summaryrefslogtreecommitdiffstats
path: root/testpar/t_bigio.c
blob: bca52b1110f5f3cf793358c0b62530622392af40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937

#include "hdf5.h"
#include "testphdf5.h"
#include "H5Dprivate.h" /* For Chunk tests */

/* FILENAME and filenames must have the same number of names */
const char *FILENAME[3] = {"bigio_test.h5", "single_rank_independent_io.h5", NULL};

/* Constants definitions */
#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */

/* Define some handy debugging shorthands, routines, ... */
/* debugging tools */

#define MAIN_PROCESS (mpi_rank_g == 0) /* define process 0 as main process */

/* Constants definitions */
#define RANK 2

#define IN_ORDER     1
#define OUT_OF_ORDER 2

#define DATASET1             "DSET1"
#define DATASET2             "DSET2"
#define DATASET3             "DSET3"
#define DATASET4             "DSET4"
#define DXFER_COLLECTIVE_IO  0x1 /* Collective IO*/
#define DXFER_INDEPENDENT_IO 0x2 /* Independent IO collectively */
#define DXFER_BIGCOUNT       (1 << 29)

#define HYPER 1
#define POINT 2
#define ALL   3

/* Dataset data type.  Int's can be easily octo dumped. */
typedef hsize_t B_DATATYPE;

int        facc_type       = FACC_MPIO; /*Test file access type */
int        dxfer_coll_type = DXFER_COLLECTIVE_IO;
size_t     bigcount        = (size_t)DXFER_BIGCOUNT;
int        nerrors         = 0;
static int mpi_size_g, mpi_rank_g;

hsize_t space_dim1 = SPACE_DIM1 * 256; // 4096
hsize_t space_dim2 = SPACE_DIM2;

static void coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option,
                           int file_selection, int mem_selection, int mode);

/*
 * Setup the coordinates for point selection.
 */
static void
set_coords(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points,
           hsize_t coords[], int order)
{
    hsize_t i, j, k = 0, m, n, s1, s2;

    if (OUT_OF_ORDER == order)
        k = (num_points * RANK) - 1;
    else if (IN_ORDER == order)
        k = 0;

    s1 = start[0];
    s2 = start[1];

    for (i = 0; i < count[0]; i++)
        for (j = 0; j < count[1]; j++)
            for (m = 0; m < block[0]; m++)
                for (n = 0; n < block[1]; n++)
                    if (OUT_OF_ORDER == order) {
                        coords[k--] = s2 + (stride[1] * j) + n;
                        coords[k--] = s1 + (stride[0] * i) + m;
                    }
                    else if (IN_ORDER == order) {
                        coords[k++] = s1 + stride[0] * i + m;
                        coords[k++] = s2 + stride[1] * j + n;
                    }
}

/*
 * Fill the dataset with trivial data for testing.
 * Assume dimension rank is 2 and data is stored contiguous.
 */
static void
fill_datasets(hsize_t start[], hsize_t block[], B_DATATYPE *dataset)
{
    B_DATATYPE *dataptr = dataset;
    hsize_t     i, j;

    /* put some trivial data in the data_array */
    for (i = 0; i < block[0]; i++) {
        for (j = 0; j < block[1]; j++) {
            *dataptr = (B_DATATYPE)((i + start[0]) * 100 + (j + start[1] + 1));
            dataptr++;
        }
    }
}

/*
 * Setup the coordinates for point selection.
 */
void
point_set(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], size_t num_points,
          hsize_t coords[], int order)
{
    hsize_t i, j, k = 0, m, n, s1, s2;

    HDcompile_assert(RANK == 2);

    if (OUT_OF_ORDER == order)
        k = (num_points * RANK) - 1;
    else if (IN_ORDER == order)
        k = 0;

    s1 = start[0];
    s2 = start[1];

    for (i = 0; i < count[0]; i++)
        for (j = 0; j < count[1]; j++)
            for (m = 0; m < block[0]; m++)
                for (n = 0; n < block[1]; n++)
                    if (OUT_OF_ORDER == order) {
                        coords[k--] = s2 + (stride[1] * j) + n;
                        coords[k--] = s1 + (stride[0] * i) + m;
                    }
                    else if (IN_ORDER == order) {
                        coords[k++] = s1 + stride[0] * i + m;
                        coords[k++] = s2 + stride[1] * j + n;
                    }

    if (VERBOSE_MED) {
        HDprintf("start[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
                 "count[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
                 "stride[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
                 "block[]=(%" PRIuHSIZE ", %" PRIuHSIZE "), "
                 "total datapoints=%" PRIuHSIZE "\n",
                 start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1],
                 block[0] * block[1] * count[0] * count[1]);
        k = 0;
        for (i = 0; i < num_points; i++) {
            HDprintf("(%d, %d)\n", (int)coords[k], (int)coords[k + 1]);
            k += 2;
        }
    }
}

/*
 * Print the content of the dataset.
 */
static void
dataset_print(hsize_t start[], hsize_t block[], B_DATATYPE *dataset)
{
    B_DATATYPE *dataptr = dataset;
    hsize_t     i, j;

    /* print the column heading */
    HDprintf("%-8s", "Cols:");
    for (j = 0; j < block[1]; j++) {
        HDprintf("%3" PRIuHSIZE " ", start[1] + j);
    }
    HDprintf("\n");

    /* print the slab data */
    for (i = 0; i < block[0]; i++) {
        HDprintf("Row %2" PRIuHSIZE ": ", i + start[0]);
        for (j = 0; j < block[1]; j++) {
            HDprintf("%" PRIuHSIZE " ", *dataptr++);
        }
        HDprintf("\n");
    }
}

/*
 * Print the content of the dataset.
 */
static int
verify_data(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], B_DATATYPE *dataset,
            B_DATATYPE *original)
{
    hsize_t i, j;
    int     vrfyerrs;

    /* print it if VERBOSE_MED */
    if (VERBOSE_MED) {
        HDprintf("verify_data dumping:::\n");
        HDprintf("start(%" PRIuHSIZE ", %" PRIuHSIZE "), "
                 "count(%" PRIuHSIZE ", %" PRIuHSIZE "), "
                 "stride(%" PRIuHSIZE ", %" PRIuHSIZE "), "
                 "block(%" PRIuHSIZE ", %" PRIuHSIZE ")\n",
                 start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1]);
        HDprintf("original values:\n");
        dataset_print(start, block, original);
        HDprintf("compared values:\n");
        dataset_print(start, block, dataset);
    }

    vrfyerrs = 0;
    for (i = 0; i < block[0]; i++) {
        for (j = 0; j < block[1]; j++) {
            if (*dataset != *original) {
                if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) {
                    HDprintf("Dataset Verify failed at [%" PRIuHSIZE "][%" PRIuHSIZE "]"
                             "(row %" PRIuHSIZE ", col %" PRIuHSIZE "): "
                             "expect %" PRIuHSIZE ", got %" PRIuHSIZE "\n",
                             i, j, i + start[0], j + start[1], *(original), *(dataset));
                }
                dataset++;
                original++;
            }
        }
    }
    if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED)
        HDprintf("[more errors ...]\n");
    if (vrfyerrs)
        HDprintf("%d errors found in verify_data\n", vrfyerrs);
    return (vrfyerrs);
}

