/* * lib/route/addr.c Addresses * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation version 2.1 * of the License. * * Copyright (c) 2003-2012 Thomas Graf * Copyright (c) 2003-2006 Baruch Even , * Mediatrix Telecom, inc. */ /** * @ingroup rtnl * @defgroup rtaddr Addresses * @brief * * @note The maximum size of an address label is IFNAMSIZ. * * @note The address may not contain a prefix length if the peer address * has been specified already. * * @par 1) Address Addition * @code * // Allocate an empty address object to be filled out with the attributes * // of the new address. * struct rtnl_addr *addr = rtnl_addr_alloc(); * * // Fill out the mandatory attributes of the new address. Setting the * // local address will automatically set the address family and the * // prefix length to the correct values. * rtnl_addr_set_ifindex(addr, ifindex); * rtnl_addr_set_local(addr, local_addr); * * // The label of the address can be specified, currently only supported * // by IPv4 and DECnet. * rtnl_addr_set_label(addr, "mylabel"); * * // The peer address can be specified if necessary, in either case a peer * // address will be sent to the kernel in order to fullfil the interface * // requirements. If none is set, it will equal the local address. * // Note: Real peer addresses are only supported by IPv4 for now. * rtnl_addr_set_peer(addr, peer_addr); * * // In case you want to have the address have a scope other than global * // it may be overwritten using rtnl_addr_set_scope(). The scope currently * // cannot be set for IPv6 addresses. * rtnl_addr_set_scope(addr, rtnl_str2scope("site")); * * // Broadcast address may be specified using the relevant * // functions, the address family will be verified if one of the other * // addresses has been set already. Currently only works for IPv4. * rtnl_addr_set_broadcast(addr, broadcast_addr); * * // Build the netlink message and send it to the kernel, the operation will * // block until the operation has been completed. Alternatively the required * // netlink message can be built using rtnl_addr_build_add_request() to be * // sent out using nl_send_auto_complete(). * rtnl_addr_add(sk, addr, 0); * * // Free the memory * rtnl_addr_put(addr); * @endcode * * @par 2) Address Deletion * @code * // Allocate an empty address object to be filled out with the attributes * // matching the address to be deleted. Alternatively a fully equipped * // address object out of a cache can be used instead. * struct rtnl_addr *addr = rtnl_addr_alloc(); * * // The only mandatory parameter besides the address family is the interface * // index the address is on, i.e. leaving out all other parameters will * // result in all addresses of the specified address family interface tuple * // to be deleted. * rtnl_addr_set_ifindex(addr, ifindex); * * // Specyfing the address family manually is only required if neither the * // local nor peer address have been specified. * rtnl_addr_set_family(addr, AF_INET); * * // Specyfing the local address is optional but the best choice to delete * // specific addresses. * rtnl_addr_set_local(addr, local_addr); * * // The label of the address can be specified, currently only supported * // by IPv4 and DECnet. * rtnl_addr_set_label(addr, "mylabel"); * * // The peer address can be specified if necessary, in either case a peer * // address will be sent to the kernel in order to fullfil the interface * // requirements. If none is set, it will equal the local address. * // Note: Real peer addresses are only supported by IPv4 for now. * rtnl_addr_set_peer(addr, peer_addr); * * // Build the netlink message and send it to the kernel, the operation will * // block until the operation has been completed. Alternatively the required * // netlink message can be built