1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
|
/* $Id$ */
/*
* Parallel tests for datasets
*/
/*
* Example of using the parallel HDF5 library to access datasets.
*
* This program contains two major parts. Part 1 tests fixed dimension
* datasets, for both independent and collective transfer modes.
* Part 2 tests extendable datasets, for independent transfer mode
* only. Collective mode for extendable datasets are not supported yet.
*/
#include <testphdf5.h>
/*
* The following are various utility routines used by the tests.
*/
/*
* Setup the dimensions of the hyperslab.
* Two modes--by rows or by columns.
* Assume dimension rank is 2.
*/
void
slab_set(int mpi_rank, int mpi_size, hssize_t start[], hsize_t count[],
hsize_t stride[], int mode)
{
switch (mode){
case BYROW:
/* Each process takes a slabs of rows. */
stride[0] = 1;
stride[1] = 1;
count[0] = DIM1/mpi_size;
count[1] = DIM2;
start[0] = mpi_rank*count[0];
start[1] = 0;
if (verbose) printf("slab_set BYROW\n");
break;
case BYCOL:
/* Each process takes a block of columns. */
stride[0] = 1;
stride[1] = 1;
count[0] = DIM1;
count[1] = DIM2/mpi_size;
start[0] = 0;
start[1] = mpi_rank*count[1];
#ifdef DISABLED
/* change the above macro to #ifndef if you want to test */
/* zero elements access. */
printf("set to size 0\n");
if (!(mpi_rank % 3))
count[1]=0;
#endif
if (verbose) printf("slab_set BYCOL\n");
break;
default:
/* Unknown mode. Set it to cover the whole dataset. */
printf("unknown slab_set mode (%d)\n", mode);
stride[0] = 1;
stride[1] = 1;
count[0] = DIM1;
count[1] = DIM2;
start[0] = 0;
start[1] = 0;
if (verbose) printf("slab_set wholeset\n");
break;
}
if (verbose){
printf("start[]=(%d,%d), count[]=(%d,%d), total datapoints=%d\n",
start[0], start[1], count[0], count[1], count[0]*count[1]);
}
}
/*
* Fill the dataset with trivial data for testing.
* Assume dimension rank is 2 and data is stored contiguous.
*/
void
dataset_fill(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
{
DATATYPE *dataptr = dataset;
int i, j;
/* put some trivial data in the data_array */
for (i=0; i < count[0]; i++){
for (j=0; j < count[1]; j++){
*dataptr = (i*stride[0]+start[0])*100 + (j*stride[1]+start[1]+1);
dataptr++;
}
}
}
/*
* Print the content of the dataset.
*/
void dataset_print(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE * dataset)
{
DATATYPE *dataptr = dataset;
int i, j;
/* print the column heading */
printf("%-8s", "Cols:");
for (j=0; j < count[1]; j++){
printf("%3d ", start[1]+j);
}
printf("\n");
/* print the slab data */
for (i=0; i < count[0]; i++){
printf("Row %2d: ", (int)(i*stride[0]+start[0]));
for (j=0; j < count[1]; j++){
printf("%03d ", *dataptr++);
}
printf("\n");
}
}
/*
* Print the content of the dataset.
*/
int dataset_vrfy(hssize_t start[], hsize_t count[], hsize_t stride[], DATATYPE *dataset, DATATYPE *original)
{
#define MAX_ERR_REPORT 10 /* Maximum number of errors reported */
DATATYPE *dataptr = dataset;
DATATYPE *originptr = original;
int i, j, vrfyerrs;
/* print it if verbose */
if (verbose) {
printf("dataset_vrfy dumping:::\n");
printf("start(%d, %d), count(%d, %d), stride(%d, %d)\n",
start[0], start[1], count[0], count[1], stride[0], stride[1]);
printf("original values:\n");
dataset_print(start, count, stride, original);
printf("compared values:\n");
dataset_print(start, count, stride, dataset);
}
vrfyerrs = 0;
for (i=0; i < count[0]; i++){
for (j=0; j < count[1]; j++){
if (*dataset != *original){
if (vrfyerrs++ < MAX_ERR_REPORT || verbose){
printf("Dataset Verify failed at [%d][%d](row %d, col %d): expect %d, got %d\n",
i, j,
(int)(i*stride[0]+start[0]), (int)(j*stride[1]+start[1]),
*(original), *(dataset));
}
dataset++;
original++;
}
}
}
if (vrfyerrs > MAX_ERR_REPORT && !verbose)
printf("[more errors ...]\n");
if (vrfyerrs)
printf("%d errors found in dataset_vrfy\n", vrfyerrs);
return(vrfyerrs);
}
/*
* Part 1.a--Independent read/write for fixed dimension datasets.