/* Set up the selection */
static void
ccslab_set(int mpi_rank, int mpi_size, hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[],
           int mode)
{

    switch (mode) {

        case BYROW_CONT:
            /* Each process takes a slabs of rows. */
            block[0]  = 1;
            block[1]  = 1;
            stride[0] = 1;
            stride[1] = 1;
            count[0]  = space_dim1;
            count[1]  = space_dim2;
            start[0]  = (hsize_t)mpi_rank * count[0];
            start[1]  = 0;

            break;

        case BYROW_DISCONT:
            /* Each process takes several disjoint blocks. */
            block[0]  = 1;
            block[1]  = 1;
            stride[0] = 3;
            stride[1] = 3;
            count[0]  = space_dim1 / (stride[0] * block[0]);
            count[1]  = (space_dim2) / (stride[1] * block[1]);
            start[0]  = space_dim1 * (hsize_t)mpi_rank;
            start[1]  = 0;

            break;

        case BYROW_SELECTNONE:
            /* Each process takes a slabs of rows, there are
                   no selections for the last process. */
            block[0]  = 1;
            block[1]  = 1;
            stride[0] = 1;
            stride[1] = 1;
            count[0]  = ((mpi_rank >= MAX(1, (mpi_size - 2))) ? 0 : space_dim1);
            count[1]  = space_dim2;
            start[0]  = (hsize_t)mpi_rank * count[0];
            start[1]  = 0;

            break;

        case BYROW_SELECTUNBALANCE:
            /* The first one-third of the number of processes only
               select top half of the domain, The rest will select the bottom
               half of the domain. */

            block[0]  = 1;
            count[0]  = 2;
            stride[0] = (hsize_t)(space_dim1 * (hsize_t)mpi_size / 4 + 1);
            block[1]  = space_dim2;
            count[1]  = 1;
            start[1]  = 0;
            stride[1] = 1;
            if ((mpi_rank * 3) < (mpi_size * 2))
                start[0] = (hsize_t)mpi_rank;
            else
                start[0] = 1 + space_dim1 * (hsize_t)mpi_size / 2 + (hsize_t)(mpi_rank - 2 * mpi_size / 3);
            break;

        case BYROW_SELECTINCHUNK:
            /* Each process will only select one chunk */

            block[0]  = 1;
            count[0]  = 1;
            start[0]  = (hsize_t)mpi_rank * space_dim1;
            stride[0] = 1;
            block[1]  = space_dim2;
            count[1]  = 1;
            stride[1] = 1;
            start[1]  = 0;

            break;

        default:
            /* Unknown mode.  Set it to cover the whole dataset. */
            block[0]  = space_dim1 * (hsize_t)mpi_size;
            block[1]  = space_dim2;
            stride[0] = block[0];
            stride[1] = block[1];
            count[0]  = 1;
            count[1]  = 1;
            start[0]  = 0;
            start[1]  = 0;

            break;
    }
    if (VERBOSE_MED) {
        HDprintf("start[]=(%lu,%lu), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total "
                 "datapoints=%lu\n",
                 (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0],
                 (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1],
                 (unsigned long)block[0], (unsigned long)block[1],
                 (unsigned long)(block[0] * block[1] * count[0] * count[1]));
    }
}

/*
 * Fill the dataset with trivial data for testing.
 * Assume dimension rank is 2.
 */
static void
ccdataset_fill(hsize_t start[], hsize_t stride[], hsize_t count[], hsize_t block[], DATATYPE *dataset,
               int mem_selection)
{
    DATATYPE *dataptr = dataset;
    DATATYPE *tmptr;
    hsize_t   i, j, k1, k2, k = 0;
    /* put some trivial data in the data_array */
    tmptr = dataptr;

    /* assign the disjoint block (two-dimensional)data array value
       through the pointer */

    for (k1 = 0; k1 < count[0]; k1++) {
        for (i = 0; i < block[0]; i++) {
            for (k2 = 0; k2 < count[1]; k2++) {
                for (j = 0; j < block[1]; j++) {

                    if (ALL != mem_selection) {
                        dataptr = tmptr + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] +
                                           k2 * stride[1] + j);
                    }
                    else {
                        dataptr = tmptr + k;
                        k++;
                    }

                    *dataptr = (DATATYPE)(k1 + k2 + i + j);
                }
            }
        }
    }
}

/*
 * Print the first block of the content of the dataset.
 */
static void
ccdataset_print(hsize_t start[], hsize_t block[], DATATYPE *dataset)

{
    DATATYPE *dataptr = dataset;
    hsize_t   i, j;

    /* print the column heading */
    HDprintf("Print only the first block of the dataset\n");
    HDprintf("%-8s", "Cols:");
    for (j = 0; j < block[1]; j++) {
        HDprintf("%3lu ", (unsigned long)(start[1] + j));
    }
    HDprintf("\n");

    /* print the slab data */
    for (i = 0; i < block[0]; i++) {
        HDprintf("Row %2lu: ", (unsigned long)(i + start[0]));
        for (j = 0; j < block[1]; j++) {
            HDprintf("%03d ", *dataptr++);
        }
        HDprintf("\n");
    }
}

/*
 * Print the content of the dataset.
 */
static int
ccdataset_vrfy(hsize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset,
               DATATYPE *original, int mem_selection)
{
    hsize_t   i, j, k1, k2, k = 0;
    int       vrfyerrs;
    DATATYPE *dataptr, *oriptr;

    /* print it if VERBOSE_MED */
    if (VERBOSE_MED) {
        HDprintf("dataset_vrfy dumping:::\n");
        HDprintf("start(%lu, %lu), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n",
                 (unsigned long)start[0], (unsigned long)start[1], (unsigned long)count[0],
                 (unsigned long)count[1], (unsigned long)stride[0], (unsigned long)stride[1],
                 (unsigned long)block[0], (unsigned long)block[1]);
        HDprintf("original values:\n");
        ccdataset_print(start, block, original);
        HDprintf("compared values:\n");
        ccdataset_print(start, block, dataset);
    }

    vrfyerrs = 0;

    for (k1 = 0; k1 < count[0]; k1++) {
        for (i = 0; i < block[0]; i++) {
            for (k2 = 0; k2 < count[1]; k2++) {
                for (j = 0; j < block[1]; j++) {
                    if (ALL != mem_selection) {
                        dataptr = dataset + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] +
                                             k2 * stride[1] + j);
                        oriptr  = original + ((start[0] + k1 * stride[0] + i) * space_dim2 + start[1] +
                                             k2 * stride[1] + j);
                    }
                    else {
                        dataptr = dataset + k;
                        oriptr  = original + k;
                        k++;
                    }
                    if (*dataptr != *oriptr) {
                        if (vrfyerrs++ < MAX_ERR_REPORT || VERBOSE_MED) {
                            HDprintf("Dataset Verify failed at [%lu][%lu]: expect %d, got %d\n",
                                     (unsigned long)i, (unsigned long)j, *(oriptr), *(dataptr));
                        }
                    }
                }
            }
        }
    }
    if (vrfyerrs > MAX_ERR_REPORT && !VERBOSE_MED)
        HDprintf("[more errors ...]\n");
    if (vrfyerrs)
        HDprintf("%d errors found in ccdataset_vrfy\n", vrfyerrs);
    return (vrfyerrs);
}