using rtnl_addr_build_delete_request() * // to be sent out using nl_send_auto_complete(). * rtnl_addr_delete(sk, addr, 0); * * // Free the memory * rtnl_addr_put(addr); * @endcode * @{ */ #include #include #include #include #include #include #include /** @cond SKIP */ #define ADDR_ATTR_FAMILY 0x0001 #define ADDR_ATTR_PREFIXLEN 0x0002 #define ADDR_ATTR_FLAGS 0x0004 #define ADDR_ATTR_SCOPE 0x0008 #define ADDR_ATTR_IFINDEX 0x0010 #define ADDR_ATTR_LABEL 0x0020 #define ADDR_ATTR_CACHEINFO 0x0040 #define ADDR_ATTR_PEER 0x0080 #define ADDR_ATTR_LOCAL 0x0100 #define ADDR_ATTR_BROADCAST 0x0200 #define ADDR_ATTR_MULTICAST 0x0400 #define ADDR_ATTR_ANYCAST 0x0800 static struct nl_cache_ops rtnl_addr_ops; static struct nl_object_ops addr_obj_ops; /** @endcond */ static void addr_constructor(struct nl_object *obj) { struct rtnl_addr *addr = nl_object_priv(obj); addr->a_scope = RT_SCOPE_NOWHERE; } static void addr_free_data(struct nl_object *obj) { struct rtnl_addr *addr = nl_object_priv(obj); if (!addr) return; nl_addr_put(addr->a_peer); nl_addr_put(addr->a_local); nl_addr_put(addr->a_bcast); nl_addr_put(addr->a_multicast); nl_addr_put(addr->a_anycast); rtnl_link_put(addr->a_link); } static int addr_clone(struct nl_object *_dst, struct nl_object *_src) { struct rtnl_addr *dst = nl_object_priv(_dst); struct rtnl_addr *src = nl_object_priv(_src); if (src->a_link) { nl_object_get(OBJ_CAST(src->a_link)); dst->a_link = src->a_link; } if (src->a_peer) if (!(dst->a_peer = nl_addr_clone(src->a_peer))) return -NLE_NOMEM; if (src->a_local) if (!(dst->a_local = nl_addr_clone(src->a_local))) return -NLE_NOMEM; if (src->a_bcast) if (!(dst->a_bcast = nl_addr_clone(src->a_bcast))) return -NLE_NOMEM; if (src->a_multicast) if (!(dst->a_multicast = nl_addr_clone(src->a_multicast))) return -NLE_NOMEM; if (src->a_anycast) if (!(dst->a_anycast = nl_addr_clone(src->a_anycast))) return -NLE_NOMEM; return 0; } static struct nla_policy addr_policy[IFA_MAX+1] = { [IFA_LABEL] = { .type = NLA_STRING, .maxlen = IFNAMSIZ }, [IFA_CACHEINFO] = { .minlen = sizeof(struct ifa_cacheinfo) }, }; static int addr_msg_parser(struct nl_cache_ops *ops, struct sockaddr_nl *who, struct nlmsghdr *nlh, struct nl_parser_param *pp) { struct rtnl_addr *addr; struct ifaddrmsg *ifa; struct nlattr *tb[IFA_MAX+1]; int err, family; struct nl_cache *link_cache; struct nl_addr *plen_addr = NULL; addr = rtnl_addr_alloc(); if (!addr) return -NLE_NOMEM; addr->ce_msgtype = nlh->nlmsg_type; err = nlmsg_parse(nlh, sizeof(*ifa), tb, IFA_MAX, addr_policy); if (err < 0) goto errout; ifa = nlmsg_data(nlh); addr->a_family = family = ifa->ifa_family; addr->a_prefixlen = ifa->ifa_prefixlen; addr->a_scope = ifa->ifa_scope; addr->a_flags = tb[IFA_FLAGS] ? nla_get_u32(tb[IFA_FLAGS]) : ifa->ifa_flags; addr->a_ifindex = ifa->ifa_index; addr->ce_mask = (ADDR_ATTR_FAMILY | ADDR_ATTR_PREFIXLEN | ADDR_ATTR_FLAGS | ADDR_ATTR_SCOPE | ADDR_ATTR_IFINDEX); if (tb[IFA_LABEL]) { nla_strlcpy(addr->a_label, tb[IFA_LABEL], IFNAMSIZ); addr->ce_mask |= ADDR_ATTR_LABEL; } /* IPv6 only */ if (tb[IFA_CACHEINFO]) { struct ifa_cacheinfo *ca; ca = nla_data(tb[IFA_CACHEINFO]); addr->a_cacheinfo.aci_prefered = ca->ifa_prefered; addr->a_cacheinfo.aci_valid = ca->ifa_valid; addr->a_cacheinfo.aci_cstamp = ca->cstamp; addr->a_cacheinfo.aci_tstamp = ca->tstamp; addr->ce_mask |= ADDR_ATTR_CACHEINFO; } if (family == AF_INET) { uint32_t null = 0; /* for IPv4/AF_INET, kernel always sets IFA_LOCAL and IFA_ADDRESS, unless it * is effectively 0.0.0.0. */ if (tb[IFA_LOCAL]) addr->a_local = nl_addr_alloc_attr(tb[IFA_LOCAL], family); else addr->a_local = nl_addr_build(family, &null, sizeof (null)); if (!addr->a_local) goto errout_nomem; addr->ce_mask |= ADDR_ATTR_LOCAL; if (tb[IFA_ADDRESS]) addr->a_peer = nl_addr_alloc_attr(tb[IFA_ADDRESS], family); else addr->a_peer = nl_addr_build(family, &null, sizeof (null)); if (!addr->a_peer) goto errout_nomem; if (!nl_addr_cmp (addr->a_local, addr->a_peer)) { /* having IFA_ADDRESS equal to IFA_LOCAL does not really mean * there is no peer. It means the peer is equal to the local address, * which is the case for "normal" addresses. * * Still, clear the peer and pretend it is unset for backward * compatibility. */ nl_addr_put(addr->a_peer); addr->a_peer = NULL; } else addr->ce_mask |= ADDR_ATTR_PEER; plen_addr = addr->a_local; } else { if (tb[IFA_LOCAL]) { addr->a_local = nl_addr_alloc_attr(tb[IFA_LOCAL], family); if (!addr->a_local) goto errout_nomem; addr->ce_mask |= ADDR_ATTR_LOCAL; plen_addr = addr->a_local; } if (tb[IFA_ADDRESS]) { struct nl_addr *a; a = nl_addr_alloc_attr(tb[IFA_ADDRESS], family); if (!a) goto errout_nomem; /* IPv6 sends the local address as IFA_ADDRESS with * no IFA_LOCAL, IPv4 sends both IFA_LOCAL and IFA_ADDRESS * with IFA_ADDRESS being the peer address if they differ */ if (!tb[IFA_LOCAL] || !nl_addr_cmp(a, addr->a_local)) { nl_addr_put(addr->a_local); addr->a_local = a; addr->ce_mask |= ADDR_ATTR_LOCAL; } else { addr->a_peer = a; addr->ce_mask |= ADDR_ATTR_PEER; } plen_addr = a; } } if (plen_addr) nl_addr_set_prefixlen(plen_addr, addr->a_prefixlen); /* IPv4 only */ if (tb[IFA_BROADCAST]) { addr->a_bcast = nl_addr_alloc_attr(tb[IFA_BROADCAST], family); if (!addr->a_bcast) goto errout_nomem; addr->ce_mask |= ADDR_ATTR_BROADCAST; } /* IPv6 only */ if (tb[IFA_MULTICAST]) { addr->a_multicast = nl_addr_alloc_attr(tb[IFA_MULTICAST], family); if (!addr->a_multicast) goto errout_nomem; addr->ce_mask |= ADDR_ATTR_MULTICAST; } /* IPv6 only */ if (tb[IFA_ANYCAST]) { addr->a_anycast = nl_addr_alloc_attr(tb[IFA_ANYCAST], family); if (!addr->a_anycast) goto errout_nomem; addr->ce_mask |= ADDR_ATTR_ANYCAST; } if ((link_cache = __nl_cache_mngt_require("route/link"))) { struct rtnl_link *link; if ((link = rtnl_link_get(link_cache, addr->a_ifindex))) { rtnl_addr_set_link(addr, link); /* rtnl_addr_set_link incs refcnt */ rtnl_link_put(link); } } err = pp->pp_cb((struct nl_object *) addr, pp); errout: rtnl_addr_put(addr); return err; errout_nomem: err = -NLE_NOMEM; goto errout; } static int addr_request_update(struct nl_cache *cache, struct nl_sock *sk) { return nl_rtgen_request(sk, RTM_GETADDR, AF_UNSPEC, NLM_F_DUMP); } static void addr_dump_line(struct nl_object *obj, struct nl_dump_params *p) { struct rtnl_addr *addr = (struct rtnl_addr *) obj; struct nl_cache *link_cache; char buf[128]; link_cache = nl_cache_mngt_require_safe("route/link"); if (addr->ce_mask & ADDR_ATTR_LOCAL) nl_dump_line(p, "%s", nl_addr2str(addr->a_local, buf, sizeof(buf))); else nl_dump_line(p, "none"); if (addr->ce_mask & ADDR_ATTR_PEER) nl_dump(p, " peer %s", nl_addr2str(addr->a_peer, buf, sizeof(buf))); nl_dump(p, " %s ", nl_af2str(addr->a_family, buf, sizeof(buf))); if (link_cache) nl_dump(p, "dev %s ", rtnl_link_i2name(link_cache, addr->a_ifindex, buf, sizeof(buf))); else nl_dump(p, "dev %d ", addr->a_ifindex); nl_dump(p, "scope %s", rtnl_scope2str(addr->a_scope, buf, sizeof(buf))); rtnl_addr_flags2str(addr->a_flags, buf, sizeof(buf)); if (buf[0]) nl_dump(p, " <%s>", buf); nl_dump(p, "\n"); if (link_cache) nl_cache_put(link_cache); } static void addr_dump_details(struct nl_object *obj, struct nl_dump_params *p) { struct rtnl_addr *addr = (struct rtnl_addr *) obj; char buf[128]; addr_dump_line(obj, p); if (addr->ce_mask & (ADDR_ATTR_LABEL | ADDR_ATTR_BROADCAST | ADDR_ATTR_MULTICAST)) { nl_dump_line(p, " "); if (addr->ce_mask & ADDR_ATTR_LABEL) nl_dump(p, " label %s", addr->a_label); if (addr->ce_mask & ADDR_ATTR_BROADCAST) nl_dump(p, " broadcast %s", nl_addr2str(addr->a_bcast, buf, sizeof(buf))); if (addr->ce_mask & ADDR_ATTR_MULTICAST) nl_dump(p, " multicast %s", nl_addr2str(addr->a_multicast, buf, sizeof(buf))); if (addr->ce_mask & ADDR_ATTR_ANYCAST) nl_dump(p, " anycast %s", nl_addr2str(addr->a_anycast, buf, sizeof(buf))); nl_dump(p, "\n"); } if (addr->ce_mask & ADDR_ATTR_CACHEINFO) { struct rtnl_addr_cacheinfo *ci = &addr->a_cacheinfo; nl_dump_line(p, " valid-lifetime %s", ci->aci_valid == 0xFFFFFFFFU ? "forever" : nl_msec2str(ci->aci_valid * 1000, buf, sizeof(buf))); nl_dump(p, " preferred-lifetime %s\n", ci->aci_prefered == 0xFFFFFFFFU ? "forever" : nl_msec2str(ci->aci_prefered * 1000, buf, sizeof(buf))); nl_dump_line(p, " created boot-time+%s ", nl_msec2str(addr->a_cacheinfo.aci_cstamp * 10, buf, sizeof(buf))); nl_dump(p, "last-updated boot-time+%s\n", nl_msec2str(addr->a_cacheinfo.aci_tstamp * 10, buf, sizeof(buf))); } } static void addr_dump_stats(struct nl_object *obj, struct nl_dump_params *p) { addr_dump_details(obj, p); } static uint32_t addr_id_attrs_get(struct nl_object *obj) { struct rtnl_addr *addr = (struct rtnl_addr *)obj; switch (addr->a_family) { case AF_INET: return (ADDR_ATTR_FAMILY | ADDR_ATTR_IFINDEX | ADDR_ATTR_LOCAL | ADDR_ATTR_PREFIXLEN | ADDR_ATTR_PEER); case AF_INET6: return (ADDR_ATTR_FAMILY | ADDR_ATTR_IFINDEX | ADDR_ATTR_LOCAL); default: return (ADDR_ATTR_FAMILY | ADDR_ATTR_IFINDEX | ADDR_ATTR_LOCAL | ADDR_ATTR_PREFIXLEN); } } static uint64_t addr_compare(struct nl_object *_a, struct nl_object *_b, uint64_t attrs, int flags) { struct rtnl_addr *a = (struct rtnl_addr *) _a; struct rtnl_addr *b = (struct rtnl_addr *) _b; uint64_t diff = 0; #define ADDR_DIFF(ATTR, EXPR) ATTR_DIFF(attrs, ADDR_ATTR_##ATTR, a, b, EXPR) diff |= ADDR_DIFF(IFINDEX, a->a_ifindex != b->a_ifindex); diff |= ADDR_DIFF(FAMILY, a->a_family != b->a_family); diff |= ADDR_DIFF(SCOPE, a->a_scope != b->a_scope); diff |= ADDR_DIFF(LABEL, strcmp(a->a_label, b->a_label)); if (attrs & ADDR_ATTR_PEER) { if ( (flags & ID_COMPARISON) && a->a_family == AF_INET && b->a_family == AF_INET && a->a_peer && b->a_peer && a->a_prefixlen == b->a_prefixlen) { /* when comparing two IPv4 addresses for id-equality, the network part * of the PEER address shall be compared. */ diff |= ADDR_DIFF(PEER, nl_addr_cmp_prefix(a->a_peer, b->a_peer)); } else diff |= ADDR_DIFF(PEER, nl_addr_cmp(a->a_peer, b->a_peer)); } diff |= ADDR_DIFF(LOCAL, nl_addr_cmp(a->a_local, b->a_local)); diff |= ADDR_DIFF(MULTICAST, nl_addr_cmp(a->a_multicast, b->a_multicast)); diff |= ADDR_DIFF(BROADCAST, nl_addr_cmp(a->a_bcast, b->a_bcast)); diff |= ADDR_DIFF(ANYCAST, nl_addr_cmp(a->a_anycast, b->a_anycast)); diff |= ADDR_DIFF(CACHEINFO, memcmp(&a->a_cacheinfo, &b->a_cacheinfo, sizeof (a->a_cacheinfo))); if (flags & LOOSE_COMPARISON) diff |= ADDR_DIFF(FLAGS, (a->a_flags ^ b->a_flags) & b->a_flag_mask); else diff |= ADDR_DIFF(FLAGS, a->a_flags != b->a_flags); #undef ADDR_DIFF return diff; } static const struct trans_tbl addr_attrs[] = { __ADD(ADDR_ATTR_FAMILY, family), __ADD(ADDR_ATTR_PREFIXLEN, prefixlen), __ADD(ADDR_ATTR_FLAGS, flags), __ADD(ADDR_ATTR_SCOPE, scope), __ADD(ADDR_ATTR_IFINDEX, ifindex), __ADD(ADDR_ATTR_LABEL, label), __ADD(ADDR_ATTR_CACHEINFO, cacheinfo), __ADD(ADDR_ATTR_PEER, peer), __ADD(ADDR_ATTR_LOCAL, local), __ADD(ADDR_ATTR_BROADCAST, broadcast), __ADD(ADDR_ATTR_MULTICAST, multicast), }; static char *addr_attrs2str(int attrs, char *buf, size_t len) { return __flags2str(attrs, buf, len, addr_attrs, ARRAY_SIZE(addr_attrs)); } /** * @name Allocation/Freeing * @{ */ struct rtnl_addr *rtnl_addr_alloc(void) { return (struct rtnl_addr *) nl_object_alloc(&addr_obj_ops); } void rtnl_addr_put(struct rtnl_addr *addr) { nl_object_put((struct nl_object *) addr); } /** @} */ /** * @name Cache Management * @{ */ int rtnl_addr_alloc_cache(struct