab blocks in new selection. */
if(count[u] > 1 && stride[u] < block[u])
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab blocks overlap")
/* Detect zero-sized hyperslabs in new selection */
if(count[u] == 0 || block[u] == 0) {
switch(op) {
case H5S_SELECT_SET: /* Select "set" operation */
case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */
case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */
/* Convert to "none" selection */
if(H5S_select_none(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
HGOTO_DONE(SUCCEED);
case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */
case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */
case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */
HGOTO_DONE(SUCCEED); /* Selection stays same */
case H5S_SELECT_NOOP:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
} /* end if */
/* Check for unlimited dimension */
if((count[u] == H5S_UNLIMITED) || (block[u] == H5S_UNLIMITED)) {
if(unlim_dim >= 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot have more than one unlimited dimension in selection")
else {
if(count[u] == block[u]) /* Both are H5S_UNLIMITED */
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "count and block cannot both be unlimited")
unlim_dim = (int)u;
} /* end else */
} /* end if */
} /* end for */
/* Optimize hyperslab parameters to merge contiguous blocks, etc. */
if(stride == H5S_hyper_ones_g && block == H5S_hyper_ones_g) {
/* Point to existing arrays */
opt_stride = H5S_hyper_ones_g;
opt_count = H5S_hyper_ones_g;
opt_block = count;
} /* end if */
else {
/* Point to local arrays */
opt_stride = int_stride;
opt_count = int_count;
opt_block = int_block;
for(u = 0; u < space->extent.rank; u++) {
/* contiguous hyperslabs have the block size equal to the stride */
if((stride[u] == block[u]) && (count[u] != H5S_UNLIMITED)) {
int_count[u] = 1;
int_stride[u] = 1;
if(block[u] == 1)
int_block[u] = count[u];
else
int_block[u] = block[u] * count[u];
} /* end if */
else {
if(count[u] == 1)
int_stride[u] = 1;
else {
HDassert((stride[u] > block[u]) ||
((stride[u] == block[u]) && (count[u] == H5S_UNLIMITED)));
int_stride[u] = stride[u];
} /* end else */
int_count[u] = count[u];
int_block[u] = block[u];
} /* end else */
} /* end for */
} /* end else */
/* Check for operating on unlimited selection */
if((H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS)
&& (space->select.sel_info.hslab->unlim_dim >= 0)
&& (op != H5S_SELECT_SET)) {
/* Check for invalid operation */
if(unlim_dim >= 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot modify unlimited selection with another unlimited selection")
if(!((op == H5S_SELECT_AND) || (op == H5S_SELECT_NOTA)))
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unsupported operation on unlimited selection")
HDassert(space->select.sel_info.hslab->diminfo_valid);
/* Clip unlimited selection to include new selection */
if(H5S_hyper_clip_unlim(space,
start[space->select.sel_info.hslab->unlim_dim]
+ ((opt_count[space->select.sel_info.hslab->unlim_dim] - (hsize_t)1)
* opt_stride[space->select.sel_info.hslab->unlim_dim])
+ opt_block[space->select.sel_info.hslab->unlim_dim]) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "failed to clip unlimited selection")
/* If an empty space was returned it must be "none" */
HDassert((space->select.num_elem > (hsize_t)0) || (space->select.type->type == H5S_SEL_NONE));
} /* end if */
/* Fixup operation for non-hyperslab selections */
switch(H5S_GET_SELECT_TYPE(space)) {
case H5S_SEL_NONE: /* No elements selected in dataspace */
switch(op) {
case H5S_SELECT_SET: /* Select "set" operation */
/* Change "none" selection to hyperslab selection */
break;
case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */
case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */
case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */
op = H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */
break;
case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */
case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */
HGOTO_DONE(SUCCEED); /* Selection stays "none" */
case H5S_SELECT_NOOP:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
break;
case H5S_SEL_ALL: /* All elements selected in dataspace */
switch(op) {
case H5S_SELECT_SET: /* Select "set" operation */
/* Change "all" selection to hyperslab selection */
break;
case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */
HGOTO_DONE(SUCCEED); /* Selection stays "all" */
case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */
op = H5S_SELECT_SET; /* Maps to "set" operation when applied to "none" selection */
break;
case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */
case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */
/* Convert current "all" selection to "real" hyperslab selection */
/* Then allow operation to proceed */
{
const hsize_t *tmp_start; /* Temporary start information */
const hsize_t *tmp_stride; /* Temporary stride information */
const hsize_t *tmp_count; /* Temporary count information */
const hsize_t *tmp_block; /* Temporary block information */
/* Set up temporary information for the dimensions */
tmp_start = H5S_hyper_zeros_g;
tmp_stride = tmp_count = H5S_hyper_ones_g;
tmp_block = space->extent.size;
/* Convert to hyperslab selection */
if(H5S_select_hyperslab(space, H5S_SELECT_SET, tmp_start, tmp_stride, tmp_count, tmp_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
} /* end case */
break;
case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */
/* Convert to "none" selection */
if(H5S_select_none(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
HGOTO_DONE(SUCCEED);
case H5S_SELECT_NOOP:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
break;
case H5S_SEL_HYPERSLABS:
/* Hyperslab operation on hyperslab selection, OK */
break;
case H5S_SEL_POINTS: /* Can't combine hyperslab operations and point selections currently */
if(op == H5S_SELECT_SET) /* Allow only "set" operation to proceed */
break;
/* Else fall through to error */
H5_ATTR_FALLTHROUGH
case H5S_SEL_ERROR:
case H5S_SEL_N:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
if(op == H5S_SELECT_SET) {
/* Set selection to regular hyperslab */
if(H5S__set_regular_hyperslab(space, start, stride, count, block, opt_stride, opt_count, opt_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular hyperslab selection")
} /* end if */
else if(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA) {
hbool_t single_block; /* Whether the selection is a single block */
/* Sanity check */
HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS);
/* Handle unlimited selections */
if(unlim_dim >= 0) {
hsize_t bounds_start[H5S_MAX_RANK];
hsize_t bounds_end[H5S_MAX_RANK];
hsize_t tmp_count = opt_count[unlim_dim];
hsize_t tmp_block = opt_block[unlim_dim];
/* Check for invalid operation */
if(space->select.sel_info.hslab->unlim_dim >= 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "cannot modify unlimited selection with another unlimited selection")
if(!((op == H5S_SELECT_AND) || (op == H5S_SELECT_NOTB)))
HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unsupported operation with unlimited selection")
/* Get bounds of existing selection */
if(H5S__hyper_bounds(space, bounds_start, bounds_end) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get selection bounds")
/* Patch count and block to remove unlimited and include the
* existing selection.
*/
H5S__hyper_get_clip_diminfo(start[unlim_dim], opt_stride[unlim_dim], &tmp_count, &tmp_block, bounds_end[unlim_dim] + (hsize_t)1);
HDassert((tmp_count == 1) || (opt_count != H5S_hyper_ones_g));
HDassert((tmp_block == 1) || (opt_block != H5S_hyper_ones_g));
if(opt_count != H5S_hyper_ones_g) {
HDassert(opt_count == int_count);
int_count[unlim_dim] = tmp_count;
} /* end if */
if(opt_block != H5S_hyper_ones_g) {
HDassert(opt_block == int_block);
int_block[unlim_dim] = tmp_block;
} /* end if */
} /* end if */
/* Check for a single block selected */
single_block = TRUE;
for(u = 0; u < space->extent.rank; u++)
if(1 != opt_count[u]) {
single_block = FALSE;
break;
} /* end if */
/* Check for single block "AND" operation on a regular hyperslab, which
* is used for constructing chunk maps and can be optimized for.
*/
if(H5S_SELECT_AND == op && single_block &&
space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
if(H5S__hyper_regular_and_single_block(space, start, opt_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTOPERATE, FAIL, "can't 'AND' single block against regular hyperslab")
} /* end if */
else {
/* Check if there's no hyperslab span information currently */
if(NULL == space->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree")
/* Set selection type */
space->select.type = H5S_sel_hyper;
/* Add in the new hyperslab information */
if(H5S__generate_hyperslab(space, op, start, opt_stride, opt_count, opt_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs")
} /* end else */
} /* end if */
else
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_select_hyperslab() */
/*--------------------------------------------------------------------------
NAME
H5Sselect_hyperslab
PURPOSE
Specify a hyperslab to combine with the current hyperslab selection
USAGE
herr_t H5Sselect_hyperslab(dsid, op, start, stride, count, block)
hid_t dsid; IN: Dataspace ID of selection to modify
H5S_seloper_t op; IN: Operation to perform on current selection
const hsize_t *start; IN: Offset of start of hyperslab
const hsize_t *stride; IN: Hyperslab stride
const hsize_t *count; IN: Number of blocks included in hyperslab
const hsize_t *block; IN: Size of block in hyperslab
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Combines a hyperslab selection with the current selection for a dataspace.
If the current selection is not a hyperslab, it is freed and the hyperslab
parameters passed in are combined with the H5S_SEL_ALL hyperslab (ie. a
selection composing the entire current extent). If STRIDE or BLOCK is
NULL, they are assumed to be set to all '1'.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5Sselect_hyperslab(hid_t space_id, H5S_seloper_t op, const hsize_t start[],
const hsize_t stride[], const hsize_t count[], const hsize_t block[])
{
H5S_t *space; /* Dataspace to modify selection of */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_API(FAIL)
H5TRACE6("e", "iSs*h*h*h*h", space_id, op, start, stride, count, block);
/* Check args */
if(NULL == (space = (H5S_t *)H5I_object_verify(space_id, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace")
if(H5S_SCALAR == H5S_GET_EXTENT_TYPE(space))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "hyperslab doesn't support H5S_SCALAR space")
if(H5S_NULL == H5S_GET_EXTENT_TYPE(space))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "hyperslab doesn't support H5S_NULL space")
if(start == NULL || count == NULL)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab not specified")
if(!(op > H5S_SELECT_NOOP && op < H5S_SELECT_INVALID))
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
if(stride != NULL) {
unsigned u; /* Local index variable */
/* Check for 0-sized strides */
for(u = 0; u < space->extent.rank; u++)
if(stride[u] == 0)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid stride==0 value")
} /* end if */
if(H5S_select_hyperslab(space, op, start, stride, count, block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection")
done:
FUNC_LEAVE_API(ret_value)
} /* end H5Sselect_hyperslab() */
/*--------------------------------------------------------------------------
NAME
H5S_combine_hyperslab
PURPOSE
Specify a hyperslab to combine with the current hyperslab selection, and
store the result in the new hyperslab selection.