/*
 * Example of using the parallel HDF5 library to create two datasets
 * in one HDF5 file with collective parallel access support.
 * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
 * Each process controls only a slab of size dim0 x dim1 within each
 * dataset. [Note: not so yet.  Datasets are of sizes dim0xdim1 and
 * each process controls a hyperslab within.]
 */

static void
dataset_big_write(void)
{

    hid_t       xfer_plist;     /* Dataset transfer properties list */
    hid_t       sid;            /* Dataspace ID */
    hid_t       file_dataspace; /* File dataspace ID */
    hid_t       mem_dataspace;  /* memory dataspace ID */
    hid_t       dataset;
    hsize_t     dims[RANK];                /* dataset dim sizes */
    hsize_t     start[RANK];               /* for hyperslab setting */
    hsize_t     count[RANK], stride[RANK]; /* for hyperslab setting */
    hsize_t     block[RANK];               /* for hyperslab setting */
    hsize_t    *coords = NULL;
    herr_t      ret;     /* Generic return value */
    hid_t       fid;     /* HDF5 file ID */
    hid_t       acc_tpl; /* File access templates */
    size_t      num_points;
    B_DATATYPE *wdata;

    /* allocate memory for data buffer */
    wdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE));
    VRFY_G((wdata != NULL), "wdata malloc succeeded");

    /* setup file access template */
    acc_tpl = H5Pcreate(H5P_FILE_ACCESS);
    VRFY_G((acc_tpl >= 0), "H5P_FILE_ACCESS");
    H5Pset_fapl_mpio(acc_tpl, MPI_COMM_WORLD, MPI_INFO_NULL);

    /* create the file collectively */
    fid = H5Fcreate(FILENAME[0], H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
    VRFY_G((fid >= 0), "H5Fcreate succeeded");

    /* Release file-access template */
    ret = H5Pclose(acc_tpl);
    VRFY_G((ret >= 0), "");

    /* Each process takes a slabs of rows. */
    if (mpi_rank_g == 0)
        HDprintf("\nTesting Dataset1 write by ROW\n");
    /* Create a large dataset */
    dims[0] = bigcount;
    dims[1] = (hsize_t)mpi_size_g;

    sid = H5Screate_simple(RANK, dims, NULL);
    VRFY_G((sid >= 0), "H5Screate_simple succeeded");
    dataset = H5Dcreate2(fid, DATASET1, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
    H5Sclose(sid);

    block[0]  = dims[0] / (hsize_t)mpi_size_g;
    block[1]  = dims[1];
    stride[0] = block[0];
    stride[1] = block[1];
    count[0]  = 1;
    count[1]  = 1;
    start[0]  = (hsize_t)mpi_rank_g * block[0];
    start[1]  = 0;

    /* create a file dataspace independently */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
    VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");

    /* create a memory dataspace independently */
    mem_dataspace = H5Screate_simple(RANK, block, NULL);
    VRFY_G((mem_dataspace >= 0), "");

    /* fill the local slab with some trivial data */
    fill_datasets(start, block, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
        dataset_print(start, block, wdata);
    }

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
    VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);

    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    /* Each process takes a slabs of cols. */
    if (mpi_rank_g == 0)
        HDprintf("\nTesting Dataset2 write by COL\n");
    /* Create a large dataset */
    dims[0] = bigcount;
    dims[1] = (hsize_t)mpi_size_g;

    sid = H5Screate_simple(RANK, dims, NULL);
    VRFY_G((sid >= 0), "H5Screate_simple succeeded");
    dataset = H5Dcreate2(fid, DATASET2, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
    H5Sclose(sid);

    block[0]  = dims[0];
    block[1]  = dims[1] / (hsize_t)mpi_size_g;
    stride[0] = block[0];
    stride[1] = block[1];
    count[0]  = 1;
    count[1]  = 1;
    start[0]  = 0;
    start[1]  = (hsize_t)mpi_rank_g * block[1];

    /* create a file dataspace independently */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
    VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");

    /* create a memory dataspace independently */
    mem_dataspace = H5Screate_simple(RANK, block, NULL);
    VRFY_G((mem_dataspace >= 0), "");

    /* fill the local slab with some trivial data */
    fill_datasets(start, block, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
        dataset_print(start, block, wdata);
    }

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
    VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);

    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    /* ALL selection */
    if (mpi_rank_g == 0)
        HDprintf("\nTesting Dataset3 write select ALL proc 0, NONE others\n");
    /* Create a large dataset */
    dims[0] = bigcount;
    dims[1] = 1;

    sid = H5Screate_simple(RANK, dims, NULL);
    VRFY_G((sid >= 0), "H5Screate_simple succeeded");
    dataset = H5Dcreate2(fid, DATASET3, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
    H5Sclose(sid);

    /* create a file dataspace independently */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    if (mpi_rank_g == 0) {
        ret = H5Sselect_all(file_dataspace);
        VRFY_G((ret >= 0), "H5Sset_all succeeded");
    }
    else {
        ret = H5Sselect_none(file_dataspace);
        VRFY_G((ret >= 0), "H5Sset_none succeeded");
    }

    /* create a memory dataspace independently */
    mem_dataspace = H5Screate_simple(RANK, dims, NULL);
    VRFY_G((mem_dataspace >= 0), "");
    if (mpi_rank_g != 0) {
        ret = H5Sselect_none(mem_dataspace);
        VRFY_G((ret >= 0), "H5Sset_none succeeded");
    }

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    /* fill the local slab with some trivial data */
    fill_datasets(start, dims, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
    }

    ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
    VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);

    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    /* Point selection */
    if (mpi_rank_g == 0)
        HDprintf("\nTesting Dataset4 write point selection\n");
    /* Create a large dataset */
    dims[0] = bigcount;
    dims[1] = (hsize_t)(mpi_size_g * 4);

    sid = H5Screate_simple(RANK, dims, NULL);
    VRFY_G((sid >= 0), "H5Screate_simple succeeded");
    dataset = H5Dcreate2(fid, DATASET4, H5T_NATIVE_LLONG, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dcreate2 succeeded");
    H5Sclose(sid);

    block[0]  = dims[0] / 2;
    block[1]  = 2;
    stride[0] = dims[0] / 2;
    stride[1] = 2;
    count[0]  = 1;
    count[1]  = 1;
    start[0]  = 0;
    start[1]  = dims[1] / (hsize_t)mpi_size_g * (hsize_t)mpi_rank_g;

    num_points = bigcount;

    coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t));
    VRFY_G((coords != NULL), "coords malloc succeeded");

    set_coords(start, count, stride, block, num_points, coords, IN_ORDER);
    /* create a file dataspace */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
    VRFY_G((ret >= 0), "H5Sselect_elements succeeded");

    if (coords)
        free(coords);

    fill_datasets(start, block, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
        dataset_print(start, block, wdata);
    }

    /* create a memory dataspace */
    /* Warning: H5Screate_simple requires an array of hsize_t elements
     * even if we only pass only a single value.  Attempting anything else
     * appears to cause problems with 32 bit compilers.
     */
    mem_dataspace = H5Screate_simple(1, dims, NULL);
    VRFY_G((mem_dataspace >= 0), "");

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "H5Pcreate xfer succeeded");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pset_dxpl_mpio succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    ret = H5Dwrite(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, wdata);
    VRFY_G((ret >= 0), "H5Dwrite dataset1 succeeded");

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);

    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    HDfree(wdata);
    H5Fclose(fid);
}

