summaryrefslogtreecommitdiffstats
path: root/src/H5Smodule.h
blob: c5081c781d2128ddc3e8ad10560910ac0e013409 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://www.hdfgroup.org/licenses.               *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
 * Purpose: This file contains declarations which define macros for the
 *          H5S package.  Including this header means that the source file
 *          is part of the H5S package.
 */
#ifndef H5Smodule_H
#define H5Smodule_H

/* Define the proper control macros for the generic FUNC_ENTER/LEAVE and error
 *      reporting macros.
 */
#define H5S_MODULE
#define H5_MY_PKG     H5S
#define H5_MY_PKG_ERR H5E_DATASPACE

/** \page H5S_UG Dataspaces and Partial I/O
 *
 *
 * \section sec_dataspace HDF5 Dataspaces and Partial I/O
 *
 * HDF5 dataspaces describe the \Emph{shape} of datasets in memory or in HDF5
 * files. Dataspaces can be empty (#H5S_NULL), a singleton (#H5S_SCALAR), or
 * a multi-dimensional, regular grid (#H5S_SIMPLE). Dataspaces can be re-shaped.
 *
 * Subsets of dataspaces can be "book-marked" or used to restrict I/O operations
 * using \Emph{selections}. Furthermore, certain set operations are supported
 * for selections.
 *
 * \subsection subsec_dataspace_intro Introduction
 *
 * The HDF5 \Emph{dataspace} is a required component of an HDF5 dataset or attribute definition. The dataspace
 * defines the size and shape of the dataset or attribute raw data. In other words, a dataspace defines the
 * number of dimensions and the size of each dimension of the multidimensional array in which the raw data
 * is represented. The dataspace must be defined when the dataset or attribute is created.
 *
 * The \Emph{dataspace} is also used during dataset I/O operations, defining the elements of the dataset that
 * participate in the I/O operation.
 *
 * This chapter explains the \Emph{dataspace} object and its use in dataset and attribute creation and data
 * transfer. It also describes selection operations on a dataspace used to implement sub‐setting,
 * sub‐sampling, and scatter‐gather access to datasets.
 *
 * \subsection subsec_dataspace_function Dataspace Function Summaries
 * @see H5S reference manual provides a reference list of dataspace functions, the H5S APIs.
 *
 * \subsection subsec_dataspace_program  Definition of Dataspace Objects and the Dataspace Programming Model
 *
 * This section introduces the notion of the HDF5 dataspace object and a programming model for creating
 * and working with dataspaces.
 *
 * \subsubsection subsubsec_dataspace_program_object Dataspace Objects
 *
 * An HDF5 dataspace is a required component of an HDF5 dataset or attribute. A dataspace defines the size
 * and the shape of a dataset’s or an attribute’s raw data. Currently, HDF5 supports the following types of
 * the dataspaces:
 * \li Scalar dataspaces
 * \li Simple dataspaces
 * \li Null dataspaces
 *
 * A scalar dataspace, #H5S_SCALAR, represents just one element, a scalar. Note that the datatype of this one
 * element may be very complex; example would be a compound structure with members being of any
 * allowed HDF5 datatype, including multidimensional arrays, strings, and nested compound structures. By
 * convention, the rank of a scalar dataspace is always 0 (zero); think of it geometrically as a single,
 * dimensionless point, though that point may be complex.
 *
 * A simple dataspace, #H5S_SIMPLE , is a multidimensional array of elements. The dimensionality of the
 * dataspace (or the rank of the array) is fixed and is defined at creation time. The size of each dimension
 * can grow during the life time of the dataspace from the current size up to the maximum size. Both the
 * current size and the maximum size are specified at creation time. The sizes of dimensions at any particular
 * time in the life of a dataspace are called the current dimensions, or the dataspace extent. They can be
 * queried along with the maximum sizes.
 *
 * A null dataspace, #H5S_NULL, contains no data elements. Note that no selections can be applied to a null
 * dataset as there is nothing to select.
 *
 * As shown in the UML diagram in the figure below, an HDF5 simple dataspace object has three attributes:
 * the rank or number of dimensions; the current sizes, expressed as an array of length rank with each element
 * of the array denoting the current size of the corresponding dimension; and the maximum sizes,
 * expressed as an array of length rank with each element of the array denoting the maximum size of the
 * corresponding dimension.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_simple.gif "A simple dataspace"
 * </td>
 * </tr>
 * </table>
 *
 * \em Note: A simple dataspace is defined by its rank, the current size of each dimension, and the maximum
 * size of each dimension.
 *
 * The size of a current dimension cannot be greater than the maximum size, which can be unlimited, specified
 * as #H5S_UNLIMITED. Note that while the HDF5 file format and library impose no maximum size on an
 * unlimited dimension, practically speaking its size will always be limited to the biggest integer available
 * on the particular system being used.
 *
 * Dataspace rank is restricted to 32, the standard limit in C on the rank of an array, in the current
 * implementation of the HDF5 Library. The HDF5 file format, on the other hand, allows any rank up to the
 * maximum integer value on the system, so the library restriction can be raised in the future if higher
 * dimensionality is required.
 *
 * Note that most of the time Fortran applications calling HDF5 will work with dataspaces of rank less than
 * or equal to seven, since seven is the maximum number of dimensions in a Fortran array. But dataspace rank
 * is not limited to seven for Fortran applications.
 *
 * The current dimensions of a dataspace, also referred to as the dataspace extent, define the bounding box
 * for dataset elements that can participate in I/O operations.
 *
 * \subsubsection subsubsec_dataspace_program_model Dataspace Programming Model
 *
 * The programming model for creating and working with HDF5 dataspaces can be summarized as follows:
 * \li 1. Create a dataspace
 * \li 2. Use the dataspace to create a dataset in the file or to describe a data array in memory
 * \li 3. Modify the dataspace to define dataset elements that will participate in I/O operations
 * \li 4. Use the modified dataspace while reading/writing dataset raw data or to create a region reference
 * \li 5. Close the dataspace when no longer needed
 *
 * The rest of this section will address steps 1, 2, and 5 of the programming model; steps 3 and 4 will be
 * discussed in later sections of this chapter.
 *
 * <h4>Creating a Dataspace</h4>
 *
 * A dataspace can be created by calling the \ref H5Screate function. Since the
 * definition of a simple dataspace requires the specification of dimensionality (or rank) and initial and
 * maximum dimension sizes, the HDF5 Library provides a convenience API, \ref H5Screate_simple to create a
 * simple dataspace in one step.
 *
 * The following examples illustrate the usage of these APIs.
 *
 * <h4>Creating a Scalar Dataspace</h4>
 *
 * Creating a Scalar Dataspace
 * \code
 *     hid_t space_id;
 *     . . .
 *     space_id = H5Screate(H5S_SCALAR);
 * \endcode
 * As mentioned above, the dataspace will contain only one element. Scalar dataspaces are used more often
 * for describing attributes that have just one value. For example, the attribute temperature with the value
 * Celsius is used to indicate that the dataset with this attribute stores temperature values using the
 * Celsius scale.
 *
 * <h4>Creating a Null Dataspace</h4>
 *
 * A null dataspace is created with the \ref H5Screate function.
 * \code
 *     hid_t space_id;
 *     . . .
 *     space_id = H5Screate(H5S_NULL);
 * \endcode
 * As mentioned above, the dataspace will contain no elements.
