summaryrefslogtreecommitdiffstats
path: root/src/H5Ssimp.c
blob: 64be705fdf2fb1da3433f9fdcfca793015917af2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
 * Copyright (C) 1998 NCSA
 *                    All rights reserved.
 *
 * Programmer:  Robb Matzke <matzke@llnl.gov>
 *              Wednesday, January 21, 1998
 *
 * Purpose:	Simple data space functions.
 */
#include <H5private.h>
#include <H5Eprivate.h>
#include <H5Sprivate.h>
#include <H5Vprivate.h>

/* Interface initialization */
#define PABLO_MASK      H5S_simp_mask
#define INTERFACE_INIT  NULL
static intn             interface_initialize_g = FALSE;

/*-------------------------------------------------------------------------
 * Function:	H5S_simp_init
 *
 * Purpose:	Generates element numbering information for the data
 *		spaces involved in a data space conversion.
 *
 * Return:	Success:	Number of elements that can be efficiently
 *				transferred at a time.
 *
 *		Failure:	Zero
 *
 * Programmer:	Robb Matzke
 *              Wednesday, January 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
size_t
H5S_simp_init (const struct H5O_layout_t __unused__ *layout,
	       const H5S_t *mem_space, const H5S_t *file_space,
	       size_t desired_nelmts, H5S_number_t *numbering/*out*/)
{
    hsize_t	nelmts;
    int		m_ndims, f_ndims;	/*mem, file dimensionality	*/
    hsize_t	size[H5O_LAYOUT_NDIMS];	/*size of selected hyperslab	*/
    hsize_t	acc;
    int		i;
    
    FUNC_ENTER (H5S_simp_init, 0);

    /* Check args */
    assert (layout);
    assert (mem_space && H5S_SIMPLE==mem_space->type);
    assert (file_space && H5S_SIMPLE==file_space->type);
    assert (numbering);

    /* Numbering is implied by the hyperslab, C order, no data here */
    HDmemset (numbering, 0, sizeof(H5S_number_t));

    /*
     * The stripmine size is such that only the slowest varying dimension can
     * be split up.  We choose the largest possible strip mine size which is
     * not larger than the desired size.
     */
    m_ndims = H5S_get_hyperslab (mem_space, NULL, size, NULL);
    for (i=m_ndims-1, acc=1; i>0; --i) acc *= size[i];
    nelmts = (desired_nelmts/acc) * acc;
    if (nelmts<=0) {
	HRETURN_ERROR (H5E_IO, H5E_UNSUPPORTED, 0,
		       "strip mine buffer is too small");
    }

    /*
     * The value chosen for mem_space must be the same as the value chosen for
     * file_space.
     */
    f_ndims = H5S_get_hyperslab (file_space, NULL, size, NULL);
    if (m_ndims!=f_ndims) {
	nelmts = H5S_get_npoints (file_space);
	if (nelmts>desired_nelmts) {
	    HRETURN_ERROR (H5E_IO, H5E_UNSUPPORTED, 0,
			   "strip mining not supported across "
			   "dimensionalities");
	}
	assert (nelmts==H5S_get_npoints (mem_space));
    } else {
	for (i=f_ndims-1, acc=1; i>0; --i) acc *= size[i];
	acc *= (desired_nelmts/acc);
	if (nelmts!=acc) {
	    HRETURN_ERROR (H5E_IO, H5E_UNSUPPORTED, 0,
			   "unsupported strip mine size for shape change");
	}
    }
    