/*
 * Example of using the parallel HDF5 library to read two datasets
 * in one HDF5 file with collective parallel access support.
 * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1.
 * Each process controls only a slab of size dim0 x dim1 within each
 * dataset. [Note: not so yet.  Datasets are of sizes dim0xdim1 and
 * each process controls a hyperslab within.]
 */

static void
dataset_big_read(void)
{
    hid_t       fid;            /* HDF5 file ID */
    hid_t       acc_tpl;        /* File access templates */
    hid_t       xfer_plist;     /* Dataset transfer properties list */
    hid_t       file_dataspace; /* File dataspace ID */
    hid_t       mem_dataspace;  /* memory dataspace ID */
    hid_t       dataset;
    B_DATATYPE *rdata = NULL;              /* data buffer */
    B_DATATYPE *wdata = NULL;              /* expected data buffer */
    hsize_t     dims[RANK];                /* dataset dim sizes */
    hsize_t     start[RANK];               /* for hyperslab setting */
    hsize_t     count[RANK], stride[RANK]; /* for hyperslab setting */
    hsize_t     block[RANK];               /* for hyperslab setting */
    size_t      num_points;
    hsize_t    *coords = NULL;
    herr_t      ret; /* Generic return value */

    /* allocate memory for data buffer */
    rdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE));
    VRFY_G((rdata != NULL), "rdata malloc succeeded");
    wdata = (B_DATATYPE *)HDmalloc(bigcount * sizeof(B_DATATYPE));
    VRFY_G((wdata != NULL), "wdata malloc succeeded");

    HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE));

    /* setup file access template */
    acc_tpl = H5Pcreate(H5P_FILE_ACCESS);
    VRFY_G((acc_tpl >= 0), "H5P_FILE_ACCESS");
    H5Pset_fapl_mpio(acc_tpl, MPI_COMM_WORLD, MPI_INFO_NULL);

    /* open the file collectively */
    fid = H5Fopen(FILENAME[0], H5F_ACC_RDONLY, acc_tpl);
    VRFY_G((fid >= 0), "H5Fopen succeeded");

    /* Release file-access template */
    ret = H5Pclose(acc_tpl);
    VRFY_G((ret >= 0), "");

    if (mpi_rank_g == 0)
        HDprintf("\nRead Testing Dataset1 by COL\n");

    dataset = H5Dopen2(fid, DATASET1, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dopen2 succeeded");

    dims[0] = bigcount;
    dims[1] = (hsize_t)mpi_size_g;
    /* Each process takes a slabs of cols. */
    block[0]  = dims[0];
    block[1]  = dims[1] / (hsize_t)mpi_size_g;
    stride[0] = block[0];
    stride[1] = block[1];
    count[0]  = 1;
    count[1]  = 1;
    start[0]  = 0;
    start[1]  = (hsize_t)mpi_rank_g * block[1];

    /* create a file dataspace independently */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
    VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");

    /* create a memory dataspace independently */
    mem_dataspace = H5Screate_simple(RANK, block, NULL);
    VRFY_G((mem_dataspace >= 0), "");

    /* fill dataset with test data */
    fill_datasets(start, block, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
    }

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    /* read data collectively */
    ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
    VRFY_G((ret >= 0), "H5Dread dataset1 succeeded");

    /* verify the read data with original expected data */
    ret = verify_data(start, count, stride, block, rdata, wdata);
    if (ret) {
        HDfprintf(stderr, "verify failed\n");
        exit(1);
    }

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);
    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    if (mpi_rank_g == 0)
        HDprintf("\nRead Testing Dataset2 by ROW\n");
    HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE));
    dataset = H5Dopen2(fid, DATASET2, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dopen2 succeeded");

    dims[0] = bigcount;
    dims[1] = (hsize_t)mpi_size_g;
    /* Each process takes a slabs of rows. */
    block[0]  = dims[0] / (hsize_t)mpi_size_g;
    block[1]  = dims[1];
    stride[0] = block[0];
    stride[1] = block[1];
    count[0]  = 1;
    count[1]  = 1;
    start[0]  = (hsize_t)mpi_rank_g * block[0];
    start[1]  = 0;

    /* create a file dataspace independently */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    ret = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
    VRFY_G((ret >= 0), "H5Sset_hyperslab succeeded");

    /* create a memory dataspace independently */
    mem_dataspace = H5Screate_simple(RANK, block, NULL);
    VRFY_G((mem_dataspace >= 0), "");

    /* fill dataset with test data */
    fill_datasets(start, block, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
    }

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    /* read data collectively */
    ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
    VRFY_G((ret >= 0), "H5Dread dataset2 succeeded");

    /* verify the read data with original expected data */
    ret = verify_data(start, count, stride, block, rdata, wdata);
    if (ret) {
        HDfprintf(stderr, "verify failed\n");
        exit(1);
    }

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);
    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    if (mpi_rank_g == 0)
        HDprintf("\nRead Testing Dataset3 read select ALL proc 0, NONE others\n");
    HDmemset(rdata, 0, bigcount * sizeof(B_DATATYPE));
    dataset = H5Dopen2(fid, DATASET3, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dopen2 succeeded");

    dims[0] = bigcount;
    dims[1] = 1;

    /* create a file dataspace independently */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    if (mpi_rank_g == 0) {
        ret = H5Sselect_all(file_dataspace);
        VRFY_G((ret >= 0), "H5Sset_all succeeded");
    }
    else {
        ret = H5Sselect_none(file_dataspace);
        VRFY_G((ret >= 0), "H5Sset_none succeeded");
    }

    /* create a memory dataspace independently */
    mem_dataspace = H5Screate_simple(RANK, dims, NULL);
    VRFY_G((mem_dataspace >= 0), "");
    if (mpi_rank_g != 0) {
        ret = H5Sselect_none(mem_dataspace);
        VRFY_G((ret >= 0), "H5Sset_none succeeded");
    }

    /* fill dataset with test data */
    fill_datasets(start, dims, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
    }

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    /* read data collectively */
    ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
    VRFY_G((ret >= 0), "H5Dread dataset3 succeeded");

    if (mpi_rank_g == 0) {
        /* verify the read data with original expected data */
        ret = verify_data(start, count, stride, block, rdata, wdata);
        if (ret) {
            HDfprintf(stderr, "verify failed\n");
            exit(1);
        }
    }

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);
    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    if (mpi_rank_g == 0)
        HDprintf("\nRead Testing Dataset4 with Point selection\n");
    dataset = H5Dopen2(fid, DATASET4, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "H5Dopen2 succeeded");

    dims[0] = bigcount;
    dims[1] = (hsize_t)(mpi_size_g * 4);

    block[0]  = dims[0] / 2;
    block[1]  = 2;
    stride[0] = dims[0] / 2;
    stride[1] = 2;
    count[0]  = 1;
    count[1]  = 1;
    start[0]  = 0;
    start[1]  = dims[1] / (hsize_t)mpi_size_g * (hsize_t)mpi_rank_g;

    fill_datasets(start, block, wdata);
    MESG("data_array initialized");
    if (VERBOSE_MED) {
        MESG("data_array created");
        dataset_print(start, block, wdata);
    }

    num_points = bigcount;

    coords = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t));
    VRFY_G((coords != NULL), "coords malloc succeeded");

    set_coords(start, count, stride, block, num_points, coords, IN_ORDER);
    /* create a file dataspace */
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "H5Dget_space succeeded");
    ret = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
    VRFY_G((ret >= 0), "H5Sselect_elements succeeded");

    if (coords)
        HDfree(coords);

