summaryrefslogtreecommitdiffstats
path: root/java/src/hdf/hdf5lib
diff options
context:
space:
mode:
authorDana Robinson <43805+derobins@users.noreply.github.com>2022-08-22 10:03:38 (GMT)
committerGitHub <noreply@github.com>2022-08-22 10:03:38 (GMT)
commit1ac9a67cc9834af4915aeea3d00357b7914a44cd (patch)
tree281f19adddb6b7609de8fa81aad8bcdd0b4372f7 /java/src/hdf/hdf5lib
parentb70c60e1597d208bc2de294ebb0dfce2e7bd6aae (diff)
downloadhdf5-feature/vol_cap_flags.zip
hdf5-feature/vol_cap_flags.tar.gz
hdf5-feature/vol_cap_flags.tar.bz2
Convert unsigned cap flag field to uint64_t and add flags (#2050)feature/vol_cap_flags
* Convert unsigned cap flag field to uint64_t and add flags * Committing clang-format changes Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
Diffstat (limited to 'java/src/hdf/hdf5lib')
0 files changed, 0 insertions, 0 deletions
='#n107'>107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://www.hdfgroup.org/licenses.               *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
   This program will test independent and collective reads and writes between
   selections of different rank that non-the-less are deemed as having the
   same shape by H5Sselect_shape_same().
 */

#define H5S_FRIEND /*suppress error about including H5Spkg   */

/* Define this macro to indicate that the testing APIs should be available */
#define H5S_TESTING

#include "H5Spkg.h" /* Dataspaces                           */
#include "testphdf5.h"

/* On Lustre (and perhaps other parallel file systems?), we have severe
 * slow downs if two or more processes attempt to access the same file system
 * block.  To minimize this problem, we set alignment in the shape same tests
 * to the default Lustre block size -- which greatly reduces contention in
 * the chunked dataset case.
 */

#define SHAPE_SAME_TEST_ALIGNMENT ((hsize_t)(4 * 1024 * 1024))

#define PAR_SS_DR_MAX_RANK 5 /* must update code if this changes */

struct hs_dr_pio_test_vars_t {
    int       mpi_size;
    int       mpi_rank;
    MPI_Comm  mpi_comm;
    MPI_Info  mpi_info;
    int       test_num;
    int       edge_size;
    int       checker_edge_size;
    int       chunk_edge_size;
    int       small_rank;
    int       large_rank;
    hid_t     dset_type;
    uint32_t *small_ds_buf_0;
    uint32_t *small_ds_buf_1;
    uint32_t *small_ds_buf_2;
    uint32_t *small_ds_slice_buf;
    uint32_t *large_ds_buf_0;
    uint32_t *large_ds_buf_1;
    uint32_t *large_ds_buf_2;
    uint32_t *large_ds_slice_buf;
    int       small_ds_offset;
    int       large_ds_offset;
    hid_t     fid; /* HDF5 file ID */
    hid_t     xfer_plist;
    hid_t     full_mem_small_ds_sid;
    hid_t     full_file_small_ds_sid;
    hid_t     mem_small_ds_sid;
    hid_t     file_small_ds_sid_0;
    hid_t     file_small_ds_sid_1;
    hid_t     small_ds_slice_sid;
    hid_t     full_mem_large_ds_sid;
    hid_t     full_file_large_ds_sid;
    hid_t     mem_large_ds_sid;
    hid_t     file_large_ds_sid_0;
    hid_t     file_large_ds_sid_1;
    hid_t     file_large_ds_process_slice_sid;
    hid_t     mem_large_ds_process_slice_sid;
    hid_t     large_ds_slice_sid;
    hid_t     small_dataset; /* Dataset ID */
    hid_t     large_dataset; /* Dataset ID */
    size_t    small_ds_size;
    size_t    small_ds_slice_size;
    size_t    large_ds_size;
    size_t    large_ds_slice_size;
    hsize_t   dims[PAR_SS_DR_MAX_RANK];
    hsize_t   chunk_dims[PAR_SS_DR_MAX_RANK];
    hsize_t   start[PAR_SS_DR_MAX_RANK];
    hsize_t   stride[PAR_SS_DR_MAX_RANK];
    hsize_t   count[PAR_SS_DR_MAX_RANK];
    hsize_t   block[PAR_SS_DR_MAX_RANK];
    hsize_t  *start_ptr;
    hsize_t  *stride_ptr;
    hsize_t  *count_ptr;
    hsize_t  *block_ptr;
    int       skips;
    int       max_skips;
    int64_t   total_tests;
    int64_t   tests_run;
    int64_t   tests_skipped;
};

/*-------------------------------------------------------------------------
 * Function:    hs_dr_pio_test__setup()
 *
 * Purpose:    Do setup for tests of I/O to/from hyperslab selections of
 *         different rank in the parallel case.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 8/9/11
 *
 *-------------------------------------------------------------------------
 */

#define CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG 0

static void
hs_dr_pio_test__setup(const int test_num, const int edge_size, const int checker_edge_size,
                      const int chunk_edge_size, const int small_rank, const int large_rank,
                      const hbool_t use_collective_io, const hid_t dset_type, const int express_test,
                      struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG
    const char *fcnName = "hs_dr_pio_test__setup()";
#endif /* CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG */
    const char *filename;
    hbool_t     mis_match = FALSE;
    int         i;
    int         mrc;
    int         mpi_rank; /* needed by the VRFY macro */
    uint32_t    expected_value;
    uint32_t   *ptr_0;
    uint32_t   *ptr_1;
    hid_t       acc_tpl; /* File access templates */
    hid_t       small_ds_dcpl_id = H5P_DEFAULT;
    hid_t       large_ds_dcpl_id = H5P_DEFAULT;
    herr_t      ret; /* Generic return value */

    assert(edge_size >= 6);
    assert(edge_size >= chunk_edge_size);
    assert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
    assert(1 < small_rank);
    assert(small_rank < large_rank);
    assert(large_rank <= PAR_SS_DR_MAX_RANK);

    tv_ptr->test_num          = test_num;
    tv_ptr->edge_size         = edge_size;
    tv_ptr->checker_edge_size = checker_edge_size;
    tv_ptr->chunk_edge_size   = chunk_edge_size;
    tv_ptr->small_rank        = small_rank;
    tv_ptr->large_rank        = large_rank;
    tv_ptr->dset_type         = dset_type;

    MPI_Comm_size(MPI_COMM_WORLD, &(tv_ptr->mpi_size));
    MPI_Comm_rank(MPI_COMM_WORLD, &(tv_ptr->mpi_rank));
    /* the VRFY() macro needs the local variable mpi_rank -- set it up now */
    mpi_rank = tv_ptr->mpi_rank;

    assert(tv_ptr->mpi_size >= 1);

    tv_ptr->mpi_comm = MPI_COMM_WORLD;
    tv_ptr->mpi_info = MPI_INFO_NULL;

    for (i = 0; i < tv_ptr->small_rank - 1; i++) {
        tv_ptr->small_ds_size *= (size_t)(tv_ptr->edge_size);
        tv_ptr->small_ds_slice_size *= (size_t)(tv_ptr->edge_size);
    }
    tv_ptr->small_ds_size *= (size_t)(tv_ptr->mpi_size + 1);

    /* used by checker board tests only */
    tv_ptr->small_ds_offset = PAR_SS_DR_MAX_RANK - tv_ptr->small_rank;

    assert(0 < tv_ptr->small_ds_offset);
    assert(tv_ptr->small_ds_offset < PAR_SS_DR_MAX_RANK);

    for (i = 0; i < tv_ptr->large_rank - 1; i++) {

        tv_ptr->large_ds_size *= (size_t)(tv_ptr->edge_size);
        tv_ptr->large_ds_slice_size *= (size_t)(tv_ptr->edge_size);
    }
    tv_ptr->large_ds_size *= (size_t)(tv_ptr->mpi_size + 1);

    /* used by checker board tests only */
    tv_ptr->large_ds_offset = PAR_SS_DR_MAX_RANK - tv_ptr->large_rank;

    assert(0 <= tv_ptr->large_ds_offset);
    assert(tv_ptr->large_ds_offset < PAR_SS_DR_MAX_RANK);

    /* set up the start, stride, count, and block pointers */
    /* used by contiguous tests only */
    tv_ptr->start_ptr  = &(tv_ptr->start[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);
    tv_ptr->stride_ptr = &(tv_ptr->stride[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);
    tv_ptr->count_ptr  = &(tv_ptr->count[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);
    tv_ptr->block_ptr  = &(tv_ptr->block[PAR_SS_DR_MAX_RANK - tv_ptr->large_rank]);

    /* Allocate buffers */
    tv_ptr->small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_size);
    VRFY((tv_ptr->small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded");

    tv_ptr->small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_size);
    VRFY((tv_ptr->small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded");

    tv_ptr->small_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_size);
    VRFY((tv_ptr->small_ds_buf_2 != NULL), "malloc of small_ds_buf_2 succeeded");

    tv_ptr->small_ds_slice_buf = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->small_ds_slice_size);
    VRFY((tv_ptr->small_ds_slice_buf != NULL), "malloc of small_ds_slice_buf succeeded");

    tv_ptr->large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_size);
    VRFY((tv_ptr->large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded");

    tv_ptr->large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_size);
    VRFY((tv_ptr->large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded");

    tv_ptr->large_ds_buf_2 = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_size);
    VRFY((tv_ptr->large_ds_buf_2 != NULL), "malloc of large_ds_buf_2 succeeded");

    tv_ptr->large_ds_slice_buf = (uint32_t *)HDmalloc(sizeof(uint32_t) * tv_ptr->large_ds_slice_size);
    VRFY((tv_ptr->large_ds_slice_buf != NULL), "malloc of large_ds_slice_buf succeeded");

    /* initialize the buffers */

    ptr_0 = tv_ptr->small_ds_buf_0;
    for (i = 0; i < (int)(tv_ptr->small_ds_size); i++)
        *ptr_0++ = (uint32_t)i;
    HDmemset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);
    HDmemset(tv_ptr->small_ds_buf_2, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);

    HDmemset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size);

    ptr_0 = tv_ptr->large_ds_buf_0;
    for (i = 0; i < (int)(tv_ptr->large_ds_size); i++)
        *ptr_0++ = (uint32_t)i;
    HDmemset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);
    HDmemset(tv_ptr->large_ds_buf_2, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);

    HDmemset(tv_ptr->large_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->large_ds_slice_size);

    filename = (const char *)GetTestParameters();
    assert(filename != NULL);
#if CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG
    if (MAINPROCESS) {

        HDfprintf(stdout, "%d: test num = %d.\n", tv_ptr->mpi_rank, tv_ptr->test_num);
        HDfprintf(stdout, "%d: mpi_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->mpi_size);
        HDfprintf(stdout, "%d: small/large rank = %d/%d, use_collective_io = %d.\n", tv_ptr->mpi_rank,
                  tv_ptr->small_rank, tv_ptr->large_rank, (int)use_collective_io);
        HDfprintf(stdout, "%d: edge_size = %d, chunk_edge_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->edge_size,
                  tv_ptr->chunk_edge_size);
        HDfprintf(stdout, "%d: checker_edge_size = %d.\n", tv_ptr->mpi_rank, tv_ptr->checker_edge_size);
        HDfprintf(stdout, "%d: small_ds_size = %d, large_ds_size = %d.\n", tv_ptr->mpi_rank,
                  (int)(tv_ptr->small_ds_size), (int)(tv_ptr->large_ds_size));
        HDfprintf(stdout, "%d: filename = %s.\n", tv_ptr->mpi_rank, filename);
    }
#endif /* CONTIG_HS_DR_PIO_TEST__SETUP__DEBUG */
    /* ----------------------------------------
     * CREATE AN HDF5 FILE WITH PARALLEL ACCESS
     * ---------------------------------------*/
    /* setup file access template */
    acc_tpl = create_faccess_plist(tv_ptr->mpi_comm, tv_ptr->mpi_info, facc_type);
    VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");

    /* set the alignment -- need it large so that we aren't always hitting the
     * the same file system block.  Do this only if express_test is greater
     * than zero.
     */
    if (express_test > 0) {

        ret = H5Pset_alignment(acc_tpl, (hsize_t)0, SHAPE_SAME_TEST_ALIGNMENT);
        VRFY((ret != FAIL), "H5Pset_alignment() succeeded");
    }

    /* create the file collectively */
    tv_ptr->fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
    VRFY((tv_ptr->fid >= 0), "H5Fcreate succeeded");

    MESG("File opened.");

    /* Release file-access template */
    ret = H5Pclose(acc_tpl);
    VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");

    /* setup dims: */
    tv_ptr->dims[0] = (hsize_t)(tv_ptr->mpi_size + 1);
    tv_ptr->dims[1] = tv_ptr->dims[2] = tv_ptr->dims[3] = tv_ptr->dims[4] = (hsize_t)(tv_ptr->edge_size);

    /* Create small ds dataspaces */
    tv_ptr->full_mem_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->full_mem_small_ds_sid != 0), "H5Screate_simple() full_mem_small_ds_sid succeeded");

    tv_ptr->full_file_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->full_file_small_ds_sid != 0), "H5Screate_simple() full_file_small_ds_sid succeeded");

    tv_ptr->mem_small_ds_sid = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->mem_small_ds_sid != 0), "H5Screate_simple() mem_small_ds_sid succeeded");

    tv_ptr->file_small_ds_sid_0 = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->file_small_ds_sid_0 != 0), "H5Screate_simple() file_small_ds_sid_0 succeeded");

    /* used by checker board tests only */
    tv_ptr->file_small_ds_sid_1 = H5Screate_simple(tv_ptr->small_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->file_small_ds_sid_1 != 0), "H5Screate_simple() file_small_ds_sid_1 succeeded");

    tv_ptr->small_ds_slice_sid = H5Screate_simple(tv_ptr->small_rank - 1, &(tv_ptr->dims[1]), NULL);
    VRFY((tv_ptr->small_ds_slice_sid != 0), "H5Screate_simple() small_ds_slice_sid succeeded");

    /* Create large ds dataspaces */
    tv_ptr->full_mem_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->full_mem_large_ds_sid != 0), "H5Screate_simple() full_mem_large_ds_sid succeeded");

    tv_ptr->full_file_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->full_file_large_ds_sid != FAIL), "H5Screate_simple() full_file_large_ds_sid succeeded");

    tv_ptr->mem_large_ds_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->mem_large_ds_sid != FAIL), "H5Screate_simple() mem_large_ds_sid succeeded");

    tv_ptr->file_large_ds_sid_0 = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->file_large_ds_sid_0 != FAIL), "H5Screate_simple() file_large_ds_sid_0 succeeded");

    /* used by checker board tests only */
    tv_ptr->file_large_ds_sid_1 = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->file_large_ds_sid_1 != FAIL), "H5Screate_simple() file_large_ds_sid_1 succeeded");

    tv_ptr->mem_large_ds_process_slice_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->mem_large_ds_process_slice_sid != FAIL),
         "H5Screate_simple() mem_large_ds_process_slice_sid succeeded");

    tv_ptr->file_large_ds_process_slice_sid = H5Screate_simple(tv_ptr->large_rank, tv_ptr->dims, NULL);
    VRFY((tv_ptr->file_large_ds_process_slice_sid != FAIL),
         "H5Screate_simple() file_large_ds_process_slice_sid succeeded");

    tv_ptr->large_ds_slice_sid = H5Screate_simple(tv_ptr->large_rank - 1, &(tv_ptr->dims[1]), NULL);
    VRFY((tv_ptr->large_ds_slice_sid != 0), "H5Screate_simple() large_ds_slice_sid succeeded");

