summaryrefslogtreecommitdiffstats
path: root/src/H5V.c
blob: 11995450e68e8aa9934183e42ce74c838ebbfd25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/*
 * Copyright (C) 1997-2001 NCSA
 *		           All rights reserved.
 *
 * Programmer: Robb Matzke <matzke@llnl.gov>
 *	       Friday, October 10, 1997
 */

#include "H5private.h"
#include "H5Eprivate.h"
#include "H5Oprivate.h"
#include "H5Vprivate.h"

#define H5V_HYPER_NDIMS H5O_LAYOUT_NDIMS
#define PABLO_MASK	H5V_mask
static int		interface_initialize_g = 0;
#define INTERFACE_INIT	NULL


/*-------------------------------------------------------------------------
 * Function:	H5V_stride_optimize1
 *
 * Purpose:	Given a stride vector which references elements of the
 *		specified size, optimize the dimensionality, the stride
 *		vector, and the element size to minimize the dimensionality
 *		and the number of memory accesses.
 *
 *		All arguments are passed by reference and their values may be
 *		modified by this function.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_optimize1(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     hsize_t *size, hssize_t *stride1)
{
    FUNC_ENTER(H5V_stride_optimize1, FAIL);

    /*
     * This has to be true because if we optimize the dimensionality down to
     * zero we still must make one reference.
     */
    assert(1 == H5V_vector_reduce_product(0, NULL));

    /*
     * Combine adjacent memory accesses
     */
    while (*np && stride1[*np-1]>0 &&
           (hsize_t)(stride1[*np-1])==*elmt_size) {
        *elmt_size *= size[*np-1];
        if (--*np) {
            stride1[*np-1] += size[*np] * stride1[*np];
        }
    }

    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_stride_optimize2
 *
 * Purpose:	Given two stride vectors which reference elements of the
 *		specified size, optimize the dimensionality, the stride
 *		vectors, and the element size to minimize the dimensionality
 *		and the number of memory accesses.
 *
 *		All arguments are passed by reference and their values may be
 *		modified by this function.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_optimize2(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     hsize_t *size, hssize_t *stride1, hssize_t *stride2)
{
    FUNC_ENTER(H5V_stride_optimize2, FAIL);

    /*
     * This has to be true because if we optimize the dimensionality down to
     * zero we still must make one reference.
     */
    assert(1 == H5V_vector_reduce_product(0, NULL));
    assert (*elmt_size>0);

    /*
     * Combine adjacent memory accesses
     */

    /* Unroll loop for common cases */
    switch(*np) {
        case 1: /* For 0-D datasets (dunno if this ever gets used...) */
            if((hsize_t)(stride1[0]) == *elmt_size &&
                   (hsize_t)(stride2[0]) == *elmt_size) {
                *elmt_size *= size[0];
                --*np;  /* *np decrements to a value of 0 now */
            } /* end if */
            break;

        case 2: /* For 1-D datasets */
            if((hsize_t)(stride1[1]) == *elmt_size &&
                   (hsize_t)(stride2[1]) == *elmt_size) {
                *elmt_size *= size[1];
                --*np;  /* *np decrements to a value of 1 now */
                stride1[0] += size[1] * stride1[1];
                stride2[0] += size[1] * stride2[1];

                if((hsize_t)(stride1[0]) == *elmt_size &&
                       (hsize_t)(stride2[0]) == *elmt_size) {
                    *elmt_size *= size[0];
                    --*np;  /* *np decrements to a value of 0 now */
                } /* end if */
            } /* end if */
            break;

        case 3: /* For 2-D datasets */
            if((hsize_t)(stride1[2]) == *elmt_size &&
                   (hsize_t)(stride2[2]) == *elmt_size) {
                *elmt_size *= size[2];
                --*np;  /* *np decrements to a value of 2 now */
                stride1[1] += size[2] * stride1[2];
                stride2[1] += size[2] * stride2[2];

                if((hsize_t)(stride1[1]) == *elmt_size &&
                       (hsize_t)(stride2[1]) == *elmt_size) {
                    *elmt_size *= size[1];
                    --*np;  /* *np decrements to a value of 1 now */
                    stride1[0] += size[1] * stride1[1];
                    stride2[0] += size[1] * stride2[1];