 *
 * <h4>Creating a Simple Dataspace</h4>
 *
 * Let’s assume that an application wants to store a two‐dimensional array of data, A(20,100). During the
 * life of the application, the first dimension of the array can grow up to 30; there is no restriction on
 * the size of the second dimension. The following steps are used to declare a dataspace for the dataset
 * in which the array data will be stored.
 * \code
 *     hid_t space_id;
 *     int rank = 2;
 *     hsize_t current_dims[2] = {20, 100};
 *     hsize_t max_dims[2] = {30, H5S_UNLIMITED};
 *     . . .
 *     space_id = H5Screate(H5S_NULL);
 *     H5Sset_extent_simple(space_id, rank, current_dims, max_dims);
 * \endcode
 *
 * Alternatively, the convenience APIs H5Screate_simple/h5screate_simple_f can replace the
 * H5Screate/h5screate_f and H5Sset_extent_simple/h5sset_extent_simple_f calls.
 * \code
 *     space_id = H5Screate_simple(rank, current_dims, max_dims);
 * \endcode
 *
 * In this example, a dataspace with current dimensions of 20 by 100 is created. The first dimension can be
 * extended only up to 30. The second dimension, however, is declared unlimited; it can be extended up to
 * the largest available integer value on the system.
 *
 * Note that when there is a difference between the current dimensions and the maximum dimensions of an
 * array, then chunking storage must be used. In other words, if the number of dimensions may change over
 * the life of the dataset, then chunking must be used. If the array dimensions are fixed (if the number of
 * current dimensions is equal to the maximum number of dimensions when the dataset is created), then
 * contiguous storage can be used. For more information, see "Data Transfer".
 *
 * Maximum dimensions can be the same as current dimensions. In such a case, the sizes of dimensions
 * cannot be changed during the life of the dataspace object. In C, \c NULL can be used to indicate to the
 * \ref H5Screate_simple and \ref H5Sset_extent_simple functions that the maximum sizes of all dimensions
 * are the same as the current sizes.
 * \code
 *     space_id = H5Screate_simple(rank, current_dims, NULL);
 * \endcode
 * The created dataspace will have current and maximum dimensions of 20 and 100 correspondingly, and the
 * sizes of those dimensions cannot be changed.
 *
 * <h4>C versus Fortran Dataspaces</h4>
 *
 * Dataspace dimensions are numbered from 1 to rank. HDF5 uses C storage conventions, assuming that the
 * last listed dimension is the fastest‐changing dimension and the first‐listed dimension is the slowest
 * changing. The HDF5 file format storage layout specification adheres to the C convention and the HDF5
 * Library adheres to the same convention when storing dataspace dimensions in the file. This affects how
 * C programs and tools interpret data written from Fortran programs and vice versa. The example below
 * illustrates the issue.
 *
 * When a Fortran application describes a dataspace to store an array as A(20,100), it specifies the value of
 * the first dimension to be 20 and the second to be 100. Since Fortran stores data by columns, the
 * first‐listed dimension with the value 20 is the fastest‐changing dimension and the last‐listed dimension
 * with the value 100 is the slowest‐changing. In order to adhere to the HDF5 storage convention, the HDF5
 * Fortran wrapper transposes dimensions, so the first dimension becomes the last. The dataspace dimensions
 * stored in the file will be 100,20 instead of 20,100 in order to correctly describe the Fortran data that
 * is stored in 100 columns, each containing 20 elements.
 *
 * When a Fortran application reads the data back, the HDF5 Fortran wrapper transposes the dimensions
 * once more, returning the first dimension to be 20 and the second to be 100, describing correctly the sizes
 * of the array that should be used to read data in the Fortran array A(20,100).
 *
 * When a C application reads data back, the dimensions will come out as 100 and 20, correctly describing
 * the size of the array to read data into, since the data was written as 100 records of 20 elements each.
 * Therefore C tools such as h5dump and h5ls always display transposed dimensions and values for the data
 * written by a Fortran application.
 *
 * Consider the following simple example of equivalent C 3 x 5 and Fortran 5 x 3 arrays. As illustrated in
 * the figure below, a C application will store a 3 x 5 2‐dimensional array as three 5‐element rows. In order
 * to store the same data in the same order, a Fortran application must view the array as a 5 x 3 array with
 * three 5‐element columns. The dataspace of this dataset, as written from Fortran, will therefore be
 * described as 5 x 3 in the application but stored and described in the file according to the C convention
 * as a 3 x 5 array. This ensures that C and Fortran applications will always read the data in the order in
 * which it was written. The HDF5 Fortran interface handles this transposition automatically.
 * \code
 * // C
 *     \#define NX          3 // dataset dimensions
 *     \#define NY          5
 *     . . .
 *     int     data[NX][NY]; // data to write
 *     . . .
 *     // Data  and output buffer initialization.
 *     for (j = 0; j < NX; j++)
 *         for (i = 0; i < NY; i++)
 *             data[j][i] = i + j;
 *     //
 *     //  1  2  3  4  5
 *     //  6  7  8  9 10
 *     // 11 12 13 14 15
 *     //
 *     . . .
 *     dims[0]  = NX;
 *     dims[1]  = NY;
 *     dataspace = H5Screate_simple(RANK, dims, NULL);
 * \endcode
 *
 * \code
 * ! Fortran
 *     INTEGER, PARAMETER :: NX = 3
 *     INTEGER, PARAMETER :: NX = 5
 *     . . .
 *     INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/NY, NX/) ! Dataset dimensions
 *     . . .
 *     !
 *     ! Initialize data
 *     !
 *     do i = 1, NY
 *         do j = 1, NX
 *             data(i,j) = i + (j-1)*NY
 *         enddo
 *     enddo
 *     !
 *     ! Data
 *     !
 *     ! 1 6 11
 *     ! 2 7 12
 *     ! 3 8 13
 *     ! 4 9 14
 *     ! 5 10 15
 *     . . .
 *     CALL h5screate_simple_f(rank, dims, dspace_id, error)
 * \endcode
 *
 *   <table>
 *     <caption align=top>Comparing C and Fortran dataspaces</caption>
 *     <tr>
 *       <td>
 *       A dataset stored by a C program in a 3 x 5 array:
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 * \image html Dspace_CvsF1.gif
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 *       The same dataset stored by a Fortran program in a 5 x 3 array:
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 * \image html Dspace_CvsF2.gif
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 *       The first dataset above as written to an HDF5 file from C or the second dataset above as written
 *       from Fortran:
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 * \image html Dspace_CvsF3.gif
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 *       The first dataset above as written to an HDF5 file from Fortran:
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 * \image html Dspace_CvsF4.gif
 *       </td>
 *     </tr>
 *   </table>
 *
 * <em>Note: The HDF5 Library stores arrays along the fastest‐changing dimension. This approach is often
 * referred to as being “in C order.” C, C++, and Java work with arrays in row‐major order. In other words,
 * the row, or the last dimension, is the fastest‐changing dimension. Fortran, on the other hand, handles
 * arrays in column‐major order making the column, or the first dimension, the fastest‐changing dimension.
 * Therefore, the C and Fortran arrays illustrated in the top portion of this figure are stored identically
 * in an HDF5 file. This ensures that data written by any language can be meaningfully read, interpreted,
 * and manipulated by any other.</em>
 *
 * <h4>Finding Dataspace Characteristics</h4>
 *
 * The HDF5 Library provides several APIs designed to query the characteristics of a dataspace.