USAGE
herr_t H5S_combine_hyperslab(new_space, old_space, op, start, stride, count, block)
H5S_t *old_space; IN: The old space the selection is performed on
H5S_seloper_t op; IN: Operation to perform on current selection
const hsize_t start[]; IN: Offset of start of hyperslab
const hsize_t *stride; IN: Hyperslab stride
const hsize_t count[]; IN: Number of blocks included in hyperslab
const hsize_t *block; IN: Size of block in hyperslab
H5S_t **new_space; OUT: The new dataspace to store the selection result
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Combines a hyperslab selection with the current selection for a dataspace.
If STRIDE or BLOCK is NULL, they are assumed to be set to all '1'.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
In some cases, copying the whole span tree from old_space to new_space
can be avoided. Deal with such cases directly, otherwise this function
is equivalent to:
1. Copy the whole span tree from old_space into new_space
2. Call H5S_select_hyperslab with the new_space.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_combine_hyperslab(H5S_t *old_space, H5S_seloper_t op, const hsize_t start[],
const hsize_t *stride, const hsize_t count[], const hsize_t *block,
H5S_t **new_space)
{
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Check args */
HDassert(old_space);
HDassert(start);
HDassert(count);
HDassert(op >= H5S_SELECT_SET && op <= H5S_SELECT_NOTA);
HDassert(new_space);
HDassert(*new_space == NULL);
/* Point to the correct stride values */
if(stride == NULL)
stride = H5S_hyper_ones_g;
/* Point to the correct block values */
if(block == NULL)
block = H5S_hyper_ones_g;
/* Check new selection. */
for(u = 0; u < old_space->extent.rank; u++) {
/* Check for overlapping hyperslab blocks in new selection. */
if(count[u] > 1 && stride[u] < block[u])
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab blocks overlap")
/* Detect zero-sized hyperslabs in new selection */
if(count[u] == 0 || block[u] == 0) {
switch(op) {
case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */
case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */
/* Convert to "none" selection */
/* Copy the first dataspace without sharing the list of spans */
if(NULL == ((*new_space) = H5S_copy(old_space, TRUE, TRUE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace")
if(H5S_select_none((*new_space)) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
HGOTO_DONE(SUCCEED);
case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */
case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */
case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */
/* Copy the first dataspace with sharing the list of spans */
if(NULL == ((*new_space) = H5S_copy(old_space, FALSE, TRUE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace")
HGOTO_DONE(SUCCEED); /* Selection stays same */
case H5S_SELECT_NOOP:
case H5S_SELECT_SET:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
} /* end if */
} /* end for */
if(H5S_GET_SELECT_TYPE(old_space) == H5S_SEL_HYPERSLABS) {
hsize_t *old_low_bounds; /* Pointer to old space's low & high bounds */
hsize_t *old_high_bounds;
hsize_t new_low_bounds[H5S_MAX_RANK]; /* New space's low & high bounds */
hsize_t new_high_bounds[H5S_MAX_RANK];
hbool_t overlapped = FALSE;
/* Set up old space's low & high bounds */
if(old_space->select.sel_info.hslab->span_lst) {
old_low_bounds = old_space->select.sel_info.hslab->span_lst->low_bounds;
old_high_bounds = old_space->select.sel_info.hslab->span_lst->high_bounds;
} /* end if */
else {
old_low_bounds = old_space->select.sel_info.hslab->diminfo.low_bounds;
old_high_bounds = old_space->select.sel_info.hslab->diminfo.high_bounds;
} /* end else */
/* Generate bounding box for hyperslab parameters */
for(u = 0; u < old_space->extent.rank; u++) {
new_low_bounds[u] = start[u];
new_high_bounds[u] = start[u] + stride[u] * (count[u] - 1) + (block[u] - 1);
} /* end for */
/* Check bound box of both spaces to see if they overlap */
if(H5S_RANGE_OVERLAP(old_low_bounds[0], old_high_bounds[0],
new_low_bounds[0], new_high_bounds[0]))
overlapped = TRUE;
/* Non-overlapping situations can be handled in special ways */
if(!overlapped) {
H5S_hyper_span_info_t *new_spans = NULL;
H5S_hyper_dim_t new_hyper_diminfo[H5S_MAX_RANK];
if(NULL == ((*new_space) = H5S_copy(old_space, TRUE, TRUE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy dataspace")
if(NULL != (*new_space)->select.sel_info.hslab->span_lst) {
old_space->select.sel_info.hslab->span_lst->count--;
(*new_space)->select.sel_info.hslab->span_lst = NULL;
} /* end if */
/* Generate hyperslab info for new space */
switch(op) {
case H5S_SELECT_OR:
case H5S_SELECT_XOR:
/* Add the new space to the space */
if(NULL == (new_spans = H5S__hyper_make_spans(old_space->extent.rank, start, stride, count, block)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't create hyperslab information")
if(NULL != old_space->select.sel_info.hslab->span_lst)
(*new_space)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(old_space->select.sel_info.hslab->span_lst, old_space->extent.rank);
if(H5S__hyper_add_disjoint_spans(*new_space, new_spans) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't append hyperslabs")
/* Build diminfo struct */
for(u = 0; u < (*new_space)->extent.rank; u++) {
new_hyper_diminfo[u].start = start[u];
new_hyper_diminfo[u].stride = stride[u];
new_hyper_diminfo[u].count = count[u];
new_hyper_diminfo[u].block = block[u];
} /* end for */
/* Update space's dim info */
if(H5S__hyper_update_diminfo(*new_space, op, new_hyper_diminfo) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't update hyperslab info")
break;
case H5S_SELECT_AND:
if(H5S_select_none((*new_space)) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
break;
case H5S_SELECT_NOTB:
if(NULL != old_space->select.sel_info.hslab->span_lst) {
if(NULL == ((*new_space)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(old_space->select.sel_info.hslab->span_lst, old_space->extent.rank)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy dataspace")
} /* end if */
else {
if(H5S_select_none((*new_space)) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection")
} /* end else */
break;
case H5S_SELECT_NOTA:
if(H5S__set_regular_hyperslab(*new_space, start, stride, count, block, stride, count, block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular selection")
break;
case H5S_SELECT_NOOP:
case H5S_SELECT_SET:
case H5S_SELECT_APPEND:
case H5S_SELECT_PREPEND:
case H5S_SELECT_INVALID:
default:
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
} /* end switch */
HGOTO_DONE(SUCCEED);
} /* end if(!overlapped) */
} /* end if the selection of old space is H5S_SEL_HYPERSLABS */
/* Copy the first dataspace with sharing the list of spans */
if(NULL == ((*new_space) = H5S_copy(old_space, TRUE, TRUE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace")
/* Note: a little overhead in calling the function as some conditions are checked again */
if(H5S_select_hyperslab(*new_space, op, start, stride, count, block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection")
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_combine_hyperslab() */
/*-------------------------------------------------------------------------
* Function: H5S__fill_in_select
*
* Purpose: Combines two hyperslabs with an operation, putting the
* result into a third hyperslab selection
*
* Return: Non-negative on success/negative on failure
*
* Programmer: Chao Mei
* Tuesday, July 5, 2011
*
*-------------------------------------------------------------------------
*/
static herr_t
H5S__fill_in_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2, H5S_t **result)
{
hbool_t span2_owned;
hbool_t updated_spans;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Sanity check */
HDassert(space1);
HDassert(space2);
HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA);
HDassert(space1->extent.rank == space2->extent.rank);
/* The result is either a to-be-created space or an empty one */
HDassert(NULL == *result || *result == space1);
HDassert(space1->select.sel_info.hslab->span_lst);
HDassert(space2->select.sel_info.hslab->span_lst);
/* Note: the offset of space2 is not considered here for bounding box */
if(H5S__fill_in_new_space(space1, op, space2->select.sel_info.hslab->span_lst, FALSE, &span2_owned, &updated_spans, result) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't create the specified selection")
/* Update diminfo if space2's diminfo was valid, otherwise just mark it as
* invalid if the spans were updated */
HDassert(result);
if(updated_spans) {
if(space2->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) {
if(H5S__hyper_update_diminfo(*result, op, space2->select.sel_info.hslab->diminfo.opt) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't update hyperslab info")
} /* end if */
else
(*result)->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
} /* end if */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__fill_in_select() */
/*--------------------------------------------------------------------------
NAME
H5Scombine_hyperslab
PURPOSE
Specify a hyperslab to combine with the current hyperslab selection and
return a new dataspace with the combined selection as the selection in the
new dataspace.
USAGE
hid_t H5Scombine_hyperslab(dsid, op, start, stride, count, block)
hid_t dsid; IN: Dataspace ID of selection to use
H5S_seloper_t op; IN: Operation to perform on current selection
const hsize_t *start; IN: Offset of start of hyperslab
const hsize_t *stride; IN: Hyperslab stride
const hsize_t *count; IN: Number of blocks included in hyperslab
const hsize_t *block; IN: Size of block in hyperslab
RETURNS
Dataspace ID on success / H5I_INVALID_HID on failure
DESCRIPTION
Combines a hyperslab selection with the current selection for a dataspace,
creating a new dataspace to return the generated selection.