                    if((hsize_t)(stride1[0]) == *elmt_size &&
                           (hsize_t)(stride2[0]) == *elmt_size) {
                        *elmt_size *= size[0];
                        --*np;  /* *np decrements to a value of 0 now */
                    } /* end if */
                } /* end if */
            } /* end if */
            break;

        case 4: /* For 3-D datasets */
            if((hsize_t)(stride1[3]) == *elmt_size &&
                   (hsize_t)(stride2[3]) == *elmt_size) {
                *elmt_size *= size[3];
                --*np;  /* *np decrements to a value of 3 now */
                stride1[2] += size[3] * stride1[3];
                stride2[2] += size[3] * stride2[3];

                if((hsize_t)(stride1[2]) == *elmt_size &&
                       (hsize_t)(stride2[2]) == *elmt_size) {
                    *elmt_size *= size[2];
                    --*np;  /* *np decrements to a value of 2 now */
                    stride1[1] += size[2] * stride1[2];
                    stride2[1] += size[2] * stride2[2];

                    if((hsize_t)(stride1[1]) == *elmt_size &&
                           (hsize_t)(stride2[1]) == *elmt_size) {
                        *elmt_size *= size[1];
                        --*np;  /* *np decrements to a value of 1 now */
                        stride1[0] += size[1] * stride1[1];
                        stride2[0] += size[1] * stride2[1];

                        if((hsize_t)(stride1[0]) == *elmt_size &&
                               (hsize_t)(stride2[0]) == *elmt_size) {
                            *elmt_size *= size[0];
                            --*np;  /* *np decrements to a value of 0 now */
                        } /* end if */
                    } /* end if */
                } /* end if */
            } /* end if */
            break;

        default:
            while (*np &&
                   (hsize_t)(stride1[*np-1]) == *elmt_size &&
                   (hsize_t)(stride2[*np-1]) == *elmt_size) {
                *elmt_size *= size[*np-1];
                if (--*np) {
                    stride1[*np-1] += size[*np] * stride1[*np];
                    stride2[*np-1] += size[*np] * stride2[*np];
                }
            }
            break;
    } /* end switch */

    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_stride
 *
 * Purpose:	Given a description of a hyperslab, this function returns
 *		(through STRIDE[]) the byte strides appropriate for accessing
 *		all bytes of the hyperslab and the byte offset where the
 *		striding will begin.  The SIZE can be passed to the various
 *		stride functions.
 *
 *		The dimensionality of the whole array, the hyperslab, and the
 *		returned stride array is N.  The whole array dimensions are
 *		TOTAL_SIZE and the hyperslab is at offset OFFSET and has
 *		dimensions SIZE.
 *
 *		The stride and starting point returned will cause the
 *		hyperslab elements to be referenced in C order.
 *
 * Return:	Success:	Byte offset from beginning of array to start
 *				of striding.
 *
 *		Failure:	abort() -- should never fail
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5V_hyper_stride(unsigned n, const hsize_t *size,
		 const hsize_t *total_size, const hssize_t *offset,
		 hssize_t *stride/*out*/)
{
    hsize_t	    skip;	/*starting point byte offset		*/
    hsize_t	    acc;	/*accumulator				*/
    hsize_t     tmp;
    int		i;		/*counter				*/

    FUNC_ENTER(H5V_hyper_stride, (HDabort(), 0));

    assert(n <= H5V_HYPER_NDIMS);
    assert(size);
    assert(total_size);
    assert(stride);

    /* init */
    stride[n-1] = 1;
    skip = offset ? offset[n-1] : 0;

    switch(n) {
        case 2: /* 1-D dataset */
            tmp = total_size[1] - size[1];
            assert (tmp<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
            stride[0] = (hssize_t)tmp; /*overflow checked*/
            acc = total_size[1];
            skip += acc * (offset ? offset[0] : 0);
            break;

        case 3: /* 2-D dataset */
            tmp = total_size[2] - size[2];
            assert (tmp<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
            stride[1] = (hssize_t)tmp; /*overflow checked*/
            acc = total_size[2];
            skip += acc * (offset ? offset[1] : 0);

            tmp = acc * (total_size[1] - size[1]);
            assert (tmp<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
            stride[0] = (hssize_t)tmp; /*overflow checked*/
            acc *= total_size[1];
            skip += acc * (offset ? offset[0] : 0);
            break;