    /* if chunk edge size is greater than zero, set up the small and
     * large data set creation property lists to specify chunked
     * datasets.
     */
    if (tv_ptr->chunk_edge_size > 0) {

        /* Under Lustre (and perhaps other parallel file systems?) we get
         * locking delays when two or more processes attempt to access the
         * same file system block.
         *
         * To minimize this problem, I have changed chunk_dims[0]
         * from (mpi_size + 1) to just when any sort of express test is
         * selected.  Given the structure of the test, and assuming we
         * set the alignment large enough, this avoids the contention
         * issue by seeing to it that each chunk is only accessed by one
         * process.
         *
         * One can argue as to whether this is a good thing to do in our
         * tests, but for now it is necessary if we want the test to complete
         * in a reasonable amount of time.
         *
         *                                         JRM -- 9/16/10
         */

        tv_ptr->chunk_dims[0] = 1;

        tv_ptr->chunk_dims[1] = tv_ptr->chunk_dims[2] = tv_ptr->chunk_dims[3] = tv_ptr->chunk_dims[4] =
            (hsize_t)(tv_ptr->chunk_edge_size);

        small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
        VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded");

        ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED);
        VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded");

        ret = H5Pset_chunk(small_ds_dcpl_id, tv_ptr->small_rank, tv_ptr->chunk_dims);
        VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");

        large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
        VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded");

        ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED);
        VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded");

        ret = H5Pset_chunk(large_ds_dcpl_id, tv_ptr->large_rank, tv_ptr->chunk_dims);
        VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded");
    }

    /* create the small dataset */
    tv_ptr->small_dataset =
        H5Dcreate2(tv_ptr->fid, "small_dataset", tv_ptr->dset_type, tv_ptr->file_small_ds_sid_0, H5P_DEFAULT,
                   small_ds_dcpl_id, H5P_DEFAULT);
    VRFY((ret != FAIL), "H5Dcreate2() small_dataset succeeded");

    /* create the large dataset */
    tv_ptr->large_dataset =
        H5Dcreate2(tv_ptr->fid, "large_dataset", tv_ptr->dset_type, tv_ptr->file_large_ds_sid_0, H5P_DEFAULT,
                   large_ds_dcpl_id, H5P_DEFAULT);
    VRFY((ret != FAIL), "H5Dcreate2() large_dataset succeeded");

    /* setup xfer property list */
    tv_ptr->xfer_plist = H5Pcreate(H5P_DATASET_XFER);
    VRFY((tv_ptr->xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");

    if (use_collective_io) {
        ret = H5Pset_dxpl_mpio(tv_ptr->xfer_plist, H5FD_MPIO_COLLECTIVE);
        VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
    }

    /* setup selection to write initial data to the small and large data sets */
    tv_ptr->start[0]  = (hsize_t)(tv_ptr->mpi_rank);
    tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
    tv_ptr->count[0]  = 1;
    tv_ptr->block[0]  = 1;

    for (i = 1; i < tv_ptr->large_rank; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        tv_ptr->block[i]  = (hsize_t)(tv_ptr->edge_size);
    }

    /* setup selections for writing initial data to the small data set */
    ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");

    ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");

    if (MAINPROCESS) { /* add an additional slice to the selections */

        tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_size);

        ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
                                  tv_ptr->count, tv_ptr->block);
        VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) succeeded");

        ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
                                  tv_ptr->count, tv_ptr->block);
        VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, or) succeeded");
    }

    /* write the initial value of the small data set to file */
    ret = H5Dwrite(tv_ptr->small_dataset, tv_ptr->dset_type, tv_ptr->mem_small_ds_sid,
                   tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0);

    VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded");

    /* sync with the other processes before checking data */
    mrc = MPI_Barrier(MPI_COMM_WORLD);
    VRFY((mrc == MPI_SUCCESS), "Sync after small dataset writes");

    /* read the small data set back to verify that it contains the
     * expected data.  Note that each process reads in the entire
     * data set and verifies it.
     */
    ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->full_mem_small_ds_sid,
                  tv_ptr->full_file_small_ds_sid, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1);
    VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded");

    /* verify that the correct data was written to the small data set */
    expected_value = 0;
    mis_match      = FALSE;
    ptr_1          = tv_ptr->small_ds_buf_1;

    i = 0;
    for (i = 0; i < (int)(tv_ptr->small_ds_size); i++) {

        if (*ptr_1 != expected_value) {

            mis_match = TRUE;
        }
        ptr_1++;
        expected_value++;
    }
    VRFY((mis_match == FALSE), "small ds init data good.");

    /* setup selections for writing initial data to the large data set */

    tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_rank);

    ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) succeeded");

    ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) succeeded");

    /* In passing, setup the process slice dataspaces as well */

    ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_process_slice_sid, H5S_SELECT_SET, tv_ptr->start,
                              tv_ptr->stride, tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_process_slice_sid, set) succeeded");

    ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_process_slice_sid, H5S_SELECT_SET, tv_ptr->start,
                              tv_ptr->stride, tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_process_slice_sid, set) succeeded");

    if (MAINPROCESS) { /* add an additional slice to the selections */

        tv_ptr->start[0] = (hsize_t)(tv_ptr->mpi_size);

        ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
                                  tv_ptr->count, tv_ptr->block);
        VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) succeeded");

        ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_OR, tv_ptr->start, tv_ptr->stride,
                                  tv_ptr->count, tv_ptr->block);
        VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, or) succeeded");
    }

    /* write the initial value of the large data set to file */
    ret = H5Dwrite(tv_ptr->large_dataset, tv_ptr->dset_type, tv_ptr->mem_large_ds_sid,
                   tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0);
    if (ret < 0)
        H5Eprint2(H5E_DEFAULT, stderr);
    VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded");

    /* sync with the other processes before checking data */
    mrc = MPI_Barrier(MPI_COMM_WORLD);
    VRFY((mrc == MPI_SUCCESS), "Sync after large dataset writes");

    /* read the large data set back to verify that it contains the
     * expected data.  Note that each process reads in the entire
     * data set.
     */
    ret = H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->full_mem_large_ds_sid,
                  tv_ptr->full_file_large_ds_sid, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
    VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded");

    /* verify that the correct data was written to the large data set */
    expected_value = 0;
    mis_match      = FALSE;
    ptr_1          = tv_ptr->large_ds_buf_1;

    i = 0;
    for (i = 0; i < (int)(tv_ptr->large_ds_size); i++) {

        if (*ptr_1 != expected_value) {

            mis_match = TRUE;
        }
        ptr_1++;
        expected_value++;
    }
    VRFY((mis_match == FALSE), "large ds init data good.");

    /* sync with the other processes before changing data */
    mrc = MPI_Barrier(MPI_COMM_WORLD);
    VRFY((mrc == MPI_SUCCESS), "Sync initial values check");

    return;

} /* hs_dr_pio_test__setup() */

/*-------------------------------------------------------------------------
 * Function:    hs_dr_pio_test__takedown()
 *
 * Purpose:    Do takedown after tests of I/O to/from hyperslab selections
 *        of different rank in the parallel case.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 9/18/09
 *
 *-------------------------------------------------------------------------
 */

#define HS_DR_PIO_TEST__TAKEDOWN__DEBUG 0

static void
hs_dr_pio_test__takedown(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if HS_DR_PIO_TEST__TAKEDOWN__DEBUG
    const char *fcnName = "hs_dr_pio_test__takedown()";
#endif               /* HS_DR_PIO_TEST__TAKEDOWN__DEBUG */
    int    mpi_rank; /* needed by the VRFY macro */
    herr_t ret;      /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* Close property lists */
    if (tv_ptr->xfer_plist != H5P_DEFAULT) {
        ret = H5Pclose(tv_ptr->xfer_plist);
        VRFY((ret != FAIL), "H5Pclose(xfer_plist) succeeded");
    }

    /* Close dataspaces */
    ret = H5Sclose(tv_ptr->full_mem_small_ds_sid);
    VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded");

    ret = H5Sclose(tv_ptr->full_file_small_ds_sid);
    VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded");

    ret = H5Sclose(tv_ptr->mem_small_ds_sid);
    VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded");

    ret = H5Sclose(tv_ptr->file_small_ds_sid_0);
    VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_0) succeeded");

    ret = H5Sclose(tv_ptr->file_small_ds_sid_1);
    VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid_1) succeeded");

    ret = H5Sclose(tv_ptr->small_ds_slice_sid);
    VRFY((ret != FAIL), "H5Sclose(small_ds_slice_sid) succeeded");

    ret = H5Sclose(tv_ptr->full_mem_large_ds_sid);
    VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded");

    ret = H5Sclose(tv_ptr->full_file_large_ds_sid);
    VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded");

    ret = H5Sclose(tv_ptr->mem_large_ds_sid);
    VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");

    ret = H5Sclose(tv_ptr->file_large_ds_sid_0);
    VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid_0) succeeded");

    ret = H5Sclose(tv_ptr->file_large_ds_sid_1);
    VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid_1) succeeded");

    ret = H5Sclose(tv_ptr->mem_large_ds_process_slice_sid);
    VRFY((ret != FAIL), "H5Sclose(mem_large_ds_process_slice_sid) succeeded");

    ret = H5Sclose(tv_ptr->file_large_ds_process_slice_sid);
    VRFY((ret != FAIL), "H5Sclose(file_large_ds_process_slice_sid) succeeded");

    ret = H5Sclose(tv_ptr->large_ds_slice_sid);
    VRFY((ret != FAIL), "H5Sclose(large_ds_slice_sid) succeeded");

    /* Close Datasets */
    ret = H5Dclose(tv_ptr->small_dataset);
    VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded");

    ret = H5Dclose(tv_ptr->large_dataset);
    VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded");

    /* close the file collectively */
    MESG("about to close file.");
    ret = H5Fclose(tv_ptr->fid);
    VRFY((ret != FAIL), "file close succeeded");

    /* Free memory buffers */

    if (tv_ptr->small_ds_buf_0 != NULL)
        HDfree(tv_ptr->small_ds_buf_0);
    if (tv_ptr->small_ds_buf_1 != NULL)
        HDfree(tv_ptr->small_ds_buf_1);
    if (tv_ptr->small_ds_buf_2 != NULL)
        HDfree(tv_ptr->small_ds_buf_2);
    if (tv_ptr->small_ds_slice_buf != NULL)
        HDfree(tv_ptr->small_ds_slice_buf);

    if (tv_ptr->large_ds_buf_0 != NULL)
        HDfree(tv_ptr->large_ds_buf_0);
    if (tv_ptr->large_ds_buf_1 != NULL)
        HDfree(tv_ptr->large_ds_buf_1);
    if (tv_ptr->large_ds_buf_2 != NULL)
        HDfree(tv_ptr->large_ds_buf_2);
    if (tv_ptr->large_ds_slice_buf != NULL)
        HDfree(tv_ptr->large_ds_slice_buf);

    return;

} /* hs_dr_pio_test__takedown() */

/*-------------------------------------------------------------------------
 * Function:    contig_hs_dr_pio_test__d2m_l2s()
 *
 * Purpose:    Part one of a series of tests of I/O to/from hyperslab
 *        selections of different rank in the parallel.
 *
 *        Verify that we can read from disk correctly using
 *        selections of different rank that H5Sselect_shape_same()
 *        views as being of the same shape.
 *
 *              In this function, we test this by reading small_rank - 1
 *        slices from the on disk large cube, and verifying that the
 *        data read is correct.  Verify that H5Sselect_shape_same()
 *        returns true on the memory and file selections.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 9/10/11
 *
 *-------------------------------------------------------------------------
 */

#define CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG 0

static void
contig_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG
    const char *fcnName = "contig_hs_dr_pio_test__run_test()";
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
    hbool_t   mis_match = FALSE;
    int       i, j, k, l;
    size_t    n;
    int       mpi_rank; /* needed by the VRFY macro */
    uint32_t  expected_value;
    uint32_t *ptr_1;
    htri_t    check; /* Shape comparison return value */
    herr_t    ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* We have already done a H5Sselect_all() on the dataspace
     * small_ds_slice_sid in the initialization phase, so no need to
     * call H5Sselect_all() again.
     */

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to read slices of the large cube.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

    /* zero out the buffer we will be reading into */
    HDmemset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size);

#if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG
    HDfprintf(stdout, "%s reading slices from big cube on disk into small cube slice.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */

    /* in serial versions of this test, we loop through all the dimensions
     * of the large data set.  However, in the parallel version, each
     * process only works with that slice of the large cube indicated
     * by its rank -- hence we set the most slowly changing index to
     * mpi_rank, and don't iterate over it.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank - 1 >= 1 and that
                     * large_rank > small_rank by the assertions at the head
                     * of this function.  Thus no need for another inner loop.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start_ptr,
                                              tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
                    VRFY((ret != FAIL), "H5Sselect_hyperslab(file_large_cube_sid) succeeded");

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->small_ds_slice_sid, tv_ptr->file_large_ds_sid_0);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed");

                    /* Read selection from disk */
#if CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
                              (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
                              (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
                    HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", fcnName,
                              H5Sget_simple_extent_ndims(tv_ptr->small_ds_slice_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
                    ret =
                        H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->small_ds_slice_sid,
                                tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_slice_buf);
                    VRFY((ret >= 0), "H5Dread() slice from large ds succeeded.");

                    /* verify that expected data is retrieved */

                    mis_match = FALSE;
                    ptr_1     = tv_ptr->small_ds_slice_buf;
                    expected_value =
                        (uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                    tv_ptr->edge_size) +
                                   (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                   (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));

                    for (n = 0; n < tv_ptr->small_ds_slice_size; n++) {

                        if (*ptr_1 != expected_value) {

                            mis_match = TRUE;
                        }

                        *ptr_1 = 0; /* zero data for next use */

                        ptr_1++;
                        expected_value++;
                    }

                    VRFY((mis_match == FALSE), "small slice read from large ds data good.");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* contig_hs_dr_pio_test__d2m_l2s() */

/*-------------------------------------------------------------------------
 * Function:    contig_hs_dr_pio_test__d2m_s2l()
 *
 * Purpose:    Part two of a series of tests of I/O to/from hyperslab
 *        selections of different rank in the parallel.
 *
 *        Verify that we can read from disk correctly using
 *        selections of different rank that H5Sselect_shape_same()
 *        views as being of the same shape.
 *
 *        In this function, we test this by reading slices of the
 *        on disk small data set into slices through the in memory
 *        large data set, and verify that the correct data (and
 *        only the correct data) is read.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 8/10/11
 *
 *-------------------------------------------------------------------------
 */

#define CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG 0

static void
contig_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG
    const char *fcnName = "contig_hs_dr_pio_test__d2m_s2l()";
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
    hbool_t   mis_match = FALSE;
    int       i, j, k, l;
    size_t    n;
    int       mpi_rank; /* needed by the VRFY macro */
    size_t    start_index;
    size_t    stop_index;
    uint32_t  expected_value;
    uint32_t *ptr_1;
    htri_t    check; /* Shape comparison return value */
    herr_t    ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* Read slices of the on disk small data set into slices
     * through the in memory large data set, and verify that the correct
     * data (and only the correct data) is read.
     */

    tv_ptr->start[0]  = (hsize_t)(tv_ptr->mpi_rank);
    tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
    tv_ptr->count[0]  = 1;
    tv_ptr->block[0]  = 1;

    for (i = 1; i < tv_ptr->large_rank; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        tv_ptr->block[i]  = (hsize_t)(tv_ptr->edge_size);
    }

    ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");

#if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG
    HDfprintf(stdout, "%s reading slices of on disk small data set into slices of big data set.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */

    /* zero out the in memory large ds */
    HDmemset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to read slices of the large cube.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

    /* in serial versions of this test, we loop through all the dimensions
     * of the large data set that don't appear in the small data set.
     *
     * However, in the parallel version, each process only works with that
     * slice of the large (and small) data set indicated by its rank -- hence
     * we set the most slowly changing index to mpi_rank, and don't iterate
     * over it.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start_ptr,
                                              tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
                    VRFY((ret != FAIL), "H5Sselect_hyperslab(mem_large_ds_sid) succeeded");

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed");

                    /* Read selection from disk */
#if CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
                              (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
                              (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
                    HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                              H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
                    ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
                                  tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
                    VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");

                    /* verify that the expected data and only the
                     * expected data was read.
                     */
                    ptr_1          = tv_ptr->large_ds_buf_1;
                    expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);
                    start_index =
                        (size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                  tv_ptr->edge_size) +
                                 (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                 (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
                    stop_index = start_index + tv_ptr->small_ds_slice_size - 1;

                    assert(start_index < stop_index);
                    assert(stop_index <= tv_ptr->large_ds_size);

                    for (n = 0; n < tv_ptr->large_ds_size; n++) {

                        if ((n >= start_index) && (n <= stop_index)) {

                            if (*ptr_1 != expected_value) {

                                mis_match = TRUE;
                            }
                            expected_value++;
                        }
                        else {

                            if (*ptr_1 != 0) {

                                mis_match = TRUE;
                            }
                        }
                        /* zero out the value for the next pass */
                        *ptr_1 = 0;

                        ptr_1++;
                    }

                    VRFY((mis_match == FALSE), "small slice read from large ds data good.");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* contig_hs_dr_pio_test__d2m_s2l() */

/*-------------------------------------------------------------------------
 * Function:    contig_hs_dr_pio_test__m2d_l2s()
 *
 * Purpose:    Part three of a series of tests of I/O to/from hyperslab
 *        selections of different rank in the parallel.
 *
 *        Verify that we can write from memory to file using
 *        selections of different rank that H5Sselect_shape_same()
 *        views as being of the same shape.
 *
 *        Do this by writing small_rank - 1 dimensional slices from
 *        the in memory large data set to the on disk small cube
 *        dataset.  After each write, read the slice of the small
 *        dataset back from disk, and verify that it contains
 *        the expected data. Verify that H5Sselect_shape_same()
 *        returns true on the memory and file selections.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 8/10/11
 *
 *-------------------------------------------------------------------------
 */

#define CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG 0

static void
contig_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG
    const char *fcnName = "contig_hs_dr_pio_test__m2d_l2s()";
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
    hbool_t   mis_match = FALSE;
    int       i, j, k, l;
    size_t    n;
    int       mpi_rank; /* needed by the VRFY macro */
    size_t    start_index;
    size_t    stop_index;
    uint32_t  expected_value;
    uint32_t *ptr_1;
    htri_t    check; /* Shape comparison return value */
    herr_t    ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* now we go in the opposite direction, verifying that we can write
     * from memory to file using selections of different rank that
     * H5Sselect_shape_same() views as being of the same shape.
     *
     * Start by writing small_rank - 1 dimensional slices from the in memory large
     * data set to the on disk small cube dataset.  After each write, read the
     * slice of the small dataset back from disk, and verify that it contains
     * the expected data. Verify that H5Sselect_shape_same() returns true on
     * the memory and file selections.
     */

    tv_ptr->start[0]  = (hsize_t)(tv_ptr->mpi_rank);
    tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
    tv_ptr->count[0]  = 1;
    tv_ptr->block[0]  = 1;

    for (i = 1; i < tv_ptr->large_rank; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        tv_ptr->block[i]  = (hsize_t)(tv_ptr->edge_size);
    }

    ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");

    ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to read slices of the large cube.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

    /* zero out the in memory small ds */
    HDmemset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);

#if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG
    HDfprintf(stdout, "%s writing slices from big ds to slices of small ds on disk.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */

    /* in serial versions of this test, we loop through all the dimensions
     * of the large data set that don't appear in the small data set.
     *
     * However, in the parallel version, each process only works with that
     * slice of the large (and small) data set indicated by its rank -- hence
     * we set the most slowly changing index to mpi_rank, and don't iterate
     * over it.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    j = 0;
    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    /* zero out this rank's slice of the on disk small data set */
                    ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
                                   tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_2);
                    VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded.");

                    /* select the portion of the in memory large cube from which we
                     * are going to write data.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start_ptr,
                                              tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
                    VRFY((ret >= 0), "H5Sselect_hyperslab() mem_large_ds_sid succeeded.");

                    /* verify that H5Sselect_shape_same() reports the in
                     * memory slice through the cube selection and the
                     * on disk full square selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed.");

                    /* write the slice from the in memory large data set to the
                     * slice of the on disk small dataset. */
#if CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
                              (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
                              (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
                    HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                              H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
                    ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
                                   tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0);
                    VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded.");

                    /* read the on disk square into memory */
                    ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
                                  tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1);
                    VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");

                    /* verify that expected data is retrieved */

                    mis_match = FALSE;
                    ptr_1     = tv_ptr->small_ds_buf_1;

                    expected_value =
                        (uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                    tv_ptr->edge_size) +
                                   (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                   (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));

                    start_index = (size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size;
                    stop_index  = start_index + tv_ptr->small_ds_slice_size - 1;

                    assert(start_index < stop_index);
                    assert(stop_index <= tv_ptr->small_ds_size);

                    for (n = 0; n < tv_ptr->small_ds_size; n++) {

                        if ((n >= start_index) && (n <= stop_index)) {

                            if (*ptr_1 != expected_value) {

                                mis_match = TRUE;
                            }
                            expected_value++;
                        }
                        else {

                            if (*ptr_1 != 0) {

                                mis_match = TRUE;
                            }
                        }
                        /* zero out the value for the next pass */
                        *ptr_1 = 0;

                        ptr_1++;
                    }

                    VRFY((mis_match == FALSE), "small slice write from large ds data good.");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* contig_hs_dr_pio_test__m2d_l2s() */

/*-------------------------------------------------------------------------
 * Function:    contig_hs_dr_pio_test__m2d_s2l()
 *
 * Purpose:    Part four of a series of tests of I/O to/from hyperslab
 *        selections of different rank in the parallel.
 *
 *        Verify that we can write from memory to file using
 *        selections of different rank that H5Sselect_shape_same()
 *        views as being of the same shape.
 *
 *        Do this by writing the contents of the process's slice of
 *        the in memory small data set to slices of the on disk
 *        large data set.  After each write, read the process's
 *        slice of the large data set back into memory, and verify
 *        that it contains the expected data.
 *
 *        Verify that H5Sselect_shape_same() returns true on the
 *        memory and file selections.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 8/10/11
 *
 *-------------------------------------------------------------------------
 */

#define CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG 0

static void
contig_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
    const char *fcnName = "contig_hs_dr_pio_test__m2d_s2l()";
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
    hbool_t   mis_match = FALSE;
    int       i, j, k, l;
    size_t    n;
    int       mpi_rank; /* needed by the VRFY macro */
    size_t    start_index;
    size_t    stop_index;
    uint32_t  expected_value;
    uint32_t *ptr_1;
    htri_t    check; /* Shape comparison return value */
    herr_t    ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* Now write the contents of the process's slice of the in memory
     * small data set to slices of the on disk large data set.  After
     * each write, read the process's slice of the large data set back
     * into memory, and verify that it contains the expected data.
     * Verify that H5Sselect_shape_same() returns true on the memory
     * and file selections.
     */

    /* select the slice of the in memory small data set associated with
     * the process's mpi rank.
     */
    tv_ptr->start[0]  = (hsize_t)(tv_ptr->mpi_rank);
    tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
    tv_ptr->count[0]  = 1;
    tv_ptr->block[0]  = 1;

    for (i = 1; i < tv_ptr->large_rank; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        tv_ptr->block[i]  = (hsize_t)(tv_ptr->edge_size);
    }

    ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to write slices of the small data set to
     * slices of the large data set.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

    /* zero out the in memory large ds */
    HDmemset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);

#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
    HDfprintf(stdout, "%s writing process slices of small ds to slices of large ds on disk.\n", fcnName);
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;

#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    HDfprintf(stdout, "%s:%d: skipping test with start = %d %d %d %d %d.\n", fcnName,
                              (int)(tv_ptr->mpi_rank), (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]),
                              (int)(tv_ptr->start[2]), (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
                    HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                              H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    /* Zero out this processes slice of the on disk large data set.
                     * Note that this will leave one slice with its original data
                     * as there is one more slice than processes.
                     */
                    ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->large_ds_slice_sid,
                                   tv_ptr->file_large_ds_process_slice_sid, tv_ptr->xfer_plist,
                                   tv_ptr->large_ds_buf_2);
                    VRFY((ret != FAIL), "H5Dwrite() to zero large ds succeeded");

                    /* select the portion of the in memory large cube to which we
                     * are going to write data.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start_ptr,
                                              tv_ptr->stride_ptr, tv_ptr->count_ptr, tv_ptr->block_ptr);
                    VRFY((ret != FAIL), "H5Sselect_hyperslab() target large ds slice succeeded");

                    /* verify that H5Sselect_shape_same() reports the in
                     * memory small data set slice selection and the
                     * on disk slice through the large data set selection
                     * as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->mem_small_ds_sid, tv_ptr->file_large_ds_sid_0);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed");

                    /* write the small data set slice from memory to the
                     * target slice of the disk data set
                     */
#if CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, (int)(tv_ptr->mpi_rank),
                              (int)(tv_ptr->start[0]), (int)(tv_ptr->start[1]), (int)(tv_ptr->start[2]),
                              (int)(tv_ptr->start[3]), (int)(tv_ptr->start[4]));
                    HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                              H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
                    ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
                                   tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0);
                    VRFY((ret != FAIL), "H5Dwrite of small ds slice to large ds succeeded");

                    /* read this processes slice on the on disk large
                     * data set into memory.
                     */

                    ret = H5Dread(
                        tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_process_slice_sid,
                        tv_ptr->file_large_ds_process_slice_sid, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
                    VRFY((ret != FAIL), "H5Dread() of process slice of large ds succeeded");

                    /* verify that the expected data and only the
                     * expected data was read.
                     */
                    ptr_1          = tv_ptr->large_ds_buf_1;
                    expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);

                    start_index =
                        (size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                  tv_ptr->edge_size) +
                                 (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                 (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
                    stop_index = start_index + tv_ptr->small_ds_slice_size - 1;

                    assert(start_index < stop_index);
                    assert(stop_index < tv_ptr->large_ds_size);

                    for (n = 0; n < tv_ptr->large_ds_size; n++) {

                        if ((n >= start_index) && (n <= stop_index)) {

                            if (*ptr_1 != expected_value) {

                                mis_match = TRUE;
                            }

                            expected_value++;
                        }
                        else {

                            if (*ptr_1 != 0) {

                                mis_match = TRUE;
                            }
                        }
                        /* zero out buffer for next test */
                        *ptr_1 = 0;
                        ptr_1++;
                    }

                    VRFY((mis_match == FALSE), "small ds slice write to large ds slice data good.");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* contig_hs_dr_pio_test__m2d_s2l() */

/*-------------------------------------------------------------------------
 * Function:    contig_hs_dr_pio_test__run_test()
 *
 * Purpose:    Test I/O to/from hyperslab selections of different rank in
 *        the parallel.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 9/18/09
 *
 *-------------------------------------------------------------------------
 */

#define CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG 0

static void
contig_hs_dr_pio_test__run_test(const int test_num, const int edge_size, const int chunk_edge_size,
                                const int small_rank, const int large_rank, const hbool_t use_collective_io,
                                const hid_t dset_type, int express_test, int *skips_ptr, int max_skips,
                                int64_t *total_tests_ptr, int64_t *tests_run_ptr, int64_t *tests_skipped_ptr)
{
#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    const char *fcnName = "contig_hs_dr_pio_test__run_test()";
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
    struct hs_dr_pio_test_vars_t test_vars = {
        /* int           mpi_size                        = */ -1,
        /* int         mpi_rank                        = */ -1,
        /* MPI_Comm    mpi_comm                        = */ MPI_COMM_NULL,
        /* MPI_Inf     mpi_info                        = */ MPI_INFO_NULL,
        /* int         test_num                        = */ -1,
        /* int         edge_size                       = */ -1,
        /* int         checker_edge_size               = */ -1,
        /* int         chunk_edge_size                 = */ -1,
        /* int         small_rank                      = */ -1,
        /* int         large_rank                      = */ -1,
        /* hid_t       dset_type                       = */ -1,
        /* uint32_t  * small_ds_buf_0                  = */ NULL,
        /* uint32_t  * small_ds_buf_1                  = */ NULL,
        /* uint32_t  * small_ds_buf_2                  = */ NULL,
        /* uint32_t  * small_ds_slice_buf              = */ NULL,
        /* uint32_t  * large_ds_buf_0                  = */ NULL,
        /* uint32_t  * large_ds_buf_1                  = */ NULL,
        /* uint32_t  * large_ds_buf_2                  = */ NULL,
        /* uint32_t  * large_ds_slice_buf              = */ NULL,
        /* int         small_ds_offset                 = */ -1,
        /* int         large_ds_offset                 = */ -1,
        /* hid_t       fid                             = */ -1, /* HDF5 file ID */
        /* hid_t       xfer_plist                      = */ H5P_DEFAULT,
        /* hid_t       full_mem_small_ds_sid           = */ -1,
        /* hid_t       full_file_small_ds_sid          = */ -1,
        /* hid_t       mem_small_ds_sid                = */ -1,
        /* hid_t       file_small_ds_sid_0             = */ -1,
        /* hid_t       file_small_ds_sid_1             = */ -1,
        /* hid_t       small_ds_slice_sid              = */ -1,
        /* hid_t       full_mem_large_ds_sid           = */ -1,
        /* hid_t       full_file_large_ds_sid          = */ -1,
        /* hid_t       mem_large_ds_sid                = */ -1,
        /* hid_t       file_large_ds_sid_0             = */ -1,
        /* hid_t       file_large_ds_sid_1             = */ -1,
        /* hid_t       file_large_ds_process_slice_sid = */ -1,
        /* hid_t       mem_large_ds_process_slice_sid  = */ -1,
        /* hid_t       large_ds_slice_sid              = */ -1,
        /* hid_t       small_dataset                   = */ -1, /* Dataset ID */
        /* hid_t       large_dataset                   = */ -1, /* Dataset ID */
        /* size_t      small_ds_size                   = */ 1,
        /* size_t      small_ds_slice_size             = */ 1,
        /* size_t      large_ds_size                   = */ 1,
        /* size_t      large_ds_slice_size             = */ 1,
        /* hsize_t     dims[PAR_SS_DR_MAX_RANK]        = */ {0, 0, 0, 0, 0},
        /* hsize_t     chunk_dims[PAR_SS_DR_MAX_RANK]  = */ {0, 0, 0, 0, 0},
        /* hsize_t     start[PAR_SS_DR_MAX_RANK]       = */ {0, 0, 0, 0, 0},
        /* hsize_t     stride[PAR_SS_DR_MAX_RANK]      = */ {0, 0, 0, 0, 0},
        /* hsize_t     count[PAR_SS_DR_MAX_RANK]       = */ {0, 0, 0, 0, 0},
        /* hsize_t     block[PAR_SS_DR_MAX_RANK]       = */ {0, 0, 0, 0, 0},
        /* hsize_t   * start_ptr                       = */ NULL,
        /* hsize_t   * stride_ptr                      = */ NULL,
        /* hsize_t   * count_ptr                       = */ NULL,
        /* hsize_t   * block_ptr                       = */ NULL,
        /* int            skips                           = */ 0,
        /* int            max_skips                       = */ 0,
        /* int64_t     total_tests                     = */ 0,
        /* int64_t     tests_run                       = */ 0,
        /* int64_t     tests_skipped                   = */ 0};
    struct hs_dr_pio_test_vars_t *tv_ptr = &test_vars;

    hs_dr_pio_test__setup(test_num, edge_size, -1, chunk_edge_size, small_rank, large_rank, use_collective_io,
                          dset_type, express_test, tv_ptr);