    assert (nelmts < MAX_SIZET);
    FUNC_LEAVE ((size_t)nelmts);
}

/*-------------------------------------------------------------------------
 * Function:	H5S_simp_fgath
 *
 * Purpose:	Gathers data points from file F and accumulates them in the
 *		type conversion buffer BUF.  The LAYOUT argument describes
 *		how the data is stored on disk and EFL describes how the data
 *		is organized in external files.  ELMT_SIZE is the size in
 *		bytes of a datum which this function treats as opaque.
 *		FILE_SPACE describes the data space of the dataset on disk
 *		and the elements that have been selected for reading (via
 *		hyperslab, etc) and NUMBERING describes how those elements
 *		are numbered (initialized by the H5S_*_init() call). This
 *		function will copy at most NELMTS elements beginning at the
 *		element numbered START.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Robb Matzke
 *              Wednesday, January 21, 1998
 *
 * Modifications:
 *		June 2, 1998	Albert Cheng
 *		Added xfer_mode argument
 *
 *-------------------------------------------------------------------------
 */
size_t
H5S_simp_fgath (H5F_t *f, const struct H5O_layout_t *layout,
		const struct H5O_compress_t *comp, const struct H5O_efl_t *efl,
		size_t elmt_size, const H5S_t *file_space,
		const H5S_number_t __unused__ *numbering,
		size_t start, size_t nelmts,
		const H5D_transfer_t xfer_mode, void *buf/*out*/)
{
    hssize_t	file_offset[H5O_LAYOUT_NDIMS];	/*offset of slab in file*/
    hsize_t	hsize[H5O_LAYOUT_NDIMS];	/*size of hyperslab	*/
    hssize_t	zero[H5O_LAYOUT_NDIMS];		/*zero			*/
    hsize_t	sample[H5O_LAYOUT_NDIMS];	/*hyperslab sampling	*/
    hsize_t	acc;				/*accumulator		*/
    intn	space_ndims;			/*dimensionality of space*/
    intn	i;				/*counters		*/

    FUNC_ENTER (H5S_simp_fgath, 0);

    /* Check args */
    assert (f);
    assert (layout);
    assert (elmt_size>0);
    assert (file_space);
    assert (numbering);
    assert (nelmts>0);
    assert (buf);

    /*
     * Get hyperslab information to determine what elements are being
     * selected (there might eventually be other selection methods too).
     * We only support hyperslabs with unit sample because there's no way to
     * currently pass sample information into H5F_arr_read() much less
     * H5F_istore_read().
     */
    if ((space_ndims=H5S_get_hyperslab (file_space, file_offset,
					hsize, sample))<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, 0,
		       "unable to retrieve hyperslab parameters");
    }

    /* Check that there is no subsampling of the hyperslab */
    for (i=0; i<space_ndims; i++) {
	if (sample[i]!=1) {
	    HRETURN_ERROR (H5E_ARGS, H5E_BADVALUE, 0,
			   "hyperslab sampling is not implemented yet");
	}
    }

    /* Adjust the slowest varying dimension to take care of strip mining */
    for (i=1, acc=1; i<space_ndims; i++) acc *= hsize[i];
    assert (0==start % acc);
    assert (0==nelmts % acc);
    file_offset[0] += start / acc;
    hsize[0] = nelmts / acc;

    /* The fastest varying dimension is for the data point itself */
    file_offset[space_ndims] = 0;
    hsize[space_ndims] = elmt_size;
    HDmemset (zero, 0, layout->ndims*sizeof(*zero));

    /*
     * Gather from file.
     */
    if (H5F_arr_read (f, layout, comp, efl, hsize, hsize, zero, file_offset,
		      xfer_mode, buf/*out*/)<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_READERROR, 0, "read error");
    }

    FUNC_LEAVE (nelmts);
}
    
/*-------------------------------------------------------------------------
 * Function:	H5S_simp_mscat
 *
 * Purpose:	Scatters data points from the type conversion buffer
 *		TCONV_BUF to the application buffer BUF.  Each element is
 *		ELMT_SIZE bytes and they are organized in application memory
 *		according to MEM_SPACE.  The NUMBERING information together
 *		with START and NELMTS describe how the elements stored in
 *		TCONV_BUF are globally numbered.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Wednesday, January 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5S_simp_mscat (const void *tconv_buf, size_t elmt_size,
		const H5S_t *mem_space,
		const H5S_number_t __unused__ *numbering,
		size_t start, size_t nelmts, void *buf/*out*/)
{
    hssize_t	mem_offset[H5O_LAYOUT_NDIMS];	/*slab offset in app buf*/
    hsize_t	mem_size[H5O_LAYOUT_NDIMS];	/*total size of app buf	*/
    hsize_t	hsize[H5O_LAYOUT_NDIMS];	/*size of hyperslab	*/
    hssize_t	zero[H5O_LAYOUT_NDIMS];		/*zero			*/
    hsize_t	sample[H5O_LAYOUT_NDIMS];	/*hyperslab sampling	*/
    hsize_t	acc;				/*accumulator		*/
    intn	space_ndims;			/*dimensionality of space*/
    intn	i;				/*counters		*/