 *
 * The function \ref H5Sis_simple returns information about the type of a dataspace.
 * This function is rarely used and currently supports only simple and scalar dataspaces.
 *
 * To find out the dimensionality, or rank, of a dataspace, use \ref H5Sget_simple_extent_ndims.
 * \ref H5Sget_simple_extent_dims can also be used to find out the rank. See
 * the example below. If both functions return 0 for the value of rank, then the dataspace is scalar.
 *
 * To query the sizes of the current and maximum dimensions, use \ref H5Sget_simple_extent_dims.
 *
 * The following example illustrates querying the rank and dimensions of a dataspace using these functions.
 * \code
 *     hid_t space_id;
 *     int rank;
 *     hsize_t *current_dims;
 *     hsize_t *max_dims;
 *     . . .
 *     rank = H5Sget_simple_extent_ndims(space_id);
 *     // (or rank = H5Sget_simple_extent_dims(space_id, NULL, NULL);)
 *     current_dims = (hsize_t)malloc(rank * sizeof(hsize_t));
 *     max_dims = (hsize_t)malloc(rank * sizeof(hsize_t));
 *     H5Sget_simple_extent_dims(space_id, current_dims, max_dims);
 *     // Print values here
 * \endcode
 *
 * \subsection subsec_dataspace_transfer Dataspaces and Data Transfer
 *
 * Read and write operations transfer data between an HDF5 file on disk and in memory. The shape that the
 * array data takes in the file and in memory may be the same, but HDF5 also allows users the ability to
 * represent data in memory in a different shape than in the file. If the shape of an array in the file and
 * in memory will be the same, then the same dataspace definition can be used for both. If the shape of an
 * array in memory needs to be different than the shape in the file, then the dataspace definition for the
 * shape of the array in memory can be changed. During a read operation, the array will be read into the
 * different shape in memory, and during a write operation, the array will be written to the file in the
 * shape specified by the dataspace in the file. The only qualification is that the number of elements read
 * or written must be the same in both the source and the destination dataspaces.
 *
 * Item a in the figure below shows a simple example of a read operation in which the data is stored as a 3
 * by 4 array in the file (item b) on disk, but the program wants it to be a 4 by 3 array in memory. This is
 * accomplished by setting the memory dataspace to describe the desired memory layout, as in item c. The read
 * operation reads the data in the file array into the memory array.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_read.gif "Data layout before and after a read operation"
 * </td>
 * </tr>
 * </table>
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_move.gif "Moving data from disk to memory"
 * </td>
 * </tr>
 * </table>

 * Both the source and destination are stored as contiguous blocks of storage with the elements in the order
 * specified by the dataspace. The figure above shows one way the elements might be organized. In item a,
 * the elements are stored as 3 blocks of 4 elements. The destination is an array of 12 elements in memory
 * (see item c). As the figure suggests, the transfer reads the disk blocks into a memory buffer (see item b),
 * and then writes the elements to the correct locations in memory. A similar process occurs in reverse when
 * data is written to disk.
 *
 * \subsubsection subsubsec_dataspace_transfer_select Data Selection
 *
 * In addition to rearranging data, the transfer may select the data elements from the source and destination.
 *
 * Data selection is implemented by creating a dataspace object that describes the selected elements (within
 * the hyper rectangle) rather than the whole array. Two dataspace objects with selections can be used in
 * data transfers to read selected elements from the source and write selected elements to the destination.
 * When data is transferred using the dataspace object, only the selected elements will be transferred.
 *
 * This can be used to implement partial I/O, including:
 * \li Sub‐setting ‐ reading part of a large dataset
 * \li Sampling ‐ reading selected elements (for example, every second element) of a dataset
 * \li Scatter‐gather ‐ read non‐contiguous elements into contiguous locations (gather) or read contiguous
 *     elements into non‐contiguous locations (scatter) or both
 *
 * To use selections, the following steps are followed:
 * \li 1. Get or define the dataspace for the source and destination
 * \li 2. Specify one or more selections for source and destination dataspaces
 * \li 3. Transfer data using the dataspaces with selections
 *
 * A selection is created by applying one or more selections to a dataspace. A selection may override any
 * other selections (#H5S_SELECT_SET) or may be “Ored” with previous selections on the same dataspace
 * (#H5S_SELECT_OR). In the latter case, the resulting selection is the union of the selection and all
 * previously selected selections. Arbitrary sets of points from a dataspace can be selected by specifying
 * an appropriate set of selections.
 *
 * Two selections are used in data transfer, so the source and destination must be compatible, as described
 * below.
 *
 * There are two forms of selection, hyperslab and point. A selection must be either a point selection or a
 * set of hyperslab selections. Selections cannot be mixed.
 *
 * The definition of a selection within a dataspace, not the data in the selection, cannot be saved to the
 * file unless the selection definition is saved as a region reference. For more information,
 * see \ref subsec_dataspace_refer.
 *
 * <h4>Hyperslab Selection</h4>
 *
 * A hyperslab is a selection of elements from a hyper rectangle. An HDF5 hyperslab is a rectangular pattern
 * defined by four arrays. The four arrays are summarized in the table below.
 *
 * The offset defines the origin of the hyperslab in the original dataspace.
 *
 * The stride is the number of elements to increment between selected elements. A stride of ‘1’ is every
 * element, a stride of ‘2’ is every second element, etc. Note that there may be a different stride for
 * each dimen‐sion of the dataspace. The default stride is 1.
 *
 * The count is the number of elements in the hyperslab selection. When the stride is 1, the selection is a
 * hyper rectangle with a corner at the offset and size count[0] by count[1] by.... When stride is greater
 * than one, the hyperslab bounded by the offset and the corners defined by stride[n] * count[n].
 *
 *   <table>
 *     <caption align=top>Hyperslab elements</caption>
 *     <tr>
 *       <th>
 *       Parameter
 *       </th>
 *       <th>
 *       Description
 *       </th>
 *     </tr>
 *     <tr>
 *       <td>
 *       Offset
 *       </td>
 *       <td>
 *       The starting location for the hyperslab.
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 *       Stride
 *       </td>
 *       <td>
 *       The number of elements to separate each element or block to be selected.
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 *       Count
 *       </td>
 *       <td>
 *       The number of elements or blocks to select along each dimension.
 *       </td>
 *     </tr>
 *     <tr>
 *       <td>
 *       Block
 *       </td>
 *       <td>
 *       The size of the block selected from the dataspace.
 *       </td>
 *     </tr>
 *   </table>
 *
 * The block is a count on the number of repetitions of the hyperslab. The default block size is '1', which is
 * one hyperslab. A block of 2 would be two hyperslabs in that dimension, with the second starting at
 * offset[n] + (count[n] * stride[n]) + 1.