*/
/*
* Example of using the parallel HDF5 library to create two datasets
* in one HDF5 files with parallel MPIO access support.
* The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
* Each process controls only a slab of size DIM1 x DIM2 within each
* dataset.
*/
void
dataset_writeInd(char *filename)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset dim sizes */
hsize_t dimslocal1[RANK] = {DIM1,DIM2}; /* local dataset dim sizes */
DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
hssize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int i, j;
int mpi_size, mpi_rank;
char *fname;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
if (verbose)
printf("Independent write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* ----------------------------------------
* CREATE AN HDF5 FILE WITH PARALLEL ACCESS
* ---------------------------------------*/
/* setup file access template with parallel IO access. */
acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
VRFY((acc_tpl != FAIL), "H5Pcreate access succeeded");
/* set Parallel access with communicator */
ret = H5Pset_mpi(acc_tpl, comm, info);
VRFY((ret != FAIL), "H5Pset_mpi succeeded");
/* create the file collectively */
fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
VRFY((fid != FAIL), "H5Fcreate succeeded");
/* Release file-access template */
ret=H5Pclose(acc_tpl);
VRFY((ret != FAIL), "");
/* ---------------------------------------------
* Define the dimensions of the overall datasets
* and the slabs local to the MPI process.
* ------------------------------------------- */
/* setup dimensionality object */
sid = H5Screate_simple (RANK, dims, NULL);
VRFY((sid != FAIL), "H5Screate_simple succeeded");
/* create a dataset collectively */
dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid,
H5P_DEFAULT);
VRFY((dataset1 != FAIL), "H5Dcreate succeeded");
/* create another dataset collectively */
dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid,
H5P_DEFAULT);
VRFY((dataset2 != FAIL), "H5Dcreate succeeded");
/*
* To test the independent orders of writes between processes, all
* even number processes write to dataset1 first, then dataset2.
* All odd number processes write to dataset2 first, then dataset1.
*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
/* put some trivial data in the data_array */
dataset_fill(start, count, stride, &data_array1[0][0]);
MESG("data_array initialized");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* write data independently */
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "H5Dwrite dataset1 succeeded");
/* write data independently */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "H5Dwrite dataset2 succeeded");
/* release dataspace ID */
H5Sclose(file_dataspace);
/* close dataset collectively */
ret=H5Dclose(dataset1);
VRFY((ret != FAIL), "H5Dclose1 succeeded");
ret=H5Dclose(dataset2);
VRFY((ret != FAIL), "H5Dclose2 succeeded");
/* release all IDs created */
H5Sclose(sid);
/* close the file collectively */
H5Fclose(fid);
}
/* Example of using the parallel HDF5 library to read a dataset */
void
dataset_readInd(char *filename)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
hssize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int i, j;
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
if (verbose)
printf("Independent read test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* setup file access template */
acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
VRFY((acc_tpl != FAIL), "");
/* set Parallel access with communicator */
ret = H5Pset_mpi(acc_tpl, comm, info);
VRFY((ret != FAIL), "");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl);
VRFY((fid != FAIL), "");
/* Release file-access template */
ret=H5Pclose(acc_tpl);
VRFY((ret != FAIL), "");
/* open the dataset1 collectively */
dataset1 = H5Dopen(fid, DATASETNAME1);
VRFY((dataset1 != FAIL), "");
/* open another dataset collectively */
dataset2 = H5Dopen(fid, DATASETNAME1);
VRFY((dataset2 != FAIL), "");
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* fill dataset with test data */
dataset_fill(start, count, stride, &data_origin1[0][0]);
/* read data independently */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
if (ret) nerrors++;
/* read data independently */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
if (ret) nerrors++;
/* close dataset collectively */
ret=H5Dclose(dataset1);
VRFY((ret != FAIL), "");
ret=H5Dclose(dataset2);
VRFY((ret != FAIL), "");
/* release all IDs created */
H5Sclose(file_dataspace);
/* close the file collectively */
H5Fclose(fid);
}
/*
* Part 1.b--Collective read/write for fixed dimension datasets.