nl_sock *sk, struct nl_cache **result) { return nl_cache_alloc_and_fill(&rtnl_addr_ops, sk, result); } /** * Search address in cache * @arg cache Address cache * @arg ifindex Interface index of address * @arg addr Local address part * * Searches address cache previously allocated with rtnl_addr_alloc_cache() * for an address with a matching local address. * * The reference counter is incremented before returning the address, therefore * the reference must be given back with rtnl_addr_put() after usage. * * @return Address object or NULL if no match was found. */ struct rtnl_addr *rtnl_addr_get(struct nl_cache *cache, int ifindex, struct nl_addr *addr) { struct rtnl_addr *a; if (cache->c_ops != &rtnl_addr_ops) return NULL; nl_list_for_each_entry(a, &cache->c_items, ce_list) { if (ifindex && a->a_ifindex != ifindex) continue; if (a->ce_mask & ADDR_ATTR_LOCAL && !nl_addr_cmp(a->a_local, addr)) { nl_object_get((struct nl_object *) a); return a; } } return NULL; } /** @} */ static int build_addr_msg(struct rtnl_addr *tmpl, int cmd, int flags, struct nl_msg **result) { struct nl_msg *msg; struct ifaddrmsg am = { .ifa_family = tmpl->a_family, .ifa_index = tmpl->a_ifindex, .ifa_prefixlen = tmpl->a_prefixlen, .ifa_flags = tmpl->a_flags, }; if (tmpl->ce_mask & ADDR_ATTR_SCOPE) am.ifa_scope = tmpl->a_scope; else { /* compatibility hack */ if (tmpl->a_family == AF_INET && tmpl->ce_mask & ADDR_ATTR_LOCAL && *((char *) nl_addr_get_binary_addr(tmpl->a_local)) == 127) am.ifa_scope = RT_SCOPE_HOST; else am.ifa_scope = RT_SCOPE_UNIVERSE; } msg = nlmsg_alloc_simple(cmd, flags); if (!msg) return -NLE_NOMEM; if (nlmsg_append(msg, &am, sizeof(am), NLMSG_ALIGNTO) < 0) goto nla_put_failure; if (tmpl->ce_mask & ADDR_ATTR_LOCAL) NLA_PUT_ADDR(msg, IFA_LOCAL, tmpl->a_local); if (tmpl->ce_mask & ADDR_ATTR_PEER) NLA_PUT_ADDR(msg, IFA_ADDRESS, tmpl->a_peer); else if (tmpl->ce_mask & ADDR_ATTR_LOCAL) NLA_PUT_ADDR(msg, IFA_ADDRESS, tmpl->a_local); if (tmpl->ce_mask & ADDR_ATTR_LABEL) NLA_PUT_STRING(msg, IFA_LABEL, tmpl->a_label); if (tmpl->ce_mask & ADDR_ATTR_BROADCAST) NLA_PUT_ADDR(msg, IFA_BROADCAST, tmpl->a_bcast); if (tmpl->ce_mask & ADDR_ATTR_CACHEINFO) { struct ifa_cacheinfo ca = { .ifa_valid = tmpl->a_cacheinfo.aci_valid, .ifa_prefered = tmpl->a_cacheinfo.aci_prefered, }; NLA_PUT(msg, IFA_CACHEINFO, sizeof(ca), &ca); } if (tmpl->a_flags & ~0xFF) { /* only set the IFA_FLAGS attribute, if they actually contain additional * flags that are not already set to am.ifa_flags. * * Older kernels refuse RTM_NEWADDR and RTM_NEWROUTE messages with EINVAL * if they contain unknown netlink attributes. See net/core/rtnetlink.c, which * was fixed by kernel commit 661d2967b3f1b34eeaa7e212e7b9bbe8ee072b59. * * With this workaround, libnl will function correctly with older kernels, * unless there is a new libnl user that wants to set these flags. In this * case it's up to the user to workaround this issue. */ NLA_PUT_U32(msg, IFA_FLAGS, tmpl->a_flags); } *result = msg; return 0; nla_put_failure: nlmsg_free(msg); return -NLE_MSGSIZE; } /** * @name Addition * @{ */ /** * Build netlink request message to request addition of new address * @arg addr Address object representing the new address. * @arg flags Additional netlink message flags. * @arg result Pointer to store resulting message. * * Builds a new netlink message requesting the addition of a new * address. The netlink message header isn't fully equipped with * all relevant fields and must thus be sent out via nl_send_auto_complete() * or supplemented as needed. * * Minimal required attributes: * - interface index (rtnl_addr_set_ifindex()) * - local address (rtnl_addr_set_local()) * * The scope will default to universe except for loopback addresses in * which case a host scope