If the current selection is not a hyperslab, it is freed and the hyperslab
parameters passed in are combined with the H5S_SEL_ALL hyperslab (ie. a
selection composing the entire current extent). If STRIDE or BLOCK is
NULL, they are assumed to be set to all '1'.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hid_t
H5Scombine_hyperslab(hid_t space_id, H5S_seloper_t op, const hsize_t start[],
const hsize_t stride[], const hsize_t count[], const hsize_t block[])
{
H5S_t *space; /* Dataspace to modify selection of */
H5S_t *new_space = NULL; /* New dataspace created */
hid_t ret_value; /* Return value */
FUNC_ENTER_API(H5I_INVALID_HID)
H5TRACE6("i", "iSs*h*h*h*h", space_id, op, start, stride, count, block);
/* Check args */
if(NULL == (space = (H5S_t *)H5I_object_verify(space_id, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, H5I_INVALID_HID, "not a dataspace")
if(start == NULL || count == NULL)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, H5I_INVALID_HID, "hyperslab not specified")
if(!(op >= H5S_SELECT_SET && op <= H5S_SELECT_NOTA))
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, H5I_INVALID_HID, "invalid selection operation")
/* Generate new space, with combination of selections */
if(H5S_combine_hyperslab(space, op, start, stride, count, block, &new_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, H5I_INVALID_HID, "unable to set hyperslab selection")
/* Atomize */
if((ret_value = H5I_register(H5I_DATASPACE, new_space, TRUE)) < 0)
HGOTO_ERROR(H5E_ATOM, H5E_CANTREGISTER, H5I_INVALID_HID, "unable to register dataspace atom")
done:
if(ret_value < 0 && new_space)
H5S_close(new_space);
FUNC_LEAVE_API(ret_value)
} /* end H5Scombine_hyperslab() */
/*-------------------------------------------------------------------------
* Function: H5S__combine_select
*
* Purpose: Internal version of H5Scombine_select().
*
* Return: New dataspace on success/NULL on failure
*
* Programmer: Quincey Koziol
* Tuesday, October 30, 2001
*
*-------------------------------------------------------------------------
*/
static H5S_t *
H5S__combine_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2)
{
H5S_t *new_space = NULL; /* New dataspace generated */
H5S_t *ret_value = NULL; /* Return value */
FUNC_ENTER_STATIC
/* Check args */
HDassert(space1);
HDassert(space2);
HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA);
/* Check if space1 selections has span trees */
if(NULL == space1->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans(space1) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, NULL, "dataspace does not have span tree")
if(NULL == space2->select.sel_info.hslab->span_lst) {
hsize_t tmp_start[H5S_MAX_RANK];
hsize_t tmp_stride[H5S_MAX_RANK];
hsize_t tmp_count[H5S_MAX_RANK];
hsize_t tmp_block[H5S_MAX_RANK];
unsigned u;
for(u = 0; u < space2->extent.rank; u++) {
tmp_start[u] = space2->select.sel_info.hslab->diminfo.opt[u].start;
tmp_stride[u] = space2->select.sel_info.hslab->diminfo.opt[u].stride;
tmp_count[u] = space2->select.sel_info.hslab->diminfo.opt[u].count;
tmp_block[u] = space2->select.sel_info.hslab->diminfo.opt[u].block;
} /* end for */
/* Combine hyperslab selection with regular selection directly */
if(H5S_combine_hyperslab(space1, op, tmp_start, tmp_stride, tmp_count, tmp_block, &new_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, NULL, "unable to set hyperslab selection")
} /* end if */
else{
/* Combine new_space (a copy of space 1) & space2, with the result in new_space */
if(H5S__fill_in_select(space1, op, space2, &new_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, NULL, "can't clip hyperslab information")
} /* end else */
/* Set unlim_dim */
new_space->select.sel_info.hslab->unlim_dim = -1;
/* Set return value */
ret_value = new_space;
done:
if(ret_value == NULL && new_space)
H5S_close(new_space);
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__combine_select() */
/*--------------------------------------------------------------------------
NAME
H5Scombine_select
PURPOSE
Combine two hyperslab selections with an operation, returning a dataspace
with the resulting selection.
USAGE
hid_t H5Scombine_select(space1, op, space2)
hid_t space1; IN: First Dataspace ID
H5S_seloper_t op; IN: Selection operation
hid_t space2; IN: Second Dataspace ID
RETURNS
Dataspace ID on success / H5I_INVALID_HID on failure
DESCRIPTION
Combine two existing hyperslab selections with an operation, returning
a new dataspace with the resulting selection. The dataspace extent from
space1 is copied for the dataspace extent of the newly created dataspace.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hid_t
H5Scombine_select(hid_t space1_id, H5S_seloper_t op, hid_t space2_id)
{
H5S_t *space1; /* First Dataspace */
H5S_t *space2; /* Second Dataspace */
H5S_t *new_space = NULL; /* New Dataspace */
hid_t ret_value; /* Return value */
FUNC_ENTER_API(H5I_INVALID_HID)
H5TRACE3("i", "iSsi", space1_id, op, space2_id);
/* Check args */
if(NULL == (space1 = (H5S_t *)H5I_object_verify(space1_id, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, H5I_INVALID_HID, "not a dataspace")
if(NULL == (space2 = (H5S_t *)H5I_object_verify(space2_id, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, H5I_INVALID_HID, "not a dataspace")
if(!(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA))
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, H5I_INVALID_HID, "invalid selection operation")
/* Check that both dataspaces have the same rank */
if(space1->extent.rank != space2->extent.rank)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, H5I_INVALID_HID, "dataspaces not same rank")
/* Note: currently, the offset of each dataspace is ignored */
#if 0
/* Check that both dataspaces have the same offset */
/* Same note as in H5Smodify_select */
for(u=0; u<space1->extent.rank; u++) {
if(space1->select.offset[u] != space2->select.offset[u])
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, H5I_INVALID_HID, "dataspaces not same offset")
} /* end for */
#endif
/* Check that both dataspaces have hyperslab selections */
if(H5S_GET_SELECT_TYPE(space1) != H5S_SEL_HYPERSLABS || H5S_GET_SELECT_TYPE(space2) != H5S_SEL_HYPERSLABS)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, H5I_INVALID_HID, "dataspaces don't have hyperslab selections")
/* Go combine the dataspaces */
if(NULL == (new_space = H5S__combine_select(space1, op, space2)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, H5I_INVALID_HID, "unable to create hyperslab selection")
/* Atomize */
if((ret_value = H5I_register(H5I_DATASPACE, new_space, TRUE)) < 0)
HGOTO_ERROR(H5E_ATOM, H5E_CANTREGISTER, H5I_INVALID_HID, "unable to register dataspace atom")
done:
if(ret_value < 0 && new_space)
H5S_close(new_space);
FUNC_LEAVE_API(ret_value)
} /* end H5Scombine_select() */
/*-------------------------------------------------------------------------
* Function: H5S__modify_select
*
* Purpose: Internal version of H5Smodify_select().
*
* Return: New dataspace on success/NULL on failure
*
* Programmer: Quincey Koziol
* Tuesday, October 30, 2001
*
*-------------------------------------------------------------------------
*/
herr_t
H5S__modify_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2)
{
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check args */
HDassert(space1);
HDassert(space2);
HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA);
/* Check that the space selections both have span trees */
if(NULL == space1->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans(space1) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree")
/* Set unlim_dim */
space1->select.sel_info.hslab->unlim_dim = -1;
if(NULL == space2->select.sel_info.hslab->span_lst) {
hsize_t tmp_start[H5S_MAX_RANK];
hsize_t tmp_stride[H5S_MAX_RANK];
hsize_t tmp_count[H5S_MAX_RANK];
hsize_t tmp_block[H5S_MAX_RANK];
unsigned u;
for(u = 0; u < space2->extent.rank; u++) {
tmp_start[u] = space2->select.sel_info.hslab->diminfo.opt[u].start;
tmp_stride[u] = space2->select.sel_info.hslab->diminfo.opt[u].stride;
tmp_count[u] = space2->select.sel_info.hslab->diminfo.opt[u].count;
tmp_block[u] = space2->select.sel_info.hslab->diminfo.opt[u].block;
} /* end for */
/* Call H5S_select_hyperslab directly */
if(H5S_select_hyperslab(space1, op, tmp_start, tmp_stride, tmp_count, tmp_block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection")
} /* end if */
else
/* Combine spans from space1 & spans from space2, with the result in space1 */
if(H5S__fill_in_select(space1, op, space2, &space1) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't perform operation on two selections")
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__modify_select() */
/*--------------------------------------------------------------------------
NAME
H5Smodify_select
PURPOSE
Refine a hyperslab selection with an operation using a second hyperslab
to modify it
USAGE
herr_t H5Smodify_select(space1, op, space2)
hid_t space1; IN/OUT: First Dataspace ID
H5S_seloper_t op; IN: Selection operation
hid_t space2; IN: Second Dataspace ID
RETURNS
Non-negative on success/Negative on failure
DESCRIPTION
Refine an existing hyperslab selection with an operation, using a second
hyperslab. The first selection is modified to contain the result of
space1 operated on by space2.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5Smodify_select(hid_t space1_id, H5S_seloper_t op, hid_t space2_id)
{
H5S_t *space1; /* First Dataspace */
H5S_t *space2; /* Second Dataspace */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_API(FAIL)
H5TRACE3("e", "iSsi", space1_id, op, space2_id);
/* Check args */
if(NULL == (space1 = (H5S_t *)H5I_object_verify(space1_id, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace")
if(NULL == (space2 = (H5S_t *)H5I_object_verify(space2_id, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace")
if(!(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA))
HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation")
/* Check that both dataspaces have the same rank */
if(space1->extent.rank != space2->extent.rank)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "dataspaces not same rank")
/* Check that both dataspaces have the same offset */
/** Note that this is a tricky part of this function. It's
* possible that two dataspaces have different "offset". If the
* space2 has smaller offset value than that of space1 in a
* dimension, then the span elements of this dimension in
* space2 could have negative "low" and "high" values relative
* to the offset in space1. In other words, if the bounds of
* span elements in space2 are adjusted relative to the offset
* in space1, then every span element's bound is computed as
* "origin_bound+offset2-offset1". Therefore, if offset2 (the
* offset of space2) is smaller, then
* "origin_bound+offset2-offset1" could be negative which is
* not allowed by the bound type declaration as hsize_t!
* As a result, if the op is an OR selection, then the final
* result may contain span elements that have negative bound!
* So right now, the difference in the offset is totally
* ignored!!