        case 4: /* 3-D dataset */
            tmp = total_size[3] - size[3];
            assert (tmp<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
            stride[2] = (hssize_t)tmp; /*overflow checked*/
            acc = total_size[3];
            skip += acc * (offset ? offset[2] : 0);

            tmp = acc * (total_size[2] - size[2]);
            assert (tmp<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
            stride[1] = (hssize_t)tmp; /*overflow checked*/
            acc *= total_size[2];
            skip += acc * (offset ? offset[1] : 0);

            tmp = acc * (total_size[1] - size[1]);
            assert (tmp<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
            stride[0] = (hssize_t)tmp; /*overflow checked*/
            acc *= total_size[1];
            skip += acc * (offset ? offset[0] : 0);
            break;

        default:
            /* others */
            for (i=(int)(n-2), acc=1; i>=0; --i) {
                tmp = acc * (total_size[i+1] - size[i+1]);
                assert (tmp<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                stride[i] = (hssize_t)tmp; /*overflow checked*/
                acc *= total_size[i+1];
                skip += acc * (offset ? offset[i] : 0);
            }
            break;
    } /* end switch */

    FUNC_LEAVE(skip);
}


/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_eq
 *
 * Purpose:	Determines whether two hyperslabs are equal.  This function
 *		assumes that both hyperslabs are relative to the same array,
 *		for if not, they could not possibly be equal.
 *
 * Return:	Success:	TRUE if the hyperslabs are equal (that is,
 *				both refer to exactly the same elements of an
 *				array)
 *
 *				FALSE otherwise.
 *
 *		Failure:	TRUE the rank is zero or if both hyperslabs
 *				are of zero size.
 *
 * Programmer:	Robb Matzke
 *		Friday, October 17, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
htri_t
H5V_hyper_eq(int n,
	     const hssize_t *offset1, const hsize_t *size1,
	     const hssize_t *offset2, const hsize_t *size2)
{
    hsize_t	nelmts1 = 1, nelmts2 = 1;
    int	i;

    /* Use FUNC_ENTER_NOINIT here to avoid performance issues */
    FUNC_ENTER_NOINIT(H5V_hyper_eq);

    if (n <= 0) HRETURN(TRUE);

    for (i=0; i<n; i++) {
	if ((offset1 ? offset1[i] : 0) != (offset2 ? offset2[i] : 0)) {
	    HRETURN(FALSE);
	}
	if ((size1 ? size1[i] : 0) != (size2 ? size2[i] : 0)) {
	    HRETURN(FALSE);
	}
	if (0 == (nelmts1 *= (size1 ? size1[i] : 0))) HRETURN(FALSE);
	if (0 == (nelmts2 *= (size2 ? size2[i] : 0))) HRETURN(FALSE);
    }
    FUNC_LEAVE(TRUE);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_disjointp
 *
 * Purpose:	Determines if two hyperslabs are disjoint.
 *
 * Return:	Success:	FALSE if they are not disjoint.
 *				TRUE if they are disjoint.
 *
 *		Failure:	A hyperslab of zero size is disjoint from all
 *				other hyperslabs.
 *
 * Programmer:	Robb Matzke
 *		Thursday, October 16, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
htri_t
H5V_hyper_disjointp(unsigned n,
		    const hssize_t *offset1, const hsize_t *size1,
		    const hssize_t *offset2, const hsize_t *size2)
{
    unsigned	u;

    /* Use FUNC_ENTER_NOINIT here to avoid performance issues */
    FUNC_ENTER_NOINIT(H5V_hyper_disjointp);

    if (!n || !size1 || !size2)	HRETURN(TRUE);

    for (u=0; u<n; u++) {
        assert (size1[u]<HSSIZET_MAX);
        assert (size2[u]<HSSIZET_MAX);

