summaryrefslogtreecommitdiffstats
path: root/testpar/perf.c
blob: 1b742a80b4b91422be31a9ebce1beb4a08c89879 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/* 
 * Author: Albert Cheng of NCSA, May 1, 2001.
 * This is derived from code given to me by Robert Ross. 
 *
 * NOTE: This code assumes that all command line arguments make it out to all
 * the processes that make up the parallel job, which isn't always the case.
 * So if it doesn't work on some platform, that might be why.
 */

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/time.h>
#include <mpi.h>
#ifndef MPI_FILE_NULL           /*MPIO may be defined in mpi.h already       */
#   include <mpio.h>
#endif


#include "hdf5.h"
/* Macro definitions */
/* Verify:
 * if val is false (0), print mesg and if fatal is true (non-zero), die.
 */
#define H5FATAL 1
#define VRFY(val, mesg, fatal) do {                                            \
    if (!val) {                                                                \
	printf("Proc %d: ", mynod);					       \
        printf("*** Assertion failed (%s) at line %4d in %s\n",                \
	    mesg, (int)__LINE__, __FILE__);     			       \
	if (fatal){							       \
	    fflush(stdout);						       \
	    goto die_jar_jar_die;					       \
	}								       \
    }                                                                          \
} while(0)
#define RANK 1
hsize_t dims[RANK];   	/* dataset dim sizes */
hsize_t block[RANK], stride[RANK], count[RANK];
hssize_t start[RANK];
hid_t fid;                  /* HDF5 file ID */
hid_t acc_tpl;		/* File access templates */
hid_t sid;   		/* Dataspace ID */
hid_t file_dataspace;	/* File dataspace ID */
hid_t mem_dataspace;	/* memory dataspace ID */
hid_t dataset;		/* Dataset ID */
hsize_t opt_alignment	= 1;
hsize_t opt_threshold	= 1;


/* DEFAULT VALUES FOR OPTIONS */
int64_t opt_block     = 1048576*16;
int     opt_iter      = 1;
int     opt_stripe    = -1;
int     opt_correct   = 0;
int     amode         = O_RDWR | O_CREAT;
char    opt_file[256] = "/foo/test.out\0";
char    opt_pvfstab[256] = "notset\0";
int     opt_pvfstab_set = 0;

/* function prototypes */
int parse_args(int argc, char **argv);
double Wtime(void);

extern int errno;
extern int debug_on;

/* globals needed for getopt */
extern char *optarg;
extern int optind, opterr;

int main(int argc, char **argv)
{
	char *buf, *tmp, *buf2, *tmp2, *check;
	int i, j, mynod=0, nprocs=1, err, my_correct = 1, correct, myerrno;
	double stim, etim;
	double write_tim = 0;
	double read_tim = 0;
	double read_bw, write_bw;
	double max_read_tim, max_write_tim;
	double min_read_tim, min_write_tim;
	double ave_read_tim, ave_write_tim;
	int64_t iter_jump = 0;
	int64_t seek_position = 0;
	MPI_File fh;
	MPI_Status status;
	int nchars;
    herr_t ret;         	/* Generic return value */

	/* startup MPI and determine the rank of this process */
	MPI_Init(&argc,&argv);
	MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
	MPI_Comm_rank(MPI_COMM_WORLD, &mynod);

	/* parse the command line arguments */
	parse_args(argc, argv);

	if (mynod == 0) printf("# Using hdf5-io calls.\n");

	
	/* kindof a weird hack- if the location of the pvfstab file was 
	 * specified on the command line, then spit out this location into
	 * the appropriate environment variable: */
	
#if H5_HAVE_SETENV
/* no setenv or unsetenv */
	if (opt_pvfstab_set) {
		if((setenv("PVFSTAB_FILE", opt_pvfstab, 1)) < 0){
			perror("setenv");
			goto die_jar_jar_die;
		}
	}
#endif
	
	/* this is how much of the file data is covered on each iteration of
	 * the test.  used to help determine the seek offset on each
	 * iteration */
	iter_jump = nprocs * opt_block;
		
	/* setup a buffer of data to write */
	if (!(tmp = (char *) malloc(opt_block + 256))) {
		perror("malloc");
		goto die_jar_jar_die;
	}
	buf = tmp + 128 - (((long)tmp) % 128);  /* align buffer */

	if (opt_correct) {
		/* do the same buffer setup for verifiable data */
		if (!(tmp2 = (char *) malloc(opt_block + 256))) {
			perror("malloc2");
			goto die_jar_jar_die;
		 }
		buf2 = tmp + 128 - (((long)tmp) % 128);
	}

    /* setup file access template with parallel IO access. */
    acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
    VRFY((acc_tpl >= 0), "H5Pcreate access succeeded", H5FATAL);
    ret = H5Pset_fapl_mpio(acc_tpl, MPI_COMM_WORLD, MPI_INFO_NULL);
    VRFY((ret >= 0), "H5Pset_fapl_mpio succeeded", H5FATAL);
    /* set optional allocation alignment */
    if (opt_alignment*opt_threshold != 1){
	ret = H5Pset_alignment(acc_tpl, opt_threshold, opt_alignment );
	VRFY((ret >= 0), "H5Pset_alignment succeeded", !H5FATAL);
    }