*/
#if 0
for(u=0; u<space1->extent.rank; u++) {
if(space1->select.offset[u] != space2->select.offset[u])
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "dataspaces not same offset")
} /* end for */
#endif
/* Check that both dataspaces have hyperslab selections */
if(H5S_GET_SELECT_TYPE(space1) != H5S_SEL_HYPERSLABS || H5S_GET_SELECT_TYPE(space2) != H5S_SEL_HYPERSLABS)
HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "dataspaces don't have hyperslab selections")
/* Go refine the first selection */
if(H5S__modify_select(space1, op, space2) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to modify hyperslab selection")
done:
FUNC_LEAVE_API(ret_value)
} /* end H5Smodify_select() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_proj_int_build_proj
PURPOSE
Secondary iteration routine for H5S__hyper_project_intersection
USAGE
herr_t H5S__hyper_proj_int_build_proj(udata)
H5S_hyper_project_intersect_ud_t *udata; IN/OUT: Persistent shared data for iteration
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
Takes the skip and nelem amounts listed in udata and converts them to
span trees in the projected space, using the destination space. This
is a non-recursive algorithm by necessity, it saves the current state
of iteration in udata and resumes in the same location on subsequent
calls.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_proj_int_build_proj(H5S_hyper_project_intersect_ud_t *udata) {
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
HDassert(udata->nelem > 0);
/*
* Skip over skipped elements
*/
if(udata->skip > 0) {
/* Work upwards, finishing each span tree before moving up */
HDassert(udata->ds_span[udata->depth]);
do {
/* Check for lowest dimension */
if(udata->ds_span[udata->depth]->down) {
if(udata->ds_low[udata->depth] <= udata->ds_span[udata->depth]->high) {
/* If we will run out of elements to skip in this span,
* advance to the first not fully skipped span and break
* out of this loop (start moving downwards) */
if(udata->skip < H5S__hyper_spans_nelem_helper(udata->ds_span[udata->depth]->down, udata->op_gen)
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
udata->ds_low[udata->depth] += udata->skip / udata->ds_span[udata->depth]->down->u.nelmts;
udata->skip %= udata->ds_span[udata->depth]->down->u.nelmts;
break;
} /* end if */
/* Skip over this entire span */
udata->skip -= udata->ds_span[udata->depth]->down->u.nelmts
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1);
} /* end if */
} /* end if */
else {
HDassert(udata->ds_rank - udata->depth == 1);
/* If we will run out of elements to skip in this span,
* skip the remainder of the skipped elements and break out */
HDassert(udata->ds_low[udata->depth] <= udata->ds_span[udata->depth]->high);
if(udata->skip < (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
udata->ds_low[udata->depth] += udata->skip;
udata->skip = 0;
break;
} /* end if */
/* Skip over this entire span */
udata->skip -= udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1;
} /* end else */
/* Advance to next span */
udata->ds_span[udata->depth] = udata->ds_span[udata->depth]->next;
if(udata->ds_span[udata->depth])
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
else if(udata->depth > 0) {
/* If present, append this span tree to the higher dimension's,
* and release ownership of it */
if(udata->ps_span_info[udata->depth]) {
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth - 1],
udata->ds_rank - udata->depth + 1, udata->ds_low[udata->depth - 1],
udata->ds_low[udata->depth - 1],
udata->ps_span_info[udata->depth]) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
H5S__hyper_free_span_info(udata->ps_span_info[udata->depth]);
udata->ps_span_info[udata->depth] = NULL;
} /* end if */
/* Ran out of spans, move up one dimension */
udata->depth--;
HDassert(udata->ds_span[udata->depth]);
udata->ds_low[udata->depth]++;
} /* end if */
else
HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "insufficient elements in destination selection")
} while((udata->skip > 0)
|| (udata->ds_low[udata->depth] > udata->ds_span[udata->depth]->high));
/* Work downwards until skip is 0 */
HDassert(udata->ds_span[udata->depth]);
while(udata->skip > 0) {
HDassert(udata->ds_span[udata->depth]->down);
udata->depth++;
udata->ds_span[udata->depth] = udata->ds_span[udata->depth - 1]->down->head;
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
if(udata->ds_span[udata->depth]->down) {
do {
/* If we will run out of elements to skip in this span,
* advance to the first not fully skipped span and
* continue down */
if(udata->skip < H5S__hyper_spans_nelem_helper(udata->ds_span[udata->depth]->down, udata->op_gen)
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
udata->ds_low[udata->depth] += udata->skip / udata->ds_span[udata->depth]->down->u.nelmts;
udata->skip %= udata->ds_span[udata->depth]->down->u.nelmts;
break;
} /* end if */
/* Skip over this entire span */
udata->skip -= udata->ds_span[udata->depth]->down->u.nelmts
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1);
/* Advance to next span */
udata->ds_span[udata->depth] = udata->ds_span[udata->depth]->next;
HDassert(udata->ds_span[udata->depth]);
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
} while(udata->skip > 0);
} /* end if */
else {
do {
/* If we will run out of elements to skip in this span,
* skip the remainder of the skipped elements */
if(udata->skip < (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
udata->ds_low[udata->depth] += udata->skip;
udata->skip = 0;
break;
} /* end if */
/* Skip over this entire span */
udata->skip -= udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1;
/* Advance to next span */
udata->ds_span[udata->depth] = udata->ds_span[udata->depth]->next;
HDassert(udata->ds_span[udata->depth]);
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
} while(udata->skip > 0);
} /* end else */
} /* end while */
} /* end if */
/*
* Add requested number of elements to projected space
*/
/* Work upwards, adding all elements of each span tree until it can't fit
* all elements */
HDassert(udata->ds_span[udata->depth]);
do {
/* Check for lowest dimension */
if(udata->ds_span[udata->depth]->down) {
if(udata->ds_low[udata->depth] <= udata->ds_span[udata->depth]->high) {
/* If we will run out of elements to add in this span, add
* any complete spans, advance to the first not fully added
* span, and break out of this loop (start moving downwards)
*/
if(udata->nelem < H5S__hyper_spans_nelem_helper(udata->ds_span[udata->depth]->down, udata->op_gen)
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
if(udata->nelem >= udata->ds_span[udata->depth]->down->u.nelmts) {
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth],
udata->ds_rank - udata->depth, udata->ds_low[udata->depth],
udata->ds_low[udata->depth] + (udata->nelem / udata->ds_span[udata->depth]->down->u.nelmts) - 1,
udata->ds_span[udata->depth]->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->ds_low[udata->depth] += udata->nelem / udata->ds_span[udata->depth]->down->u.nelmts;
udata->nelem %= udata->ds_span[udata->depth]->down->u.nelmts;
} /* end if */
break;
} /* end if */
/* Append span tree for entire span */
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth],
udata->ds_rank - udata->depth, udata->ds_low[udata->depth],
udata->ds_span[udata->depth]->high,
udata->ds_span[udata->depth]->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->nelem -= udata->ds_span[udata->depth]->down->u.nelmts
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1);
} /* end if */
} /* end if */
else {
HDassert(udata->ds_rank - udata->depth == 1);
/* If we will run out of elements to add in this span, add the
* remainder of the elements and break out */
HDassert(udata->ds_low[udata->depth] <= udata->ds_span[udata->depth]->high);
if(udata->nelem < (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth], 1,
udata->ds_low[udata->depth], udata->ds_low[udata->depth] + udata->nelem - 1, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->ds_low[udata->depth] += udata->nelem;
udata->nelem = 0;
break;
} /* end if */
/* Append span tree for entire span */
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth], 1,
udata->ds_low[udata->depth], udata->ds_span[udata->depth]->high, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->nelem -= udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1;
} /* end else */
/* Advance to next span */
udata->ds_span[udata->depth] = udata->ds_span[udata->depth]->next;
if(udata->ds_span[udata->depth])
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
else if(udata->depth > 0) {
/* Append this span tree to the higher dimension's, and release
* ownership of it */
HDassert(udata->ps_span_info[udata->depth]);
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth - 1],
udata->ds_rank - udata->depth + 1, udata->ds_low[udata->depth - 1],
udata->ds_low[udata->depth - 1],
udata->ps_span_info[udata->depth]) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
H5S__hyper_free_span_info(udata->ps_span_info[udata->depth]);
udata->ps_span_info[udata->depth] = NULL;
/* Ran out of spans, move up one dimension */
udata->depth--;
HDassert(udata->ds_span[udata->depth]);
udata->ds_low[udata->depth]++;
} /* end if */
else {
/* We have finished the entire destination span tree. If there are
* still elements to add, issue an error. */
if(udata->nelem > 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "insufficient elements in destination selection")
break;
} /* end else */
} while((udata->nelem > 0)
|| (udata->ds_low[udata->depth] > udata->ds_span[udata->depth]->high));
/* Work downwards until nelem is 0 */
HDassert(udata->ds_span[udata->depth] || (udata->nelem == 0));
while(udata->nelem > 0) {
HDassert(udata->ds_span[udata->depth]->down);
udata->depth++;
udata->ds_span[udata->depth] = udata->ds_span[udata->depth - 1]->down->head;
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
if(udata->ds_span[udata->depth]->down) {
do {
/* If we will run out of elements to add in this span, add
* any complete spans, advance to the first not fully added
* span and continue down
*/
HDassert(udata->ds_low[udata->depth] <= udata->ds_span[udata->depth]->high);
if(udata->nelem < H5S__hyper_spans_nelem_helper(udata->ds_span[udata->depth]->down, udata->op_gen)
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
if(udata->nelem >= udata->ds_span[udata->depth]->down->u.nelmts) {
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth],
udata->ds_rank - udata->depth, udata->ds_low[udata->depth],
udata->ds_low[udata->depth] + (udata->nelem / udata->ds_span[udata->depth]->down->u.nelmts) - 1,
udata->ds_span[udata->depth]->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->ds_low[udata->depth] += udata->nelem / udata->ds_span[udata->depth]->down->u.nelmts;
udata->nelem %= udata->ds_span[udata->depth]->down->u.nelmts;
} /* end if */
break;
} /* end if */
/* Append span tree for entire span */
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth],
udata->ds_rank - udata->depth, udata->ds_low[udata->depth],
udata->ds_span[udata->depth]->high,
udata->ds_span[udata->depth]->down) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->nelem -= udata->ds_span[udata->depth]->down->u.nelmts