        if (0==size1[u] || 0==size2[u])
            HRETURN(TRUE);
        if (((offset1?offset1[u]:0) < (offset2?offset2[u]:0) &&
             ((offset1?offset1[u]:0) + (hssize_t)size1[u] <=
              (offset2?offset2[u]:0))) ||
            ((offset2?offset2[u]:0) < (offset1?offset1[u]:0) &&
             ((offset2?offset2[u]:0) + (hssize_t)size2[u] <=
              (offset1?offset1[u]:0)))) {
            HRETURN(TRUE);
        }
    }
    FUNC_LEAVE(FALSE);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_fill
 *
 * Purpose:	Similar to memset() except it operates on hyperslabs...
 *
 *		Fills a hyperslab of array BUF with some value VAL.  BUF
 *		is treated like a C-order array with N dimensions where the
 *		size of each dimension is TOTAL_SIZE[].	 The hyperslab which
 *		will be filled with VAL begins at byte offset OFFSET[] from
 *		the minimum corner of BUF and continues for SIZE[] bytes in
 *		each dimension.
 *		
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_hyper_fill(unsigned n, const hsize_t *_size,
	       const hsize_t *total_size, const hssize_t *offset, void *_dst,
	       unsigned fill_value)
{
    uint8_t	*dst = (uint8_t*)_dst;	/*cast for ptr arithmetic	*/
    hsize_t	size[H5V_HYPER_NDIMS];	/*a modifiable copy of _size	*/
    hssize_t	dst_stride[H5V_HYPER_NDIMS]; /*destination stride info  */
    hsize_t	dst_start;		/*byte offset to start of stride*/
    hsize_t	elmt_size = 1;		/*bytes per element		*/
    herr_t	status;			/*function return status	*/
#ifndef NDEBUG
    unsigned	u;
#endif

    FUNC_ENTER(H5V_hyper_fill, FAIL);

    /* check args */
    assert(n > 0 && n <= H5V_HYPER_NDIMS);
    assert(_size);
    assert(total_size);
    assert(dst);
#ifndef NDEBUG
    for (u = 0; u < n; u++) {
        assert(_size[u] > 0);
        assert(total_size[u] > 0);
    }
#endif

    /* Copy the size vector so we can modify it */
    H5V_vector_cpy(n, size, _size);

    /* Compute an optimal destination stride vector */
    dst_start = H5V_hyper_stride(n, size, total_size, offset, dst_stride);
    H5V_stride_optimize1(&n, &elmt_size, size, dst_stride);

    /* Copy */
    status = H5V_stride_fill(n, elmt_size, size, dst_stride, dst+dst_start,
			     fill_value);

    FUNC_LEAVE(status);
}


/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_copy
 *
 * Purpose:	Copies a hyperslab from the source to the destination.
 *
 *		A hyperslab is a logically contiguous region of
 *		multi-dimensional size SIZE of an array whose dimensionality
 *		is N and whose total size is DST_TOTAL_SIZE or SRC_TOTAL_SIZE.
 *		The minimum corner of the hyperslab begins at a
 *		multi-dimensional offset from the minimum corner of the DST
 *		(destination) or SRC (source) array.  The sizes and offsets
 *		are assumed to be in C order, that is, the first size/offset
 *		varies the slowest while the last varies the fastest in the
 *		mapping from N-dimensional space to linear space.  This
 *		function assumes that the array elements are single bytes (if
 *		your array has multi-byte elements then add an additional
 *		dimension whose size is that of your element).
 *
 *		The SRC and DST array may be the same array, but the results
 *		are undefined if the source hyperslab overlaps the
 *		destination hyperslab.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_hyper_copy(unsigned n, const hsize_t *_size,

	       /*destination*/
	       const hsize_t *dst_size, const hssize_t *dst_offset,
	       void *_dst,

	       /*source*/
	       const hsize_t *src_size, const hssize_t *src_offset,
	       const void *_src)
{
    const uint8_t *src = (const uint8_t*)_src;	/*cast for ptr arithmtc */
    uint8_t	*dst = (uint8_t*) _dst;		/*cast for ptr arithmtc */
    hsize_t	size[H5V_HYPER_NDIMS];		/*a modifiable _size	*/
    hssize_t	src_stride[H5V_HYPER_NDIMS];	/*source stride info	*/
    hssize_t	dst_stride[H5V_HYPER_NDIMS];	/*dest stride info	*/
    hsize_t	dst_start, src_start;		/*offset to start at	*/
    hsize_t	elmt_size = 1;			/*element size in bytes */
    hsize_t tmp1;
    hsize_t tmp2;
    herr_t	status;				/*return status		*/
#ifndef NDEBUG		
    unsigned	u;
#endif

    FUNC_ENTER(H5V_hyper_copy, FAIL);