*/
/*
* Example of using the parallel HDF5 library to create two datasets
* in one HDF5 file with collective parallel access support.
* The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
* Each process controls only a slab of size DIM1 x DIM2 within each
* dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
* each process controls a hyperslab within.]
*/
void
dataset_writeAll(char *filename)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hid_t datatype; /* Datatype ID */
hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset dim sizes */
DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
hssize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
if (verbose)
printf("Collective write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* -------------------
* START AN HDF5 FILE
* -------------------*/
/* setup file access template with parallel IO access. */
acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
VRFY((acc_tpl != FAIL), "H5Pcreate access succeeded");
/* set Parallel access with communicator */
ret = H5Pset_mpi(acc_tpl, comm, info);
VRFY((ret != FAIL), "H5Pset_mpi succeeded");
/* create the file collectively */
fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
VRFY((fid != FAIL), "H5Fcreate succeeded");
/* Release file-access template */
ret=H5Pclose(acc_tpl);
VRFY((ret != FAIL), "");
/* --------------------------
* Define the dimensions of the overall datasets
* and create the dataset
* ------------------------- */
/* setup dimensionality object */
sid = H5Screate_simple (RANK, dims, NULL);
VRFY((sid != FAIL), "H5Screate_simple succeeded");
/* create a dataset collectively */
dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT);
VRFY((dataset1 != FAIL), "H5Dcreate succeeded");
/* create another dataset collectively */
datatype = H5Tcopy(H5T_NATIVE_INT);
ret = H5Tset_order(datatype, H5T_ORDER_LE);
VRFY((ret != FAIL), "H5Tset_order succeeded");
dataset2 = H5Dcreate(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT);
VRFY((dataset2 != FAIL), "H5Dcreate 2 succeeded");
/*
* Set up dimensions of the slab this process accesses.
*/
/* Dataset1: each process takes a block of rows. */
slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* fill the local slab with some trivial data */
dataset_fill(start, count, stride, &data_array1[0][0]);
MESG("data_array initialized");
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_array1[0][0]);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist != FAIL), "");
ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
VRFY((ret != FAIL), "H5Pcreate xfer succeeded");
/* write data collectively */
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret != FAIL), "H5Dwrite dataset1 succeeded");
/* release all temporary handles. */
/* Could have used them for dataset2 but it is cleaner */
/* to create them again.*/
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/* Dataset2: each process takes a block of columns. */
slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
/* put some trivial data in the data_array */
dataset_fill(start, count, stride, &data_array1[0][0]);
MESG("data_array initialized");
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_array1[0][0]);
}
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* fill the local slab with some trivial data */
dataset_fill(start, count, stride, &data_array1[0][0]);
MESG("data_array initialized");
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_array1[0][0]);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist != FAIL), "");
ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
VRFY((ret != FAIL), "H5Pcreate xfer succeeded");
/* write data independently */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret != FAIL), "H5Dwrite dataset2 succeeded");
/* release all temporary handles. */
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/*
* All writes completed. Close datasets collectively
*/
ret=H5Dclose(dataset1);
VRFY((ret != FAIL), "H5Dclose1 succeeded");
ret=H5Dclose(dataset2);
VRFY((ret != FAIL), "H5Dclose2 succeeded");
/* release all IDs created */
H5Sclose(sid);
/* close the file collectively */
H5Fclose(fid);
}
/*
* Example of using the parallel HDF5 library to read two datasets
* in one HDF5 file with collective parallel access support.
* The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
* Each process controls only a slab of size DIM1 x DIM2 within each
* dataset. [Note: not so yet. Datasets are of sizes DIM1xDIM2 and
* each process controls a hyperslab within.]