    /* create a memory dataspace */
    /* Warning: H5Screate_simple requires an array of hsize_t elements
     * even if we only pass only a single value.  Attempting anything else
     * appears to cause problems with 32 bit compilers.
     */
    mem_dataspace = H5Screate_simple(1, dims, NULL);
    VRFY_G((mem_dataspace >= 0), "");

    /* set up the collective transfer properties list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "");
    ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((ret >= 0), "H5Pcreate xfer succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((ret >= 0), "set independent IO collectively succeeded");
    }

    /* read data collectively */
    ret = H5Dread(dataset, H5T_NATIVE_LLONG, mem_dataspace, file_dataspace, xfer_plist, rdata);
    VRFY_G((ret >= 0), "H5Dread dataset1 succeeded");

    ret = verify_data(start, count, stride, block, rdata, wdata);
    if (ret) {
        HDfprintf(stderr, "verify failed\n");
        exit(1);
    }

    /* release all temporary handles. */
    H5Sclose(file_dataspace);
    H5Sclose(mem_dataspace);
    H5Pclose(xfer_plist);
    ret = H5Dclose(dataset);
    VRFY_G((ret >= 0), "H5Dclose1 succeeded");

    HDfree(wdata);
    HDfree(rdata);

    wdata = NULL;
    rdata = NULL;
    /* We never wrote Dataset5 in the write section, so we can't
     * expect to read it...
     */
    file_dataspace = -1;
    mem_dataspace  = -1;
    xfer_plist     = -1;
    dataset        = -1;

    /* release all temporary handles. */
    if (file_dataspace != -1)
        H5Sclose(file_dataspace);
    if (mem_dataspace != -1)
        H5Sclose(mem_dataspace);
    if (xfer_plist != -1)
        H5Pclose(xfer_plist);
    if (dataset != -1) {
        ret = H5Dclose(dataset);
        VRFY_G((ret >= 0), "H5Dclose1 succeeded");
    }
    H5Fclose(fid);

    /* release data buffers */
    if (rdata)
        HDfree(rdata);
    if (wdata)
        HDfree(wdata);

} /* dataset_large_readAll */

static void
single_rank_independent_io(void)
{
    if (mpi_rank_g == 0)
        HDprintf("\nSingle Rank Independent I/O\n");

    if (MAIN_PROCESS) {
        hsize_t  dims[1];
        hid_t    file_id   = -1;
        hid_t    fapl_id   = -1;
        hid_t    dset_id   = -1;
        hid_t    fspace_id = -1;
        herr_t   ret;
        int     *data = NULL;
        uint64_t i;

        fapl_id = H5Pcreate(H5P_FILE_ACCESS);
        VRFY_G((fapl_id >= 0), "H5P_FILE_ACCESS");

        H5Pset_fapl_mpio(fapl_id, MPI_COMM_SELF, MPI_INFO_NULL);
        file_id = H5Fcreate(FILENAME[1], H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);
        VRFY_G((file_id >= 0), "H5Dcreate2 succeeded");

        /*
         * Calculate the number of elements needed to exceed
         * MPI's INT_MAX limitation
         */
        dims[0] = (INT_MAX / sizeof(int)) + 10;

        fspace_id = H5Screate_simple(1, dims, NULL);
        VRFY_G((fspace_id >= 0), "H5Screate_simple fspace_id succeeded");

        /*
         * Create and write to a >2GB dataset from a single rank.
         */
        dset_id = H5Dcreate2(file_id, "test_dset", H5T_NATIVE_INT, fspace_id, H5P_DEFAULT, H5P_DEFAULT,
                             H5P_DEFAULT);

        VRFY_G((dset_id >= 0), "H5Dcreate2 succeeded");

        data = malloc(dims[0] * sizeof(int));

        /* Initialize data */
        for (i = 0; i < dims[0]; i++)
            data[i] = (int)(i % (uint64_t)DXFER_BIGCOUNT);

        /* Write data */
        ret = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_BLOCK, fspace_id, H5P_DEFAULT, data);
        VRFY_G((ret >= 0), "H5Dwrite succeeded");

        /* Wipe buffer */
        HDmemset(data, 0, dims[0] * sizeof(int));

        /* Read data back */
        ret = H5Dread(dset_id, H5T_NATIVE_INT, H5S_BLOCK, fspace_id, H5P_DEFAULT, data);
        VRFY_G((ret >= 0), "H5Dread succeeded");

        /* Verify data */
        for (i = 0; i < dims[0]; i++)
            if (data[i] != (int)(i % (uint64_t)DXFER_BIGCOUNT)) {
                HDfprintf(stderr, "verify failed\n");
                exit(1);
            }

        free(data);
        H5Sclose(fspace_id);
        H5Dclose(dset_id);
        H5Fclose(file_id);

        H5Fdelete(FILENAME[1], fapl_id);

        H5Pclose(fapl_id);
    }
    MPI_Barrier(MPI_COMM_WORLD);
}

/*
 * Create the appropriate File access property list
 */
hid_t
create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type)
{
    hid_t  ret_pl = -1;
    herr_t ret;      /* generic return value */
    int    mpi_rank; /* mpi variables */

    /* need the rank for error checking macros */
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

    ret_pl = H5Pcreate(H5P_FILE_ACCESS);
    VRFY_G((ret_pl >= 0), "H5P_FILE_ACCESS");

    if (l_facc_type == FACC_DEFAULT)
        return (ret_pl);

    if (l_facc_type == FACC_MPIO) {
        /* set Parallel access with communicator */
        ret = H5Pset_fapl_mpio(ret_pl, comm, info);
        VRFY_G((ret >= 0), "");
        ret = H5Pset_all_coll_metadata_ops(ret_pl, TRUE);
        VRFY_G((ret >= 0), "");
        ret = H5Pset_coll_metadata_write(ret_pl, TRUE);
        VRFY_G((ret >= 0), "");
        return (ret_pl);
    }

    if (l_facc_type == (FACC_MPIO | FACC_SPLIT)) {
        hid_t mpio_pl;

        mpio_pl = H5Pcreate(H5P_FILE_ACCESS);
        VRFY_G((mpio_pl >= 0), "");
        /* set Parallel access with communicator */
        ret = H5Pset_fapl_mpio(mpio_pl, comm, info);
        VRFY_G((ret >= 0), "");

        /* setup file access template */
        ret_pl = H5Pcreate(H5P_FILE_ACCESS);
        VRFY_G((ret_pl >= 0), "");
        /* set Parallel access with communicator */
        ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl);
        VRFY_G((ret >= 0), "H5Pset_fapl_split succeeded");
        H5Pclose(mpio_pl);
        return (ret_pl);
    }

    /* unknown file access types */
    return (ret_pl);
}

/*-------------------------------------------------------------------------
 * Function:    coll_chunk1
 *
 * Purpose:    Wrapper to test the collective chunk IO for regular JOINT
                selection with a single chunk
 *
 * Return:    Success:    0
 *
 *        Failure:    -1
 *
 * Programmer:    Unknown
 *        July 12th, 2004
 *
 *-------------------------------------------------------------------------
 */