    /* check args */
    assert(n > 0 && n <= H5V_HYPER_NDIMS);
    assert(_size);
    assert(dst_size);
    assert(src_size);
    assert(dst);
    assert(src);
#ifndef NDEBUG
    for (u = 0; u < n; u++) {
        assert(_size[u] > 0);
        assert(dst_size[u] > 0);
        assert(src_size[u] > 0);
    }
#endif

    /* Copy the size vector so we can modify it */
    H5V_vector_cpy(n, size, _size);

    /* Compute stride vectors for source and destination */
#ifdef NO_INLINED_CODE
    dst_start = H5V_hyper_stride(n, size, dst_size, dst_offset, dst_stride);
    src_start = H5V_hyper_stride(n, size, src_size, src_offset, src_stride);
#else /* NO_INLINED_CODE */
    /* in-line version of two calls to H5V_hyper_stride() */
    {
        hsize_t	    dst_acc;	/*accumulator				*/
        hsize_t	    src_acc;	/*accumulator				*/
        int        ii;		    /*counter				*/

        /* init */
        dst_stride[n-1] = 1;
        src_stride[n-1] = 1;
        dst_start = dst_offset ? dst_offset[n-1] : 0;
        src_start = src_offset ? src_offset[n-1] : 0;

        /* Unroll loop for common cases */
        switch(n) {
            case 2:
                tmp1 = (dst_size[1] - size[1]);
                tmp2 = (src_size[1] - size[1]);
                assert (tmp1<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                assert (tmp2<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                dst_stride[0] = (hssize_t)tmp1; /*overflow checked*/
                src_stride[0] = (hssize_t)tmp2; /*overflow checked*/
                dst_acc = dst_size[1];
                src_acc = src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            case 3:
                tmp1 = (dst_size[2] - size[2]);
                tmp2 = (src_size[2] - size[2]);
                assert (tmp1<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                assert (tmp2<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                dst_stride[1] = (hssize_t)tmp1; /*overflow checked*/
                src_stride[1] = (hssize_t)tmp2; /*overflow checked*/
                dst_acc = dst_size[2];
                src_acc = src_size[2];
                dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
                src_start += src_acc * (src_offset ? src_offset[1] : 0);

                tmp1 = dst_acc * (dst_size[1] - size[1]);
                tmp2 = src_acc * (src_size[1] - size[1]);
                assert (tmp1<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                assert (tmp2<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                dst_stride[0] = (hssize_t)tmp1; /*overflow checked*/
                src_stride[0] = (hssize_t)tmp2; /*overflow checked*/
                dst_acc *= dst_size[1];
                src_acc *= src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            case 4:
                tmp1 = (dst_size[3] - size[3]);
                tmp2 = (src_size[3] - size[3]);
                assert (tmp1<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                assert (tmp2<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                dst_stride[2] = (hssize_t)tmp1; /*overflow checked*/
                src_stride[2] = (hssize_t)tmp2; /*overflow checked*/
                dst_acc = dst_size[3];
                src_acc = src_size[3];
                dst_start += dst_acc * (dst_offset ? dst_offset[2] : 0);
                src_start += src_acc * (src_offset ? src_offset[2] : 0);

                tmp1 = dst_acc * (dst_size[2] - size[2]);
                tmp2 = src_acc * (src_size[2] - size[2]);
                assert (tmp1<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                assert (tmp2<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                dst_stride[1] = (hssize_t)tmp1; /*overflow checked*/
                src_stride[1] = (hssize_t)tmp2; /*overflow checked*/
                dst_acc *= dst_size[2];
                src_acc *= src_size[2];
                dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
                src_start += src_acc * (src_offset ? src_offset[1] : 0);

                tmp1 = dst_acc * (dst_size[1] - size[1]);
                tmp2 = src_acc * (src_size[1] - size[1]);
                assert (tmp1<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                assert (tmp2<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                dst_stride[0] = (hssize_t)tmp1; /*overflow checked*/
                src_stride[0] = (hssize_t)tmp2; /*overflow checked*/
                dst_acc *= dst_size[1];
                src_acc *= src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            default:
                /* others */
                for (ii=(int)(n-2), dst_acc=1, src_acc=1; ii>=0; --ii) {
                    tmp1 = dst_acc * (dst_size[ii+1] - size[ii+1]);
                    tmp2 = src_acc * (src_size[ii+1] - size[ii+1]);
                    assert (tmp1<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                    assert (tmp2<((hsize_t)1<<(8*sizeof(hssize_t)-1)));
                    dst_stride[ii] = (hssize_t)tmp1; /*overflow checked*/
                    src_stride[ii] = (hssize_t)tmp2; /*overflow checked*/
                    dst_acc *= dst_size[ii+1];
                    src_acc *= src_size[ii+1];
                    dst_start += dst_acc * (dst_offset ? dst_offset[ii] : 0);
                    src_start += src_acc * (src_offset ? src_offset[ii] : 0);
                }
                break;
        } /* end switch */
    }
#endif /* NO_INLINED_CODE */