*/
void
dataset_readAll(char *filename)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t xfer_plist; /* Dataset transfer properties list */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
hssize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
if (verbose)
printf("Collective read test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* -------------------
* OPEN AN HDF5 FILE
* -------------------*/
/* setup file access template with parallel IO access. */
acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
VRFY((acc_tpl != FAIL), "H5Pcreate access succeeded");
/* set Parallel access with communicator */
ret = H5Pset_mpi(acc_tpl, comm, info);
VRFY((ret != FAIL), "H5Pset_mpi succeeded");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl);
VRFY((fid != FAIL), "H5Fopen succeeded");
/* Release file-access template */
ret=H5Pclose(acc_tpl);
VRFY((ret != FAIL), "");
/* --------------------------
* Open the datasets in it
* ------------------------- */
/* open the dataset1 collectively */
dataset1 = H5Dopen(fid, DATASETNAME1);
VRFY((dataset1 != FAIL), "H5Dopen succeeded");
/* open another dataset collectively */
dataset2 = H5Dopen(fid, DATASETNAME2);
VRFY((dataset2 != FAIL), "H5Dopen 2 succeeded");
/*
* Set up dimensions of the slab this process accesses.
*/
/* Dataset1: each process takes a block of columns. */
slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* fill dataset with test data */
dataset_fill(start, count, stride, &data_origin1[0][0]);
MESG("data_array initialized");
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_origin1[0][0]);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist != FAIL), "");
ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
VRFY((ret != FAIL), "H5Pcreate xfer succeeded");
/* read data collectively */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret != FAIL), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
if (ret) nerrors++;
/* release all temporary handles. */
/* Could have used them for dataset2 but it is cleaner */
/* to create them again.*/
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/* Dataset2: each process takes a block of rows. */
slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* fill dataset with test data */
dataset_fill(start, count, stride, &data_origin1[0][0]);
MESG("data_array initialized");
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_origin1[0][0]);
}
/* set up the collective transfer properties list */
xfer_plist = H5Pcreate (H5P_DATASET_XFER);
VRFY((xfer_plist != FAIL), "");
ret=H5Pset_xfer(xfer_plist, H5D_XFER_COLLECTIVE);
VRFY((ret != FAIL), "H5Pcreate xfer succeeded");
/* read data independently */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
xfer_plist, data_array1);
VRFY((ret != FAIL), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
if (ret) nerrors++;
/* release all temporary handles. */
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
H5Pclose(xfer_plist);
/*
* All reads completed. Close datasets collectively
*/
ret=H5Dclose(dataset1);
VRFY((ret != FAIL), "H5Dclose1 succeeded");
ret=H5Dclose(dataset2);
VRFY((ret != FAIL), "H5Dclose2 succeeded");
/* close the file collectively */
H5Fclose(fid);
}
/*
* Part 2--Independent read/write for extendable datasets.
*/
/*
* Example of using the parallel HDF5 library to create two extendable
* datasets in one HDF5 file with independent parallel MPIO access support.
* The Datasets are of sizes (number-of-mpi-processes x DIM1) x DIM2.
* Each process controls only a slab of size DIM1 x DIM2 within each
* dataset.
*/
void
extend_writeInd(char *filename)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hsize_t dims[RANK] = {DIM1,DIM2}; /* dataset initial dim sizes */
hsize_t max_dims[RANK] =
{H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */
hsize_t dimslocal1[RANK] = {DIM1,DIM2}; /* local dataset dim sizes */
DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
hsize_t chunk_dims[RANK] = {7, 13}; /* chunk sizes */
hid_t dataset_pl; /* dataset create prop. list */
hssize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK]; /* for hyperslab setting */
hsize_t stride[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int i, j;
int mpi_size, mpi_rank;
char *fname;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
if (verbose)
printf("Extend independent write test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* -------------------
* START AN HDF5 FILE
* -------------------*/
/* setup file access template with parallel IO access. */
acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
VRFY((acc_tpl != FAIL), "H5Pcreate access succeeded");
/* set Parallel access with communicator */
ret = H5Pset_mpi(acc_tpl, comm, info);
VRFY((ret != FAIL), "H5Pset_mpi succeeded");
/* create the file collectively */
fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl);
VRFY((fid != FAIL), "H5Fcreate succeeded");
/* Release file-access template */
ret=H5Pclose(acc_tpl);
VRFY((ret != FAIL), "");
/* --------------------------------------------------------------
* Define the dimensions of the overall datasets and create them.