 *
 * A hyperslab can be used to access a sub‐set of a large dataset. The figure below shows an example of a
 * hyperslab that reads a rectangle from the middle of a larger two dimensional array. The destination is the
 * same shape as the source.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_subset.gif "Access a sub‐set of data with a hyperslab"
 * </td>
 * </tr>
 * </table>
 *
 * Hyperslabs can be combined to select complex regions of the source and destination. The figure below
 * shows an example of a transfer from one non‐rectangular region into another non‐rectangular region. The
 * source is defined as the union of two hyperslabs, and the destination is the union of three hyperslabs.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_complex.gif "Build complex regions with hyperslab unions"
 * </td>
 * </tr>
 * </table>
 *
 * Hyperslabs may also be used to collect or scatter data from regular patterns. The figure below shows an
 * example where the source is a repeating pattern of blocks, and the destination is a single, one dimensional
 * array.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_combine.gif "Use hyperslabs to combine or disperse data"
 * </td>
 * </tr>
 * </table>
 *
 * <h4>Select Points</h4>
 *
 * The second type of selection is an array of points such as coordinates. Essentially, this selection is a
 * list of all the points to include. The figure below shows an example of a transfer of seven elements from
 * a two dimensional dataspace to a three dimensional dataspace using a point selection to specify the points.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_point.gif "Point selection"
 * </td>
 * </tr>
 * </table>
 *
 * <h4>Rules for Defining Selections</h4>
 *
 * A selection must have the same number of dimensions (rank) as the dataspace it is applied to, although it
 * may select from only a small region such as a plane from a 3D dataspace. Selections do not affect the
 * extent of the dataspace, the selection may be larger than the dataspace. The boundaries of selections are
 * reconciled with the extent at the time of the data transfer.
 *
 * <h4>Data Transfer with Selections</h4>
 *
 * A data transfer (read or write) with selections is the same as any read or write, except the source
 * and destination dataspace have compatible selections.
 *
 * During the data transfer, the following steps are executed by the library:
 * \li The source and destination dataspaces are checked to assure that the selections are compatible.
 * <ul><li>Each selection must be within the current extent of the dataspace. A selection may be
 * defined to extend outside the current extent of the dataspace, but the dataspace cannot be
 * accessed if the selection is not valid at the time of the access.</li>
 * <li> The total number of points selected in the source and destination must be the same. Note
 * that the dimensionality of the source and destination can be different (for example, the
 * source could be 2D, the destination 1D or 3D), and the shape can be different, but the number of
 * elements selected must be the same.</li></ul>
 * \li The data is transferred, element by element.
 *
 * Selections have an iteration order for the points selected, which can be any permutation of the dimensions
 * involved (defaulting to 'C' array order) or a specific order for the selected points, for selections
 * composed of single array elements with \ref H5Sselect_elements.
 *
 * The elements of the selections are transferred in row‐major, or C order. That is, it is assumed that the
 * first dimension varies slowest, the second next slowest, and so forth. For hyperslab selections, the order
 * can be any permutation of the dimensions involved (defaulting to ‘C’ array order). When multiple hyperslabs
 * are combined, the hyperslabs are coalesced into contiguous reads and writes.
 *
 * In the case of point selections, the points are read and written in the order specified.
 *
 * \subsubsection subsubsec_dataspace_transfer_model Programming Model
 *
 * <h4>Selecting Hyperslabs</h4>
 *
 * Suppose we want to read a 3x4 hyperslab from a dataset in a file beginning at the element <1,2> in the
 * dataset, and read it into a 7 x 7 x 3 array in memory. See the figure below. In order to do this, we must
 * create a dataspace that describes the overall rank and dimensions of the dataset in the file as well as
 * the position and size of the hyperslab that we are extracting from that dataset.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_select.gif "Selecting a hyperslab"
 * </td>
 * </tr>
 * </table>
 *
 * The code in the first example below illustrates the selection of the hyperslab in the file dataspace.
 * The second example below shows the definition of the destination dataspace in memory. Since the in‐memory
 * dataspace has three dimensions, the hyperslab is an array with three dimensions with the last dimension
 * being 1: <3,4,1>. The third example below shows the read using the source and destination dataspaces
 * with selections.
 *
 * <em>Selecting a hyperslab</em>
 * \code
 *     //get the file dataspace.
 *     dataspace = H5Dget_space(dataset); // dataspace identifier
 *
 *     // Define hyperslab in the dataset.
 *     offset[0] = 1;
 *     offset[1] = 2;
 *     count[0] = 3;
 *     count[1] = 4;
 *     status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
 * \endcode
 *
 * <em>Defining the destination memory</em>
 * \code
 *     // Define memory dataspace.
 *     dimsm[0] = 7;
 *     dimsm[1] = 7;
 *     dimsm[2] = 3;
 *     memspace = H5Screate_simple(3,dimsm,NULL);
 *
 *     // Define memory hyperslab.
 *     offset_out[0] = 3;
 *     offset_out[1] = 0;
 *     offset_out[2] = 0;
 *     count_out[0] = 3;
 *     count_out[1] = 4;
 *     count_out[2] = 1;
 *     status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
 * \endcode
 *
 * <em>A sample read specifying source and destination dataspaces</em>
 * \code
 *     ret = H5Dread(dataset, H5T_NATIVE_INT, memspace,dataspace, H5P_DEFAULT, data);
 * \endcode
 *
 * <h4>Example with Strides and Blocks</h4>
 *
 * Consider an 8 x 12 dataspace into which we want to write eight 3 x 2 blocks in a two dimensional array
 * from a source dataspace in memory that is a 50‐element one dimensional array. See the figure below.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_write1to2.gif "Write from a one dimensional array to a two dimensional array"
 * </td>
 * </tr>
 * </table>
 *
 * The example below shows code to write 48 elements from the one dimensional array to the file dataset
 * starting with the second element in vector. The destination hyperslab has the following parameters:
 * offset=(0,1), stride=(4,3), count=(2,4), block=(3,2). The source has the parameters: offset=(1),
 * stride=(1), count=(48), block=(1). After these operations, the file dataspace will have the values
 * shown in item b in the figure above. Notice that the values are inserted in the file dataset in
 * row‐major order.
 *
 * <em>Write from a one dimensional array to a two dimensional array</em>
 * \code
 *     // Select hyperslab for the dataset in the file, using 3 x 2 blocks, (4,3) stride (2,4)
 *     // count starting at the position (0,1).
 *     offset[0] = 0; offset[1] = 1;
 *     stride[0] = 4; stride[1] = 3;
 *     count[0] = 2; count[1] = 4;
 *     block[0] = 3; block[1] = 2;
 *     ret = H5Sselect_hyperslab(fid, H5S_SELECT_SET, offset, stride, count, block);
 *
 *     // Create dataspace for the first dataset.
 *     mid1 = H5Screate_simple(MSPACE1_RANK, dim1, NULL);
 *
 *     // Select hyperslab.
 *     // We will use 48 elements of the vector buffer starting
 *     // at the second element. Selected elements are
 *     // 1 2 3 . . . 48
 *     offset[0] = 1;
 *     stride[0] = 1;
 *     count[0] = 48;
 *     block[0] = 1;
 *     ret = H5Sselect_hyperslab(mid1, H5S_SELECT_SET, offset, stride, count, block);
 *
 *     // Write selection from the vector buffer to the dataset in the file.
 *     ret = H5Dwrite(dataset, H5T_NATIVE_INT, midd1, fid, H5P_DEFAULT, vector)
 * \endcode
 *
 * <h4>Selecting a Union of Hyperslabs</h4>
 *
 * The HDF5 Library allows the user to select a union of hyperslabs and write or read the selection into
 * another selection. The shapes of the two selections may differ, but the number of elements must be
 * equal.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_transfer.gif "Transferring hyperslab unions"
 * </td>
 * </tr>
 * </table>
 *
 * The figure above shows the transfer of a selection that is two overlapping hyperslabs from the dataset
 * into a union of hyperslabs in the memory dataset. Note that the destination dataset has a different shape
 * from the source dataset. Similarly, the selection in the memory dataset could have a different shape than
 * the selected union of hyperslabs in the original file. For simplicity, the selection is that same shape
 * at the destination.