    /* Optimize the strides as a pair */
    H5V_stride_optimize2(&n, &elmt_size, size, dst_stride, src_stride);

    /* Perform the copy in terms of stride */
    status = H5V_stride_copy(n, elmt_size, size,
             dst_stride, dst+dst_start, src_stride, src+src_start);

    FUNC_LEAVE(status);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_stride_fill
 *
 * Purpose:	Fills all bytes of a hyperslab with the same value using
 *		memset().
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_fill(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hssize_t *stride, void *_dst, unsigned fill_value)
{
    uint8_t	*dst = (uint8_t*)_dst; 	/*cast for ptr arithmetic	*/
    hsize_t	idx[H5V_HYPER_NDIMS]; 	/*1-origin indices		*/
    hsize_t	nelmts;			/*number of elements to fill	*/
    hsize_t	i;			/*counter			*/
    int	j;			/*counter			*/
    hbool_t	carry;			/*subtraction carray value	*/

    FUNC_ENTER(H5V_stride_fill, FAIL);
    assert (elmt_size < SIZET_MAX);

    H5V_vector_cpy(n, idx, size);
    nelmts = H5V_vector_reduce_product(n, size);
    for (i=0; i<nelmts; i++) {
        /* Copy an element */
        HDmemset(dst, (signed)fill_value, (size_t)elmt_size);

        /* Decrement indices and advance pointer */
        for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
            dst += stride[j];

            if (--idx[j])
                carry = FALSE;
            else
                idx[j] = size[j];
        }
    }

    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_stride_copy
 *
 * Purpose:	Uses DST_STRIDE and SRC_STRIDE to advance through the arrays
 *		DST and SRC while copying bytes from SRC to DST.  This
 *		function minimizes the number of calls to memcpy() by
 *		combining various strides, but it will never touch memory
 *		outside the hyperslab defined by the strides.
 *
 * Note:	If the src_stride is all zero and elmt_size is one, then it's
 *		probably more efficient to use H5V_stride_fill() instead.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_copy(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hssize_t *dst_stride, void *_dst,
		const hssize_t *src_stride, const void *_src)
{
    uint8_t	*dst = (uint8_t*)_dst;		/*cast for ptr arithmetic*/
    const uint8_t *src = (const uint8_t*) _src;	/*cast for ptr arithmetic*/
    hsize_t	idx[H5V_HYPER_NDIMS];		/*1-origin indices	*/
    hsize_t	nelmts;				/*num elements to copy	*/
    hsize_t	i;				/*counter		*/
    int	j;				/*counters		*/
    hbool_t	carry;				/*carray for subtraction*/

    FUNC_ENTER(H5V_stride_copy, FAIL);
    assert (elmt_size<SIZET_MAX);

    if (n) {
        H5V_vector_cpy(n, idx, size);
        nelmts = H5V_vector_reduce_product(n, size);
        for (i=0; i<nelmts; i++) {

            /* Copy an element */
            H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
            HDmemcpy(dst, src, (size_t)elmt_size);

            /* Decrement indices and advance pointers */
            for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
                src += src_stride[j];
                dst += dst_stride[j];

                if (--idx[j])
                    carry = FALSE;
                else
                    idx[j] = size[j];
            }
        }
    } else {
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
        HDmemcpy (dst, src, (size_t)elmt_size);
        HRETURN (SUCCEED);
    }


    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_stride_copy2
 *
 * Purpose:	Similar to H5V_stride_copy() except the source and
 *		destination each have their own dimensionality and size and
 *		we copy exactly NELMTS elements each of size ELMT_SIZE.	 The
 *		size counters wrap if NELMTS is more than a size counter.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_copy2(hsize_t nelmts, hsize_t elmt_size,