* (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1);
/* Advance to next span */
udata->ds_span[udata->depth] = udata->ds_span[udata->depth]->next;
HDassert(udata->ds_span[udata->depth]);
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
} while(udata->nelem > 0);
} /* end if */
else {
HDassert(udata->ds_rank - udata->depth == 1);
do {
/* If we will run out of elements to add in this span, add
* the remainder of the elements and break out */
HDassert(udata->ds_low[udata->depth] <= udata->ds_span[udata->depth]->high);
if(udata->nelem < (udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1)) {
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth], 1,
udata->ds_low[udata->depth], udata->ds_low[udata->depth] + udata->nelem - 1, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->ds_low[udata->depth] += udata->nelem;
udata->nelem = 0;
break;
} /* end if */
/* Append span tree for entire span */
if(H5S__hyper_append_span(&udata->ps_span_info[udata->depth], 1,
udata->ds_low[udata->depth], udata->ds_span[udata->depth]->high, NULL) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
udata->nelem -= udata->ds_span[udata->depth]->high - udata->ds_low[udata->depth] + 1;
/* Advance to next span */
udata->ds_span[udata->depth] = udata->ds_span[udata->depth]->next;
HDassert(udata->ds_span[udata->depth]);
udata->ds_low[udata->depth] = udata->ds_span[udata->depth]->low;
} while(udata->nelem > 0);
} /* end else */
} /* end while */
HDassert(udata->skip == 0);
HDassert(udata->nelem == 0);
/* Mark projected space as changed (for all ranks) */
udata->ps_clean_bitmap = 0;
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_proj_int_build_proj() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_proj_int_iterate
PURPOSE
Main iteration routine for H5S__hyper_project_intersection
USAGE
herr_t H5S__hyper_proj_int_iterate(ss_span_info,sis_span_info,count,depth,udata)
const H5S_hyper_span_info_t *ss_span_info; IN: Span tree for source selection
const H5S_hyper_span_info_t *sis_span_info; IN: Span tree for source intersect selection
hsize_t count; IN: Number of times to compute the intersection of ss_span_info and sis_span_info
unsigned depth; IN: Depth of iteration (in terms of rank)
H5S_hyper_project_intersect_ud_t *udata; IN/OUT: Persistent shared data for iteration
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
Computes the intersection of ss_span_info and sis_span_info and projects it
to the projected space (held in udata). It accomplishes this by iterating
over both spaces and computing the number of elements to skip (in
ss_span_info) and the number of elements to add (the intersection) in a
sequential fashion (similar to run length encoding). As necessary, this
function both recurses into lower dimensions and calls
H5S__hyper_proj_int_build_proj to convert the skip/nelem pairs to the
projected span tree.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static herr_t
H5S__hyper_proj_int_iterate(const H5S_hyper_span_info_t *ss_span_info,
const H5S_hyper_span_info_t *sis_span_info, hsize_t count, unsigned depth,
H5S_hyper_project_intersect_ud_t *udata)
{
const H5S_hyper_span_t *ss_span; /* Current span in source space */
const H5S_hyper_span_t *sis_span; /* Current span in source intersect space */
hsize_t ss_low; /* Current low bounds of source span */
hsize_t sis_low; /* Current low bounds of source intersect span */
hsize_t high; /* High bounds of current intersection */
hsize_t low; /* Low bounds of current intersection */
hsize_t old_skip; /* Value of udata->skip before main loop */
hsize_t old_nelem; /* Value of udata->nelem before main loop */
hbool_t check_intersect; /* Whether to check for intersecting elements */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_STATIC
/* Check for non-overlapping bounds */
check_intersect = TRUE;
for(u = 0; u < (udata->ss_rank - depth); u++)
if(!H5S_RANGE_OVERLAP(ss_span_info->low_bounds[u],
ss_span_info->high_bounds[u],
sis_span_info->low_bounds[u],
sis_span_info->high_bounds[u])) {
check_intersect = FALSE;
break;
} /* end if */
/* Only enter main loop if there's something to do */
if(check_intersect) {
/* Set ps_clean_bitmap */
udata->ps_clean_bitmap |= (((uint32_t)1) << depth);
/* Save old skip and nelem */
old_skip = udata->skip;
old_nelem = udata->nelem;
/* Intersect spaces once per count */
for(u = 0; u < count; u++) {
ss_span = ss_span_info->head;
sis_span = sis_span_info->head;
HDassert(ss_span && sis_span);
ss_low = ss_span->low;
sis_low = sis_span->low;
/* Main loop */
do {
/* Check if spans overlap */
if(H5S_RANGE_OVERLAP(ss_low, ss_span->high,
sis_low, sis_span->high)) {
high = MIN(ss_span->high, sis_span->high);
if(ss_span->down) {
/* Add skipped elements if there's a pre-gap */
if(ss_low < sis_low) {
low = sis_low;
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, H5S__hyper_spans_nelem_helper(ss_span->down, udata->op_gen) * (sis_low - ss_low), FAIL);
} /* end if */
else
low = ss_low;
/* Recurse into next dimension down */
if(H5S__hyper_proj_int_iterate(ss_span->down, sis_span->down, high - low + 1, depth + 1, udata) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOMPARE, FAIL, "can't iterate over source selections")
} /* end if */
else {
HDassert(depth == udata->ss_rank - 1);
/* Add skipped elements if there's a pre-gap */
if(ss_low < sis_low) {
low = sis_low;
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, sis_low - ss_low, FAIL);
} /* end if */
else
low = ss_low;
/* Add overlapping elements */
udata->nelem += high - low + 1;
} /* end else */
/* Advance spans */
if(ss_span->high == sis_span->high) {
/* Advance both spans */
ss_span = ss_span->next;
if(ss_span)
ss_low = ss_span->low;
sis_span = sis_span->next;
if(sis_span)
sis_low = sis_span->low;
} /* end if */
else if(ss_span->high == high) {
/* Advance source span */
HDassert(ss_span->high < sis_span->high);
sis_low = high + 1;
ss_span = ss_span->next;
if(ss_span)
ss_low = ss_span->low;
} /* end if */
else {
/* Advance source intersect span */
HDassert(ss_span->high > sis_span->high);
ss_low = high + 1;
sis_span = sis_span->next;
if(sis_span)
sis_low = sis_span->low;
} /* end else */
} /* end if */
else {
/* Advance spans */
if(ss_span->high < sis_low) {
/* Add skipped elements */
if(ss_span->down)
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, H5S__hyper_spans_nelem_helper(ss_span->down, udata->op_gen) * (ss_span->high - ss_low + 1), FAIL);
else
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, ss_span->high - ss_low + 1, FAIL);
/* Advance source span */
ss_span = ss_span->next;
if(ss_span)
ss_low = ss_span->low;
} /* end if */
else {
/* Advance source intersect span */
HDassert(ss_low > sis_span->high);
sis_span = sis_span->next;
if(sis_span)
sis_low = sis_span->low;
} /* end else */
} /* end else */
} while(ss_span && sis_span);
if(ss_span && !((depth == 0) && (u == count - 1))) {
/* Count remaining elements in ss_span_info */
if(ss_span->down) {
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, H5S__hyper_spans_nelem_helper(ss_span->down, udata->op_gen) * (ss_span->high - ss_low + 1), FAIL);
ss_span = ss_span->next;
while(ss_span) {
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, H5S__hyper_spans_nelem_helper(ss_span->down, udata->op_gen) * (ss_span->high - ss_span->low + 1), FAIL);
ss_span = ss_span->next;
} /* end while */
} /* end if */
else {
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, ss_span->high - ss_low + 1, FAIL);
ss_span = ss_span->next;
while(ss_span) {
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, ss_span->high - ss_span->low + 1, FAIL);
ss_span = ss_span->next;
} /* end while */
} /* end else */
} /* end if */
/* Check if the projected space was not changed since we started the
* first iteration of the loop, if so we do not need to continue
* looping and can just copy the result */
if(udata->ps_clean_bitmap & (((uint32_t)1) << depth)) {
HDassert(u == 0);
if(udata->skip == old_skip) {
/* First case: algorithm added only elements */
HDassert(udata->nelem >= old_nelem);
udata->nelem += (count - 1) * (udata->nelem - old_nelem);
} /* end if */
else if(udata->nelem == 0) {
/* Second case: algorithm added only skip. In this case,
* nelem must be 0 since otherwise adding skip would have
* triggered a change in the projected space */
HDassert(old_nelem == 0);
HDassert(udata->skip > old_skip);
udata->skip += (count - 1) * (udata->skip - old_skip);
} /* end if */
else {
/* Third case: agorithm added skip and nelem (in that
* order). Add the same skip and nelem once for each item
* remaining in count. */
hsize_t skip_add;
hsize_t nelem_add;
HDassert(udata->nelem > 0);
HDassert(udata->skip > old_skip);
HDassert(old_nelem == 0);
skip_add = udata->skip - old_skip;
nelem_add = udata->nelem - old_nelem;
for(u = 1; u < count; u++) {
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, skip_add, FAIL);
udata->nelem += nelem_add;
} /* end for */
} /* end else */
/* End loop since we already took care of it */
break;
} /* end if */
} /* end for */
} /* end if */
else if(depth > 0)
/* Just count skipped elements */
H5S_HYPER_PROJ_INT_ADD_SKIP(udata, H5S__hyper_spans_nelem_helper((H5S_hyper_span_info_t *)ss_span_info, udata->op_gen) * count, FAIL); /* Casting away const OK -NAF */
/* Clean up if we are done */
if(depth == 0) {
/* Add remaining elements */
if(udata->nelem > 0)
if(H5S__hyper_proj_int_build_proj(udata) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't add elements to projected selection")
/* Append remaining span trees */
for(u = udata->ds_rank - 1; u > 0; u--)
if(udata->ps_span_info[u]) {
if(H5S__hyper_append_span(&udata->ps_span_info[u - 1],
udata->ds_rank - u + 1, udata->ds_low[u - 1],
udata->ds_low[u - 1],
udata->ps_span_info[u]) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span")
H5S__hyper_free_span_info(udata->ps_span_info[u]);
udata->ps_span_info[u] = NULL;
} /* end if */
} /* end if */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_proj_int_iterate() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_project_intersection
PURPOSE
Projects the intersection of of the selections of src_space and
src_intersect_space within the selection of src_space as a selection
within the selection of dst_space
USAGE
herr_t H5S__hyper_project_intersection(src_space,dst_space,src_intersect_space,proj_space)
H5S_t *src_space; IN: Selection that is mapped to dst_space, and intersected with src_intersect_space
H5S_t *dst_space; IN: Selection that is mapped to src_space, and which contains the result
H5S_t *src_intersect_space; IN: Selection whose intersection with src_space is projected to dst_space to obtain the result
H5S_t *proj_space; OUT: Will contain the result (intersection of src_intersect_space and src_space projected from src_space to dst_space) after the operation
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
Projects the intersection of of the selections of src_space and
src_intersect_space within the selection of src_space as a selection
within the selection of dst_space. The result is placed in the selection
of proj_space. Note src_space, dst_space, and src_intersect_space do not
need to use hyperslab selections, but they cannot use point selections.