    FUNC_ENTER (H5S_simp_mscat, FAIL);

    /* Check args */
    assert (tconv_buf);
    assert (elmt_size>0);
    assert (mem_space && H5S_SIMPLE==mem_space->type);
    assert (numbering);
    assert (nelmts>0);
    assert (buf);

    /*
     * Retrieve hyperslab information to determine what elements are being
     * selected (there might be other selection methods in the future).  We
     * only handle hyperslabs with unit sample because there's currently no
     * way to pass sample information to H5V_hyper_copy().
     */
    if ((space_ndims=H5S_get_hyperslab (mem_space, mem_offset, hsize,
					sample))<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL,
		       "unable to retrieve hyperslab parameters");
    }

    /* Check that there is no subsampling of the hyperslab */
    for (i=0; i<space_ndims; i++) {
	if (sample[i]!=1) {
	    HRETURN_ERROR (H5E_ARGS, H5E_BADVALUE, FAIL,
			   "hyperslab sampling is not implemented yet");
	}
    }
    if (H5S_get_dims (mem_space, mem_size, NULL)<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL,
		       "unable to retrieve data space dimensions");
    }

    /* Adjust the slowest varying dimension to take care of strip mining */
    for (i=1, acc=1; i<space_ndims; i++) acc *= hsize[i];
    assert (0==start % acc);
    assert (0==nelmts % acc);
    mem_offset[0] += start / acc;
    hsize[0] = nelmts / acc;

    /* The fastest varying dimension is for the data point itself */
    mem_offset[space_ndims] = 0;
    mem_size[space_ndims] = elmt_size;
    hsize[space_ndims] = elmt_size;
    HDmemset (zero, 0, (space_ndims+1)*sizeof(*zero));

    /*
     * Scatter from conversion buffer to application memory.
     */
    if (H5V_hyper_copy (space_ndims+1, hsize, mem_size, mem_offset, buf,
			hsize, zero, tconv_buf)<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL,
		       "unable to scatter data to memory");
    }

    FUNC_LEAVE (SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:	H5S_simp_mgath
 *
 * Purpose:	Gathers dataset elements from application memory BUF and
 *		copies them into the data type conversion buffer TCONV_BUF.
 *		Each element is ELMT_SIZE bytes and arranged in application
 *		memory according to MEM_SPACE.  The elements selected from
 *		BUF by MEM_SPACE are numbered according to NUMBERING and the
 *		caller is requesting that at most NELMTS be gathered
 *		beginning with number START.  The elements are packed into
 *		TCONV_BUF in order of their NUMBERING.
 *
 * Return:	Success:	Number of elements copied.
 *
 *		Failure:	0
 *
 * Programmer:	Robb Matzke
 *              Wednesday, January 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
size_t
H5S_simp_mgath (const void *buf, size_t elmt_size,
		const H5S_t *mem_space,
		const H5S_number_t __unused__ *numbering,
		size_t start, size_t nelmts, void *tconv_buf/*out*/)
{
    hssize_t	mem_offset[H5O_LAYOUT_NDIMS];	/*slab offset in app buf*/
    hsize_t	mem_size[H5O_LAYOUT_NDIMS];	/*total size of app buf	*/
    hsize_t	hsize[H5O_LAYOUT_NDIMS];	/*size of hyperslab	*/
    hssize_t	zero[H5O_LAYOUT_NDIMS];		/*zero			*/
    hsize_t	sample[H5O_LAYOUT_NDIMS];	/*hyperslab sampling	*/
    hsize_t	acc;				/*accumulator		*/
    intn	space_ndims;			/*dimensionality of space*/
    intn	i;				/*counters		*/

    FUNC_ENTER (H5S_simp_mgath, 0);

    /* Check args */
    assert (buf);
    assert (elmt_size>0);
    assert (mem_space && H5S_SIMPLE==mem_space->type);
    assert (numbering);
    assert (nelmts>0);
    assert (tconv_buf);