 *
 * To implement this transfer, it is necessary to:
 * \li 1. Get the source dataspace
 * \li 2. Define one hyperslab selection for the source
 * \li 3. Define a second hyperslab selection, unioned with the first
 * \li 4. Get the destination dataspace
 * \li 5. Define one hyperslab selection for the destination
 * \li 6. Define a second hyperslab selection, unioned with the first
 * \li 7. Execute the data transfer (H5Dread or H5Dwrite) using the source and destination dataspaces
 *
 * The example below shows example code to create the selections for the source dataspace (the file). The
 * first hyperslab is size 3 x 4 and the left upper corner at the position (1,2). The hyperslab is a simple
 * rectangle, so the stride and block are 1. The second hyperslab is 6 x 5 at the position (2,4). The second
 * selection is a union with the first hyperslab (#H5S_SELECT_OR).
 *
 * <em> Select source hyperslabs</em>
 * \code
 *     fid = H5Dget_space(dataset);
 *
 *     // Select first hyperslab for the dataset in the file.
 *     offset[0] = 1; offset[1] = 2;
 *     block[0] = 1; block[1] = 1;
 *     stride[0] = 1; stride[1] = 1;
 *     count[0] = 3; count[1] = 4;
 *     ret = H5Sselect_hyperslab(fid, H5S_SELECT_SET, offset, stride, count, block);
 *
 *     // Add second selected hyperslab to the selection.
 *     offset[0] = 2; offset[1] = 4;
 *     block[0] = 1; block[1] = 1;
 *     stride[0] = 1; stride[1] = 1;
 *     count[0] = 6; count[1] = 5;
 *     ret = H5Sselect_hyperslab(fid, H5S_SELECT_OR, offset, stride, count, block);
 * \endcode
 *
 * The example below shows example code to create the selection for the destination in memory. The steps
 * are similar. In this example, the hyperslabs are the same shape, but located in different positions in the
 * dataspace. The first hyperslab is 3 x 4 and starts at (0,0), and the second is 6 x 5 and starts at (1,2).
 * Finally, the H5Dread call transfers the selected data from the file dataspace to the selection in memory.
 * In this example, the source and destination selections are two overlapping rectangles. In general, any
 * number of rectangles can be OR’ed, and they do not have to be contiguous. The order of the selections
 * does not matter, but the first should use #H5S_SELECT_SET ; subsequent selections are unioned using
 * #H5S_SELECT_OR.
 *
 * It is important to emphasize that the source and destination do not have to be the same shape (or number
 * of rectangles). As long as the two selections have the same number of elements, the data can be
 * transferred.
 *
 * <em>Select destination hyperslabs</em>
 * \code
 *     // Create memory dataspace.
 *     mid = H5Screate_simple(MSPACE_RANK, mdim, NULL);
 *
 *     // Select two hyperslabs in memory. Hyperslabs has the
 *     // same size and shape as the selected hyperslabs for
 *     // the file dataspace.
 *     offset[0] = 0; offset[1] = 0;
 *     block[0] = 1; block[1] = 1;
 *     stride[0] = 1; stride[1] = 1;
 *     count[0] = 3; count[1] = 4;
 *     ret = H5Sselect_hyperslab(mid, H5S_SELECT_SET, offset, stride, count, block);
 *
 *     offset[0] = 1; offset[1] = 2;
 *     block[0] = 1; block[1] = 1;
 *     stride[0] = 1; stride[1] = 1;
 *     count[0] = 6; count[1] = 5;
 *     ret = H5Sselect_hyperslab(mid, H5S_SELECT_OR, offset, stride, count, block);
 *
 *     ret = H5Dread(dataset, H5T_NATIVE_INT, mid, fid, H5P_DEFAULT, matrix_out);
 * \endcode
 *
 * <h4>Selecting a List of Independent Points</h4>
 *
 * It is also possible to specify a list of elements to read or write using the function H5Sselect_elements.
 *
 * The procedure is similar to hyperslab selections.
 * \li 1. Get the source dataspace
 * \li 2. Set the selected points
 * \li 3. Get the destination dataspace
 * \li 4. Set the selected points
 * \li 5. Transfer the data using the source and destination dataspaces
 *
 * The figure below shows an example where four values are to be written to four separate points in a two
 * dimensional dataspace. The source dataspace is a one dimensional array with the values 53, 59, 61, 67.
 * The destination dataspace is an 8 x 12 array. The elements are to be written to the points
 * (0,0), (3,3), (3,5), and (5,6). In this example, the source does not require a selection. The example
 * below the figure shows example code to implement this transfer.
 *
 * A point selection lists the exact points to be transferred and the order they will be transferred. The
 * source and destination are required to have the same number of elements. A point selection can be used
 * with a hyperslab (for example, the source could be a point selection and the destination a hyperslab,
 * or vice versa), so long as the number of elements selected are the same.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_separate.gif "Write data to separate points"
 * </td>
 * </tr>
 * </table>
 *
 * <em>Write data to separate points</em>
 * \code
 *     hsize_t dim2[] = {4};
 *     int values[] = {53, 59, 61, 67};
 *
 *     // file dataspace
 *     hssize_t coord[4][2];
 *
 *     // Create dataspace for the second dataset.
 *     mid2 = H5Screate_simple(1, dim2, NULL);
 *
 *     // Select sequence of NPOINTS points in the file dataspace.
 *     coord[0][0] = 0; coord[0][1] = 0;
 *     coord[1][0] = 3; coord[1][1] = 3;
 *     coord[2][0] = 3; coord[2][1] = 5;
 *     coord[3][0] = 5; coord[3][1] = 6;
 *
 *     ret = H5Sselect_elements(fid, H5S_SELECT_SET, NPOINTS, (const hssize_t **)coord);
 *
 *     ret = H5Dwrite(dataset, H5T_NATIVE_INT, mid2, fid, H5P_DEFAULT, values);
 * \endcode
 *
 * <h4>Combinations of Selections</h4>
 *
 * Selections are a very flexible mechanism for reorganizing data during a data transfer. With different
 * combinations of dataspaces and selections, it is possible to implement many kinds of data transfers
 * including sub‐setting, sampling, and reorganizing the data. The table below gives some example combinations
 * of source and destination, and the operations they implement.