The result is always a hyperslab or none selection. Note also that
proj_space can share some span trees with dst_space, so proj_space
must not be subsequently modified if dst_space must be preserved.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space,
const H5S_t *src_intersect_space, H5S_t *proj_space)
{
H5S_hyper_project_intersect_ud_t udata; /* User data for subroutines */
const H5S_hyper_span_info_t *ss_span_info;
const H5S_hyper_span_info_t *ds_span_info;
H5S_hyper_span_info_t *ss_span_info_buf = NULL;
H5S_hyper_span_info_t *ds_span_info_buf = NULL;
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_PACKAGE
/* Check parameters */
HDassert(src_space);
HDassert(dst_space);
HDassert(src_intersect_space);
HDassert(proj_space);
/* Assert that src_space and src_intersect_space have same extent and there
* are no point selections */
HDassert(H5S_GET_EXTENT_NDIMS(src_space) == H5S_GET_EXTENT_NDIMS(src_intersect_space));
HDassert(H5S_GET_SELECT_NPOINTS(src_space) == H5S_GET_SELECT_NPOINTS(dst_space));
HDassert(H5S_GET_SELECT_TYPE(src_space) != H5S_SEL_POINTS);
HDassert(H5S_GET_SELECT_TYPE(dst_space) != H5S_SEL_POINTS);
HDassert(H5S_GET_SELECT_TYPE(src_intersect_space) == H5S_SEL_HYPERSLABS);
/* Set up ss_span_info */
if(H5S_GET_SELECT_TYPE(src_space) == H5S_SEL_HYPERSLABS) {
/* Make certain the selection has a span tree */
if(NULL == src_space->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans((H5S_t *)src_space) < 0) /* Casting away const OK -NAF */
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "can't construct span tree for source hyperslab selection")
/* Simply point to existing span tree */
ss_span_info = src_space->select.sel_info.hslab->span_lst;
} /* end if */
else {
/* Create temporary span tree from all selection */
HDassert(H5S_GET_SELECT_TYPE(src_space) == H5S_SEL_ALL);
if(NULL == (ss_span_info_buf = H5S__hyper_make_spans(H5S_GET_EXTENT_NDIMS(src_space),
H5S_hyper_zeros_g, H5S_hyper_zeros_g, H5S_hyper_ones_g, src_space->extent.size)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "can't create span tree for ALL source space")
ss_span_info = ss_span_info_buf;
} /* end else */
/* Set up ds_span_info */
if(H5S_GET_SELECT_TYPE(dst_space) == H5S_SEL_HYPERSLABS) {
/* Make certain the selection has a span tree */
if(NULL == dst_space->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans((H5S_t *)dst_space) < 0) /* Casting away const OK -NAF */
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "can't construct span tree for dsetination hyperslab selection")
/* Simply point to existing span tree */
ds_span_info = dst_space->select.sel_info.hslab->span_lst;
} /* end if */
else {
/* Create temporary span tree from all selection */
HDassert(H5S_GET_SELECT_TYPE(dst_space) == H5S_SEL_ALL);
if(NULL == (ds_span_info_buf = H5S__hyper_make_spans(H5S_GET_EXTENT_NDIMS(dst_space),
H5S_hyper_zeros_g, H5S_hyper_zeros_g, H5S_hyper_ones_g, dst_space->extent.size)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "can't create span tree for ALL destination space")
ds_span_info = ds_span_info_buf;
} /* end else */
/* Make certain the source intersect selection has a span tree */
if(NULL == src_intersect_space->select.sel_info.hslab->span_lst)
if(H5S__hyper_generate_spans((H5S_t *)src_intersect_space) < 0) /* Casting away const OK -NAF */
HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "can't construct span tree for source intersect hyperslab selection")
/* Initialize udata */
HDmemset(&udata, 0, sizeof(udata));
udata.ds_span[0] = ds_span_info->head;
udata.ds_low[0] = udata.ds_span[0]->low;
udata.ss_rank = H5S_GET_EXTENT_NDIMS(src_space);
udata.ds_rank = H5S_GET_EXTENT_NDIMS(dst_space);
udata.op_gen = H5S__hyper_get_op_gen();
/* Iterate over selections and build projected span tree */
if(H5S__hyper_proj_int_iterate(ss_span_info, src_intersect_space->select.sel_info.hslab->span_lst, 1, 0, &udata) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOMPARE, FAIL, "selection iteration failed")
/* Remove current selection from proj_space */
if(H5S_SELECT_RELEASE(proj_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection")
/* Check for elements in projected space */
if(udata.ps_span_info[0]) {
/* Allocate space for the hyperslab selection information (note this sets
* diminfo_valid to FALSE, diminfo arrays to 0, and span list to NULL) */
if(NULL == (proj_space->select.sel_info.hslab = H5FL_CALLOC(H5S_hyper_sel_t)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab info")
/* Set selection type */
proj_space->select.type = H5S_sel_hyper;
/* Set unlim_dim */
proj_space->select.sel_info.hslab->unlim_dim = -1;
/* Set span tree */
proj_space->select.sel_info.hslab->span_lst = udata.ps_span_info[0];
udata.ps_span_info[0] = NULL;
/* Set the number of elements in current selection */
proj_space->select.num_elem = H5S__hyper_spans_nelem(proj_space->select.sel_info.hslab->span_lst);
/* Attempt to build "optimized" start/stride/count/block information
* from resulting hyperslab span tree.
*/
H5S__hyper_rebuild(proj_space);
} /* end if */
else
/* If we did not add anything to proj_space, select none instead */
if(H5S_select_none(proj_space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
done:
/* Free ss_span_info_buf */
if(ss_span_info_buf) {
H5S__hyper_free_span_info(ss_span_info_buf);
ss_span_info_buf = NULL;
} /* end if */
/* Free ds_span_info_buf */
if(ds_span_info_buf) {
H5S__hyper_free_span_info(ds_span_info_buf);
ds_span_info_buf = NULL;
} /* end if */
/* Cleanup on error */
if(ret_value < 0) {
unsigned u;
/* Free span trees */
for(u = 0; u < udata.ds_rank; u++)
if(udata.ps_span_info[u]) {
H5S__hyper_free_span_info(udata.ps_span_info[u]);
udata.ps_span_info[u] = NULL;
} /* end if */
} /* end if */
#ifndef NDEBUG
/* Verify there are no more span trees */
{
unsigned u;
for(u = 0; u < H5S_MAX_RANK; u++)
HDassert(!udata.ps_span_info[u]);
} /* end block */
#endif /* NDEBUG */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_project_intersection() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_get_clip_diminfo
PURPOSE
Calculates the count and block required to clip the specified
unlimited dimension to include clip_size. The returned selection may
extent beyond clip_size.
USAGE
void H5S__hyper_get_clip_diminfo(start,stride,count,block,clip_size)
hsize_t start; IN: Start of hyperslab in unlimited dimension
hsize_t stride; IN: Stride of hyperslab in unlimited dimension
hsize_t *count; IN/OUT: Count of hyperslab in unlimited dimension
hsize_t *block; IN/OUT: Block of hyperslab in unlimited dimension
hsize_t clip_size; IN: Extent that hyperslab will be clipped to
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
This function recalculates the internal description of the hyperslab
to make the unlimited dimension extend to the specified extent.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static void
H5S__hyper_get_clip_diminfo(hsize_t start, hsize_t stride, hsize_t *count,
hsize_t *block, hsize_t clip_size)
{
FUNC_ENTER_STATIC_NOERR
/* Check for selection outside clip size */
if(start >= clip_size) {
if(*block == H5S_UNLIMITED)
*block = 0;
else
*count = 0;
} /* end if */
/* Check for single block in unlimited dimension */
else if((*block == H5S_UNLIMITED) || (*block == stride)) {
/* Calculate actual block size for this clip size */
*block = clip_size - start;
*count = (hsize_t)1;
} /* end if */
else {
HDassert(*count == H5S_UNLIMITED);
/* Calculate initial count (last block may be partial) */
*count = (clip_size - start + stride - (hsize_t)1) / stride;
HDassert(*count > (hsize_t)0);
} /* end else */
FUNC_LEAVE_NOAPI_VOID
} /* end H5S__hyper_get_clip_diminfo() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_clip_unlim
PURPOSE
Clips the unlimited dimension of the hyperslab selection to the
specified size
USAGE
void H5S_hyper_clip_unlim(space,clip_size)
H5S_t *space, IN/OUT: Unlimited space to clip
hsize_t clip_size; IN: Extent that hyperslab will be clipped to
RETURNS
Non-negative on success/Negative on failure.