/* ------------------------------------------------------------------------
 *  Descriptions for the selection: One big singular selection inside one chunk
 *  Two dimensions,
 *
 *  dim1       = space_dim1(5760)*mpi_size
 *  dim2       = space_dim2(3)
 *  chunk_dim1 = dim1
 *  chunk_dim2 = dim2
 *  block      = 1 for all dimensions
 *  stride     = 1 for all dimensions
 *  count0     = space_dim1(5760)
 *  count1     = space_dim2(3)
 *  start0     = mpi_rank*space_dim1
 *  start1     = 0
 * ------------------------------------------------------------------------
 */

void
coll_chunk1(void)
{
    const char *filename = FILENAME[0];
    if (mpi_rank_g == 0)
        HDprintf("\nCollective chunk I/O Test #1\n");

    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, HYPER, POINT, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, ALL, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, POINT, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, HYPER, OUT_OF_ORDER);

    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, ALL, IN_ORDER);
    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, POINT, IN_ORDER);
    coll_chunktest(filename, 1, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER);
}

/*-------------------------------------------------------------------------
 * Function:    coll_chunk2
 *
 * Purpose:    Wrapper to test the collective chunk IO for regular DISJOINT
                selection with a single chunk
 *
 * Return:    Success:    0
 *
 *        Failure:    -1
 *
 * Programmer:    Unknown
 *        July 12th, 2004
 *
 *-------------------------------------------------------------------------
 */

/* ------------------------------------------------------------------------
 *  Descriptions for the selection: many disjoint selections inside one chunk
 *  Two dimensions,
 *
 *  dim1       = space_dim1*mpi_size(5760)
 *  dim2       = space_dim2(3)
 *  chunk_dim1 = dim1
 *  chunk_dim2 = dim2
 *  block      = 1 for all dimensions
 *  stride     = 3 for all dimensions
 *  count0     = space_dim1/stride0(5760/3)
 *  count1     = space_dim2/stride(3/3 = 1)
 *  start0     = mpi_rank*space_dim1
 *  start1     = 0
 *
 * ------------------------------------------------------------------------
 */
void
coll_chunk2(void)
{
    const char *filename = FILENAME[0];
    if (mpi_rank_g == 0)
        HDprintf("\nCollective chunk I/O Test #2\n");

    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, HYPER, POINT, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, ALL, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, POINT, OUT_OF_ORDER);
    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, HYPER, OUT_OF_ORDER);

    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, ALL, IN_ORDER);
    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, POINT, IN_ORDER);
    coll_chunktest(filename, 1, BYROW_DISCONT, API_NONE, POINT, HYPER, IN_ORDER);
}

/*-------------------------------------------------------------------------
 * Function:    coll_chunk3
 *
 * Purpose:    Wrapper to test the collective chunk IO for regular JOINT
                selection with at least number of 2*mpi_size chunks
 *
 * Return:    Success:    0
 *
 *        Failure:    -1
 *
 * Programmer:    Unknown
 *        July 12th, 2004
 *
 *-------------------------------------------------------------------------
 */

/* ------------------------------------------------------------------------
 *  Descriptions for the selection: one singular selection across many chunks
 *  Two dimensions, Num of chunks = 2* mpi_size
 *
 *  dim1       = space_dim1*mpi_size
 *  dim2       = space_dim2(3)
 *  chunk_dim1 = space_dim1
 *  chunk_dim2 = dim2/2
 *  block      = 1 for all dimensions
 *  stride     = 1 for all dimensions
 *  count0     = space_dim1
 *  count1     = space_dim2(3)
 *  start0     = mpi_rank*space_dim1
 *  start1     = 0
 *
 * ------------------------------------------------------------------------
 */

void
coll_chunk3(void)
{
    const char *filename = FILENAME[0];
    if (mpi_rank_g == 0)
        HDprintf("\nCollective chunk I/O Test #3\n");

    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, HYPER, HYPER, OUT_OF_ORDER);
    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, HYPER, POINT, OUT_OF_ORDER);
    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, ALL, OUT_OF_ORDER);
    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, POINT, OUT_OF_ORDER);
    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, HYPER, OUT_OF_ORDER);

    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, ALL, IN_ORDER);
    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, POINT, IN_ORDER);
    coll_chunktest(filename, mpi_size_g, BYROW_CONT, API_NONE, POINT, HYPER, IN_ORDER);
}

//-------------------------------------------------------------------------
// Borrowed/Modified (slightly) from t_coll_chunk.c
/*-------------------------------------------------------------------------
 * Function:    coll_chunktest
 *
 * Purpose:     The real testing routine for regular selection of collective
                chunking storage
                testing both write and read,
        If anything fails, it may be read or write. There is no
        separation test between read and write.
 *
 * Return:    Success:    0
 *
 *        Failure:    -1
 *
 * Programmer:    Unknown
 *        July 12th, 2004
 *
 *-------------------------------------------------------------------------
 */

static void
coll_chunktest(const char *filename, int chunk_factor, int select_factor, int api_option, int file_selection,
               int mem_selection, int mode)
{
    hid_t file, dataset, file_dataspace, mem_dataspace;
    hid_t acc_plist, xfer_plist, crp_plist;

    hsize_t dims[RANK], chunk_dims[RANK];
    int    *data_array1  = NULL;
    int    *data_origin1 = NULL;

    hsize_t start[RANK], count[RANK], stride[RANK], block[RANK];

#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
    unsigned prop_value;
#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */

    herr_t   status;
    MPI_Comm comm = MPI_COMM_WORLD;
    MPI_Info info = MPI_INFO_NULL;

    size_t   num_points;    /* for point selection */
    hsize_t *coords = NULL; /* for point selection */

    /* Create the data space */

    acc_plist = create_faccess_plist(comm, info, facc_type);
    VRFY_G((acc_plist >= 0), "");

    file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_plist);
    VRFY_G((file >= 0), "H5Fcreate succeeded");

    status = H5Pclose(acc_plist);
    VRFY_G((status >= 0), "");

    /* setup dimensionality object */
    dims[0] = space_dim1 * (hsize_t)mpi_size_g;
    dims[1] = space_dim2;

    /* allocate memory for data buffer */
    data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int));
    VRFY_G((data_array1 != NULL), "data_array1 malloc succeeded");

    /* set up dimensions of the slab this process accesses */
    ccslab_set(mpi_rank_g, mpi_size_g, start, count, stride, block, select_factor);

    /* set up the coords array selection */
    num_points = block[0] * block[1] * count[0] * count[1];
    coords     = (hsize_t *)HDmalloc(num_points * RANK * sizeof(hsize_t));
    VRFY_G((coords != NULL), "coords malloc succeeded");
    point_set(start, count, stride, block, num_points, coords, mode);

    /* Warning: H5Screate_simple requires an array of hsize_t elements
     * even if we only pass only a single value.  Attempting anything else
     * appears to cause problems with 32 bit compilers.
     */
    file_dataspace = H5Screate_simple(2, dims, NULL);
    VRFY_G((file_dataspace >= 0), "file dataspace created succeeded");

    if (ALL != mem_selection) {
        mem_dataspace = H5Screate_simple(2, dims, NULL);
        VRFY_G((mem_dataspace >= 0), "mem dataspace created succeeded");
    }
    else {
        /* Putting the warning about H5Screate_simple (above) into practice... */
        hsize_t dsdims[1] = {num_points};
        mem_dataspace     = H5Screate_simple(1, dsdims, NULL);
        VRFY_G((mem_dataspace >= 0), "mem_dataspace create succeeded");
    }

    crp_plist = H5Pcreate(H5P_DATASET_CREATE);
    VRFY_G((crp_plist >= 0), "");

    /* Set up chunk information.  */
    chunk_dims[0] = dims[0] / (hsize_t)chunk_factor;