    /*
     * Retrieve hyperslab information to determine what elements are being
     * selected (there might be other selection methods in the future).  We
     * only handle hyperslabs with unit sample because there's currently no
     * way to pass sample information to H5V_hyper_copy().
     */
    if ((space_ndims=H5S_get_hyperslab (mem_space, mem_offset, hsize,
					sample))<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, 0,
		       "unable to retrieve hyperslab parameters");
    }

    /* Check that there is no subsampling of the hyperslab */
    for (i=0; i<space_ndims; i++) {
	if (sample[i]!=1) {
	    HRETURN_ERROR (H5E_ARGS, H5E_BADVALUE, 0,
			   "hyperslab sampling is not implemented yet");
	}
    }
    if (H5S_get_dims (mem_space, mem_size, NULL)<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, 0,
		       "unable to retrieve data space dimensions");
    }

    /* Adjust the slowest varying dimension to account for strip mining */
    for (i=1, acc=1; i<space_ndims; i++) acc *= hsize[i];
    assert (0==start % acc);
    assert (0==nelmts % acc);
    mem_offset[0] += start / acc;
    hsize[0] = nelmts / acc;
    
    /* The fastest varying dimension is for the data point itself */
    mem_offset[space_ndims] = 0;
    mem_size[space_ndims] = elmt_size;
    hsize[space_ndims] = elmt_size;
    HDmemset (zero, 0, (space_ndims+1)*sizeof(*zero));

    /*
     * Scatter from conversion buffer to application memory.
     */
    if (H5V_hyper_copy (space_ndims+1, hsize, hsize, zero, tconv_buf,
			mem_size, mem_offset, buf)<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, 0,
		       "unable to scatter data to memory");
    }

    FUNC_LEAVE (nelmts);
}

/*-------------------------------------------------------------------------
 * Function:	H5S_simp_fscat
 *
 * Purpose:	Scatters dataset elements from the type conversion buffer BUF
 *		to the file F where the data points are arranged according to
 *		the file data space FILE_SPACE and stored according to
 *		LAYOUT and EFL. Each element is ELMT_SIZE bytes and has a
 *		unique number according to NUMBERING.  The caller is
 *		requesting that NELMTS elements are coppied beginning with
 *		element number START.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Wednesday, January 21, 1998
 *
 * Modifications:
 *		June 2, 1998	Albert Cheng
 *		Added xfer_mode argument
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5S_simp_fscat (H5F_t *f, const struct H5O_layout_t *layout,
		const struct H5O_compress_t *comp, const struct H5O_efl_t *efl,
		size_t elmt_size, const H5S_t *file_space,
		const H5S_number_t __unused__ *numbering,
		size_t start, size_t nelmts,
		const H5D_transfer_t xfer_mode, const void *buf)
{
    hssize_t	file_offset[H5O_LAYOUT_NDIMS];	/*offset of hyperslab	*/
    hsize_t	hsize[H5O_LAYOUT_NDIMS];	/*size of hyperslab	*/
    hssize_t	zero[H5O_LAYOUT_NDIMS];		/*zero vector		*/
    hsize_t	sample[H5O_LAYOUT_NDIMS];	/*hyperslab sampling	*/
    hsize_t	acc;				/*accumulator		*/
    intn	space_ndims;			/*space dimensionality	*/
    intn	i;				/*counters		*/

    FUNC_ENTER (H5S_simp_fscat, FAIL);

    /* Check args */
    assert (f);
    assert (layout);
    assert (elmt_size>0);
    assert (file_space);
    assert (numbering);
    assert (nelmts>0);
    assert (buf);

    /*
     * Get hyperslab information to determine what elements are being
     * selected (there might eventually be other selection methods too).
     * We only support hyperslabs with unit sample because there's no way to
     * currently pass sample information into H5F_arr_read() much less
     * H5F_istore_read().
     */
    if ((space_ndims=H5S_get_hyperslab (file_space, file_offset, hsize,
					sample))<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL,
		       "unable to retrieve hyperslab parameters");
    }