    /* initialize skips & max_skips */
    tv_ptr->skips     = *skips_ptr;
    tv_ptr->max_skips = max_skips;

#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", test_num, small_rank, large_rank);
        HDfprintf(stdout, "test %d: Initialization complete.\n", test_num);
    }
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */

    /* first, verify that we can read from disk correctly using selections
     * of different rank that H5Sselect_shape_same() views as being of the
     * same shape.
     *
     * Start by reading small_rank - 1 dimensional slice from the on disk
     * large cube, and verifying that the data read is correct.  Verify that
     * H5Sselect_shape_same() returns true on the memory and file selections.
     */

#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__d2m_l2s.\n", test_num);
    }
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
    contig_hs_dr_pio_test__d2m_l2s(tv_ptr);

    /* Second, read slices of the on disk small data set into slices
     * through the in memory large data set, and verify that the correct
     * data (and only the correct data) is read.
     */

#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__d2m_s2l.\n", test_num);
    }
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
    contig_hs_dr_pio_test__d2m_s2l(tv_ptr);

    /* now we go in the opposite direction, verifying that we can write
     * from memory to file using selections of different rank that
     * H5Sselect_shape_same() views as being of the same shape.
     *
     * Start by writing small_rank - 1 D slices from the in memory large data
     * set to the on disk small cube dataset.  After each write, read the
     * slice of the small dataset back from disk, and verify that it contains
     * the expected data. Verify that H5Sselect_shape_same() returns true on
     * the memory and file selections.
     */

#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__m2d_l2s.\n", test_num);
    }
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
    contig_hs_dr_pio_test__m2d_l2s(tv_ptr);

    /* Now write the contents of the process's slice of the in memory
     * small data set to slices of the on disk large data set.  After
     * each write, read the process's slice of the large data set back
     * into memory, and verify that it contains the expected data.
     * Verify that H5Sselect_shape_same() returns true on the memory
     * and file selections.
     */

#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: running contig_hs_dr_pio_test__m2d_s2l.\n", test_num);
    }
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
    contig_hs_dr_pio_test__m2d_s2l(tv_ptr);

#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n",
                  test_num, (long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped),
                  (long long)(tv_ptr->total_tests));
    }
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */

    hs_dr_pio_test__takedown(tv_ptr);

#if CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: Takedown complete.\n", test_num);
    }
#endif /* CONTIG_HS_DR_PIO_TEST__RUN_TEST__DEBUG */

    *skips_ptr = tv_ptr->skips;
    *total_tests_ptr += tv_ptr->total_tests;
    *tests_run_ptr += tv_ptr->tests_run;
    *tests_skipped_ptr += tv_ptr->tests_skipped;

    return;

} /* contig_hs_dr_pio_test__run_test() */

/*-------------------------------------------------------------------------
 * Function:    contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type)
 *
 * Purpose:    Test I/O to/from hyperslab selections of different rank in
 *        the parallel case.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 9/18/09
 *
 *-------------------------------------------------------------------------
 */

#define CONTIG_HS_DR_PIO_TEST__DEBUG 0

static void
contig_hs_dr_pio_test(ShapeSameTestMethods sstest_type)
{
    int express_test;
    int local_express_test;
    int mpi_rank = -1;
    int mpi_size;
    int test_num = 0;
    int edge_size;
    int chunk_edge_size = 0;
    int small_rank;
    int large_rank;
    int mpi_result;
    int skips     = 0;
    int max_skips = 0;
    /* The following table list the number of sub-tests skipped between
     * each test that is actually executed as a function of the express
     * test level.  Note that any value in excess of 4880 will cause all
     * sub tests to be skipped.
     */
    int     max_skips_tbl[4] = {0, 4, 64, 1024};
    hid_t   dset_type        = H5T_NATIVE_UINT;
    int64_t total_tests      = 0;
    int64_t tests_run        = 0;
    int64_t tests_skipped    = 0;

    HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned));

    MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

    edge_size = (mpi_size > 6 ? mpi_size : 6);

    local_express_test = GetTestExpress();

    mpi_result = MPI_Allreduce((void *)&local_express_test, (void *)&express_test, 1, MPI_INT, MPI_MAX,
                               MPI_COMM_WORLD);

    VRFY((mpi_result == MPI_SUCCESS), "MPI_Allreduce(0) succeeded");

    if (local_express_test < 0) {
        max_skips = max_skips_tbl[0];
    }
    else if (local_express_test > 3) {
        max_skips = max_skips_tbl[3];
    }
    else {
        max_skips = max_skips_tbl[local_express_test];
    }

    for (large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++) {

        for (small_rank = 2; small_rank < large_rank; small_rank++) {

            switch (sstest_type) {
                case IND_CONTIG:
                    /* contiguous data set, independent I/O */
                    chunk_edge_size = 0;

                    contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank,
                                                    large_rank, FALSE, dset_type, express_test, &skips,
                                                    max_skips, &total_tests, &tests_run, &tests_skipped);
                    test_num++;
                    break;
                    /* end of case IND_CONTIG */

                case COL_CONTIG:
                    /* contiguous data set, collective I/O */
                    chunk_edge_size = 0;

                    contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank,
                                                    large_rank, TRUE, dset_type, express_test, &skips,
                                                    max_skips, &total_tests, &tests_run, &tests_skipped);
                    test_num++;
                    break;
                    /* end of case COL_CONTIG */

                case IND_CHUNKED:
                    /* chunked data set, independent I/O */
                    chunk_edge_size = 5;

                    contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank,
                                                    large_rank, FALSE, dset_type, express_test, &skips,
                                                    max_skips, &total_tests, &tests_run, &tests_skipped);
                    test_num++;
                    break;
                    /* end of case IND_CHUNKED */

                case COL_CHUNKED:
                    /* chunked data set, collective I/O */
                    chunk_edge_size = 5;

                    contig_hs_dr_pio_test__run_test(test_num, edge_size, chunk_edge_size, small_rank,
                                                    large_rank, TRUE, dset_type, express_test, &skips,
                                                    max_skips, &total_tests, &tests_run, &tests_skipped);
                    test_num++;
                    break;
                    /* end of case COL_CHUNKED */

                default:
                    VRFY((FALSE), "unknown test type");
                    break;

            } /* end of switch(sstest_type) */
#if CONTIG_HS_DR_PIO_TEST__DEBUG
            if ((MAINPROCESS) && (tests_skipped > 0)) {
                HDfprintf(stdout, "    run/skipped/total = %lld/%lld/%lld.\n", tests_run, tests_skipped,
                          total_tests);
            }
#endif /* CONTIG_HS_DR_PIO_TEST__DEBUG */
        }
    }

    if ((MAINPROCESS) && (tests_skipped > 0)) {
        HDfprintf(stdout, "    %" PRId64 " of %" PRId64 " subtests skipped to expedite testing.\n",
                  tests_skipped, total_tests);
    }

    return;

} /* contig_hs_dr_pio_test() */

/****************************************************************
**
**  ckrbrd_hs_dr_pio_test__slct_ckrbrd():
**    Given a dataspace of tgt_rank, and dimensions:
**
**        (mpi_size + 1), edge_size, ... , edge_size
**
**    edge_size, and a checker_edge_size, select a checker
**    board selection of a sel_rank (sel_rank < tgt_rank)
**    dimensional slice through the dataspace parallel to the
**      sel_rank fastest changing indices, with origin (in the
**    higher indices) as indicated by the start array.
**
**    Note that this function, like all its relatives, is
**    hard coded to presume a maximum dataspace rank of 5.
**    While this maximum is declared as a constant, increasing
**    it will require extensive coding in addition to changing
**      the value of the constant.
**
**                    JRM -- 10/8/09
**
****************************************************************/

#define CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG 0

static void
ckrbrd_hs_dr_pio_test__slct_ckrbrd(const int mpi_rank, const hid_t tgt_sid, const int tgt_rank,
                                   const int edge_size, const int checker_edge_size, const int sel_rank,
                                   hsize_t sel_start[])
{
#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
    const char *fcnName = "ckrbrd_hs_dr_pio_test__slct_ckrbrd():";
#endif
    hbool_t   first_selection = TRUE;
    int       i, j, k, l, m;
    int       n_cube_offset;
    int       sel_offset;
    const int test_max_rank = PAR_SS_DR_MAX_RANK; /* must update code if */
                                                  /* this changes        */
    hsize_t base_count;
    hsize_t offset_count;
    hsize_t start[PAR_SS_DR_MAX_RANK];
    hsize_t stride[PAR_SS_DR_MAX_RANK];
    hsize_t count[PAR_SS_DR_MAX_RANK];
    hsize_t block[PAR_SS_DR_MAX_RANK];
    herr_t  ret; /* Generic return value */

    assert(edge_size >= 6);
    assert(0 < checker_edge_size);
    assert(checker_edge_size <= edge_size);
    assert(0 < sel_rank);
    assert(sel_rank <= tgt_rank);
    assert(tgt_rank <= test_max_rank);
    assert(test_max_rank <= PAR_SS_DR_MAX_RANK);

    sel_offset = test_max_rank - sel_rank;
    assert(sel_offset >= 0);

    n_cube_offset = test_max_rank - tgt_rank;
    assert(n_cube_offset >= 0);
    assert(n_cube_offset <= sel_offset);

#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
    HDfprintf(stdout, "%s:%d: edge_size/checker_edge_size = %d/%d\n", fcnName, mpi_rank, edge_size,
              checker_edge_size);
    HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", fcnName, mpi_rank, sel_rank, sel_offset);
    HDfprintf(stdout, "%s:%d: tgt_rank/n_cube_offset = %d/%d.\n", fcnName, mpi_rank, tgt_rank, n_cube_offset);
#endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */

    /* First, compute the base count (which assumes start == 0
     * for the associated offset) and offset_count (which
     * assumes start == checker_edge_size for the associated
     * offset).
     *
     * Note that the following computation depends on the C99
     * requirement that integer division discard any fraction
     * (truncation towards zero) to function correctly. As we
     * now require C99, this shouldn't be a problem, but noting
     * it may save us some pain if we are ever obliged to support
     * pre-C99 compilers again.
     */

    base_count = (hsize_t)(edge_size / (checker_edge_size * 2));

    if ((edge_size % (checker_edge_size * 2)) > 0) {

        base_count++;
    }

    offset_count = (hsize_t)((edge_size - checker_edge_size) / (checker_edge_size * 2));

    if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) {

        offset_count++;
    }

    /* Now set up the stride and block arrays, and portions of the start
     * and count arrays that will not be altered during the selection of
     * the checker board.
     */
    i = 0;
    while (i < n_cube_offset) {

        /* these values should never be used */
        start[i]  = 0;
        stride[i] = 0;
        count[i]  = 0;
        block[i]  = 0;

        i++;
    }

    while (i < sel_offset) {

        start[i]  = sel_start[i];
        stride[i] = (hsize_t)(2 * edge_size);
        count[i]  = 1;
        block[i]  = 1;

        i++;
    }

    while (i < test_max_rank) {

        stride[i] = (hsize_t)(2 * checker_edge_size);
        block[i]  = (hsize_t)checker_edge_size;

        i++;
    }

    i = 0;
    do {
        if (0 >= sel_offset) {

            if (i == 0) {

                start[0] = 0;
                count[0] = base_count;
            }
            else {

                start[0] = (hsize_t)checker_edge_size;
                count[0] = offset_count;
            }
        }

        j = 0;
        do {
            if (1 >= sel_offset) {

                if (j == 0) {

                    start[1] = 0;
                    count[1] = base_count;
                }
                else {

                    start[1] = (hsize_t)checker_edge_size;
                    count[1] = offset_count;
                }
            }

            k = 0;
            do {
                if (2 >= sel_offset) {

                    if (k == 0) {

                        start[2] = 0;
                        count[2] = base_count;
                    }
                    else {

                        start[2] = (hsize_t)checker_edge_size;
                        count[2] = offset_count;
                    }
                }

                l = 0;
                do {
                    if (3 >= sel_offset) {

                        if (l == 0) {

                            start[3] = 0;
                            count[3] = base_count;
                        }
                        else {

                            start[3] = (hsize_t)checker_edge_size;
                            count[3] = offset_count;
                        }
                    }

                    m = 0;
                    do {
                        if (4 >= sel_offset) {

                            if (m == 0) {

                                start[4] = 0;
                                count[4] = base_count;
                            }
                            else {

                                start[4] = (hsize_t)checker_edge_size;
                                count[4] = offset_count;
                            }
                        }

                        if (((i + j + k + l + m) % 2) == 0) {

#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
                            HDfprintf(stdout, "%s%d: *** first_selection = %d ***\n", fcnName, mpi_rank,
                                      (int)first_selection);
                            HDfprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", fcnName, mpi_rank, i, j,
                                      k, l, m);
                            HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, mpi_rank,
                                      (int)start[0], (int)start[1], (int)start[2], (int)start[3],
                                      (int)start[4]);
                            HDfprintf(stdout, "%s:%d: stride = %d %d %d %d %d.\n", fcnName, mpi_rank,
                                      (int)stride[0], (int)stride[1], (int)stride[2], (int)stride[3],
                                      (int)stride[4]);
                            HDfprintf(stdout, "%s:%d: count = %d %d %d %d %d.\n", fcnName, mpi_rank,
                                      (int)count[0], (int)count[1], (int)count[2], (int)count[3],
                                      (int)count[4]);
                            HDfprintf(stdout, "%s:%d: block = %d %d %d %d %d.\n", fcnName, mpi_rank,
                                      (int)block[0], (int)block[1], (int)block[2], (int)block[3],
                                      (int)block[4]);
                            HDfprintf(stdout, "%s:%d: n-cube extent dims = %d.\n", fcnName, mpi_rank,
                                      H5Sget_simple_extent_ndims(tgt_sid));
                            HDfprintf(stdout, "%s:%d: selection rank = %d.\n", fcnName, mpi_rank, sel_rank);
#endif

                            if (first_selection) {

                                first_selection = FALSE;

                                ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_SET, &(start[n_cube_offset]),
                                                          &(stride[n_cube_offset]), &(count[n_cube_offset]),
                                                          &(block[n_cube_offset]));