    /* to decrease the testing time, maintain bigger chunk size */
    (chunk_factor == 1) ? (chunk_dims[1] = space_dim2) : (chunk_dims[1] = space_dim2 / 2);
    status = H5Pset_chunk(crp_plist, 2, chunk_dims);
    VRFY_G((status >= 0), "chunk creation property list succeeded");

    dataset = H5Dcreate2(file, DSET_COLLECTIVE_CHUNK_NAME, H5T_NATIVE_INT, file_dataspace, H5P_DEFAULT,
                         crp_plist, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "dataset created succeeded");

    status = H5Pclose(crp_plist);
    VRFY_G((status >= 0), "");

    /*put some trivial data in the data array */
    ccdataset_fill(start, stride, count, block, data_array1, mem_selection);

    MESG("data_array initialized");

    switch (file_selection) {
        case HYPER:
            status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
            VRFY_G((status >= 0), "hyperslab selection succeeded");
            break;

        case POINT:
            if (num_points) {
                status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
                VRFY_G((status >= 0), "Element selection succeeded");
            }
            else {
                status = H5Sselect_none(file_dataspace);
                VRFY_G((status >= 0), "none selection succeeded");
            }
            break;

        case ALL:
            status = H5Sselect_all(file_dataspace);
            VRFY_G((status >= 0), "H5Sselect_all succeeded");
            break;
    }

    switch (mem_selection) {
        case HYPER:
            status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
            VRFY_G((status >= 0), "hyperslab selection succeeded");
            break;

        case POINT:
            if (num_points) {
                status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords);
                VRFY_G((status >= 0), "Element selection succeeded");
            }
            else {
                status = H5Sselect_none(mem_dataspace);
                VRFY_G((status >= 0), "none selection succeeded");
            }
            break;

        case ALL:
            status = H5Sselect_all(mem_dataspace);
            VRFY_G((status >= 0), "H5Sselect_all succeeded");
            break;
    }

    /* set up the collective transfer property list */
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "");

    status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((status >= 0), "MPIO collective transfer property succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((status >= 0), "set independent IO collectively succeeded");
    }

    switch (api_option) {
        case API_LINK_HARD:
            status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_ONE_IO);
            VRFY_G((status >= 0), "collective chunk optimization succeeded");
            break;

        case API_MULTI_HARD:
            status = H5Pset_dxpl_mpio_chunk_opt(xfer_plist, H5FD_MPIO_CHUNK_MULTI_IO);
            VRFY_G((status >= 0), "collective chunk optimization succeeded ");
            break;

        case API_LINK_TRUE:
            status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 2);
            VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
            break;

        case API_LINK_FALSE:
            status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 6);
            VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
            break;

        case API_MULTI_COLL:
            status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */
            VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
            status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 50);
            VRFY_G((status >= 0), "collective chunk optimization set chunk ratio succeeded");
            break;

        case API_MULTI_IND:
            status = H5Pset_dxpl_mpio_chunk_opt_num(xfer_plist, 8); /* make sure it is using multi-chunk IO */
            VRFY_G((status >= 0), "collective chunk optimization set chunk number succeeded");
            status = H5Pset_dxpl_mpio_chunk_opt_ratio(xfer_plist, 100);
            VRFY_G((status >= 0), "collective chunk optimization set chunk ratio succeeded");
            break;

        default:;
    }

#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
    if (facc_type == FACC_MPIO) {
        switch (api_option) {
            case API_LINK_HARD:
                prop_value = H5D_XFER_COLL_CHUNK_DEF;
                status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE,
                                    &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
                VRFY_G((status >= 0), "testing property list inserted succeeded");
                break;

            case API_MULTI_HARD:
                prop_value = H5D_XFER_COLL_CHUNK_DEF;
                status = H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, H5D_XFER_COLL_CHUNK_SIZE,
                                    &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
                VRFY_G((status >= 0), "testing property list inserted succeeded");
                break;

            case API_LINK_TRUE:
                prop_value = H5D_XFER_COLL_CHUNK_DEF;
                status =
                    H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, H5D_XFER_COLL_CHUNK_SIZE,
                               &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
                VRFY_G((status >= 0), "testing property list inserted succeeded");
                break;

            case API_LINK_FALSE:
                prop_value = H5D_XFER_COLL_CHUNK_DEF;
                status =
                    H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, H5D_XFER_COLL_CHUNK_SIZE,
                               &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
                VRFY_G((status >= 0), "testing property list inserted succeeded");
                break;

            case API_MULTI_COLL:
                prop_value = H5D_XFER_COLL_CHUNK_DEF;
                status =
                    H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME,
                               H5D_XFER_COLL_CHUNK_SIZE, &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
                VRFY_G((status >= 0), "testing property list inserted succeeded");
                break;

            case API_MULTI_IND:
                prop_value = H5D_XFER_COLL_CHUNK_DEF;
                status =
                    H5Pinsert2(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, H5D_XFER_COLL_CHUNK_SIZE,
                               &prop_value, NULL, NULL, NULL, NULL, NULL, NULL);
                VRFY_G((status >= 0), "testing property list inserted succeeded");
                break;

            default:;
        }
    }
#endif

    /* write data collectively */
    status = H5Dwrite(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1);
    VRFY_G((status >= 0), "dataset write succeeded");

#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
    if (facc_type == FACC_MPIO) {
        switch (api_option) {
            case API_LINK_HARD:
                status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_HARD_NAME, &prop_value);
                VRFY_G((status >= 0), "testing property list get succeeded");
                VRFY_G((prop_value == 0), "API to set LINK COLLECTIVE IO directly succeeded");
                break;

            case API_MULTI_HARD:
                status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_HARD_NAME, &prop_value);
                VRFY_G((status >= 0), "testing property list get succeeded");
                VRFY_G((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO optimization succeeded");
                break;

            case API_LINK_TRUE:
                status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_TRUE_NAME, &prop_value);
                VRFY_G((status >= 0), "testing property list get succeeded");
                VRFY_G((prop_value == 0), "API to set LINK COLLECTIVE IO succeeded");
                break;

            case API_LINK_FALSE:
                status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_LINK_NUM_FALSE_NAME, &prop_value);
                VRFY_G((status >= 0), "testing property list get succeeded");
                VRFY_G((prop_value == 0), "API to set LINK IO transferring to multi-chunk IO succeeded");
                break;

            case API_MULTI_COLL:
                status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_COLL_NAME, &prop_value);
                VRFY_G((status >= 0), "testing property list get succeeded");
                VRFY_G((prop_value == 0), "API to set MULTI-CHUNK COLLECTIVE IO with optimization succeeded");
                break;

            case API_MULTI_IND:
                status = H5Pget(xfer_plist, H5D_XFER_COLL_CHUNK_MULTI_RATIO_IND_NAME, &prop_value);
                VRFY_G((status >= 0), "testing property list get succeeded");
                VRFY_G((prop_value == 0),
                       "API to set MULTI-CHUNK IO transferring to independent IO  succeeded");
                break;

            default:;
        }
    }
#endif

    status = H5Dclose(dataset);
    VRFY_G((status >= 0), "");

    status = H5Pclose(xfer_plist);
    VRFY_G((status >= 0), "property list closed");

    status = H5Sclose(file_dataspace);
    VRFY_G((status >= 0), "");

    status = H5Sclose(mem_dataspace);
    VRFY_G((status >= 0), "");

    status = H5Fclose(file);
    VRFY_G((status >= 0), "");

    if (data_array1)
        HDfree(data_array1);