 *
 * <table>
 *   <caption>Selection operations</caption>
 *   <tr>
 *   <th>
 *   <p>Source</p>
 * </th>
 *   <th>
 *   <p>Destination</p>
 * </th>
 *   <th>
 *   <p>Operation</p>
 * </th>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>All</p>
 * </td>
 *   <td>
 *   <p>All</p>
 * </td>
 *   <td>
 *   <p>Copy whole array</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>All</p>
 * </td>
 *   <td>
 *   <p>All (different shape)</p>
 * </td>
 *   <td>
 *   <p>Copy and reorganize array</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Hyperslab</p>
 * </td>
 *   <td>
 *   <p>All</p>
 * </td>
 *   <td>
 *   <p>Sub-set</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Hyperslab</p>
 * </td>
 *   <td>
 *   <p>Hyperslab (same shape)</p>
 * </td>
 *   <td>
 *   <p>Selection</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Hyperslab</p>
 * </td>
 *   <td>
 *   <p>Hyperslab (different shape)</p>
 * </td>
 *   <td>
 *   <p>Select and rearrange</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Hyperslab with stride or block</p>
 * </td>
 *   <td>
 *   <p>All or hyperslab with stride 1</p>
 * </td>
 *   <td>
 *   <p>Sub-sample, scatter</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Hyperslab</p>
 * </td>
 *   <td>
 *   <p>Points</p>
 * </td>
 *   <td>
 *   <p>Scatter</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Points</p>
 * </td>
 *   <td>
 *   <p>Hyperslab or all</p>
 * </td>
 *   <td>
 *   <p>Gather</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Points</p>
 * </td>
 *   <td>
 *   <p>Points (same)</p>
 * </td>
 *   <td>
 *   <p>Selection</p>
 * </td>
 * </tr>
 *   <tr>
 *   <td>
 *   <p>Points</p>
 * </td>
 *   <td>
 *   <p>Points (different)</p>
 * </td>
 *   <td>
 *   <p>Reorder points</p>
 * </td>
 * </tr>
 *  </table>
 *
 * \subsection subsec_dataspace_select Dataspace Selection Operations and Data Transfer
 *
 * This section is under construction.
 *
 * \subsection subsec_dataspace_refer References to Dataset Regions
 *
 * Another use of selections is to store a reference to a region of a dataset. An HDF5 object reference
 * object is a pointer to an object (dataset, group, or committed datatype) in the file. A selection can
 * be used to create a pointer to a set of selected elements of a dataset, called a region reference. The
 * selection can be either a point selection or a hyperslab selection.
 *
 * A region reference is an object maintained by the HDF5 Library. The region reference can be stored in a
 * dataset or attribute, and then read. The dataset or attribute is defined to have the special datatype,
 * #H5T_STD_REF_DSETREG.
 *
 * To discover the elements and/or read the data, the region reference can be dereferenced. The
 * #H5Rdereference call returns an identifier for the dataset, and then the selected dataspace can be
 * retrieved with a call to #H5Rget_region(). The selected dataspace can be used to read the selected data
 * elements.
 *
 * For more information, \see subsubsec_datatype_other_refs.
 *
 * \subsubsection subsubsec_dataspace_refer_use Example Uses for Region References
 *
 * Region references are used to implement stored pointers to data within a dataset. For example, features
 * in a large dataset might be indexed by a table. See the figure below. This table could be stored as an
 * HDF5 dataset with a compound datatype, for example, with a field for the name of the feature and a region
 * reference to point to the feature in the dataset. See the second figure below.
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_features.gif " Features indexed by a table"
 * </td>
 * </tr>
 * </table>
 *
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_features_cmpd.gif "Storing the table with a compound datatype"
 * </td>
 * </tr>
 * </table>
 *
 *
 * \subsubsection subsubsec_dataspace_refer_create Creating References to Regions
 *
 * To create a region reference:
 * \li 1. Create or open the dataset that contains the region
 * \li 2. Get the dataspace for the dataset
 * \li 3. Define a selection that specifies the region
 * \li 4. Create a region reference using the dataset and dataspace with selection
 * \li 5. Write the region reference(s) to the desired dataset or attribute
 *
 * The figure below shows a diagram of a file with three datasets. Dataset D1 and D2 are two dimensional
 * arrays of integers. Dataset R1 is a one dimensional array of references to regions in D1 and D2. The
 * regions can be any valid selection of the dataspace of the target dataset.
 * <table>
 * <tr>
 * <td>
 * \image html Dspace_three_datasets.gif "A file with three datasets"
 * </td>
 * </tr>
 * </table>
 * <em>Note: In the figure above, R1 is a 1 D array of region pointers; each pointer refers to a selection
 * in one dataset.</em>
 *
 * The example below shows code to create the array of region references. The references are created in an
 * array of type #hdset_reg_ref_t. Each region is defined as a selection on the dataspace of the dataset,
 * and a reference is created using \ref H5Rcreate(). The call to \ref H5Rcreate() specifies the file,
 * dataset, and the dataspace with selection.
 *
 * <em>Create an array of region references</em>
 * \code
 *     // create an array of 4 region references
 *     hdset_reg_ref_t ref[4];
 *
 *     // Create a reference to the first hyperslab in the first Dataset.
 *     offset[0] = 1; offset[1] = 1;
 *     count[0]  = 3; count[1]  = 2;
 *     status = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, offset, NULL, count, NULL);
 *     status = H5Rcreate(&ref[0], file_id, "D1", H5R_DATASET_REGION, space_id);
 *
 *     // The second reference is to a union of hyperslabs in the first Dataset
 *     offset[0] = 5; offset[1] = 3;
 *     count[0]  = 1; count[1]  = 4;
 *     status = H5Sselect_none(space_id);
 *     status = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, offset, NULL, count, NULL);
 *     offset[0] = 6; offset[1] = 5;
 *     count[0]  = 1; count[1]  = 2;
 *     status = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, offset, NULL, count, NULL);
 *     status = H5Rcreate(&ref[1], file_id, "D1", H5R_DATASET_REGION, space_id);
 *
 *     // the fourth reference is to a selection of points in the first Dataset
 *     status = H5Sselect_none(space_id);
 *     coord[0][0] = 4; coord[0][1] = 4;
 *     coord[1][0] = 2; coord[1][1] = 6;
 *     coord[2][0] = 3; coord[2][1] = 7;
 *     coord[3][0] = 1; coord[3][1] = 5;
 *     coord[4][0] = 5; coord[4][1] = 8;
 *
 *     status = H5Sselect_elements(space_id, H5S_SELECT_SET, num_points, (const hssize_t **)coord);
 *     status = H5Rcreate(&ref[3], file_id, "D1", H5R_DATASET_REGION, space_id);
 *
 *     // the third reference is to a hyperslab in the second Dataset
 *     offset[0] = 0; offset[1] = 0;
 *     count[0]  = 4; count[1]  = 6;
 *     status = H5Sselect_hyperslab(space_id2, H5S_SELECT_SET, offset, NULL, count, NULL);
 *     status = H5Rcreate(&ref[2], file_id, "D2", H5R_DATASET_REGION, space_id2);
 * \endcode
 *
 * When all the references are created, the array of references is written to the dataset R1. The
 * dataset is declared to have datatype #H5T_STD_REF_DSETREG. See the example below.
 *
 * <em>Write the array of references to a dataset</em>
 * \code
 *     Hsize_t dimsr[1];
 *     dimsr[0] = 4;
 *
 *     // Dataset with references.
 *     spacer_id = H5Screate_simple(1, dimsr, NULL);
 *     dsetr_id = H5Dcreate(file_id, "R1", H5T_STD_REF_DSETREG, spacer_id, H5P_DEFAULT, H5P_DEFAULT,
 *     H5P_DEFAULT);
 *
 *     // Write dataset with the references.
 *     status = H5Dwrite(dsetr_id, H5T_STD_REF_DSETREG, H5S_ALL, H5S_ALL, H5P_DEFAULT, ref);
 *
 * \endcode
 *
 * When creating region references, the following rules are enforced.