                                VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded");
                            }
                            else {

                                ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_OR, &(start[n_cube_offset]),
                                                          &(stride[n_cube_offset]), &(count[n_cube_offset]),
                                                          &(block[n_cube_offset]));

                                VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded");
                            }
                        }

                        m++;

                    } while ((m <= 1) && (4 >= sel_offset));

                    l++;

                } while ((l <= 1) && (3 >= sel_offset));

                k++;

            } while ((k <= 1) && (2 >= sel_offset));

            j++;

        } while ((j <= 1) && (1 >= sel_offset));

        i++;

    } while ((i <= 1) && (0 >= sel_offset));

#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
    HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank,
              (int)H5Sget_select_npoints(tgt_sid));
#endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */

    /* Clip the selection back to the dataspace proper. */

    for (i = 0; i < test_max_rank; i++) {

        start[i]  = 0;
        stride[i] = (hsize_t)edge_size;
        count[i]  = 1;
        block[i]  = (hsize_t)edge_size;
    }

    ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, start, stride, count, block);

    VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded");

#if CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG
    HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank,
              (int)H5Sget_select_npoints(tgt_sid));
    HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank);
#endif /* CKRBRD_HS_DR_PIO_TEST__SELECT_CHECKER_BOARD__DEBUG */

    return;

} /* ckrbrd_hs_dr_pio_test__slct_ckrbrd() */

/****************************************************************
**
**  ckrbrd_hs_dr_pio_test__verify_data():
**
**    Examine the supplied buffer to see if it contains the
**    expected data.  Return TRUE if it does, and FALSE
**      otherwise.
**
**    The supplied buffer is presumed to this process's slice
**    of the target data set.  Each such slice will be an
**    n-cube of rank (rank -1) and the supplied edge_size with
**    origin (mpi_rank, 0, ... , 0) in the target data set.
**
**    Further, the buffer is presumed to be the result of reading
**    or writing a checker board selection of an m (1 <= m <
**      rank) dimensional slice through this processes slice
**    of the target data set.  Also, this slice must be parallel
**    to the fastest changing indices.
**
**    It is further presumed that the buffer was zeroed before
**    the read/write, and that the full target data set (i.e.
**    the buffer/data set for all processes) was initialized
**      with the natural numbers listed in order from the origin
**    along the fastest changing axis.
**
**      Thus for a 20x10x10 dataset, the value stored in location
**    (x, y, z) (assuming that z is the fastest changing index
**    and x the slowest) is assumed to be:
**
**        (10 * 10 * x) + (10 * y) + z
**
**    Further, supposing that this is process 10, this process's
**    slice of the dataset would be a 10 x 10 2-cube with origin
**    (10, 0, 0) in the data set, and would be initialize (prior
**    to the checkerboard selection) as follows:
**
**        1000, 1001, 1002, ... 1008, 1009
**        1010, 1011, 1012, ... 1018, 1019
**          .     .     .         .     .
**          .     .     .         .     .
**          .     .     .         .     .
**        1090, 1091, 1092, ... 1098, 1099
**
**    In the case of a read from the processors slice of another
**    data set of different rank, the values expected will have
**    to be adjusted accordingly.  This is done via the
**    first_expected_val parameter.
**
**    Finally, the function presumes that the first element
**    of the buffer resides either at the origin of either
**    a selected or an unselected checker.  (Translation:
**    if partial checkers appear in the buffer, they will
**    intersect the edges of the n-cube opposite the origin.)
**
****************************************************************/

#define CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG 0

static hbool_t
ckrbrd_hs_dr_pio_test__verify_data(uint32_t *buf_ptr, const int rank, const int edge_size,
                                   const int checker_edge_size, uint32_t first_expected_val,
                                   hbool_t buf_starts_in_checker)
{
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
    const char *fcnName = "ckrbrd_hs_dr_pio_test__verify_data():";
#endif
    hbool_t   good_data = TRUE;
    hbool_t   in_checker;
    hbool_t   start_in_checker[5];
    uint32_t  expected_value;
    uint32_t *val_ptr;
    int       i, j, k, l, m;     /* to track position in n-cube */
    int       v, w, x, y, z;     /* to track position in checker */
    const int test_max_rank = 5; /* code changes needed if this is increased */

    assert(buf_ptr != NULL);
    assert(0 < rank);
    assert(rank <= test_max_rank);
    assert(edge_size >= 6);
    assert(0 < checker_edge_size);
    assert(checker_edge_size <= edge_size);
    assert(test_max_rank <= PAR_SS_DR_MAX_RANK);

#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG

    int mpi_rank;

    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
    HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank);
    HDfprintf(stdout, "%s rank = %d.\n", fcnName, rank);
    HDfprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size);
    HDfprintf(stdout, "%s checker_edge_size = %d.\n", fcnName, checker_edge_size);
    HDfprintf(stdout, "%s first_expected_val = %d.\n", fcnName, (int)first_expected_val);
    HDfprintf(stdout, "%s starts_in_checker = %d.\n", fcnName, (int)buf_starts_in_checker);
}
#endif

val_ptr        = buf_ptr;
expected_value = first_expected_val;

i                   = 0;
v                   = 0;
start_in_checker[0] = buf_starts_in_checker;
do {
    if (v >= checker_edge_size) {

        start_in_checker[0] = !start_in_checker[0];
        v                   = 0;
    }

    j                   = 0;
    w                   = 0;
    start_in_checker[1] = start_in_checker[0];
    do {
        if (w >= checker_edge_size) {

            start_in_checker[1] = !start_in_checker[1];
            w                   = 0;
        }

        k                   = 0;
        x                   = 0;
        start_in_checker[2] = start_in_checker[1];
        do {
            if (x >= checker_edge_size) {

                start_in_checker[2] = !start_in_checker[2];
                x                   = 0;
            }

            l                   = 0;
            y                   = 0;
            start_in_checker[3] = start_in_checker[2];
            do {
                if (y >= checker_edge_size) {

                    start_in_checker[3] = !start_in_checker[3];
                    y                   = 0;
                }

                m = 0;
                z = 0;
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
                HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m);
#endif
                in_checker = start_in_checker[3];
                do {
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
                    HDfprintf(stdout, " %d", (int)(*val_ptr));
#endif
                    if (z >= checker_edge_size) {

                        in_checker = !in_checker;
                        z          = 0;
                    }

                    if (in_checker) {

                        if (*val_ptr != expected_value) {

                            good_data = FALSE;
                        }

                        /* zero out buffer for re-use */
                        *val_ptr = 0;
                    }
                    else if (*val_ptr != 0) {

                        good_data = FALSE;

                        /* zero out buffer for re-use */
                        *val_ptr = 0;
                    }

                    val_ptr++;
                    expected_value++;
                    m++;
                    z++;

                } while ((rank >= (test_max_rank - 4)) && (m < edge_size));
#if CKRBRD_HS_DR_PIO_TEST__VERIFY_DATA__DEBUG
                HDfprintf(stdout, "\n");
#endif
                l++;
                y++;
            } while ((rank >= (test_max_rank - 3)) && (l < edge_size));
            k++;
            x++;
        } while ((rank >= (test_max_rank - 2)) && (k < edge_size));
        j++;
        w++;
    } while ((rank >= (test_max_rank - 1)) && (j < edge_size));
    i++;
    v++;
} while ((rank >= test_max_rank) && (i < edge_size));

return (good_data);

} /* ckrbrd_hs_dr_pio_test__verify_data() */

/*-------------------------------------------------------------------------
 * Function:    ckrbrd_hs_dr_pio_test__d2m_l2s()
 *
 * Purpose:    Part one of a series of tests of I/O to/from hyperslab
 *        selections of different rank in the parallel.
 *
 *        Verify that we can read from disk correctly using checker
 *        board selections of different rank that
 *        H5Sselect_shape_same() views as being of the same shape.
 *
 *        In this function, we test this by reading small_rank - 1
 *        checker board slices from the on disk large cube, and
 *        verifying that the data read is correct.  Verify that
 *        H5Sselect_shape_same() returns true on the memory and
 *        file selections.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 9/15/11
 *
 *-------------------------------------------------------------------------
 */

#define CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG 0

static void
ckrbrd_hs_dr_pio_test__d2m_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
    const char *fcnName = "ckrbrd_hs_dr_pio_test__d2m_l2s()";
    uint32_t   *ptr_0;
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
    hbool_t  data_ok = FALSE;
    int      i, j, k, l;
    uint32_t expected_value;
    int      mpi_rank; /* needed by VRFY */
    hsize_t  sel_start[PAR_SS_DR_MAX_RANK];
    htri_t   check; /* Shape comparison return value */
    herr_t   ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* first, verify that we can read from disk correctly using selections
     * of different rank that H5Sselect_shape_same() views as being of the
     * same shape.
     *
     * Start by reading a (small_rank - 1)-D checker board slice from this
     * processes slice of the on disk large data set, and verifying that the
     * data read is correct.  Verify that H5Sselect_shape_same() returns
     * true on the memory and file selections.
     *
     * The first step is to set up the needed checker board selection in the
     * in memory small small cube
     */

    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
    sel_start[tv_ptr->small_ds_offset]                                       = (hsize_t)(tv_ptr->mpi_rank);

    ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->small_ds_slice_sid, tv_ptr->small_rank - 1,
                                       tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
                                       sel_start);

    /* zero out the buffer we will be reading into */
    HDmemset(tv_ptr->small_ds_slice_buf, 0, sizeof(uint32_t) * tv_ptr->small_ds_slice_size);

#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
    HDfprintf(stdout, "%s:%d: initial small_ds_slice_buf = ", fcnName, tv_ptr->mpi_rank);
    ptr_0 = tv_ptr->small_ds_slice_buf;
    for (i = 0; i < (int)(tv_ptr->small_ds_slice_size); i++) {
        HDfprintf(stdout, "%d ", (int)(*ptr_0));
        ptr_0++;
    }
    HDfprintf(stdout, "\n");
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to read slices of the large cube.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
    HDfprintf(stdout, "%s:%d: reading slice from big ds on disk into small ds slice.\n", fcnName,
              tv_ptr->mpi_rank);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */
    /* in serial versions of this test, we loop through all the dimensions
     * of the large data set.  However, in the parallel version, each
     * process only works with that slice of the large cube indicated
     * by its rank -- hence we set the most slowly changing index to
     * mpi_rank, and don't iterate over it.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank - 1 >= 1 and that
                     * large_rank > small_rank by the assertions at the head
                     * of this function.  Thus no need for another inner loop.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));

                    ckrbrd_hs_dr_pio_test__slct_ckrbrd(
                        tv_ptr->mpi_rank, tv_ptr->file_large_ds_sid_0, tv_ptr->large_rank, tv_ptr->edge_size,
                        tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->small_ds_slice_sid, tv_ptr->file_large_ds_sid_0);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed");

                    /* Read selection from disk */
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
                              tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
                              tv_ptr->start[4]);
                    HDfprintf(stdout, "%s slice/file extent dims = %d/%d.\n", fcnName,
                              H5Sget_simple_extent_ndims(tv_ptr->small_ds_slice_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_0));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */

                    ret =
                        H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->small_ds_slice_sid,
                                tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_slice_buf);
                    VRFY((ret >= 0), "H5Dread() slice from large ds succeeded.");

#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG
                    HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, tv_ptr->mpi_rank);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_L2S__DEBUG */

                    /* verify that expected data is retrieved */

                    expected_value =
                        (uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                    tv_ptr->edge_size) +
                                   (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                   (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));

                    data_ok = ckrbrd_hs_dr_pio_test__verify_data(
                        tv_ptr->small_ds_slice_buf, tv_ptr->small_rank - 1, tv_ptr->edge_size,
                        tv_ptr->checker_edge_size, expected_value, (hbool_t)TRUE);

                    VRFY((data_ok == TRUE), "small slice read from large ds data good.");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* ckrbrd_hs_dr_pio_test__d2m_l2s() */

/*-------------------------------------------------------------------------
 * Function:    ckrbrd_hs_dr_pio_test__d2m_s2l()
 *
 * Purpose:    Part two of a series of tests of I/O to/from hyperslab
 *        selections of different rank in the parallel.
 *
 *        Verify that we can read from disk correctly using
 *        selections of different rank that H5Sselect_shape_same()
 *        views as being of the same shape.
 *
 *        In this function, we test this by reading checker board
 *        slices of the on disk small data set into slices through
 *        the in memory large data set, and verify that the correct
 *        data (and only the correct data) is read.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 8/15/11
 *
 *-------------------------------------------------------------------------
 */

#define CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG 0

static void
ckrbrd_hs_dr_pio_test__d2m_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
    const char *fcnName = "ckrbrd_hs_dr_pio_test__d2m_s2l()";
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
    hbool_t   data_ok = FALSE;
    int       i, j, k, l;
    size_t    u;
    size_t    start_index;
    size_t    stop_index;
    uint32_t  expected_value;
    uint32_t *ptr_1;
    int       mpi_rank; /* needed by VRFY */
    hsize_t   sel_start[PAR_SS_DR_MAX_RANK];
    htri_t    check; /* Shape comparison return value */
    herr_t    ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* similarly, read slices of the on disk small data set into slices
     * through the in memory large data set, and verify that the correct
     * data (and only the correct data) is read.
     */

    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
    sel_start[tv_ptr->small_ds_offset]                                       = (hsize_t)(tv_ptr->mpi_rank);

    ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->file_small_ds_sid_0, tv_ptr->small_rank,
                                       tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
                                       sel_start);

#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
    HDfprintf(stdout, "%s reading slices of on disk small data set into slices of big data set.\n", fcnName);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */

    /* zero out the buffer we will be reading into */
    HDmemset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to read the slice of the small data set
     * into different slices of the process slice of the large data
     * set.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

    /* in serial versions of this test, we loop through all the dimensions
     * of the large data set that don't appear in the small data set.
     *
     * However, in the parallel version, each process only works with that
     * slice of the large (and small) data set indicated by its rank -- hence
     * we set the most slowly changing index to mpi_rank, and don't iterate
     * over it.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));

                    ckrbrd_hs_dr_pio_test__slct_ckrbrd(
                        tv_ptr->mpi_rank, tv_ptr->mem_large_ds_sid, tv_ptr->large_rank, tv_ptr->edge_size,
                        tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_0, tv_ptr->mem_large_ds_sid);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed");

                    /* Read selection from disk */
#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
                              tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
                              tv_ptr->start[4]);
                    HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                              H5Sget_simple_extent_ndims(tv_ptr->large_ds_slice_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_0));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */
                    ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
                                  tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
                    VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");

                    /* verify that the expected data and only the
                     * expected data was read.
                     */
                    data_ok        = TRUE;
                    ptr_1          = tv_ptr->large_ds_buf_1;
                    expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);
                    start_index =
                        (size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                  tv_ptr->edge_size) +
                                 (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                 (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
                    stop_index = start_index + tv_ptr->small_ds_slice_size - 1;

#if CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG
                    {
                        int m, n;