    /* create the parallel file */
    fid=H5Fcreate(opt_file,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
    VRFY((fid >= 0), "H5Fcreate succeeded", H5FATAL);

    /* define a contiquous dataset of opt_iter*nprocs*opt_block chars */
    dims[0] = opt_iter*nprocs*opt_block;
    sid = H5Screate_simple (RANK, dims, NULL);
    VRFY((sid >= 0), "H5Screate_simple succeeded", H5FATAL);
    dataset = H5Dcreate(fid, "Dataset1", H5T_NATIVE_CHAR, sid,
			H5P_DEFAULT);
    VRFY((dataset >= 0), "H5Dcreate succeeded", H5FATAL);

    /* create the memory dataspace and the file dataspace */
    dims[0] = opt_block;
    mem_dataspace = H5Screate_simple (RANK, dims, NULL);
    VRFY((mem_dataspace >= 0), "", H5FATAL);
    file_dataspace = H5Dget_space (dataset);
    VRFY((file_dataspace >= 0), "H5Dget_space succeeded", H5FATAL);

	/* now each process writes a block of opt_block chars in round robbin
	 * fashion until the whole dataset is covered.
	 */
	for (j=0; j < opt_iter; j++) {
	    /* setup a file dataspace selection */
	    start[0] = (j*iter_jump)+(mynod*opt_block);
	    stride[0] = block[0] = opt_block;
	    count[0]= 1;
	    ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); 
	    VRFY((ret >= 0), "H5Sset_hyperslab succeeded", H5FATAL);

		if (opt_correct) /* fill in buffer for iteration */ {
			for (i=mynod+j, check=buf; i<opt_block; i++,check++) *check=(char)i;
		}

		/* discover the starting time of the operation */
	   MPI_Barrier(MPI_COMM_WORLD);
	   stim = MPI_Wtime();

    /* write data */
    ret = H5Dwrite(dataset, H5T_NATIVE_CHAR, mem_dataspace, file_dataspace,
	    H5P_DEFAULT, buf);					    
    VRFY((ret >= 0), "H5Dwrite dataset1 succeeded", !H5FATAL);

		/* discover the ending time of the operation */
	   etim = MPI_Wtime();

	   write_tim += (etim - stim);
		
		/* we are done with this "write" iteration */
	}

    /* close dataset and file */					    
    ret=H5Dclose(dataset);
    VRFY((ret >= 0), "H5Dclose succeeded", H5FATAL);
    ret=H5Fclose(fid);							    
    VRFY((ret >= 0), "H5Fclose succeeded", H5FATAL);



	/* wait for everyone to synchronize at this point */
	MPI_Barrier(MPI_COMM_WORLD);

    /* reopen the file for reading */
    fid=H5Fopen(opt_file,H5F_ACC_RDONLY,acc_tpl);
    VRFY((fid >= 0), "", H5FATAL);

    /* open the dataset */
    dataset = H5Dopen(fid, "Dataset1");
    VRFY((dataset >= 0), "H5Dopen succeeded", H5FATAL);

    /* we can re-use the same mem_dataspace and file_dataspace
     * the H5Dwrite used since the dimension size is the same.
     */

	/* we are going to repeat the read the same pattern the write used */
	for (j=0; j < opt_iter; j++) {
	    /* setup a file dataspace selection */
	    start[0] = (j*iter_jump)+(mynod*opt_block);
	    stride[0] = block[0] = opt_block;
	    count[0]= 1;
	    ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); 
	    VRFY((ret >= 0), "H5Sset_hyperslab succeeded", H5FATAL);
		/* seek to the appropriate spot give the current iteration and
		 * rank within the MPI processes */

		/* discover the start time */
	   MPI_Barrier(MPI_COMM_WORLD);
	   stim = MPI_Wtime();

    /* read data */
		/* read in the file data */
		if (!opt_correct){
    ret = H5Dread(dataset, H5T_NATIVE_CHAR, mem_dataspace, file_dataspace,
	    H5P_DEFAULT, buf);					    
		}
		else{
    ret = H5Dread(dataset, H5T_NATIVE_CHAR, mem_dataspace, file_dataspace,
	    H5P_DEFAULT, buf2);					    
		}
		myerrno = errno;
		/* discover the end time */
	   etim = MPI_Wtime();
	   read_tim += (etim - stim);
    VRFY((ret >= 0), "H5Dwrite dataset1 succeeded", !H5FATAL);


	   if (ret < 0) fprintf(stderr, "node %d, read error, loc = %Ld: %s\n",
			mynod, mynod*opt_block, strerror(myerrno));