 * \li The selection must be a valid selection for the target dataset, just as when transferring data
 * \li The dataset must exist in the file when the reference is created; #H5Rcreate
 * \li The target dataset must be in the same file as the stored reference
 *
 * \subsubsection subsubsec_dataspace_refer_read Reading References to Regions
 *
 * To retrieve data from a region reference, the reference must be read from the file, and then the data can
 * be retrieved. The steps are:
 * \li 1. Open the dataset or attribute containing the reference objects
 * \li 2. Read the reference object(s)
 * \li 3. For each region reference, get the dataset (#H5Rdereference) and dataspace (#H5Rget_region)
 * \li 4. Use the dataspace and datatype to discover what space is needed to store the data, allocate the
 *        correct storage and create a dataspace and datatype to define the memory data layout
 *
 * The example below shows code to read an array of region references from a dataset, and then read the
 * data from the first selected region. Note that the region reference has information that records the
 * dataset (within the file) and the selection on the dataspace of the dataset. After dereferencing the
 * regions reference, the datatype, number of points, and some aspects of the selection can be discovered.
 * (For a union of hyperslabs, it may not be possible to determine the exact set of hyperslabs that has been
 * combined.)
 * The table below the code example shows the inquiry functions.
 *
 * When reading data from a region reference, the following rules are enforced:
 * \li The target dataset must be present and accessible in the file
 * \li The selection must be a valid selection for the dataset
 *
 * <em>Read an array of region references; read from the first selection</em>
 * \code
 *     dsetr_id = H5Dopen (file_id, "R1", H5P_DEFAULT);
 *     status = H5Dread(dsetr_id, H5T_STD_REF_DSETREG, H5S_ALL, H5S_ALL, H5P_DEFAULT, ref_out);
 *
 *     // Dereference the first reference.
 *     // 1) get the dataset (H5Rdereference)
 *     // 2) get the selected dataspace (H5Rget_region)
 *
 *     dsetv_id = H5Rdereference(dsetr_id, H5R_DATASET_REGION, &ref_out[0]);
 *     space_id = H5Rget_region(dsetr_id, H5R_DATASET_REGION, &ref_out[0]);
 *
 *     // Discover how many points and shape of the data
 *     ndims = H5Sget_simple_extent_ndims(space_id);
 *     H5Sget_simple_extent_dims(space_id,dimsx,NULL);
 *
 *     // Read and display hyperslab selection from the dataset.
 *     dimsy[0] = H5Sget_select_npoints(space_id);
 *     spacex_id = H5Screate_simple(1, dimsy, NULL);
 *
 *     status = H5Dread(dsetv_id, H5T_NATIVE_INT, H5S_ALL, space_id, H5P_DEFAULT, data_out);
 *     printf("Selected hyperslab: ");
 *     for (i = 0; i < 8; i++) {
 *         printf("\n");
 *         for (j = 0; j < 10; j++)
 *             printf("%d ", data_out[i][j]);
 *     }
 *     printf("\n");
 * \endcode
 *
 * <table>
 * <caption>The inquiry functions</caption>
 * <tr>
 * <th>
 * <p>Function</p>
 * </th>
 * <th>
 * <p>Information</p>
 * </th>
 * </tr>
 * <tr>
 * <td>
 * @ref H5Sget_select_npoints
 * </td>
 * <td>
 * <p>The number of elements in the selection (hyperslab or point selection).</p>
 * </td>
 * </tr>
 * <tr>
 * <td>
 * @ref H5Sget_select_bounds
 * </td>
 * <td>
 * <p>The bounding box that encloses the selected points (hyperslab or point selection).</p>
 * </td>
 * </tr>
 * <tr>
 * <td>
 * @ref H5Sget_select_hyper_nblocks
 * </td>
 * <td>
 * <p>The number of blocks in the selection.</p>
 * </td>
 * </tr>
 * <tr>
 * <td>
 * @ref H5Sget_select_hyper_blocklist
 * </td>
 * <td>
 * <p>A list of the blocks in the selection.</p>
 * </td>
 * </tr>
 * <tr>
 * <td>
 * @ref H5Sget_select_elem_npoints
 * </td>
 * <td>
 * <p>The number of points in the selection.</p>
 * </td>
 * </tr>
 * <tr>
 * <td>
 * @ref H5Sget_select_elem_pointlist
 * </td>
 * <td>
 * <p>The points.</p>
 * </td>
 * </tr>
 * </table>
 *
 *
 * \subsection subsec_dataspace_sample Sample Programs
 *
 * This section contains the full programs from which several of the code examples in this chapter were
 * derived. The h5dump output from the program’s output file immediately follows each program.
 *
 * <em>h5_write.c</em>
 * \code
 * #include "hdf5.h"
 *
 * #define H5FILE_NAME "SDS.h5"
 * #define DATASETNAME "C Matrix"
 * #define NX 3
 * #define NY 5
 * #define RANK 2              // dataset dimensions
 *
 * int
 * main (void)
 * {
 *     hid_t file, dataset;        // file and dataset identifiers
 *     hid_t datatype, dataspace;  // identifiers
 *     hsize_t dims[2];            // dataset dimensions
 *     herr_t status;
 *     int data[NX][NY];           // data to write
 *     int i, j;
 *
 *     //
 *     // Data and output buffer initialization.
 *     for (j = 0; j < NX; j++) {
 *         for (i = 0; i < NY; i++)
 *             data[j][i] = i + 1 + j*NY;
 *     }
 *     // 1 2 3 4 5
 *     // 6 7 8 9 10
 *     // 11 12 13 14 15
 *
 *     // Create a new file using H5F_ACC_TRUNC access,
 *     // default file creation properties, and default file
 *     // access properties.
 *     file = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
 *
 *     // Describe the size of the array and create the data space for fixed
 *     // size dataset.
 *     dims[0] = NX;
 *     dims[1] = NY;
 *     dataspace = H5Screate_simple(RANK, dims, NULL);
 *
 *     //  Create a new dataset within the file using defined dataspace and
 *     //  datatype and default dataset creation properties.
 *     dataset = H5Dcreate(file, DATASETNAME, H5T_NATIVE_INT, dataspace, H5P_DEFAULT,
 *                             H5P_DEFAULT, H5P_DEFAULT);
 *
 *     //  Write the data to the dataset using default transfer properties.
 *     status = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data);
 *
 *     // Close/release resources.
 *     H5Sclose(dataspace);
 *     H5Dclose(dataset);
 *     H5Fclose(file);
 *
 *     return 0;
 * }
 *
 * SDS.out
 * -------
 * HDF5 "SDS.h5" {
 * GROUP "/" {
 *   DATASET "C Matrix" {
 *   DATATYPE H5T_STD_I32BE
 *   DATASPACE SIMPLE { ( 3, 5 ) / ( 3, 5 ) }
 *   DATA {
 *     1, 2, 3, 4, 5,
 *     6, 7, 8, 9, 10,
 *     11, 12, 13, 14, 15
 *   }
 * }
 *
 * \endcode
 *
 * <em>h5_write.f90</em>
 * \code
 * ----------
 * PROGRAM DSETEXAMPLE
 *
 * USE HDF5 ! This module contains all necessary modules
 *
 * IMPLICIT NONE
 *
 * CHARACTER(LEN=7), PARAMETER :: filename = "SDSf.h5" ! File name
 * CHARACTER(LEN=14), PARAMETER :: dsetname = "Fortran Matrix" ! Dataset name
 * INTEGER, PARAMETER :: NX = 3
 * INTEGER, PARAMETER :: NY = 5
 *
 * INTEGER(HID_T) :: file_id ! File identifier
 * INTEGER(HID_T) :: dset_id ! Dataset identifier
 * INTEGER(HID_T) :: dspace_id ! Dataspace identifier
 *
 * INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/3,5/) ! Dataset dimensions
 * INTEGER :: rank = 2 ! Dataset rank
 * INTEGER :: data(NX,NY)
 * INTEGER :: error ! Error flag
 * INTEGER :: i, j
 *
 * !