    /* Use collective read to verify the correctness of collective write. */

    /* allocate memory for data buffer */
    data_array1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int));
    VRFY_G((data_array1 != NULL), "data_array1 malloc succeeded");

    /* allocate memory for data buffer */
    data_origin1 = (int *)HDmalloc(dims[0] * dims[1] * sizeof(int));
    VRFY_G((data_origin1 != NULL), "data_origin1 malloc succeeded");

    acc_plist = create_faccess_plist(comm, info, facc_type);
    VRFY_G((acc_plist >= 0), "MPIO creation property list succeeded");

    file = H5Fopen(FILENAME[0], H5F_ACC_RDONLY, acc_plist);
    VRFY_G((file >= 0), "H5Fcreate succeeded");

    status = H5Pclose(acc_plist);
    VRFY_G((status >= 0), "");

    /* open the collective dataset*/
    dataset = H5Dopen2(file, DSET_COLLECTIVE_CHUNK_NAME, H5P_DEFAULT);
    VRFY_G((dataset >= 0), "");

    /* set up dimensions of the slab this process accesses */
    ccslab_set(mpi_rank_g, mpi_size_g, start, count, stride, block, select_factor);

    /* obtain the file and mem dataspace*/
    file_dataspace = H5Dget_space(dataset);
    VRFY_G((file_dataspace >= 0), "");

    if (ALL != mem_selection) {
        mem_dataspace = H5Dget_space(dataset);
        VRFY_G((mem_dataspace >= 0), "");
    }
    else {
        /* Warning: H5Screate_simple requires an array of hsize_t elements
         * even if we only pass only a single value.  Attempting anything else
         * appears to cause problems with 32 bit compilers.
         */
        hsize_t dsdims[1] = {num_points};
        mem_dataspace     = H5Screate_simple(1, dsdims, NULL);
        VRFY_G((mem_dataspace >= 0), "mem_dataspace create succeeded");
    }

    switch (file_selection) {
        case HYPER:
            status = H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block);
            VRFY_G((status >= 0), "hyperslab selection succeeded");
            break;

        case POINT:
            if (num_points) {
                status = H5Sselect_elements(file_dataspace, H5S_SELECT_SET, num_points, coords);
                VRFY_G((status >= 0), "Element selection succeeded");
            }
            else {
                status = H5Sselect_none(file_dataspace);
                VRFY_G((status >= 0), "none selection succeeded");
            }
            break;

        case ALL:
            status = H5Sselect_all(file_dataspace);
            VRFY_G((status >= 0), "H5Sselect_all succeeded");
            break;
    }

    switch (mem_selection) {
        case HYPER:
            status = H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block);
            VRFY_G((status >= 0), "hyperslab selection succeeded");
            break;

        case POINT:
            if (num_points) {
                status = H5Sselect_elements(mem_dataspace, H5S_SELECT_SET, num_points, coords);
                VRFY_G((status >= 0), "Element selection succeeded");
            }
            else {
                status = H5Sselect_none(mem_dataspace);
                VRFY_G((status >= 0), "none selection succeeded");
            }
            break;

        case ALL:
            status = H5Sselect_all(mem_dataspace);
            VRFY_G((status >= 0), "H5Sselect_all succeeded");
            break;
    }

    /* fill dataset with test data */
    ccdataset_fill(start, stride, count, block, data_origin1, mem_selection);
    xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY_G((xfer_plist >= 0), "");

    status = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
    VRFY_G((status >= 0), "MPIO collective transfer property succeeded");
    if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
        status = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
        VRFY_G((status >= 0), "set independent IO collectively succeeded");
    }

    status = H5Dread(dataset, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1);
    VRFY_G((status >= 0), "dataset read succeeded");

    /* verify the read data with original expected data */
    status = ccdataset_vrfy(start, count, stride, block, data_array1, data_origin1, mem_selection);
    if (status)
        nerrors++;

    status = H5Pclose(xfer_plist);
    VRFY_G((status >= 0), "property list closed");

    /* close dataset collectively */
    status = H5Dclose(dataset);
    VRFY_G((status >= 0), "H5Dclose");

    /* release all IDs created */
    status = H5Sclose(file_dataspace);
    VRFY_G((status >= 0), "H5Sclose");

    status = H5Sclose(mem_dataspace);
    VRFY_G((status >= 0), "H5Sclose");

    /* close the file collectively */
    status = H5Fclose(file);
    VRFY_G((status >= 0), "H5Fclose");

    /* release data buffers */
    if (coords)
        HDfree(coords);
    if (data_array1)
        HDfree(data_array1);
    if (data_origin1)
        HDfree(data_origin1);
}

int
main(int argc, char **argv)
{
    hsize_t newsize = 1048576;
    /* Set the bigio processing limit to be 'newsize' bytes */
    hsize_t oldsize = H5_mpi_set_bigio_count(newsize);

    /* Having set the bigio handling to a size that is manageable,
     * we'll set our 'bigcount' variable to be 2X that limit so
     * that we try to ensure that our bigio handling is actually
     * invoked and tested.
     */
    if (newsize != oldsize)
        bigcount = newsize * 2;

    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &mpi_size_g);
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank_g);

    /* Attempt to turn off atexit post processing so that in case errors
     * happen during the test and the process is aborted, it will not get
     * hang in the atexit post processing in which it may try to make MPI
     * calls.  By then, MPI calls may not work.
     */
    if (H5dont_atexit() < 0)
        HDprintf("Failed to turn off atexit processing. Continue.\n");

    /* set alarm. */
    TestAlarmOn();

    dataset_big_write();
    MPI_Barrier(MPI_COMM_WORLD);

    dataset_big_read();
    MPI_Barrier(MPI_COMM_WORLD);

    coll_chunk1();
    MPI_Barrier(MPI_COMM_WORLD);
    coll_chunk2();
    MPI_Barrier(MPI_COMM_WORLD);
    coll_chunk3();
    MPI_Barrier(MPI_COMM_WORLD);

    /*
     * Reset big count for the next test, as it
     * doesn't use the functionality in the same
     * way as the previous tests.
     */
    H5_mpi_set_bigio_count(oldsize);
    single_rank_independent_io();

    /* turn off alarm */
    TestAlarmOff();

    if (mpi_rank_g == 0) {
        hid_t fapl_id = H5Pcreate(H5P_FILE_ACCESS);

        H5Pset_fapl_mpio(fapl_id, MPI_COMM_SELF, MPI_INFO_NULL);

        if (H5Fdelete(FILENAME[0], fapl_id) < 0)
            nerrors++;

        H5Pclose(fapl_id);
    }

    /* Gather errors from all ranks */
    MPI_Allreduce(MPI_IN_PLACE, &nerrors, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);

    if (mpi_rank_g == 0) {
        printf("\n==================================================\n");
        if (nerrors)
            printf("***Parallel big IO tests detected %d errors***\n", nerrors);
        else
            printf("Parallel big IO tests finished with no errors\n");
        printf("==================================================\n");
    }

    /* close HDF5 library */
    H5close();

    /* MPI_Finalize must be called AFTER H5close which may use MPI calls */
    MPI_Finalize();

    /* cannot just return (nerrors) because exit code is limited to 1 byte */
    return (nerrors != 0);
}