                        HDfprintf(stdout, "%s:%d: expected_value = %d.\n", fcnName, tv_ptr->mpi_rank,
                                  expected_value);
                        HDfprintf(stdout, "%s:%d: start/stop index = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                                  start_index, stop_index);
                        n = 0;
                        for (m = 0; (unsigned)m < tv_ptr->large_ds_size; m++) {
                            HDfprintf(stdout, "%d ", (int)(*ptr_1));
                            ptr_1++;
                            n++;
                            if (n >= tv_ptr->edge_size) {
                                HDfprintf(stdout, "\n");
                                n = 0;
                            }
                        }
                        HDfprintf(stdout, "\n");
                        ptr_1 = tv_ptr->large_ds_buf_1;
                    }
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__D2M_S2L__DEBUG */

                    assert(start_index < stop_index);
                    assert(stop_index <= tv_ptr->large_ds_size);

                    for (u = 0; u < start_index; u++) {

                        if (*ptr_1 != 0) {

                            data_ok = FALSE;
                        }

                        /* zero out the value for the next pass */
                        *ptr_1 = 0;

                        ptr_1++;
                    }

                    VRFY((data_ok == TRUE), "slice read from small to large ds data good(1).");

                    data_ok = ckrbrd_hs_dr_pio_test__verify_data(ptr_1, tv_ptr->small_rank - 1,
                                                                 tv_ptr->edge_size, tv_ptr->checker_edge_size,
                                                                 expected_value, (hbool_t)TRUE);

                    VRFY((data_ok == TRUE), "slice read from small to large ds data good(2).");

                    ptr_1 = tv_ptr->large_ds_buf_1 + stop_index + 1;

                    for (u = stop_index + 1; u < tv_ptr->large_ds_size; u++) {

                        if (*ptr_1 != 0) {

                            data_ok = FALSE;
                        }

                        /* zero out the value for the next pass */
                        *ptr_1 = 0;

                        ptr_1++;
                    }

                    VRFY((data_ok == TRUE), "slice read from small to large ds data good(3).");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* ckrbrd_hs_dr_pio_test__d2m_s2l() */

/*-------------------------------------------------------------------------
 * Function:    ckrbrd_hs_dr_pio_test__m2d_l2s()
 *
 * Purpose:    Part three of a series of tests of I/O to/from checker
 *        board hyperslab selections of different rank in the
 *        parallel.
 *
 *        Verify that we can write from memory to file using checker
 *        board selections of different rank that
 *        H5Sselect_shape_same() views as being of the same shape.
 *
 *        Do this by writing small_rank - 1 dimensional checker
 *        board slices from the in memory large data set to the on
 *        disk small cube dataset.  After each write, read the
 *        slice of the small dataset back from disk, and verify
 *        that it contains the expected data. Verify that
 *        H5Sselect_shape_same() returns true on the memory and
 *        file selections.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 8/15/11
 *
 *-------------------------------------------------------------------------
 */

#define CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG 0

static void
ckrbrd_hs_dr_pio_test__m2d_l2s(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG
    const char *fcnName = "ckrbrd_hs_dr_pio_test__m2d_l2s()";
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
    hbool_t   data_ok = FALSE;
    int       i, j, k, l;
    size_t    u;
    size_t    start_index;
    size_t    stop_index;
    uint32_t  expected_value;
    uint32_t *ptr_1;
    int       mpi_rank; /* needed by VRFY */
    hsize_t   sel_start[PAR_SS_DR_MAX_RANK];
    htri_t    check; /* Shape comparison return value */
    herr_t    ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* now we go in the opposite direction, verifying that we can write
     * from memory to file using selections of different rank that
     * H5Sselect_shape_same() views as being of the same shape.
     *
     * Start by writing small_rank - 1 D slices from the in memory large data
     * set to the on disk small dataset.  After each write, read the slice of
     * the small dataset back from disk, and verify that it contains the
     * expected data. Verify that H5Sselect_shape_same() returns true on
     * the memory and file selections.
     */

    tv_ptr->start[0]  = (hsize_t)(tv_ptr->mpi_rank);
    tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
    tv_ptr->count[0]  = 1;
    tv_ptr->block[0]  = 1;

    for (i = 1; i < tv_ptr->large_rank; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        tv_ptr->block[i]  = (hsize_t)(tv_ptr->edge_size);
    }

    ret = H5Sselect_hyperslab(tv_ptr->file_small_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid_0, set) succeeded");

    ret = H5Sselect_hyperslab(tv_ptr->mem_small_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");

    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
    sel_start[tv_ptr->small_ds_offset]                                       = (hsize_t)(tv_ptr->mpi_rank);

    ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->file_small_ds_sid_1, tv_ptr->small_rank,
                                       tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
                                       sel_start);

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to read slices of the large cube.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

    /* zero out the in memory small ds */
    HDmemset(tv_ptr->small_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->small_ds_size);

#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG
    HDfprintf(stdout,
              "%s writing checker boards selections of slices from big ds to slices of small ds on disk.\n",
              fcnName);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */

    /* in serial versions of this test, we loop through all the dimensions
     * of the large data set that don't appear in the small data set.
     *
     * However, in the parallel version, each process only works with that
     * slice of the large (and small) data set indicated by its rank -- hence
     * we set the most slowly changing index to mpi_rank, and don't iterate
     * over it.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    j = 0;
    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    /* zero out this rank's slice of the on disk small data set */
                    ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
                                   tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_2);
                    VRFY((ret >= 0), "H5Dwrite() zero slice to small ds succeeded.");

                    /* select the portion of the in memory large cube from which we
                     * are going to write data.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));

                    ckrbrd_hs_dr_pio_test__slct_ckrbrd(
                        tv_ptr->mpi_rank, tv_ptr->mem_large_ds_sid, tv_ptr->large_rank, tv_ptr->edge_size,
                        tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);

                    /* verify that H5Sselect_shape_same() reports the in
                     * memory checkerboard selection of the slice through the
                     * large dataset and the checkerboard selection of the process
                     * slice of the small data set as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->file_small_ds_sid_1, tv_ptr->mem_large_ds_sid);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed.");

                    /* write the checker board selection of the slice from the in
                     * memory large data set to the slice of the on disk small
                     * dataset.
                     */
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
                              tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
                              tv_ptr->start[4]);
                    HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                              H5Sget_simple_extent_ndims(tv_ptr->mem_large_ds_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_small_ds_sid_1));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_L2S__DEBUG */
                    ret = H5Dwrite(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
                                   tv_ptr->file_small_ds_sid_1, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_0);
                    VRFY((ret >= 0), "H5Dwrite() slice to large ds succeeded.");

                    /* read the on disk process slice of the small dataset into memory */
                    ret = H5Dread(tv_ptr->small_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
                                  tv_ptr->file_small_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_1);
                    VRFY((ret >= 0), "H5Dread() slice from small ds succeeded.");

                    /* verify that expected data is retrieved */

                    expected_value =
                        (uint32_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                    tv_ptr->edge_size) +
                                   (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                   (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));

                    start_index = (size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size;
                    stop_index  = start_index + tv_ptr->small_ds_slice_size - 1;

                    assert(start_index < stop_index);
                    assert(stop_index <= tv_ptr->small_ds_size);

                    data_ok = TRUE;

                    ptr_1 = tv_ptr->small_ds_buf_1;
                    for (u = 0; u < start_index; u++, ptr_1++) {

                        if (*ptr_1 != 0) {

                            data_ok = FALSE;
                            *ptr_1  = 0;
                        }
                    }

                    data_ok &= ckrbrd_hs_dr_pio_test__verify_data(
                        tv_ptr->small_ds_buf_1 + start_index, tv_ptr->small_rank - 1, tv_ptr->edge_size,
                        tv_ptr->checker_edge_size, expected_value, (hbool_t)TRUE);

                    ptr_1 = tv_ptr->small_ds_buf_1;
                    for (u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++) {

                        if (*ptr_1 != 0) {

                            data_ok = FALSE;
                            *ptr_1  = 0;
                        }
                    }

                    VRFY((data_ok == TRUE), "large slice write slice to small slice data good.");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* ckrbrd_hs_dr_pio_test__m2d_l2s() */

/*-------------------------------------------------------------------------
 * Function:    ckrbrd_hs_dr_pio_test__m2d_s2l()
 *
 * Purpose:    Part four of a series of tests of I/O to/from checker
 *        board hyperslab selections of different rank in the parallel.
 *
 *        Verify that we can write from memory to file using
 *        selections of different rank that H5Sselect_shape_same()
 *        views as being of the same shape.
 *
 *        Do this by writing checker board selections of the contents
 *        of the process's slice of the in memory small data set to
 *        slices of the on disk large data set.  After each write,
 *        read the process's slice of the large data set back into
 *        memory, and verify that it contains the expected data.
 *
 *        Verify that H5Sselect_shape_same() returns true on the
 *        memory and file selections.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 8/15/11
 *
 *-------------------------------------------------------------------------
 */

#define CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG 0

static void
ckrbrd_hs_dr_pio_test__m2d_s2l(struct hs_dr_pio_test_vars_t *tv_ptr)
{
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG
    const char *fcnName = "ckrbrd_hs_dr_pio_test__m2d_s2l()";
#endif /* CONTIG_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
    hbool_t   data_ok = FALSE;
    int       i, j, k, l;
    size_t    u;
    size_t    start_index;
    size_t    stop_index;
    uint32_t  expected_value;
    uint32_t *ptr_1;
    int       mpi_rank; /* needed by VRFY */
    hsize_t   sel_start[PAR_SS_DR_MAX_RANK];
    htri_t    check; /* Shape comparison return value */
    herr_t    ret;   /* Generic return value */

    /* initialize the local copy of mpi_rank */
    mpi_rank = tv_ptr->mpi_rank;

    /* Now write the contents of the process's slice of the in memory
     * small data set to slices of the on disk large data set.  After
     * each write, read the process's slice of the large data set back
     * into memory, and verify that it contains the expected data.
     * Verify that H5Sselect_shape_same() returns true on the memory
     * and file selections.
     */

    tv_ptr->start[0]  = (hsize_t)(tv_ptr->mpi_rank);
    tv_ptr->stride[0] = (hsize_t)(2 * (tv_ptr->mpi_size + 1));
    tv_ptr->count[0]  = 1;
    tv_ptr->block[0]  = 1;

    for (i = 1; i < tv_ptr->large_rank; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        tv_ptr->block[i]  = (hsize_t)(tv_ptr->edge_size);
    }

    ret = H5Sselect_hyperslab(tv_ptr->file_large_ds_sid_0, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid_0, set) succeeded");

    ret = H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, H5S_SELECT_SET, tv_ptr->start, tv_ptr->stride,
                              tv_ptr->count, tv_ptr->block);
    VRFY((ret >= 0), "H5Sselect_hyperslab(tv_ptr->mem_large_ds_sid, set) succeeded");

    /* setup a checkerboard selection of the slice of the in memory small
     * data set associated with the process's mpi rank.
     */

    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
    sel_start[tv_ptr->small_ds_offset]                                       = (hsize_t)(tv_ptr->mpi_rank);

    ckrbrd_hs_dr_pio_test__slct_ckrbrd(tv_ptr->mpi_rank, tv_ptr->mem_small_ds_sid, tv_ptr->small_rank,
                                       tv_ptr->edge_size, tv_ptr->checker_edge_size, tv_ptr->small_rank - 1,
                                       sel_start);

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to write checkerboard selections of slices
     * of the small data set to slices of the large data set.
     */
    for (i = 0; i < PAR_SS_DR_MAX_RANK; i++) {

        tv_ptr->start[i]  = 0;
        tv_ptr->stride[i] = (hsize_t)(2 * tv_ptr->edge_size);
        tv_ptr->count[i]  = 1;
        if ((PAR_SS_DR_MAX_RANK - i) > (tv_ptr->small_rank - 1)) {

            tv_ptr->block[i] = 1;
        }
        else {

            tv_ptr->block[i] = (hsize_t)(tv_ptr->edge_size);
        }
    }

    /* zero out the in memory large ds */
    HDmemset(tv_ptr->large_ds_buf_1, 0, sizeof(uint32_t) * tv_ptr->large_ds_size);

#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG
    HDfprintf(stdout,
              "%s writing process checkerboard selections of slices of small ds to process slices of large "
              "ds on disk.\n",
              fcnName);
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 0) {

        i = tv_ptr->mpi_rank;
    }
    else {

        i = 0;
    }

    /* since large_rank is at most PAR_SS_DR_MAX_RANK, no need to
     * loop over it -- either we are setting i to mpi_rank, or
     * we are setting it to zero.  It will not change during the
     * test.
     */

    if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 1) {

        j = tv_ptr->mpi_rank;
    }
    else {

        j = 0;
    }

    do {
        if (PAR_SS_DR_MAX_RANK - tv_ptr->large_rank == 2) {

            k = tv_ptr->mpi_rank;
        }
        else {

            k = 0;
        }

        do {
            /* since small rank >= 2 and large_rank > small_rank, we
             * have large_rank >= 3.  Since PAR_SS_DR_MAX_RANK == 5
             * (baring major re-orgaization), this gives us:
             *
             *     (PAR_SS_DR_MAX_RANK - large_rank) <= 2
             *
             * so no need to repeat the test in the outer loops --
             * just set l = 0.
             */

            l = 0;
            do {
                if ((tv_ptr->skips)++ < tv_ptr->max_skips) { /* skip the test */

                    (tv_ptr->tests_skipped)++;
                }
                else { /* run the test */

                    tv_ptr->skips = 0; /* reset the skips counter */

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    /* Zero out this processes slice of the on disk large data set.
                     * Note that this will leave one slice with its original data
                     * as there is one more slice than processes.
                     */
                    ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
                                   tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_2);
                    VRFY((ret != FAIL), "H5Dwrite() to zero large ds succeeded");

                    /* select the portion of the in memory large cube to which we
                     * are going to write data.
                     */
                    tv_ptr->start[0] = (hsize_t)i;
                    tv_ptr->start[1] = (hsize_t)j;
                    tv_ptr->start[2] = (hsize_t)k;
                    tv_ptr->start[3] = (hsize_t)l;
                    tv_ptr->start[4] = 0;

                    assert((tv_ptr->start[0] == 0) || (0 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[1] == 0) || (1 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[2] == 0) || (2 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[3] == 0) || (3 < tv_ptr->small_ds_offset + 1));
                    assert((tv_ptr->start[4] == 0) || (4 < tv_ptr->small_ds_offset + 1));

                    ckrbrd_hs_dr_pio_test__slct_ckrbrd(
                        tv_ptr->mpi_rank, tv_ptr->file_large_ds_sid_1, tv_ptr->large_rank, tv_ptr->edge_size,
                        tv_ptr->checker_edge_size, tv_ptr->small_rank - 1, tv_ptr->start);

                    /* verify that H5Sselect_shape_same() reports the in
                     * memory small data set slice selection and the
                     * on disk slice through the large data set selection
                     * as having the same shape.
                     */
                    check = H5Sselect_shape_same(tv_ptr->mem_small_ds_sid, tv_ptr->file_large_ds_sid_1);
                    VRFY((check == TRUE), "H5Sselect_shape_same passed");

                    /* write the small data set slice from memory to the
                     * target slice of the disk data set
                     */
#if CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG
                    HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, tv_ptr->mpi_rank,
                              tv_ptr->start[0], tv_ptr->start[1], tv_ptr->start[2], tv_ptr->start[3],
                              tv_ptr->start[4]);
                    HDfprintf(stdout, "%s:%d: mem/file extent dims = %d/%d.\n", fcnName, tv_ptr->mpi_rank,
                              H5Sget_simple_extent_ndims(tv_ptr->mem_small_ds_sid),
                              H5Sget_simple_extent_ndims(tv_ptr->file_large_ds_sid_1));
#endif /* CHECKER_BOARD_HS_DR_PIO_TEST__M2D_S2L__DEBUG */
                    ret = H5Dwrite(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_small_ds_sid,
                                   tv_ptr->file_large_ds_sid_1, tv_ptr->xfer_plist, tv_ptr->small_ds_buf_0);
                    VRFY((ret != FAIL), "H5Dwrite of small ds slice to large ds succeeded");