		/* if the user wanted to check correctness, compare the write
		 * buffer to the read buffer */
		if (opt_correct && memcmp(buf, buf2, opt_block)) {
			fprintf(stderr, "node %d, correctness test failed\n", mynod);
			my_correct = 0;
			MPI_Allreduce(&my_correct, &correct, 1, MPI_INT, MPI_MIN,
				MPI_COMM_WORLD);
		}

		/* we are done with this read iteration */
	}

    /* close dataset and file */					    
    ret=H5Dclose(dataset);
    VRFY((ret >= 0), "H5Dclose succeeded", H5FATAL);
    ret=H5Fclose(fid);							    
    VRFY((ret >= 0), "H5Fclose succeeded", H5FATAL);

	/* compute the read and write times */
	MPI_Allreduce(&read_tim, &max_read_tim, 1, MPI_DOUBLE, MPI_MAX,
		MPI_COMM_WORLD);
	MPI_Allreduce(&read_tim, &min_read_tim, 1, MPI_DOUBLE, MPI_MIN,
		MPI_COMM_WORLD);
	MPI_Allreduce(&read_tim, &ave_read_tim, 1, MPI_DOUBLE, MPI_SUM,
		MPI_COMM_WORLD);

	/* calculate the average from the sum */
	ave_read_tim = ave_read_tim / nprocs; 

	MPI_Allreduce(&write_tim, &max_write_tim, 1, MPI_DOUBLE, MPI_MAX,
		MPI_COMM_WORLD);
	MPI_Allreduce(&write_tim, &min_write_tim, 1, MPI_DOUBLE, MPI_MIN,
		MPI_COMM_WORLD);
	MPI_Allreduce(&write_tim, &ave_write_tim, 1, MPI_DOUBLE, MPI_SUM,
		MPI_COMM_WORLD);

	/* calculate the average from the sum */
	ave_write_tim = ave_write_tim / nprocs; 
	
	/* print out the results on one node */
	if (mynod == 0) {
	   read_bw = ((int64_t)(opt_block*nprocs*opt_iter))/(max_read_tim*1000000.0);
	   write_bw = ((int64_t)(opt_block*nprocs*opt_iter))/(max_write_tim*1000000.0);
		
			printf("nr_procs = %d, nr_iter = %d, blk_sz = %ld\n", nprocs,
		opt_iter, (long)opt_block);
			
			printf("# total_size = %ld\n", (long)(opt_block*nprocs*opt_iter));
			
			printf("# Write:  min_time = %f, max_time = %f, mean_time = %f\n", 
				min_write_tim, max_write_tim, ave_write_tim);
			printf("# Read:  min_time = %f, max_time = %f, mean_time = %f\n", 
				min_read_tim, max_read_tim, ave_read_tim);
		
	   printf("Write bandwidth = %f Mbytes/sec\n", write_bw);
	   printf("Read bandwidth = %f Mbytes/sec\n", read_bw);
		
		if (opt_correct) {
			printf("Correctness test %s.\n", correct ? "passed" : "failed");
		}
	}


die_jar_jar_die:	

#if H5_HAVE_SETENV
/* no setenv or unsetenv */
	/* clear the environment variable if it was set earlier */
	if	(opt_pvfstab_set){
		unsetenv("PVFSTAB_FILE");
	}
#endif
	
	free(tmp);
	if (opt_correct) free(tmp2);
	MPI_Finalize();
	return(0);
}

int parse_args(int argc, char **argv)
{
	int c;
	
	while ((c = getopt(argc, argv, "s:b:i:f:p:a:c")) != EOF) {
		switch (c) {
			case 's': /* stripe */
				opt_stripe = atoi(optarg);
				break;
			case 'b': /* block size */
				opt_block = atoi(optarg);
				break;
			case 'i': /* iterations */
				opt_iter = atoi(optarg);
				break;
			case 'f': /* filename */
				strncpy(opt_file, optarg, 255);
				break;
			case 'p': /* pvfstab file */
				strncpy(opt_pvfstab, optarg, 255);
				opt_pvfstab_set = 1;
				break;
			case 'a': /* aligned allocation.
				   * syntax: -a<alignment>/<threshold>
				   * e.g., -a4096/512  allocate at 4096 bytes
				   * boundary if request size >= 512.
				   */
				{char *p;
				opt_alignment = atoi(optarg);
				if (p=(char*)strchr(optarg, '/'))
				    opt_threshold = atoi(p+1);
				}
				HDfprintf(stdout,
				    "alignment/threshold=%Hu/%Hu\n",
				     opt_alignment, opt_threshold);
				break;
			case 'c': /* correctness */
				opt_correct = 1;
				break;
			case '?': /* unknown */
			default:
				break;
		}
	}
	return(0);
}

/* Wtime() - returns current time in sec., in a double */
double Wtime()
{
	struct timeval t;
	
	gettimeofday(&t, NULL);
	return((double)t.tv_sec + (double)t.tv_usec / 1000000);
}

/*
 * Local variables:
 *  c-indent-level: 3
 *  c-basic-offset: 3
 *  tab-width: 3
 * End:
 */