is used if not specified otherwise. * * @note Free the memory after usage using nlmsg_free(). * * @return 0 on success or a negative error code. */ int rtnl_addr_build_add_request(struct rtnl_addr *addr, int flags, struct nl_msg **result) { uint32_t required = ADDR_ATTR_IFINDEX | ADDR_ATTR_FAMILY | ADDR_ATTR_PREFIXLEN | ADDR_ATTR_LOCAL; if ((addr->ce_mask & required) != required) return -NLE_MISSING_ATTR; return build_addr_msg(addr, RTM_NEWADDR, NLM_F_CREATE | flags, result); } /** * Request addition of new address * @arg sk Netlink socket. * @arg addr Address object representing the new address. * @arg flags Additional netlink message flags. * * Builds a netlink message by calling rtnl_addr_build_add_request(), * sends the request to the kernel and waits for the next ACK to be * received and thus blocks until the request has been fullfilled. * * @see rtnl_addr_build_add_request() * * @return 0 on sucess or a negative error if an error occured. */ int rtnl_addr_add(struct nl_sock *sk, struct rtnl_addr *addr, int flags) { struct nl_msg *msg; int err; if ((err = rtnl_addr_build_add_request(addr, flags, &msg)) < 0) return err; err = nl_send_auto_complete(sk, msg); nlmsg_free(msg); if (err < 0) return err; return wait_for_ack(sk); } /** @} */ /** * @name Deletion * @{ */ /** * Build a netlink request message to request deletion of an address * @arg addr Address object to be deleteted. * @arg flags Additional netlink message flags. * @arg result Pointer to store resulting message. * * Builds a new netlink message requesting a deletion of an address. * The netlink message header isn't fully equipped with all relevant * fields and must thus be sent out via nl_send_auto_complete() * or supplemented as needed. * * Minimal required attributes: * - interface index (rtnl_addr_set_ifindex()) * - address family (rtnl_addr_set_family()) * * Optional attributes: * - local address (rtnl_addr_set_local()) * - label (rtnl_addr_set_label(), IPv4/DECnet only) * - peer address (rtnl_addr_set_peer(), IPv4 only) * * @note Free the memory after usage using nlmsg_free(). * * @return 0 on success or a negative error code. */ int rtnl_addr_build_delete_request(struct rtnl_addr *addr, int flags, struct nl_msg **result) { uint32_t required = ADDR_ATTR_IFINDEX | ADDR_ATTR_FAMILY; if ((addr->ce_mask & required) != required) return -NLE_MISSING_ATTR; return build_addr_msg(addr, RTM_DELADDR, flags, result); } /** * Request deletion of an address * @arg sk Netlink socket. * @arg addr Address object to be deleted. * @arg flags Additional netlink message flags. * * Builds a netlink message by calling rtnl_addr_build_delete_request(), * sends the request to the kernel and waits for the next ACK to be * received and thus blocks until the request has been fullfilled. * * @see rtnl_addr_build_delete_request(); * * @return 0 on sucess or a negative error if an error occured. */ int rtnl_addr_delete(struct nl_sock *sk, struct rtnl_addr *addr, int flags) { struct nl_msg *msg; int err; if ((err = rtnl_addr_build_delete_request(addr, flags, &msg)) < 0) return err; err = nl_send_auto_complete(sk, msg); nlmsg_free(msg); if (err < 0) return err; return wait_for_ack(sk); } /** @} */ /** * @name Attributes * @{ */ int rtnl_addr_set_label(struct rtnl_addr *addr, const char *label) { if (strlen(label) > sizeof(addr->a_label) - 1) return -NLE_RANGE; strcpy(addr->a_label, label); addr->ce_mask |= ADDR_ATTR_LABEL; return 0; } char *rtnl_addr_get_label(struct rtnl_addr *addr) { if (addr->ce_mask & ADDR_ATTR_LABEL) return addr->a_label; else return NULL; } void rtnl_addr_set_ifindex(struct rtnl_addr *addr, int ifindex) { addr->a_ifindex = ifindex; addr->ce_mask |= ADDR_ATTR_IFINDEX; } int rtnl_addr_get_ifindex(struct rtnl_addr *addr) { return