                    /* read this processes slice on the on disk large
                     * data set into memory.
                     */

                    ret = H5Dread(tv_ptr->large_dataset, H5T_NATIVE_UINT32, tv_ptr->mem_large_ds_sid,
                                  tv_ptr->file_large_ds_sid_0, tv_ptr->xfer_plist, tv_ptr->large_ds_buf_1);
                    VRFY((ret != FAIL), "H5Dread() of process slice of large ds succeeded");

                    /* verify that the expected data and only the
                     * expected data was read.
                     */
                    expected_value = (uint32_t)((size_t)(tv_ptr->mpi_rank) * tv_ptr->small_ds_slice_size);

                    start_index =
                        (size_t)((i * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size *
                                  tv_ptr->edge_size) +
                                 (j * tv_ptr->edge_size * tv_ptr->edge_size * tv_ptr->edge_size) +
                                 (k * tv_ptr->edge_size * tv_ptr->edge_size) + (l * tv_ptr->edge_size));
                    stop_index = start_index + tv_ptr->small_ds_slice_size - 1;

                    assert(start_index < stop_index);
                    assert(stop_index < tv_ptr->large_ds_size);

                    data_ok = TRUE;

                    ptr_1 = tv_ptr->large_ds_buf_1;
                    for (u = 0; u < start_index; u++, ptr_1++) {

                        if (*ptr_1 != 0) {

                            data_ok = FALSE;
                            *ptr_1  = 0;
                        }
                    }

                    data_ok &= ckrbrd_hs_dr_pio_test__verify_data(
                        tv_ptr->large_ds_buf_1 + start_index, tv_ptr->small_rank - 1, tv_ptr->edge_size,
                        tv_ptr->checker_edge_size, expected_value, (hbool_t)TRUE);

                    ptr_1 = tv_ptr->large_ds_buf_1;
                    for (u = stop_index; u < tv_ptr->small_ds_size; u++, ptr_1++) {

                        if (*ptr_1 != 0) {

                            data_ok = FALSE;
                            *ptr_1  = 0;
                        }
                    }

                    VRFY((data_ok == TRUE), "small ds cb slice write to large ds slice data good.");

                    (tv_ptr->tests_run)++;
                }

                l++;

                (tv_ptr->total_tests)++;

            } while ((tv_ptr->large_rank > 2) && ((tv_ptr->small_rank - 1) <= 1) && (l < tv_ptr->edge_size));
            k++;
        } while ((tv_ptr->large_rank > 3) && ((tv_ptr->small_rank - 1) <= 2) && (k < tv_ptr->edge_size));
        j++;
    } while ((tv_ptr->large_rank > 4) && ((tv_ptr->small_rank - 1) <= 3) && (j < tv_ptr->edge_size));

    return;

} /* ckrbrd_hs_dr_pio_test__m2d_s2l() */

/*-------------------------------------------------------------------------
 * Function:    ckrbrd_hs_dr_pio_test__run_test()
 *
 * Purpose:    Test I/O to/from checkerboard selections of hyperslabs of
 *        different rank in the parallel.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 10/10/09
 *
 *-------------------------------------------------------------------------
 */

#define CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG 0

static void
ckrbrd_hs_dr_pio_test__run_test(const int test_num, const int edge_size, const int checker_edge_size,
                                const int chunk_edge_size, const int small_rank, const int large_rank,
                                const hbool_t use_collective_io, const hid_t dset_type,
                                const int express_test, int *skips_ptr, int max_skips,
                                int64_t *total_tests_ptr, int64_t *tests_run_ptr, int64_t *tests_skipped_ptr)

{
#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    const char *fcnName = "ckrbrd_hs_dr_pio_test__run_test()";
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */
    struct hs_dr_pio_test_vars_t test_vars = {
        /* int           mpi_size                        = */ -1,
        /* int         mpi_rank                        = */ -1,
        /* MPI_Comm    mpi_comm                        = */ MPI_COMM_NULL,
        /* MPI_Inf     mpi_info                        = */ MPI_INFO_NULL,
        /* int         test_num                        = */ -1,
        /* int         edge_size                       = */ -1,
        /* int         checker_edge_size               = */ -1,
        /* int         chunk_edge_size                 = */ -1,
        /* int         small_rank                      = */ -1,
        /* int         large_rank                      = */ -1,
        /* hid_t       dset_type                       = */ -1,
        /* uint32_t  * small_ds_buf_0                  = */ NULL,
        /* uint32_t  * small_ds_buf_1                  = */ NULL,
        /* uint32_t  * small_ds_buf_2                  = */ NULL,
        /* uint32_t  * small_ds_slice_buf              = */ NULL,
        /* uint32_t  * large_ds_buf_0                  = */ NULL,
        /* uint32_t  * large_ds_buf_1                  = */ NULL,
        /* uint32_t  * large_ds_buf_2                  = */ NULL,
        /* uint32_t  * large_ds_slice_buf              = */ NULL,
        /* int         small_ds_offset                 = */ -1,
        /* int         large_ds_offset                 = */ -1,
        /* hid_t       fid                             = */ -1, /* HDF5 file ID */
        /* hid_t       xfer_plist                      = */ H5P_DEFAULT,
        /* hid_t       full_mem_small_ds_sid           = */ -1,
        /* hid_t       full_file_small_ds_sid          = */ -1,
        /* hid_t       mem_small_ds_sid                = */ -1,
        /* hid_t       file_small_ds_sid_0             = */ -1,
        /* hid_t       file_small_ds_sid_1             = */ -1,
        /* hid_t       small_ds_slice_sid              = */ -1,
        /* hid_t       full_mem_large_ds_sid           = */ -1,
        /* hid_t       full_file_large_ds_sid          = */ -1,
        /* hid_t       mem_large_ds_sid                = */ -1,
        /* hid_t       file_large_ds_sid_0             = */ -1,
        /* hid_t       file_large_ds_sid_1             = */ -1,
        /* hid_t       file_large_ds_process_slice_sid = */ -1,
        /* hid_t       mem_large_ds_process_slice_sid  = */ -1,
        /* hid_t       large_ds_slice_sid              = */ -1,
        /* hid_t       small_dataset                   = */ -1, /* Dataset ID */
        /* hid_t       large_dataset                   = */ -1, /* Dataset ID */
        /* size_t      small_ds_size                   = */ 1,
        /* size_t      small_ds_slice_size             = */ 1,
        /* size_t      large_ds_size                   = */ 1,
        /* size_t      large_ds_slice_size             = */ 1,
        /* hsize_t     dims[PAR_SS_DR_MAX_RANK]        = */ {0, 0, 0, 0, 0},
        /* hsize_t     chunk_dims[PAR_SS_DR_MAX_RANK]  = */ {0, 0, 0, 0, 0},
        /* hsize_t     start[PAR_SS_DR_MAX_RANK]       = */ {0, 0, 0, 0, 0},
        /* hsize_t     stride[PAR_SS_DR_MAX_RANK]      = */ {0, 0, 0, 0, 0},
        /* hsize_t     count[PAR_SS_DR_MAX_RANK]       = */ {0, 0, 0, 0, 0},
        /* hsize_t     block[PAR_SS_DR_MAX_RANK]       = */ {0, 0, 0, 0, 0},
        /* hsize_t   * start_ptr                       = */ NULL,
        /* hsize_t   * stride_ptr                      = */ NULL,
        /* hsize_t   * count_ptr                       = */ NULL,
        /* hsize_t   * block_ptr                       = */ NULL,
        /* int            skips                           = */ 0,
        /* int            max_skips                       = */ 0,
        /* int64_t     total_tests                     = */ 0,
        /* int64_t     tests_run                       = */ 0,
        /* int64_t     tests_skipped                   = */ 0};
    struct hs_dr_pio_test_vars_t *tv_ptr = &test_vars;

    hs_dr_pio_test__setup(test_num, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank,
                          use_collective_io, dset_type, express_test, tv_ptr);

    /* initialize skips & max_skips */
    tv_ptr->skips     = *skips_ptr;
    tv_ptr->max_skips = max_skips;

#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: small rank = %d, large rank = %d.\n", test_num, small_rank, large_rank);
        HDfprintf(stdout, "test %d: Initialization complete.\n", test_num);
    }
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */

    /* first, verify that we can read from disk correctly using selections
     * of different rank that H5Sselect_shape_same() views as being of the
     * same shape.
     *
     * Start by reading a (small_rank - 1)-D slice from this processes slice
     * of the on disk large data set, and verifying that the data read is
     * correct.  Verify that H5Sselect_shape_same() returns true on the
     * memory and file selections.
     *
     * The first step is to set up the needed checker board selection in the
     * in memory small small cube
     */

    ckrbrd_hs_dr_pio_test__d2m_l2s(tv_ptr);

    /* similarly, read slices of the on disk small data set into slices
     * through the in memory large data set, and verify that the correct
     * data (and only the correct data) is read.
     */

    ckrbrd_hs_dr_pio_test__d2m_s2l(tv_ptr);

    /* now we go in the opposite direction, verifying that we can write
     * from memory to file using selections of different rank that
     * H5Sselect_shape_same() views as being of the same shape.
     *
     * Start by writing small_rank - 1 D slices from the in memory large data
     * set to the on disk small dataset.  After each write, read the slice of
     * the small dataset back from disk, and verify that it contains the
     * expected data. Verify that H5Sselect_shape_same() returns true on
     * the memory and file selections.
     */

    ckrbrd_hs_dr_pio_test__m2d_l2s(tv_ptr);

    /* Now write the contents of the process's slice of the in memory
     * small data set to slices of the on disk large data set.  After
     * each write, read the process's slice of the large data set back
     * into memory, and verify that it contains the expected data.
     * Verify that H5Sselect_shape_same() returns true on the memory
     * and file selections.
     */

    ckrbrd_hs_dr_pio_test__m2d_s2l(tv_ptr);

#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: Subtests complete -- tests run/skipped/total = %lld/%lld/%lld.\n",
                  test_num, (long long)(tv_ptr->tests_run), (long long)(tv_ptr->tests_skipped),
                  (long long)(tv_ptr->total_tests));
    }
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */

    hs_dr_pio_test__takedown(tv_ptr);

#if CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG
    if (MAINPROCESS) {
        HDfprintf(stdout, "test %d: Takedown complete.\n", test_num);
    }
#endif /* CKRBRD_HS_DR_PIO_TEST__RUN_TEST__DEBUG */

    *skips_ptr = tv_ptr->skips;
    *total_tests_ptr += tv_ptr->total_tests;
    *tests_run_ptr += tv_ptr->tests_run;
    *tests_skipped_ptr += tv_ptr->tests_skipped;

    return;

} /* ckrbrd_hs_dr_pio_test__run_test() */

/*-------------------------------------------------------------------------
 * Function:    ckrbrd_hs_dr_pio_test()
 *
 * Purpose:    Test I/O to/from hyperslab selections of different rank in
 *        the parallel case.
 *
 * Return:    void
 *
 * Programmer:    JRM -- 9/18/09
 *
 *-------------------------------------------------------------------------
 */

static void
ckrbrd_hs_dr_pio_test(ShapeSameTestMethods sstest_type)
{
    int   express_test;
    int   local_express_test;
    int   mpi_size = -1;
    int   mpi_rank = -1;
    int   test_num = 0;
    int   edge_size;
    int   checker_edge_size = 3;
    int   chunk_edge_size   = 0;
    int   small_rank        = 3;
    int   large_rank        = 4;
    int   mpi_result;
    hid_t dset_type = H5T_NATIVE_UINT;
    int   skips     = 0;
    int   max_skips = 0;
    /* The following table list the number of sub-tests skipped between
     * each test that is actually executed as a function of the express
     * test level.  Note that any value in excess of 4880 will cause all
     * sub tests to be skipped.
     */
    int     max_skips_tbl[4] = {0, 4, 64, 1024};
    int64_t total_tests      = 0;
    int64_t tests_run        = 0;
    int64_t tests_skipped    = 0;

    MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

    edge_size = (mpi_size > 6 ? mpi_size : 6);

    local_express_test = GetTestExpress();

    HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned));

    mpi_result = MPI_Allreduce((void *)&local_express_test, (void *)&express_test, 1, MPI_INT, MPI_MAX,
                               MPI_COMM_WORLD);

    VRFY((mpi_result == MPI_SUCCESS), "MPI_Allreduce(0) succeeded");

    if (local_express_test < 0) {
        max_skips = max_skips_tbl[0];
    }
    else if (local_express_test > 3) {
        max_skips = max_skips_tbl[3];
    }
    else {
        max_skips = max_skips_tbl[local_express_test];
    }

#if 0
    {
        int DebugWait = 1;

        while (DebugWait) ;
    }
#endif

    for (large_rank = 3; large_rank <= PAR_SS_DR_MAX_RANK; large_rank++) {

        for (small_rank = 2; small_rank < large_rank; small_rank++) {
            switch (sstest_type) {
                case IND_CONTIG:
                    /* contiguous data set, independent I/O */
                    chunk_edge_size = 0;
                    ckrbrd_hs_dr_pio_test__run_test(test_num, edge_size, checker_edge_size, chunk_edge_size,
                                                    small_rank, large_rank, FALSE, dset_type, express_test,
                                                    &skips, max_skips, &total_tests, &tests_run,
                                                    &tests_skipped);
                    test_num++;
                    break;
                    /* end of case IND_CONTIG */

                case COL_CONTIG:
                    /* contiguous data set, collective I/O */
                    chunk_edge_size = 0;
                    ckrbrd_hs_dr_pio_test__run_test(
                        test_num, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, TRUE,
                        dset_type, express_test, &skips, max_skips, &total_tests, &tests_run, &tests_skipped);
                    test_num++;
                    break;
                    /* end of case COL_CONTIG */

                case IND_CHUNKED:
                    /* chunked data set, independent I/O */
                    chunk_edge_size = 5;
                    ckrbrd_hs_dr_pio_test__run_test(test_num, edge_size, checker_edge_size, chunk_edge_size,
                                                    small_rank, large_rank, FALSE, dset_type, express_test,
                                                    &skips, max_skips, &total_tests, &tests_run,
                                                    &tests_skipped);
                    test_num++;
                    break;
                    /* end of case IND_CHUNKED */

                case COL_CHUNKED:
                    /* chunked data set, collective I/O */
                    chunk_edge_size = 5;
                    ckrbrd_hs_dr_pio_test__run_test(
                        test_num, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, TRUE,
                        dset_type, express_test, &skips, max_skips, &total_tests, &tests_run, &tests_skipped);
                    test_num++;
                    break;
                    /* end of case COL_CHUNKED */

                default:
                    VRFY((FALSE), "unknown test type");
                    break;

            } /* end of switch(sstest_type) */
#if CONTIG_HS_DR_PIO_TEST__DEBUG
            if ((MAINPROCESS) && (tests_skipped > 0)) {
                HDfprintf(stdout, "     run/skipped/total = %" PRId64 "/%" PRId64 "/%" PRId64 ".\n",
                          tests_run, tests_skipped, total_tests);
            }
#endif /* CONTIG_HS_DR_PIO_TEST__DEBUG */
        }
    }

    if ((MAINPROCESS) && (tests_skipped > 0)) {
        HDfprintf(stdout, "     %" PRId64 " of %" PRId64 " subtests skipped to expedite testing.\n",
                  tests_skipped, total_tests);
    }

    return;