DESCRIPTION
This function changes the unlimited selection into a fixed-dimension selection
with the extent of the formerly unlimited dimension specified by clip_size.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note this function does not take the offset into account.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5S_hyper_clip_unlim(H5S_t *space, hsize_t clip_size)
{
H5S_hyper_sel_t *hslab = NULL; /* Convenience pointer to hyperslab info */
hsize_t orig_count; /* Original count in unlimited dimension */
int orig_unlim_dim; /* Original unliminted dimension */
H5S_hyper_dim_t *diminfo = NULL; /* Convenience pointer to diminfo.opt in unlimited dimension */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_NOAPI(FAIL)
/* Check parameters */
HDassert(space);
hslab = space->select.sel_info.hslab;
HDassert(hslab);
HDassert(hslab->unlim_dim >= 0);
HDassert(!hslab->span_lst);
/* Save original unlimited dimension */
orig_unlim_dim = hslab->unlim_dim;
/* Set up convenience pointer */
diminfo = &hslab->diminfo.opt[orig_unlim_dim];
/* Save original count in unlimited dimension */
orig_count = diminfo->count;
/* Get initial diminfo */
H5S__hyper_get_clip_diminfo(diminfo->start, diminfo->stride, &diminfo->count, &diminfo->block, clip_size);
/* Selection is no longer unlimited */
space->select.sel_info.hslab->unlim_dim = -1;
/* Check for nothing returned */
if((diminfo->block == 0) || (diminfo->count == 0)) {
/* Convert to "none" selection */
if(H5S_select_none(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't convert selection")
/* Reset the convenience pointers */
hslab = NULL;
diminfo = NULL;
} /* end if */
/* Check for single block in unlimited dimension */
else if(orig_count == (hsize_t)1) {
/* Calculate number of elements */
space->select.num_elem = diminfo->block * hslab->num_elem_non_unlim;
/* Mark that diminfo.opt is valid */
hslab->diminfo_valid = H5S_DIMINFO_VALID_YES;
} /* end if */
else {
/* Calculate number of elements */
space->select.num_elem = diminfo->count * diminfo->block * hslab->num_elem_non_unlim;
/* Check if last block is partial. If superset is set, just keep the
* last block complete to speed computation. */
HDassert(clip_size > diminfo->start);
if(((diminfo->stride * (diminfo->count - (hsize_t)1)) + diminfo->block)
> (clip_size - diminfo->start)) {
hsize_t start[H5S_MAX_RANK];
hsize_t block[H5S_MAX_RANK];
unsigned u;
/* Last block is partial, need to construct compound selection */
/* Fill start with zeros */
HDmemset(start, 0, sizeof(start));
/* Set block to clip_size in unlimited dimension, H5S_MAX_SIZE in
* others so only unlimited dimension is clipped */
for(u = 0; u < space->extent.rank; u++)
if((int)u == orig_unlim_dim)
block[u] = clip_size;
else
block[u] = H5S_MAX_SIZE;
/* Generate span tree in selection */
if(!hslab->span_lst)
if(H5S__hyper_generate_spans(space) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to generate span tree")
/* Indicate that the regular dimensions are no longer valid */
hslab->diminfo_valid = H5S_DIMINFO_VALID_NO;
/* "And" selection with calculated block to perform clip operation */
if(H5S__generate_hyperslab(space, H5S_SELECT_AND, start, H5S_hyper_ones_g, H5S_hyper_ones_g, block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs")
} /* end if */
else
/* Last block is complete, simply mark that diminfo.opt is valid */
hslab->diminfo_valid = H5S_DIMINFO_VALID_YES;
} /* end else */
/* Update the upper bound, if the diminfo is valid */
if(hslab && (H5S_DIMINFO_VALID_YES == hslab->diminfo_valid))
hslab->diminfo.high_bounds[orig_unlim_dim] =
hslab->diminfo.opt[orig_unlim_dim].start +
hslab->diminfo.opt[orig_unlim_dim].stride * (hslab->diminfo.opt[orig_unlim_dim].count - 1) +
(hslab->diminfo.opt[orig_unlim_dim].block - 1);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_clip_unlim() */
/*--------------------------------------------------------------------------
NAME
H5S__hyper_get_clip_extent_real
PURPOSE
Gets the extent a space should be clipped to in order to contain the
specified number of slices in the unlimited dimension
USAGE
hsize_t H5S__hyper_get_clip_extent_real(clip_space,num_slices,incl_trail)
const H5S_t *clip_space, IN: Space that clip size will be calculated based on
hsize_t num_slizes, IN: Number of slices clip_space should contain when clipped
hbool_t incl_trail; IN: Whether to include trailing unselected space
RETURNS
Clip extent to match num_slices (never fails)
DESCRIPTION
Calculates and returns the extent that clip_space should be clipped to
(via H5S_hyper_clip_unlim) in order for it to contain num_slices
slices in the unlimited dimension. If the clipped selection would end
immediately before a section of unselected space (i.e. at the end of a
block), then if incl_trail is TRUE, the returned clip extent is
selected to include that trailing "blank" space, otherwise it is
selected to end at the end before the blank space.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note this assumes the offset has been normalized.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
static hsize_t
H5S__hyper_get_clip_extent_real(const H5S_t *clip_space, hsize_t num_slices,
hbool_t incl_trail)
{
const H5S_hyper_dim_t *diminfo; /* Convenience pointer to opt_unlim_diminfo in unlimited dimension */
hsize_t count;
hsize_t rem_slices;
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_STATIC_NOERR
/* Check parameters */
HDassert(clip_space);
HDassert(clip_space->select.sel_info.hslab);
HDassert(clip_space->select.sel_info.hslab->unlim_dim >= 0);
diminfo = &clip_space->select.sel_info.hslab->diminfo.opt[clip_space->select.sel_info.hslab->unlim_dim];
if(num_slices == 0)
ret_value = incl_trail ? diminfo->start : 0;
else if((diminfo->block == H5S_UNLIMITED)
|| (diminfo->block == diminfo->stride))
/* Unlimited block, just set the extent large enough for the block size
* to match num_slices */
ret_value = diminfo->start + num_slices;
else {
/* Unlimited count, need to match extent so a block (possibly) gets cut
* off so the number of slices matches num_slices */
HDassert(diminfo->count == H5S_UNLIMITED);
/* Calculate number of complete blocks in clip_space */
count = num_slices / diminfo->block;
/* Calculate slices remaining */
rem_slices = num_slices - (count * diminfo->block);
if(rem_slices > 0)
/* Must end extent in middle of partial block (or beginning of empty
* block if include_trailing_space and rem_slices == 0) */
ret_value = diminfo->start + (count * diminfo->stride) + rem_slices;
else {
if(incl_trail)
/* End extent just before first missing block */
ret_value = diminfo->start + (count * diminfo->stride);
else
/* End extent at end of last block */
ret_value = diminfo->start + ((count - (hsize_t)1)
* diminfo->stride) + diminfo->block;
} /* end else */
} /* end else */
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S__hyper_get_clip_extent_real() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_get_clip_extent
PURPOSE
Gets the extent a space should be clipped to in order to contain the
same number of elements as another space
USAGE
hsize_t H5S__hyper_get_clip_extent(clip_space,match_space,incl_trail)
const H5S_t *clip_space, IN: Space that clip size will be calculated based on
const H5S_t *match_space, IN: Space containing the same number of elements as clip_space should after clipping
hbool_t incl_trail; IN: Whether to include trailing unselected space
RETURNS
Calculated clip extent (never fails)
DESCRIPTION
Calculates and returns the extent that clip_space should be clipped to
(via H5S_hyper_clip_unlim) in order for it to contain the same number
of elements as match_space. If the clipped selection would end
immediately before a section of unselected space (i.e. at the end of a
block), then if incl_trail is TRUE, the returned clip extent is
selected to include that trailing "blank" space, otherwise it is
selected to end at the end before the blank space.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note this assumes the offset has been normalized.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hsize_t
H5S_hyper_get_clip_extent(const H5S_t *clip_space, const H5S_t *match_space,
hbool_t incl_trail)
{
hsize_t num_slices; /* Number of slices in unlimited dimension */
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_NOAPI(0)
/* Check parameters */
HDassert(clip_space);
HDassert(match_space);
HDassert(clip_space->select.sel_info.hslab->unlim_dim >= 0);
/* Check for "none" match space */
if(match_space->select.type->type == H5S_SEL_NONE)
num_slices = (hsize_t)0;
else {
HDassert(match_space->select.type->type == H5S_SEL_HYPERSLABS);
HDassert(match_space->select.sel_info.hslab);
/* Calculate number of slices */
num_slices = match_space->select.num_elem
/ clip_space->select.sel_info.hslab->num_elem_non_unlim;
HDassert((match_space->select.num_elem
% clip_space->select.sel_info.hslab->num_elem_non_unlim) == 0);
} /* end else */
/* Call "real" get_clip_extent function */
ret_value = H5S__hyper_get_clip_extent_real(clip_space, num_slices, incl_trail);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_get_clip_extent() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_get_clip_extent_match
PURPOSE
Gets the extent a space should be clipped to in order to contain the
same number of elements as another unlimited space that has been
clipped to a different extent
USAGE
hsize_t H5S__hyper_get_clip_extent_match(clip_space,match_space,match_clip_size,incl_trail)
const H5S_t *clip_space, IN: Space that clip size will be calculated based on
const H5S_t *match_space, IN: Space that, after being clipped to match_clip_size, contains the same number of elements as clip_space should after clipping
hsize_t match_clip_size, IN: Extent match_space would be clipped to to match the number of elements in clip_space
hbool_t incl_trail; IN: Whether to include trailing unselected space
RETURNS
Calculated clip extent (never fails)
DESCRIPTION
Calculates and returns the extent that clip_space should be clipped to
(via H5S_hyper_clip_unlim) in order for it to contain the same number
of elements as match_space would have after being clipped to
match_clip_size. If the clipped selection would end immediately
before a section of unselected space (i.e. at the end of a block),
then if incl_trail is TRUE, the returned clip extent is selected to
include that trailing "blank" space, otherwise it is selected to end
at the end before the blank space.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note this assumes the offset has been normalized.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hsize_t
H5S_hyper_get_clip_extent_match(const H5S_t *clip_space,
const H5S_t *match_space, hsize_t match_clip_size, hbool_t incl_trail)
{
const H5S_hyper_dim_t *match_diminfo; /* Convenience pointer to opt_unlim_diminfo in unlimited dimension in match_space */
hsize_t count; /* Temporary count */
hsize_t block; /* Temporary block */
hsize_t num_slices; /* Number of slices in unlimited dimension */
hsize_t ret_value = 0; /* Return value */
FUNC_ENTER_NOAPI(0)
/* Check parameters */
HDassert(clip_space);
HDassert(match_space);
HDassert(clip_space->select.sel_info.hslab);
HDassert(match_space->select.sel_info.hslab);
HDassert(clip_space->select.sel_info.hslab->unlim_dim >= 0);
HDassert(match_space->select.sel_info.hslab->unlim_dim >= 0);
HDassert(clip_space->select.sel_info.hslab->num_elem_non_unlim
== match_space->select.sel_info.hslab->num_elem_non_unlim);
match_diminfo = &match_space->select.sel_info.hslab->diminfo.opt[match_space->select.sel_info.hslab->unlim_dim];
/* Get initial count and block */
count = match_diminfo->count;
block = match_diminfo->block;
H5S__hyper_get_clip_diminfo(match_diminfo->start, match_diminfo->stride, &count, &block, match_clip_size);
/* Calculate number of slices */
/* Check for nothing returned */
if((block == 0) || (count == 0))
num_slices = (hsize_t)0;
/* Check for single block in unlimited dimension */
else if(count == (hsize_t)1)
num_slices = block;
else {
/* Calculate initial num_slices */
num_slices = block * count;
/* Check for partial last block */
HDassert(match_clip_size >= match_diminfo->start);
if(((match_diminfo->stride * (count - (hsize_t)1)) + block)
> (match_clip_size - match_diminfo->start)) {
/* Subtract slices missing from last block */
HDassert((((match_diminfo->stride * (count - (hsize_t)1)) + block)
- (match_clip_size - match_diminfo->start)) < num_slices);
num_slices -= ((match_diminfo->stride * (count - (hsize_t)1))
+ block) - (match_clip_size - match_diminfo->start);
} /* end if */
} /* end else */
/* Call "real" get_clip_extent function */
ret_value = H5S__hyper_get_clip_extent_real(clip_space, num_slices, incl_trail);
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_get_clip_extent_match() */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_get_unlim_block
PURPOSE
Get the nth block in the unlimited dimension
USAGE
H5S_t *H5S_hyper_get_unlim_block(space,block_index)
const H5S_t *space, IN: Space with unlimited selection
hsize_t block_index, IN: Index of block to return in unlimited dimension
hbool_t incl_trail; IN: Whether to include trailing unselected space
RETURNS
New space on success/NULL on failure.