    /* Check that there is no subsampling of the hyperslab */
    for (i=0; i<space_ndims; i++) {
	if (sample[i]!=1) {
	    HRETURN_ERROR (H5E_ARGS, H5E_BADVALUE, FAIL,
			   "hyperslab sampling is not implemented yet");
	}
    }

    /* Adjust the slowest varying dimension to account for strip mining */
    for (i=1, acc=1; i<space_ndims; i++) acc *= hsize[i];
    assert (0==start % acc);
    assert (0==nelmts % acc);
    file_offset[0] += start / acc;
    hsize[0] = nelmts / acc;
    
    /* The fastest varying dimension is for the data point itself */
    file_offset[space_ndims] = 0;
    hsize[space_ndims] = elmt_size;
    HDmemset (zero, 0, layout->ndims*sizeof(*zero));

    /*
     * Scatter to file.
     */
    if (H5F_arr_write (f, layout, comp, efl, hsize, hsize, zero,
		       file_offset, xfer_mode, buf)<0) {
	HRETURN_ERROR (H5E_DATASPACE, H5E_WRITEERROR, FAIL, "write error");
    }

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5S_simp_read
 *
 * Purpose:	Reads a dataset from file F directly into application memory
 *		BUF performing data space conversion in a single step from
 *		FILE_SPACE to MEM_SPACE. The dataset is stored in the file
 *		according to the LAYOUT and EFL (external file list) and data
 *		point in the file is ELMT_SIZE bytes.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Thursday, March 12, 1998
 *
 * Modifications:
 *		June 2, 1998	Albert Cheng
 *		Added xfer_mode argument
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5S_simp_read (H5F_t *f, const struct H5O_layout_t *layout,
	       const struct H5O_compress_t *comp, const struct H5O_efl_t *efl,
	       size_t elmt_size, const H5S_t *file_space,
	       const H5S_t *mem_space, const H5D_transfer_t xfer_mode,
	       void *buf/*out*/)
{
    hssize_t	file_offset[H5O_LAYOUT_NDIMS];
    hsize_t	hslab_size[H5O_LAYOUT_NDIMS];
    hssize_t	mem_offset[H5O_LAYOUT_NDIMS];
    hsize_t	mem_size[H5O_LAYOUT_NDIMS];
    int		i;

    FUNC_ENTER (H5S_simp_read, FAIL);

#ifndef NDEBUG
    assert (file_space->type==mem_space->type);
    assert (file_space->u.simple.rank==mem_space->u.simple.rank);
    for (i=0; i<file_space->u.simple.rank; i++) {
	if (file_space->hslab_def && mem_space->hslab_def) {
	    assert (1==file_space->h.stride[i]);
	    assert (1==mem_space->h.stride[i]);
	    assert (file_space->h.count[i]==mem_space->h.count[i]);
	} else if (file_space->hslab_def) {
	    assert (1==file_space->h.stride[i]);
	    assert (file_space->h.count[i]==mem_space->u.simple.size[i]);
	} else if (mem_space->hslab_def) {
	    assert (1==mem_space->h.stride[i]);
	    assert (file_space->u.simple.size[i]==mem_space->h.count[i]);
	} else {
	    assert (file_space->u.simple.size[i]==
		    mem_space->u.simple.size[i]);
	}
    }
#endif
	

    /*
     * Calculate size of hyperslab and offset of hyperslab into file and
     * memory.
     */
    if (file_space->hslab_def) {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    hslab_size[i] = file_space->h.count[i];
	}
    } else {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    hslab_size[i] = file_space->u.simple.size[i];
	}
    }
    for (i=0; i<mem_space->u.simple.rank; i++) {
	mem_size[i] = mem_space->u.simple.size[i];
    }
    if (file_space->hslab_def) {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    file_offset[i] = file_space->h.start[i];
	}
    } else {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    file_offset[i] = 0;
	}
    }
    if (mem_space->hslab_def) {
	for (i=0; i<mem_space->u.simple.rank; i++) {
	    mem_offset[i] = mem_space->h.start[i];
	}
    } else {
	for (i=0; i<mem_space->u.simple.rank; i++) {
	    mem_offset[i] = 0;
	}
    }
    hslab_size[file_space->u.simple.rank] = elmt_size;
    mem_size[file_space->u.simple.rank] = elmt_size;
    file_offset[file_space->u.simple.rank] = 0;
    mem_offset[file_space->u.simple.rank] = 0;
    