} /* ckrbrd_hs_dr_pio_test() */

/* Main Body. Here for now, may have to move them to a separated file later. */

/*
 * Main driver of the Parallel HDF5 tests
 */

#include "testphdf5.h"

#ifndef PATH_MAX
#define PATH_MAX 512
#endif /* !PATH_MAX */

/* global variables */
int dim0;
int dim1;
int chunkdim0;
int chunkdim1;
int nerrors   = 0;               /* errors count */
int ndatasets = 300;             /* number of datasets to create*/
int ngroups   = 512;             /* number of groups to create in root
                                  * group. */
int facc_type       = FACC_MPIO; /*Test file access type */
int dxfer_coll_type = DXFER_COLLECTIVE_IO;

H5E_auto2_t old_func;        /* previous error handler */
void       *old_client_data; /* previous error handler arg.*/

/* other option flags */

/* FILENAME and filenames must have the same number of names.
 * Use PARATESTFILE in general and use a separated filename only if the file
 * created in one test is accessed by a different test.
 * filenames[0] is reserved as the file name for PARATESTFILE.
 */
#define NFILENAME    2
#define PARATESTFILE filenames[0]
const char *FILENAME[NFILENAME] = {"ShapeSameTest", NULL};
char       *filenames[NFILENAME];
hid_t       fapl; /* file access property list */

#ifdef USE_PAUSE
/* pause the process for a moment to allow debugger to attach if desired. */
/* Will pause more if greenlight file is not persent but will eventually */
/* continue. */
#include <sys/types.h>
#include <sys/stat.h>

void
pause_proc(void)
{

    int       pid;
    h5_stat_t statbuf;
    char      greenlight[] = "go";
    int       maxloop      = 10;
    int       loops        = 0;
    int       time_int     = 10;

    /* mpi variables */
    int  mpi_size, mpi_rank;
    int  mpi_namelen;
    char mpi_name[MPI_MAX_PROCESSOR_NAME];

    pid = getpid();
    MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
    MPI_Get_processor_name(mpi_name, &mpi_namelen);

    if (MAINPROCESS)
        while ((HDstat(greenlight, &statbuf) == -1) && loops < maxloop) {
            if (!loops++) {
                HDprintf("Proc %d (%*s, %d): to debug, attach %d\n", mpi_rank, mpi_namelen, mpi_name, pid,
                         pid);
            }
            HDprintf("waiting(%ds) for file %s ...\n", time_int, greenlight);
            fflush(stdout);
            HDsleep(time_int);
        }
    MPI_Barrier(MPI_COMM_WORLD);
}

/* Use the Profile feature of MPI to call the pause_proc() */
int
MPI_Init(int *argc, char ***argv)
{
    int ret_code;
    ret_code = PMPI_Init(argc, argv);
    pause_proc();
    return (ret_code);
}
#endif /* USE_PAUSE */

/*
 * Show command usage
 */
static void
usage(void)
{
    HDprintf("    [-r] [-w] [-m<n_datasets>] [-n<n_groups>] "
             "[-o] [-f <prefix>] [-d <dim0> <dim1>]\n");
    HDprintf("\t-m<n_datasets>"
             "\tset number of datasets for the multiple dataset test\n");
    HDprintf("\t-n<n_groups>"
             "\tset number of groups for the multiple group test\n");
    HDprintf("\t-f <prefix>\tfilename prefix\n");
    HDprintf("\t-2\t\tuse Split-file together with MPIO\n");
    HDprintf("\t-d <factor0> <factor1>\tdataset dimensions factors. Defaults (%d,%d)\n", ROW_FACTOR,
             COL_FACTOR);
    HDprintf("\t-c <dim0> <dim1>\tdataset chunk dimensions. Defaults (dim0/10,dim1/10)\n");
    HDprintf("\n");
}

/*
 * parse the command line options
 */
static int
parse_options(int argc, char **argv)
{
    int mpi_size, mpi_rank; /* mpi variables */

    MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

    /* setup default chunk-size. Make sure sizes are > 0 */

    chunkdim0 = (dim0 + 9) / 10;
    chunkdim1 = (dim1 + 9) / 10;

    while (--argc) {
        if (**(++argv) != '-') {
            break;
        }
        else {
            switch (*(*argv + 1)) {
                case 'm':
                    ndatasets = atoi((*argv + 1) + 1);
                    if (ndatasets < 0) {
                        nerrors++;
                        return (1);
                    }
                    break;
                case 'n':
                    ngroups = atoi((*argv + 1) + 1);
                    if (ngroups < 0) {
                        nerrors++;
                        return (1);
                    }
                    break;
                case 'f':
                    if (--argc < 1) {
                        nerrors++;
                        return (1);
                    }
                    if (**(++argv) == '-') {
                        nerrors++;
                        return (1);
                    }
                    paraprefix = *argv;
                    break;
                case 'i': /* Collective MPI-IO access with independent IO  */
                    dxfer_coll_type = DXFER_INDEPENDENT_IO;
                    break;
                case '2': /* Use the split-file driver with MPIO access */
                    /* Can use $HDF5_METAPREFIX to define the */
                    /* meta-file-prefix. */
                    facc_type = FACC_MPIO | FACC_SPLIT;
                    break;
                case 'd': /* dimensizes */
                    if (--argc < 2) {
                        nerrors++;
                        return (1);
                    }
                    dim0 = atoi(*(++argv)) * mpi_size;
                    argc--;
                    dim1 = atoi(*(++argv)) * mpi_size;
                    /* set default chunkdim sizes too */
                    chunkdim0 = (dim0 + 9) / 10;
                    chunkdim1 = (dim1 + 9) / 10;
                    break;
                case 'c': /* chunk dimensions */
                    if (--argc < 2) {
                        nerrors++;
                        return (1);
                    }
                    chunkdim0 = atoi(*(++argv));
                    argc--;
                    chunkdim1 = atoi(*(++argv));
                    break;
                case 'h': /* print help message--return with nerrors set */
                    return (1);
                default:
                    HDprintf("Illegal option(%s)\n", *argv);
                    nerrors++;
                    return (1);
            }
        }
    } /*while*/

    /* check validity of dimension and chunk sizes */
    if (dim0 <= 0 || dim1 <= 0) {
        HDprintf("Illegal dim sizes (%d, %d)\n", dim0, dim1);
        nerrors++;
        return (1);
    }
    if (chunkdim0 <= 0 || chunkdim1 <= 0) {
        HDprintf("Illegal chunkdim sizes (%d, %d)\n", chunkdim0, chunkdim1);
        nerrors++;
        return (1);
    }

    /* Make sure datasets can be divided into equal portions by the processes */
    if ((dim0 % mpi_size) || (dim1 % mpi_size)) {
        if (MAINPROCESS)
            HDprintf("dim0(%d) and dim1(%d) must be multiples of processes(%d)\n", dim0, dim1, mpi_size);
        nerrors++;
        return (1);
    }

    /* compose the test filenames */
    {
        int i, n;

        n = sizeof(FILENAME) / sizeof(FILENAME[0]) - 1; /* exclude the NULL */

        for (i = 0; i < n; i++)
            if (h5_fixname(FILENAME[i], fapl, filenames[i], PATH_MAX) == NULL) {
                HDprintf("h5_fixname failed\n");
                nerrors++;
                return (1);
            }
        HDprintf("Test filenames are:\n");
        for (i = 0; i < n; i++)
            HDprintf("    %s\n", filenames[i]);
    }

    return (0);
}

/*
 * Create the appropriate File access property list
 */
hid_t
create_faccess_plist(MPI_Comm comm, MPI_Info info, int l_facc_type)
{
    hid_t  ret_pl = -1;
    herr_t ret;      /* generic return value */
    int    mpi_rank; /* mpi variables */

    /* need the rank for error checking macros */
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

    ret_pl = H5Pcreate(H5P_FILE_ACCESS);
    VRFY((ret_pl >= 0), "H5P_FILE_ACCESS");

    if (l_facc_type == FACC_DEFAULT)
        return (ret_pl);

    if (l_facc_type == FACC_MPIO) {
        /* set Parallel access with communicator */
        ret = H5Pset_fapl_mpio(ret_pl, comm, info);
        VRFY((ret >= 0), "");
        ret = H5Pset_all_coll_metadata_ops(ret_pl, TRUE);
        VRFY((ret >= 0), "");
        ret = H5Pset_coll_metadata_write(ret_pl, TRUE);
        VRFY((ret >= 0), "");
        return (ret_pl);
    }

    if (l_facc_type == (FACC_MPIO | FACC_SPLIT)) {
        hid_t mpio_pl;

        mpio_pl = H5Pcreate(H5P_FILE_ACCESS);
        VRFY((mpio_pl >= 0), "");
        /* set Parallel access with communicator */
        ret = H5Pset_fapl_mpio(mpio_pl, comm, info);
        VRFY((ret >= 0), "");

        /* setup file access template */
        ret_pl = H5Pcreate(H5P_FILE_ACCESS);
        VRFY((ret_pl >= 0), "");
        /* set Parallel access with communicator */
        ret = H5Pset_fapl_split(ret_pl, ".meta", mpio_pl, ".raw", mpio_pl);
        VRFY((ret >= 0), "H5Pset_fapl_split succeeded");
        H5Pclose(mpio_pl);
        return (ret_pl);
    }

    /* unknown file access types */
    return (ret_pl);
}

/* Shape Same test using contiguous hyperslab using independent IO on contiguous datasets */
static void
sscontig1(void)
{
    contig_hs_dr_pio_test(IND_CONTIG);
}

/* Shape Same test using contiguous hyperslab using collective IO on contiguous datasets */
static void
sscontig2(void)
{
    contig_hs_dr_pio_test(COL_CONTIG);
}

/* Shape Same test using contiguous hyperslab using independent IO on chunked datasets */
static void
sscontig3(void)
{
    contig_hs_dr_pio_test(IND_CHUNKED);
}

/* Shape Same test using contiguous hyperslab using collective IO on chunked datasets */
static void
sscontig4(void)
{
    contig_hs_dr_pio_test(COL_CHUNKED);
}

/* Shape Same test using checker hyperslab using independent IO on contiguous datasets */
static void
sschecker1(void)
{
    ckrbrd_hs_dr_pio_test(IND_CONTIG);
}

/* Shape Same test using checker hyperslab using collective IO on contiguous datasets */
static void
sschecker2(void)
{
    ckrbrd_hs_dr_pio_test(COL_CONTIG);
}

/* Shape Same test using checker hyperslab using independent IO on chunked datasets */
static void
sschecker3(void)
{
    ckrbrd_hs_dr_pio_test(IND_CHUNKED);
}

/* Shape Same test using checker hyperslab using collective IO on chunked datasets */
static void
sschecker4(void)
{
    ckrbrd_hs_dr_pio_test(COL_CHUNKED);
}

int
main(int argc, char **argv)
{
    int mpi_size, mpi_rank; /* mpi variables */

#ifndef H5_HAVE_WIN32_API
    /* Un-buffer the stdout and stderr */
    HDsetbuf(stderr, NULL);
    HDsetbuf(stdout, NULL);
#endif

    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
    MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

    dim0 = ROW_FACTOR * mpi_size;
    dim1 = COL_FACTOR * mpi_size;

    if (MAINPROCESS) {
        HDprintf("===================================\n");
        HDprintf("Shape Same Tests Start\n");
        HDprintf("    express_test = %d.\n", GetTestExpress());
        HDprintf("===================================\n");
    }

    /* Attempt to turn off atexit post processing so that in case errors
     * happen during the test and the process is aborted, it will not get
     * hang in the atexit post processing in which it may try to make MPI
     * calls.  By then, MPI calls may not work.
     */
    if (H5dont_atexit() < 0) {
        if (MAINPROCESS)
            HDprintf("%d: Failed to turn off atexit processing. Continue.\n", mpi_rank);
    };
    H5open();
    h5_show_hostname();

    HDmemset(filenames, 0, sizeof(filenames));
    for (int i = 0; i < NFILENAME; i++) {
        if (NULL == (filenames[i] = HDmalloc(PATH_MAX))) {
            HDprintf("couldn't allocate filename array\n");
            MPI_Abort(MPI_COMM_WORLD, -1);
        }
    }

    /* Initialize testing framework */
    TestInit(argv[0], usage, parse_options);

    /* Shape Same tests using contiguous hyperslab */
    AddTest("sscontig1", sscontig1, NULL, "Cntg hslab, ind IO, cntg dsets", PARATESTFILE);
    AddTest("sscontig2", sscontig2, NULL, "Cntg hslab, col IO, cntg dsets", PARATESTFILE);
    AddTest("sscontig3", sscontig3, NULL, "Cntg hslab, ind IO, chnk dsets", PARATESTFILE);
    AddTest("sscontig4", sscontig4, NULL, "Cntg hslab, col IO, chnk dsets", PARATESTFILE);

    /* Shape Same tests using checker board hyperslab */
    AddTest("sschecker1", sschecker1, NULL, "Check hslab, ind IO, cntg dsets", PARATESTFILE);
    AddTest("sschecker2", sschecker2, NULL, "Check hslab, col IO, cntg dsets", PARATESTFILE);
    AddTest("sschecker3", sschecker3, NULL, "Check hslab, ind IO, chnk dsets", PARATESTFILE);
    AddTest("sschecker4", sschecker4, NULL, "Check hslab, col IO, chnk dsets", PARATESTFILE);

    /* Display testing information */
    TestInfo(argv[0]);

    /* setup file access property list */
    fapl = H5Pcreate(H5P_FILE_ACCESS);
    H5Pset_fapl_mpio(fapl, MPI_COMM_WORLD, MPI_INFO_NULL);

    /* Parse command line arguments */
    TestParseCmdLine(argc, argv);

    if (dxfer_coll_type == DXFER_INDEPENDENT_IO && MAINPROCESS) {
        HDprintf("===================================\n"
                 "   Using Independent I/O with file set view to replace collective I/O \n"
                 "===================================\n");
    }

    /* Perform requested testing */
    PerformTests();

    /* make sure all processes are finished before final report, cleanup
     * and exit.
     */
    MPI_Barrier(MPI_COMM_WORLD);

    /* Display test summary, if requested */
    if (MAINPROCESS && GetTestSummary())
        TestSummary();

    /* Clean up test files */
    h5_clean_files(FILENAME, fapl);

    nerrors += GetTestNumErrs();

    /* Gather errors from all processes */
    {
        int temp;
        MPI_Allreduce(&nerrors, &temp, 1, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
        nerrors = temp;
    }

    if (MAINPROCESS) { /* only process 0 reports */
        HDprintf("===================================\n");
        if (nerrors)
            HDprintf("***Shape Same tests detected %d errors***\n", nerrors);
        else
            HDprintf("Shape Same tests finished with no errors\n");
        HDprintf("===================================\n");
    }

    for (int i = 0; i < NFILENAME; i++) {
        HDfree(filenames[i]);
        filenames[i] = NULL;
    }

    /* close HDF5 library */
    H5close();

    /* Release test infrastructure */
    TestShutdown();

    MPI_Finalize();

    /* cannot just return (nerrors) because exit code is limited to 1byte */
    return (nerrors != 0);
}