		 /* destination */
		 int dst_n, const hsize_t *dst_size,
		 const hssize_t *dst_stride,
		 void *_dst,

		 /* source */
		 int src_n, const hsize_t *src_size,
		 const hssize_t *src_stride,
		 const void *_src)
{
    uint8_t	*dst = (uint8_t *) _dst;
    const uint8_t *src = (const uint8_t *) _src;
    hsize_t	dst_idx[H5V_HYPER_NDIMS];
    hsize_t	src_idx[H5V_HYPER_NDIMS];
    hsize_t	i;
    int	j;
    hbool_t	carry;

    FUNC_ENTER(H5V_stride_copy2, FAIL);
    assert (elmt_size < SIZET_MAX);

    H5V_vector_cpy(dst_n, dst_idx, dst_size);
    H5V_vector_cpy(src_n, src_idx, src_size);

    for (i=0; i<nelmts; i++) {

	/* Copy an element */
	HDmemcpy(dst, src, (size_t)elmt_size);

	/* Decrement indices and advance pointers */
	for (j=dst_n-1, carry=TRUE; j>=0 && carry; --j) {
	    dst += dst_stride[j];
	    if (--dst_idx[j]) carry = FALSE;
	    else dst_idx[j] = dst_size[j];
	}
	for (j=src_n-1, carry=TRUE; j>=0 && carry; --j) {
	    src += src_stride[j];
	    if (--src_idx[j]) carry = FALSE;
	    else src_idx[j] = src_size[j];
	}
    }

    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:	H5V_array_fill
 *
 * Purpose:	Fills all bytes of an array with the same value using
 *		memset(). Increases amount copied by power of two until the
 *		halfway point is crossed, then copies the rest in one swoop.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Thursday, June 18, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_array_fill(void *_dst, const void *src, size_t size, size_t count)
{
    size_t      copy_size;          /* size of the buffer to copy	*/
    size_t      copy_items;         /* number of items currently copying*/
    size_t      items_left;         /* number of items left to copy 	*/
    uint8_t     *dst=(uint8_t*)_dst;/* alias for pointer arithmetic	*/

    FUNC_ENTER(H5V_array_fill, FAIL);
    assert (dst);
    assert (src);
    assert (size < SIZET_MAX && size > 0);
    assert (count < SIZET_MAX && count > 0);

    HDmemcpy(dst, src, size);   /* copy first item */

    /* Initialize counters, etc. while compensating for first element copied */
    copy_size = size;
    copy_items = 1;
    items_left = count - 1;
    dst += size;

    /* copy until we've copied at least half of the items */
    while (items_left >= copy_items)
    {
        HDmemcpy(dst, _dst, copy_size);   /* copy the current chunk */
        dst += copy_size;     /* move the offset for the next chunk */
        items_left -= copy_items;   /* decrement the number of items left */

        copy_size *= 2;     /* increase the size of the chunk to copy */
        copy_items *= 2;    /* increase the count of items we are copying */
    }   /* end while */
    if (items_left > 0)   /* if there are any items left to copy */
        HDmemcpy(dst, _dst, items_left * size);

    FUNC_LEAVE(SUCCEED);
}   /* H5V_array_fill() */


/*-------------------------------------------------------------------------
 * Function:	H5V_array_offset
 *
 * Purpose:	Given a coordinate description of a location in an array, this
 *      function returns the byte offset of the coordinate.
 *
 *		The dimensionality of the whole array, and the offset is N.
 *              The whole array dimensions are TOTAL_SIZE and the coordinate
 *              is at offset OFFSET.
 *
 * Return:	Success: Byte offset from beginning of array to element offset
 *		Failure: abort() -- should never fail
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, June 22, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5V_array_offset(unsigned n, const hsize_t *total_size, const hssize_t *offset)
{
    hsize_t	    skip;	/*starting point byte offset		*/
    hsize_t	    acc;	/*accumulator				*/
    int	    i;		/*counter				*/

    FUNC_ENTER(H5V_array_offset, (HDabort(), 0));

    assert(n <= H5V_HYPER_NDIMS);
    assert(total_size);
    assert(offset);

    /* others */
    for (i=(int)(n-1), acc=1, skip=0; i>=0; --i) {
        skip += acc * offset[i];
        acc *= total_size[i];
    } /* end for */

    FUNC_LEAVE(skip);
} /* end H5V_array_offset() */