 * ! Initialize data
 * !
 *   do i = 1, NX
 *     do j = 1, NY
 *       data(i,j) = j + (i-1)*NY
 *     enddo
 *   enddo
 * !
 * ! Data
 * !
 * ! 1 2 3 4 5
 * ! 6 7 8 9 10
 * ! 11 12 13 14 15
 *
 * !
 * ! Initialize FORTRAN interface.
 * !
 * CALLh5open_f(error)
 *
 * !
 * ! Create a new file using default properties.
 * !
 * CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error)
 *
 * !
 * ! Create the dataspace.
 * !
 * CALL h5screate_simple_f(rank, dims, dspace_id, error)
 *
 * !
 * ! Create and write dataset using default properties.
 * !
 * CALL h5dcreate_f(file_id, dsetname, H5T_NATIVE_INTEGER, dspace_id, &
 *                  dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F, &
 *                  H5P_DEFAULT_F)
 *
 * CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data, dims, error)
 *
 * !
 * ! End access to the dataset and release resources used by it.
 * !
 * CALL h5dclose_f(dset_id, error)
 *
 * !
 * ! Terminate access to the data space.
 * !
 * CALL h5sclose_f(dspace_id, error)
 *
 * !
 * ! Close the file.
 * !
 * CALL h5fclose_f(file_id, error)
 *
 * !
 * ! Close FORTRAN interface.
 * !
 * CALL h5close_f(error)
 *
 * END PROGRAM DSETEXAMPLE
 *
 * SDSf.out
 * --------
 * HDF5 "SDSf.h5" {
 * GROUP "/" {
 *   DATASET "Fortran Matrix" {
 *   DATATYPE H5T_STD_I32BE
 *   DATASPACE SIMPLE { ( 5, 3 ) / ( 5, 3 ) }
 *     DATA {
 *       1, 6, 11,
 *       2, 7, 12,
 *       3, 8, 13,
 *       4, 9, 14,
 *       5, 10, 15
 *     }
 *   }
 * }
 * }
 *
 * \endcode
 *
 * <em>h5_write_tr.f90</em>
 * \code
 * PROGRAM DSETEXAMPLE
 *
 * USE HDF5 ! This module contains all necessary modules
 *
 * IMPLICIT NONE
 *
 * CHARACTER(LEN=10), PARAMETER :: filename = "SDSf_tr.h5" ! File name
 * CHARACTER(LEN=24), PARAMETER :: dsetname = "Fortran Transpose Matrix"! Dataset name
 *
 * INTEGER, PARAMETER :: NX = 3
 * INTEGER, PARAMETER :: NY = 5
 *
 * INTEGER(HID_T) :: file_id    ! File identifier
 * INTEGER(HID_T) :: dset_id    ! Dataset identifier
 * INTEGER(HID_T) :: dspace_id  ! Dataspace identifier
 *
 * INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/NY, NX/) ! Dataset dimensions
 * INTEGER :: rank = 2 ! Dataset rank
 * INTEGER :: data(NY,NX)
 *
 * INTEGER :: error ! Error flag
 * INTEGER :: i, j
 *
 * !
 * ! Initialize data
 * !
 *   do i = 1, NY
 *     do j = 1, NX
 *       data(i,j) = i + (j-1)*NY
 *     enddo
 *   enddo
 *
 * !
 * ! Data
 * !
 * ! 1 6 11
 * ! 2 7 12
 * ! 3 8 13
 * ! 4 9 14
 * ! 5 10 15
 *
 * !
 * ! Initialize FORTRAN interface.
 * !
 * CALL h5open_f(error)
 *
 * !
 * ! Create a new file using default properties.
 * !
 * CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error)
 *
 * !
 * ! Create the dataspace.
 * !
 * CALL h5screate_simple_f(rank, dims, dspace_id, error)
 *
 * !
 * ! Create and write dataset using default properties.
 * !
 * CALL h5dcreate_f(file_id, dsetname, H5T_NATIVE_INTEGER, dspace_id, &
 *                  dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F, &
 *                  H5P_DEFAULT_F)
 * CALL h5dwrite_f(dset_id, H5T_NATIVE_INTEGER, data, dims, error)
 *
 * !
 * ! End access to the dataset and release resources used by it.
 * !
 * CALL h5dclose_f(dset_id, error)
 *
 * !
 * ! Terminate access to the data space.
 * !
 * CALL h5sclose_f(dspace_id, error)
 *
 * !
 * ! Close the file.
 * !
 * CALL h5fclose_f(file_id, error)
 *
 * !
 * ! Close FORTRAN interface.
 * !
 * CALL h5close_f(error)
 *
 * END PROGRAM DSETEXAMPLE
 *
 * SDSf_tr.out
 * -----------
 * HDF5 "SDSf_tr.h5" {
 * GROUP "/" {
 *   DATASET "Fortran Transpose Matrix" {
 *   DATATYPE H5T_STD_I32LE
 *   DATASPACE SIMPLE { ( 3, 5 ) / ( 3, 5 ) }
 *     DATA {
 *         1, 2, 3, 4, 5,
 *         6, 7, 8, 9, 10,
 *         11, 12, 13, 14, 15
 *     }
 *   }
 * }
 * }
 *
 * \endcode
 *
 * Previous Chapter \ref sec_datatype - Next Chapter \ref sec_attribute
 *
 */

/**
 * \defgroup H5S Dataspaces (H5S)
 *
 * Use the functions in this module to manage HDF5 dataspaces \Emph{and} selections.
 *
 * HDF5 dataspaces describe the \Emph{shape} of datasets in memory or in HDF5
 * files. Dataspaces can be empty (#H5S_NULL), a singleton (#H5S_SCALAR), or
 * a multi-dimensional, regular grid (#H5S_SIMPLE). Dataspaces can be re-shaped.
 *
 * Subsets of dataspaces can be "book-marked" or used to restrict I/O operations
 * using \Emph{selections}. Furthermore, certain set operations are supported
 * for selections.
 *
 * <!--
 * <table>
 * <tr><th>Create</th><th>Read</th></tr>
 * <tr valign="top">
 *   <td>
 *   \snippet{lineno} H5S_examples.c create
 *   </td>
 *   <td>
 *   \snippet{lineno} H5S_examples.c read
 *   </td>
 * <tr><th>Update</th><th>Delete</th></tr>
 * <tr valign="top">
 *   <td>
 *   \snippet{lineno} H5S_examples.c update
 *   </td>
 *   <td>
 *   \snippet{lineno} H5S_examples.c delete
 *   </td>
 * </tr>
 * </table>
 * -->
 */

#endif /* H5Smodule_H */