DESCRIPTION
Returns a space containing only the block_indexth block in the
unlimited dimension on space. All blocks in all other dimensions are
preserved.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note this assumes the offset has been normalized.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
H5S_t *
H5S_hyper_get_unlim_block(const H5S_t *space, hsize_t block_index)
{
H5S_hyper_sel_t *hslab; /* Convenience pointer to hyperslab info */
H5S_t *space_out = NULL; /* Dataspace to return */
hsize_t start[H5S_MAX_RANK];/* Hyperslab selection info for unlim. selection */
hsize_t stride[H5S_MAX_RANK];
hsize_t count[H5S_MAX_RANK];
hsize_t block[H5S_MAX_RANK];
unsigned u; /* Local index variable */
H5S_t *ret_value = NULL; /* Return value */
FUNC_ENTER_NOAPI(NULL)
/* Check parameters */
HDassert(space);
hslab = space->select.sel_info.hslab;
HDassert(hslab);
HDassert(hslab->unlim_dim >= 0);
HDassert(hslab->diminfo.opt[hslab->unlim_dim].count == H5S_UNLIMITED);
/* Set start to select block_indexth block in unlimited dimension and set
* count to 1 in that dimension to only select that block. Copy all other
* diminfo parameters. */
for(u = 0; u < space->extent.rank; u++) {
if((int)u == hslab->unlim_dim){
start[u] = hslab->diminfo.opt[u].start + (block_index
* hslab->diminfo.opt[u].stride);
count[u] = (hsize_t)1;
} /* end if */
else {
start[u] = hslab->diminfo.opt[u].start;
count[u] = hslab->diminfo.opt[u].count;
} /* end else */
stride[u] = hslab->diminfo.opt[u].stride;
block[u] = hslab->diminfo.opt[u].block;
} /* end for */
/* Create output space, copy extent */
if(NULL == (space_out = H5S_create(H5S_SIMPLE)))
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCREATE, NULL, "unable to create output dataspace")
if(H5S__extent_copy_real(&space_out->extent, &space->extent, TRUE) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "unable to copy destination space extent")
/* Select block as defined by start/stride/count/block computed above */
if(H5S_select_hyperslab(space_out, H5S_SELECT_SET, start, stride, count, block) < 0)
HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, NULL, "can't select hyperslab")
/* Set return value */
ret_value = space_out;
done:
/* Free space on error */
if(!ret_value)
if(space_out && H5S_close(space_out) < 0)
HDONE_ERROR(H5E_DATASPACE, H5E_CANTRELEASE, NULL, "unable to release dataspace")
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_get_unlim_block */
/*--------------------------------------------------------------------------
NAME
H5S_hyper_get_first_inc_block
PURPOSE
Get the index of the first incomplete block in the specified extent
USAGE
hsize_t H5S_hyper_get_first_inc_block(space,clip_size,partial)
const H5S_t *space, IN: Space with unlimited selection
hsize_t clip_size, IN: Extent space would be clipped to
hbool_t *partial; OUT: Whether the ret_valueth block (first incomplete block) is partial
RETURNS
Index of first incomplete block in clip_size (never fails).
DESCRIPTION
Calculates and returns the index (as would be passed to
H5S_hyper_get_unlim_block()) of the first block in the unlimited
dimension of space which would be incomplete or missing when space is
clipped to clip_size. partial is set to TRUE if the first incomplete
block is partial, and FALSE if the first incomplete block is missing.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note this assumes the offset has been normalized.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
hsize_t
H5S_hyper_get_first_inc_block(const H5S_t *space, hsize_t clip_size,
hbool_t *partial)
{
H5S_hyper_sel_t *hslab; /* Convenience pointer to hyperslab info */
H5S_hyper_dim_t *diminfo; /* Convenience pointer to diminfo.opt in unlimited dimension */
hsize_t ret_value = 0;
FUNC_ENTER_NOAPI(0)
/* Check parameters */
HDassert(space);
hslab = space->select.sel_info.hslab;
HDassert(hslab);
HDassert(hslab->unlim_dim >= 0);
HDassert(hslab->diminfo.opt[hslab->unlim_dim].count == H5S_UNLIMITED);
diminfo = &hslab->diminfo.opt[hslab->unlim_dim];
/* Check for selection outside of clip_size */
if(diminfo->start >= clip_size) {
ret_value = 0;
if(partial)
partial = FALSE;
} /* end if */
else {
/* Calculate index of first incomplete block */
ret_value = (clip_size - diminfo->start + diminfo->stride
- diminfo->block) / diminfo->stride;
if(partial) {
/* Check for partial block */
if((diminfo->stride * ret_value) < (clip_size - diminfo->start))
*partial = TRUE;
else
*partial = FALSE;
} /* end if */
} /* end else */
done:
FUNC_LEAVE_NOAPI(ret_value)
} /* end H5S_hyper_get_first_inc_block */
/*--------------------------------------------------------------------------
NAME
H5Sis_regular_hyperslab
PURPOSE
Determine if a hyperslab selection is regular
USAGE
htri_t H5Sis_regular_hyperslab(dsid)
hid_t dsid; IN: Dataspace ID of hyperslab selection to query
RETURNS
TRUE/FALSE for hyperslab selection, FAIL on error or when querying other
selection types.
DESCRIPTION
If a hyperslab can be represented as a single call to H5Sselect_hyperslab,
with the H5S_SELECT_SET option, it is regular. If the hyperslab selection
would require multiple calls to H5Sselect_hyperslab, it is irregular.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
htri_t
H5Sis_regular_hyperslab(hid_t spaceid)
{
H5S_t *space; /* Dataspace to query */
htri_t ret_value; /* Return value */
FUNC_ENTER_API(FAIL)
H5TRACE1("t", "i", spaceid);
/* Check args */
if(NULL == (space = (H5S_t *)H5I_object_verify(spaceid, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace")
if(H5S_GET_SELECT_TYPE(space) != H5S_SEL_HYPERSLABS)
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a hyperslab selection")
ret_value = H5S__hyper_is_regular(space);
done:
FUNC_LEAVE_API(ret_value)
} /* end H5Sis_regular_hyperslab() */
/*--------------------------------------------------------------------------
NAME
H5Sget_regular_hyperslab
PURPOSE
Retrieve a regular hyperslab selection
USAGE
herr_t H5Sget_regular_hyperslab(dsid, start, stride, block, count)
hid_t dsid; IN: Dataspace ID of hyperslab selection to query
hsize_t start[]; OUT: Offset of start of hyperslab
hsize_t stride[]; OUT: Hyperslab stride
hsize_t count[]; OUT: Number of blocks included in hyperslab
hsize_t block[]; OUT: Size of block in hyperslab
RETURNS
Non-negative on success/Negative on failure. (It is an error to query
the regular hyperslab selections for non-regular hyperslab selections)
DESCRIPTION
Retrieve the start/stride/count/block for a regular hyperslab selection.
GLOBAL VARIABLES
COMMENTS, BUGS, ASSUMPTIONS
Note that if a hyperslab is originally regular, then becomes irregular
through selection operations, and then becomes regular again, the new
final regular selection may be equivalent but not identical to the
original regular selection.
EXAMPLES
REVISION LOG
--------------------------------------------------------------------------*/
herr_t
H5Sget_regular_hyperslab(hid_t spaceid, hsize_t start[], hsize_t stride[],
hsize_t count[], hsize_t block[])
{
H5S_t *space; /* Dataspace to query */
unsigned u; /* Local index variable */
herr_t ret_value = SUCCEED; /* Return value */
FUNC_ENTER_API(FAIL)
H5TRACE5("e", "i*h*h*h*h", spaceid, start, stride, count, block);
/* Check args */
if(NULL == (space = (H5S_t *)H5I_object_verify(spaceid, H5I_DATASPACE)))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a dataspace")
if(H5S_GET_SELECT_TYPE(space) != H5S_SEL_HYPERSLABS)
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a hyperslab selection")
if(TRUE != H5S__hyper_is_regular(space))
HGOTO_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a regular hyperslab selection")
/* Retrieve hyperslab parameters */
if(start)
for(u = 0; u < space->extent.rank; u++)
start[u] = space->select.sel_info.hslab->diminfo.app[u].start;
if(stride)
for(u = 0; u < space->extent.rank; u++)
stride[u] = space->select.sel_info.hslab->diminfo.app[u].stride;
if(count)
for(u = 0; u < space->extent.rank; u++)
count[u] = space->select.sel_info.hslab->diminfo.app[u].count;
if(block)
for(u = 0; u < space->extent.rank; u++)
block[u] = space->select.sel_info.hslab->diminfo.app[u].block;
done:
FUNC_LEAVE_API(ret_value)
} /* end H5Sget_regular_hyperslab() */
|