* ------------------------------------------------------------- */
/* set up dataset storage chunk sizes and creation property list */
if (verbose)
printf("chunks[]=%d,%d\n", chunk_dims[0], chunk_dims[1]);
dataset_pl = H5Pcreate(H5P_DATASET_CREATE);
VRFY((dataset_pl != FAIL), "H5Pcreate succeeded");
ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims);
VRFY((ret != FAIL), "H5Pset_chunk succeeded");
/* setup dimensionality object */
/* start out with no rows, extend it later. */
dims[0] = dims[1] = 0;
sid = H5Screate_simple (RANK, dims, max_dims);
VRFY((sid != FAIL), "H5Screate_simple succeeded");
/* create an extendable dataset collectively */
dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid, dataset_pl);
VRFY((dataset1 != FAIL), "H5Dcreate succeeded");
/* create another extendable dataset collectively */
dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid, dataset_pl);
VRFY((dataset2 != FAIL), "H5Dcreate succeeded");
/* release resource */
H5Sclose(sid);
/* -------------------------
* Test writing to dataset1
* -------------------------*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
/* put some trivial data in the data_array */
dataset_fill(start, count, stride, &data_array1[0][0]);
MESG("data_array initialized");
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_array1[0][0]);
}
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* Extend its current dim sizes before writing */
dims[0] = DIM1;
dims[1] = DIM2;
ret = H5Dextend (dataset1, dims);
VRFY((ret != FAIL), "H5Dextend succeeded");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* write data independently */
ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "H5Dwrite succeeded");
/* release resource */
H5Sclose(file_dataspace);
H5Sclose(mem_dataspace);
/* -------------------------
* Test writing to dataset2
* -------------------------*/
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
/* put some trivial data in the data_array */
dataset_fill(start, count, stride, &data_array1[0][0]);
MESG("data_array initialized");
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_array1[0][0]);
}
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
#ifdef DISABLE
/* Try write to dataset2 beyond its current dim sizes. Should fail. */
/* Temporary turn off auto error reporting */
H5Eget_auto(&old_func, &old_client_data);
H5Eset_auto(NULL, NULL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* write data independently. Should fail. */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret == FAIL), "H5Dwrite failed as expected");
/* restore auto error reporting */
H5Eset_auto(old_func, old_client_data);
H5Sclose(file_dataspace);
#else
/* Skip test because H5Dwrite is not failing as expected */
printf("***Skip test of write-beyond-current-dim-size\n");
#endif
/* Extend dataset2 and try again. Should succeed. */
dims[0] = DIM1;
dims[1] = DIM2;
ret = H5Dextend (dataset2, dims);
VRFY((ret != FAIL), "H5Dextend succeeded");
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "H5Sset_hyperslab succeeded");
/* write data independently */
ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "H5Dwrite succeeded");
/* release resource */
ret=H5Sclose(file_dataspace);
VRFY((ret != FAIL), "H5Sclose succeeded");
ret=H5Sclose(mem_dataspace);
VRFY((ret != FAIL), "H5Sclose succeeded");
/* close dataset collectively */
ret=H5Dclose(dataset1);
VRFY((ret != FAIL), "H5Dclose1 succeeded");
ret=H5Dclose(dataset2);
VRFY((ret != FAIL), "H5Dclose2 succeeded");
/* close the file collectively */
H5Fclose(fid);
}
/* Example of using the parallel HDF5 library to read an extendable dataset */
void
extend_readInd(char *filename)
{
hid_t fid; /* HDF5 file ID */
hid_t acc_tpl; /* File access templates */
hid_t sid; /* Dataspace ID */
hid_t file_dataspace; /* File dataspace ID */
hid_t mem_dataspace; /* memory dataspace ID */