addr->a_ifindex; } void rtnl_addr_set_link(struct rtnl_addr *addr, struct rtnl_link *link) { rtnl_link_put(addr->a_link); if (!link) return; nl_object_get(OBJ_CAST(link)); addr->a_link = link; addr->a_ifindex = link->l_index; addr->ce_mask |= ADDR_ATTR_IFINDEX; } struct rtnl_link *rtnl_addr_get_link(struct rtnl_addr *addr) { if (addr->a_link) { nl_object_get(OBJ_CAST(addr->a_link)); return addr->a_link; } return NULL; } void rtnl_addr_set_family(struct rtnl_addr *addr, int family) { addr->a_family = family; addr->ce_mask |= ADDR_ATTR_FAMILY; } int rtnl_addr_get_family(struct rtnl_addr *addr) { return addr->a_family; } /** * Set the prefix length / netmask * @arg addr Address * @arg prefixlen Length of prefix (netmask) * * Modifies the length of the prefix. If the address object contains a peer * address the prefix length will apply to it, otherwise the prefix length * will apply to the local address of the address. * * If the address object contains a peer or local address the corresponding * `struct nl_addr` will be updated with the new prefix length. * * @note Specifying a length of 0 will remove the prefix length alltogether. * * @see rtnl_addr_get_prefixlen() */ void rtnl_addr_set_prefixlen(struct rtnl_addr *addr, int prefixlen) { addr->a_prefixlen = prefixlen; if (prefixlen) addr->ce_mask |= ADDR_ATTR_PREFIXLEN; else addr->ce_mask &= ~ADDR_ATTR_PREFIXLEN; /* * The prefix length always applies to the peer address if * a peer address is present. */ if (addr->a_peer) nl_addr_set_prefixlen(addr->a_peer, prefixlen); else if (addr->a_local) nl_addr_set_prefixlen(addr->a_local, prefixlen); } int rtnl_addr_get_prefixlen(struct rtnl_addr *addr) { return addr->a_prefixlen; } void rtnl_addr_set_scope(struct rtnl_addr *addr, int scope) { addr->a_scope = scope; addr->ce_mask |= ADDR_ATTR_SCOPE; } int rtnl_addr_get_scope(struct rtnl_addr *addr) { return addr->a_scope; } void rtnl_addr_set_flags(struct rtnl_addr *addr, unsigned int flags) { addr->a_flag_mask |= flags; addr->a_flags |= flags; addr->ce_mask |= ADDR_ATTR_FLAGS; } void rtnl_addr_unset_flags(struct rtnl_addr *addr, unsigned int flags) { addr->a_flag_mask |= flags; addr->a_flags &= ~flags; addr->ce_mask |= ADDR_ATTR_FLAGS; } unsigned int rtnl_addr_get_flags(struct rtnl_addr *addr) { return addr->a_flags; } static inline int __assign_addr(struct rtnl_addr *addr, struct nl_addr **pos, struct nl_addr *new, int flag) { if (new) { if (addr->ce_mask & ADDR_ATTR_FAMILY) { if (new->a_family != addr->a_family) return -NLE_AF_MISMATCH; } else addr->a_family = new->a_family; if (*pos) nl_addr_put(*pos); *pos = nl_addr_get(new); addr->ce_mask |= (flag | ADDR_ATTR_FAMILY); } else { if (*pos) nl_addr_put(*pos); *pos = NULL; addr->ce_mask &= ~flag; } return 0; } int rtnl_addr_set_local(struct rtnl_addr *addr, struct nl_addr *local) { int err; /* Prohibit local address with prefix length if peer address is present */ if ((addr->ce_mask & ADDR_ATTR_PEER) && local && nl_addr_get_prefixlen(local)) return -NLE_INVAL; err = __assign_addr(addr, &addr->a_local, local, ADDR_ATTR_LOCAL); if (err < 0) return err; /* Never overwrite the prefix length if a peer address is present */ if (!(addr->ce_mask & ADDR_ATTR_PEER)) rtnl_addr_set_prefixlen(addr, local ? nl_addr_get_prefixlen(local) : 0); return 0; } struct nl_addr *rtnl_addr_get_local(struct rtnl_addr *addr) { return addr->a_local; } int rtnl_addr_set_peer(struct rtnl_addr *addr, struct nl_addr *peer) { int err; if (peer && peer->a_family != AF_INET) return -NLE_AF_NOSUPPORT; err = __assign_addr(addr, &addr->a_peer, peer, ADDR_ATTR_PEER); if (err < 0) return err; rtnl_addr_set_prefixlen(addr, peer ? nl_addr_get_prefixlen(peer) : 0); return 0; } struct nl_addr *rtnl_addr_get_peer(struct rtnl_addr *addr) { return addr->a_peer; } int