    /* Read the hyperslab */
    if (H5F_arr_read (f, layout, comp, efl, hslab_size,
		      mem_size, mem_offset, file_offset, xfer_mode, buf)<0) {
	HRETURN_ERROR (H5E_IO, H5E_READERROR, FAIL, "unable to read dataset");
    }

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5S_simp_write
 *
 * Purpose:	Write a dataset from application memory BUF directly into
 *		file F performing data space conversion in a single step from
 *		MEM_SPACE to FILE_SPACE. The dataset is stored in the file
 *		according to the LAYOUT and EFL (external file list) and data
 *		point in the file is ELMT_SIZE bytes.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Thursday, March 12, 1998
 *
 * Modifications:
 *		June 2, 1998	Albert Cheng
 *		Added xfer_mode argument
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5S_simp_write (H5F_t *f, const struct H5O_layout_t *layout,
		const struct H5O_compress_t *comp, const struct H5O_efl_t *efl,
		size_t elmt_size, const H5S_t *file_space,
		const H5S_t *mem_space, const H5D_transfer_t xfer_mode,
		const void *buf)
{
    hssize_t	file_offset[H5O_LAYOUT_NDIMS];
    hsize_t	hslab_size[H5O_LAYOUT_NDIMS];
    hssize_t	mem_offset[H5O_LAYOUT_NDIMS];
    hsize_t	mem_size[H5O_LAYOUT_NDIMS];
    int		i;

    FUNC_ENTER (H5S_simp_write, FAIL);

#ifndef NDEBUG
    assert (file_space->type==mem_space->type);
    assert (file_space->u.simple.rank==mem_space->u.simple.rank);
    for (i=0; i<file_space->u.simple.rank; i++) {
	if (file_space->hslab_def && mem_space->hslab_def) {
	    assert (1==file_space->h.stride[i]);
	    assert (1==mem_space->h.stride[i]);
	    assert (file_space->h.count[i]==mem_space->h.count[i]);
	} else if (file_space->hslab_def) {
	    assert (1==file_space->h.stride[i]);
	    assert (file_space->h.count[i]==mem_space->u.simple.size[i]);
	} else if (mem_space->hslab_def) {
	    assert (1==mem_space->h.stride[i]);
	    assert (file_space->u.simple.size[i]==mem_space->h.count[i]);
	} else {
	    assert (file_space->u.simple.size[i]==
		    mem_space->u.simple.size[i]);
	}
    }
#endif
	

    /*
     * Calculate size of hyperslab and offset of hyperslab into file and
     * memory.
     */
    if (file_space->hslab_def) {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    hslab_size[i] = file_space->h.count[i];
	}
    } else {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    hslab_size[i] = file_space->u.simple.size[i];
	}
    }
    for (i=0; i<mem_space->u.simple.rank; i++) {
	mem_size[i] = mem_space->u.simple.size[i];
    }
    if (file_space->hslab_def) {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    file_offset[i] = file_space->h.start[i];
	}
    } else {
	for (i=0; i<file_space->u.simple.rank; i++) {
	    file_offset[i] = 0;
	}
    }
    if (mem_space->hslab_def) {
	for (i=0; i<mem_space->u.simple.rank; i++) {
	    mem_offset[i] = mem_space->h.start[i];
	}
    } else {
	for (i=0; i<mem_space->u.simple.rank; i++) {
	    mem_offset[i] = 0;
	}
    }
    hslab_size[file_space->u.simple.rank] = elmt_size;
    mem_size[file_space->u.simple.rank] = elmt_size;
    file_offset[file_space->u.simple.rank] = 0;
    mem_offset[file_space->u.simple.rank] = 0;
    
    /* Write the hyperslab */
    if (H5F_arr_write (f, layout, comp, efl, hslab_size,
		       mem_size, mem_offset, file_offset, xfer_mode, buf)<0) {
	HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
		       "unable to write dataset");
    }

    FUNC_LEAVE (SUCCEED);
}