hid_t dataset1, dataset2; /* Dataset ID */
hsize_t dims[] = {DIM1,DIM2}; /* dataset dim sizes */
DATATYPE data_array1[DIM1][DIM2]; /* data buffer */
DATATYPE data_array2[DIM1][DIM2]; /* data buffer */
DATATYPE data_origin1[DIM1][DIM2]; /* expected data buffer */
hssize_t start[RANK]; /* for hyperslab setting */
hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */
herr_t ret; /* Generic return value */
int i, j;
int mpi_size, mpi_rank;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
if (verbose)
printf("Extend independent read test on file %s\n", filename);
/* set up MPI parameters */
MPI_Comm_size(MPI_COMM_WORLD,&mpi_size);
MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank);
/* -------------------
* OPEN AN HDF5 FILE
* -------------------*/
/* setup file access template */
acc_tpl = H5Pcreate (H5P_FILE_ACCESS);
VRFY((acc_tpl != FAIL), "");
/* set Parallel access with communicator */
ret = H5Pset_mpi(acc_tpl, comm, info);
VRFY((ret != FAIL), "");
/* open the file collectively */
fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl);
VRFY((fid != FAIL), "");
/* Release file-access template */
ret=H5Pclose(acc_tpl);
VRFY((ret != FAIL), "");
/* open the dataset1 collectively */
dataset1 = H5Dopen(fid, DATASETNAME1);
VRFY((dataset1 != FAIL), "");
/* open another dataset collectively */
dataset2 = H5Dopen(fid, DATASETNAME1);
VRFY((dataset2 != FAIL), "");
/* Try extend dataset1 which is open RDONLY. Should fail. */
/* first turn off auto error reporting */
H5Eget_auto(&old_func, &old_client_data);
H5Eset_auto(NULL, NULL);
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "H5Dget_space succeeded");
ret=H5Sget_simple_extent_dims(file_dataspace, dims, NULL);
VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded");
dims[0]++;
ret=H5Dextend(dataset1, dims);
VRFY((ret == FAIL), "H5Dextend failed as expected");
/* restore auto error reporting */
H5Eset_auto(old_func, old_client_data);
H5Sclose(file_dataspace);
/* Read dataset1 using BYROW pattern */
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, BYROW);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset1);
VRFY((file_dataspace != FAIL), "");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* fill dataset with test data */
dataset_fill(start, count, stride, &data_origin1[0][0]);
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_array1[0][0]);
}
/* read data independently */
ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
VRFY((ret == 0), "dataset1 read verified correct");
if (ret) nerrors++;
H5Sclose(mem_dataspace);
H5Sclose(file_dataspace);
/* Read dataset2 using BYCOL pattern */
/* set up dimensions of the slab this process accesses */
slab_set(mpi_rank, mpi_size, start, count, stride, BYCOL);
/* create a file dataspace independently */
file_dataspace = H5Dget_space (dataset2);
VRFY((file_dataspace != FAIL), "");
ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, NULL);
VRFY((ret != FAIL), "");
/* create a memory dataspace independently */
mem_dataspace = H5Screate_simple (RANK, count, NULL);
VRFY((mem_dataspace != FAIL), "");
/* fill dataset with test data */
dataset_fill(start, count, stride, &data_origin1[0][0]);
if (verbose){
MESG("data_array created");
dataset_print(start, count, stride, &data_array1[0][0]);
}
/* read data independently */
ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace,
H5P_DEFAULT, data_array1);
VRFY((ret != FAIL), "H5Dread succeeded");
/* verify the read data with original expected data */
ret = dataset_vrfy(start, count, stride, &data_array1[0][0], &data_origin1[0][0]);
VRFY((ret == 0), "dataset2 read verified correct");
if (ret) nerrors++;
H5Sclose(mem_dataspace);
H5Sclose(file_dataspace);
/* close dataset collectively */
ret=H5Dclose(dataset1);
VRFY((ret != FAIL), "");
ret=H5Dclose(dataset2);
VRFY((ret != FAIL), "");
/* close the file collectively */
H5Fclose(fid);
}
|