rtnl_addr_set_broadcast(struct rtnl_addr *addr, struct nl_addr *bcast) { if (bcast && bcast->a_family != AF_INET) return -NLE_AF_NOSUPPORT; return __assign_addr(addr, &addr->a_bcast, bcast, ADDR_ATTR_BROADCAST); } struct nl_addr *rtnl_addr_get_broadcast(struct rtnl_addr *addr) { return addr->a_bcast; } int rtnl_addr_set_multicast(struct rtnl_addr *addr, struct nl_addr *multicast) { if (multicast && multicast->a_family != AF_INET6) return -NLE_AF_NOSUPPORT; return __assign_addr(addr, &addr->a_multicast, multicast, ADDR_ATTR_MULTICAST); } struct nl_addr *rtnl_addr_get_multicast(struct rtnl_addr *addr) { return addr->a_multicast; } int rtnl_addr_set_anycast(struct rtnl_addr *addr, struct nl_addr *anycast) { if (anycast && anycast->a_family != AF_INET6) return -NLE_AF_NOSUPPORT; return __assign_addr(addr, &addr->a_anycast, anycast, ADDR_ATTR_ANYCAST); } struct nl_addr *rtnl_addr_get_anycast(struct rtnl_addr *addr) { return addr->a_anycast; } uint32_t rtnl_addr_get_valid_lifetime(struct rtnl_addr *addr) { if (addr->ce_mask & ADDR_ATTR_CACHEINFO) return addr->a_cacheinfo.aci_valid; else return 0xFFFFFFFFU; } void rtnl_addr_set_valid_lifetime(struct rtnl_addr *addr, uint32_t lifetime) { addr->a_cacheinfo.aci_valid = lifetime; addr->ce_mask |= ADDR_ATTR_CACHEINFO; } uint32_t rtnl_addr_get_preferred_lifetime(struct rtnl_addr *addr) { if (addr->ce_mask & ADDR_ATTR_CACHEINFO) return addr->a_cacheinfo.aci_prefered; else return 0xFFFFFFFFU; } void rtnl_addr_set_preferred_lifetime(struct rtnl_addr *addr, uint32_t lifetime) { addr->a_cacheinfo.aci_prefered = lifetime; addr->ce_mask |= ADDR_ATTR_CACHEINFO; } uint32_t rtnl_addr_get_create_time(struct rtnl_addr *addr) { return addr->a_cacheinfo.aci_cstamp; } uint32_t rtnl_addr_get_last_update_time(struct rtnl_addr *addr) { return addr->a_cacheinfo.aci_tstamp; } /** @} */ /** * @name Flags Translations * @{ */ static const struct trans_tbl addr_flags[] = { __ADD(IFA_F_SECONDARY, secondary), __ADD(IFA_F_NODAD, nodad), __ADD(IFA_F_OPTIMISTIC, optimistic), __ADD(IFA_F_HOMEADDRESS, homeaddress), __ADD(IFA_F_DEPRECATED, deprecated), __ADD(IFA_F_TENTATIVE, tentative), __ADD(IFA_F_PERMANENT, permanent), __ADD(IFA_F_MANAGETEMPADDR, mngtmpaddr), __ADD(IFA_F_NOPREFIXROUTE, noprefixroute), }; char *rtnl_addr_flags2str(int flags, char *buf, size_t size) { return __flags2str(flags, buf, size, addr_flags, ARRAY_SIZE(addr_flags)); } int rtnl_addr_str2flags(const char *name) { return __str2flags(name, addr_flags, ARRAY_SIZE(addr_flags)); } /** @} */ static struct nl_object_ops addr_obj_ops = { .oo_name = "route/addr", .oo_size = sizeof(struct rtnl_addr), .oo_constructor = addr_constructor, .oo_free_data = addr_free_data, .oo_clone = addr_clone, .oo_dump = { [NL_DUMP_LINE] = addr_dump_line, [NL_DUMP_DETAILS] = addr_dump_details, [NL_DUMP_STATS] = addr_dump_stats, }, .oo_compare = addr_compare, .oo_attrs2str = addr_attrs2str, .oo_id_attrs_get = addr_id_attrs_get, .oo_id_attrs = (ADDR_ATTR_FAMILY | ADDR_ATTR_IFINDEX | ADDR_ATTR_LOCAL | ADDR_ATTR_PREFIXLEN), }; static struct nl_af_group addr_groups[] = { { AF_INET, RTNLGRP_IPV4_IFADDR }, { AF_INET6, RTNLGRP_IPV6_IFADDR }, { END_OF_GROUP_LIST }, }; static struct nl_cache_ops rtnl_addr_ops = { .co_name = "route/addr", .co_hdrsize = sizeof(struct ifaddrmsg), .co_msgtypes = { { RTM_NEWADDR, NL_ACT_NEW, "new" }, { RTM_DELADDR, NL_ACT_DEL, "del" }, { RTM_GETADDR, NL_ACT_GET, "get" }, END_OF_MSGTYPES_LIST, }, .co_protocol = NETLINK_ROUTE, .co_groups = addr_groups, .co_request_update = addr_request_update, .co_msg_parser = addr_msg_parser, .co_obj_ops = &addr_obj_ops, }; static void __init addr_init(void) { nl_cache_mngt_register(&rtnl_addr_ops); } static void __exit addr_exit(void) { nl_cache_mngt_unregister(&rtnl_addr_ops); } /** @} */