/* * lib/route/tc.c Traffic Control * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation version 2.1 * of the License. * * Copyright (c) 2003-2011 Thomas Graf */ /** * @ingroup rtnl * @defgroup tc Traffic Control * @{ */ #include #include #include #include #include #include #include #include /** @cond SKIP */ static struct nl_list_head tc_ops_list[__RTNL_TC_TYPE_MAX]; static struct rtnl_tc_type_ops *tc_type_ops[__RTNL_TC_TYPE_MAX]; static struct nla_policy tc_policy[TCA_MAX+1] = { [TCA_KIND] = { .type = NLA_STRING, .maxlen = TCKINDSIZ }, [TCA_STATS] = { .minlen = sizeof(struct tc_stats) }, [TCA_STATS2] = { .type = NLA_NESTED }, }; int tca_parse(struct nlattr **tb, int maxattr, struct rtnl_tc *g, struct nla_policy *policy) { if (g->ce_mask & TCA_ATTR_OPTS) return nla_parse(tb, maxattr, (struct nlattr *) g->tc_opts->d_data, g->tc_opts->d_size, policy); else { /* Ugly but tb[] must be in a defined state even if no * attributes can be found. */ memset(tb, 0, sizeof(struct nlattr *) * (maxattr + 1)); return 0; } } static struct nla_policy tc_stats2_policy[TCA_STATS_MAX+1] = { [TCA_STATS_BASIC] = { .minlen = sizeof(struct gnet_stats_basic) }, [TCA_STATS_RATE_EST] = { .minlen = sizeof(struct gnet_stats_rate_est) }, [TCA_STATS_QUEUE] = { .minlen = sizeof(struct gnet_stats_queue) }, }; int rtnl_tc_msg_parse(struct nlmsghdr *n, struct rtnl_tc *tc) { struct nl_cache *link_cache; struct rtnl_tc_ops *ops; struct nlattr *tb[TCA_MAX + 1]; char kind[TCKINDSIZ]; struct tcmsg *tm; int err; tc->ce_msgtype = n->nlmsg_type; err = nlmsg_parse(n, sizeof(*tm), tb, TCA_MAX, tc_policy); if (err < 0) return err; if (tb[TCA_KIND] == NULL) return -NLE_MISSING_ATTR; nla_strlcpy(kind, tb[TCA_KIND], sizeof(kind)); rtnl_tc_set_kind(tc, kind); tm = nlmsg_data(n); tc->tc_family = tm->tcm_family; tc->tc_ifindex = tm->tcm_ifindex; tc->tc_handle = tm->tcm_handle; tc->tc_parent = tm->tcm_parent; tc->tc_info = tm->tcm_info; tc->ce_mask |= (TCA_ATTR_FAMILY | TCA_ATTR_IFINDEX | TCA_ATTR_HANDLE| TCA_ATTR_PARENT | TCA_ATTR_INFO); if (tb[TCA_OPTIONS]) { tc->tc_opts = nl_data_alloc_attr(tb[TCA_OPTIONS]); if (!tc->tc_opts) return -NLE_NOMEM; tc->ce_mask |= TCA_ATTR_OPTS; } if (tb[TCA_STATS2]) { struct nlattr *tbs[TCA_STATS_MAX + 1]; err = nla_parse_nested(tbs, TCA_STATS_MAX, tb[TCA_STATS2], tc_stats2_policy); if (err < 0) return err; if (tbs[TCA_STATS_BASIC]) { struct gnet_stats_basic *bs; bs = nla_data(tbs[TCA_STATS_BASIC]); tc->tc_stats[RTNL_TC_BYTES] = bs->bytes; tc->tc_stats[RTNL_TC_PACKETS] = bs->packets; } if (tbs[TCA_STATS_RATE_EST]) { struct gnet_stats_rate_est *re; re = nla_data(tbs[TCA_STATS_RATE_EST]); tc->tc_stats[RTNL_TC_RATE_BPS] = re->bps; tc->tc_stats[RTNL_TC_RATE_PPS] = re->pps; } if (tbs[TCA_STATS_QUEUE]) { struct gnet_stats_queue *q; q = nla_data(tbs[TCA_STATS_QUEUE]); tc->tc_stats[RTNL_TC_QLEN] = q->qlen; tc->tc_stats[RTNL_TC_BACKLOG] = q->backlog; tc->tc_stats[RTNL_TC_DROPS] = q->drops; tc->tc_stats[RTNL_TC_REQUEUES] = q->requeues; tc->tc_stats[RTNL_TC_OVERLIMITS] = q->overlimits; } tc->ce_mask |= TCA_ATTR_STATS; if (tbs[TCA_STATS_APP]) { tc->tc_xstats = nl_data_alloc_attr(tbs[TCA_STATS_APP]); if (tc->tc_xstats == NULL) return -NLE_NOMEM; tc->ce_mask |= TCA_ATTR_XSTATS; } else goto compat_xstats; } else { if (tb[TCA_STATS]) { struct tc_stats *st = nla_data(tb[TCA_STATS]); tc->tc_stats[RTNL_TC_BYTES] = st->bytes; tc->tc_stats[RTNL_TC_PACKETS] = st->packets; tc->tc_stats[RTNL_TC_RATE_BPS] = st->bps; tc->tc_stats[RTNL_TC_RATE_PPS] = st->pps; tc->tc_stats[RTNL_TC_QLEN] = st->qlen; tc->tc_stats[RTNL_TC_BACKLOG] = st->backlog; tc->tc_stats[RTNL_TC_DROPS] = st->drops; tc->tc_stats[RTNL_TC_OVERLIMITS]= st->overlimits; tc->ce_mask |= TCA_ATTR_STATS; } compat_xstats: if (tb[TCA_XSTATS]) { tc->tc_xstats = nl_data_alloc_attr(tb[TCA_XSTATS]); if (tc->tc_xstats == NULL) return -NLE_NOMEM; tc->ce_mask |= TCA_ATTR_XSTATS; } } ops = rtnl_tc_get_ops(tc); if (ops && ops->to_msg_parser) { void *data = rtnl_tc_data(tc); if (!data) return -NLE_NOMEM; err = ops->to_msg_parser(tc, data); if (err < 0) return err; } if ((link_cache = __nl_cache_mngt_require("route/link"))) { struct rtnl_link *link; if ((link = rtnl_link_get(link_cache, tc->tc_ifindex))) { rtnl_tc_set_link(tc, link); /* rtnl_tc_set_link incs refcnt */ rtnl_link_put(link); } } return 0; } int rtnl_tc_msg_build(struct rtnl_tc *tc, int type, int flags, struct nl_msg **result) { struct nl_msg *msg; struct rtnl_tc_ops *ops; struct tcmsg tchdr = { .tcm_family = AF_UNSPEC, .tcm_ifindex = tc->tc_ifindex, .tcm_handle = tc->tc_handle, .tcm_parent = tc->tc_parent, }; int err = -NLE_MSGSIZE; msg = nlmsg_alloc_simple(type, flags); if (!msg) return -NLE_NOMEM; if (nlmsg_append(msg, &tchdr, sizeof(tchdr), NLMSG_ALIGNTO) < 0) goto nla_put_failure; if (tc->ce_mask & TCA_ATTR_KIND) NLA_PUT_STRING(msg, TCA_KIND, tc->tc_kind); ops = rtnl_tc_get_ops(tc); if (ops && (ops->to_msg_fill || ops->to_msg_fill_raw)) { struct nlattr *opts; void *data = rtnl_tc_data(tc); if (ops->to_msg_fill) { if (!(opts = nla_nest_start(msg, TCA_OPTIONS))) goto nla_put_failure; if ((err = ops->to_msg_fill(tc, data, msg)) < 0) goto nla_put_failure; nla_nest_end(msg, opts); } else if ((err = ops->to_msg_fill_raw(tc, data, msg)) < 0) goto nla_put_failure; } *result = msg; return 0; nla_put_failure: nlmsg_free(msg); return err; } void tca_set_kind(struct rtnl_tc *t, const char *kind) { strncpy(t->tc_kind, kind, sizeof(t->tc_kind) - 1); t->ce_mask |= TCA_ATTR_KIND; } /** @endcond */ /** * @name Attributes * @{ */ /** * Set interface index of traffic control object * @arg tc traffic control object * @arg ifindex interface index. * * Sets the interface index of a traffic control object. The interface * index defines the network device which this tc object is attached to. * This function will overwrite any network device assigned with previous * calls to rtnl_tc_set_ifindex() or rtnl_tc_set_link(). */ void rtnl_tc_set_ifindex(struct rtnl_tc *tc, int ifindex) { /* Obsolete possible old link reference */ rtnl_link_put(tc->tc_link); tc->tc_link = NULL; tc->ce_mask &= ~TCA_ATTR_LINK; tc->tc_ifindex = ifindex; tc->ce_mask |= TCA_ATTR_IFINDEX; } /** * Return interface index of traffic control object * @arg tc traffic control object */ int rtnl_tc_get_ifindex(struct rtnl_tc *tc) { return tc->tc_ifindex; } /** * Set link of traffic control object * @arg tc traffic control object * @arg link link object * * Sets the link of a traffic control object. This function serves * the same purpose as rtnl_tc_set_ifindex() but due to the continued * allowed access to the link object it gives it the possibility to * retrieve sane default values for the the MTU and the linktype. * Always prefer this function over rtnl_tc_set_ifindex() if you can * spare to have an additional link object around. */ void rtnl_tc_set_link(struct rtnl_tc *tc, struct rtnl_link *link) { rtnl_link_put(tc->tc_link); if (!link) return; if (!link->l_index) BUG(); nl_object_get(OBJ_CAST(link)); tc->tc_link = link; tc->tc_ifindex = link->l_index; tc->ce_mask |= TCA_ATTR_LINK | TCA_ATTR_IFINDEX; } /** * Get link of traffic control object * @arg tc traffic control object * * Returns the link of a traffic control object. The link is only * returned if it has been set before via rtnl_tc_set_link() or * if a link cache was available while parsing the tc object. This * function may still return NULL even if an ifindex is assigned to * the tc object. It will _not_ look up the link by itself. * * @note The returned link will have its reference counter incremented. * It is in the responsibility of the caller to return the * reference. * * @return link object or NULL if not set. */ struct rtnl_link *rtnl_tc_get_link(struct rtnl_tc *tc) { if (tc->tc_link) { nl_object_get(OBJ_CAST(tc->tc_link)); return tc->tc_link; } return NULL; } /** * Set the Maximum Transmission Unit (MTU) of traffic control object * @arg tc traffic control object * @arg mtu largest packet size expected * * Sets the MTU of a traffic control object. Not all traffic control * objects will make use of this but it helps while calculating rate * tables. This value is typically derived directly from the link * the tc object is attached to if the link has been assigned via * rtnl_tc_set_link(). It is usually not necessary to set the MTU * manually, this function is provided to allow overwriting the derived * value. */ void rtnl_tc_set_mtu(struct rtnl_tc *tc, uint32_t mtu) { tc->tc_mtu = mtu; tc->ce_mask |= TCA_ATTR_MTU; } /** * Return the MTU of traffic control object * @arg tc traffic control object * * Returns the MTU of a traffic control object which has been set via: * -# User specified value set via rtnl_tc_set_mtu() * -# Dervied from link set via rtnl_tc_set_link() * -# Fall back to default: ethernet = 1500 */ uint32_t rtnl_tc_get_mtu(struct rtnl_tc *tc) { if (tc->ce_mask & TCA_ATTR_MTU) return tc->tc_mtu; else if (tc->ce_mask & TCA_ATTR_LINK) return tc->tc_link->l_mtu; else return 1500; /* default to ethernet */ } /** * Set the Minimum Packet Unit (MPU) of a traffic control object * @arg tc traffic control object * @arg mpu minimum packet size expected * * Sets the MPU of a traffic contorl object. It specifies the minimum * packet size to ever hit this traffic control object. Not all traffic * control objects will make use of this but it helps while calculating * rate tables. */ void rtnl_tc_set_mpu(struct rtnl_tc *tc, uint32_t mpu) { tc->tc_mpu = mpu; tc->ce_mask |= TCA_ATTR_MPU; } /** * Return the Minimum Packet Unit (MPU) of a traffic control object * @arg tc traffic control object * * @return The MPU previously set via rtnl_tc_set_mpu() or 0. */ uint32_t rtnl_tc_get_mpu(struct rtnl_tc *tc) { return tc->tc_mpu; } /** * Set per packet overhead of a traffic control object * @arg tc traffic control object * @arg overhead overhead per packet in bytes * * Sets the per packet overhead in bytes occuring on the link not seen * by the kernel. This value can be used to correct size calculations * if the packet size on the wire does not match the packet sizes seen * in the network stack. Not all traffic control objects will make use * this but it helps while calculating accurate packet sizes in the * kernel. */ void rtnl_tc_set_overhead(struct rtnl_tc *tc, uint32_t overhead) { tc->tc_overhead = overhead; tc->ce_mask |= TCA_ATTR_OVERHEAD; } /** * Return per packet overhead of a traffic control object * @arg tc traffic control object * * @return The overhead previously set by rtnl_tc_set_overhead() or 0. */ uint32_t rtnl_tc_get_overhead(struct rtnl_tc *tc) { return tc->tc_overhead; } /** * Set the linktype of a traffic control object * @arg tc traffic control object * @arg type type of link (e.g. ARPHRD_ATM, ARPHRD_ETHER) * * Overwrites the type of link this traffic control object is attached to. * This value is typically derived from the link this tc object is attached * if the link has been assigned via rtnl_tc_set_link(). It is usually not * necessary to set the linktype manually. This function is provided to * allow overwriting the linktype. */ void rtnl_tc_set_linktype(struct rtnl_tc *tc, uint32_t type) { tc->tc_linktype = type; tc->ce_mask |= TCA_ATTR_LINKTYPE; } /** * Return the linktype of a traffic control object * @arg tc traffic control object * * Returns the linktype of the link the traffic control object is attached to: * -# User specified value via rtnl_tc_set_linktype() * -# Value derived from link set via rtnl_tc_set_link() * -# Default fall-back: ARPHRD_ETHER */ uint32_t rtnl_tc_get_linktype(struct rtnl_tc *tc) { if (tc->ce_mask & TCA_ATTR_LINKTYPE) return tc->tc_linktype; else if (tc->ce_mask & TCA_ATTR_LINK) return tc->tc_link->l_arptype; else return ARPHRD_ETHER; /* default to ethernet */ } /** * Set identifier of traffic control object * @arg tc traffic control object * @arg id unique identifier */ void rtnl_tc_set_handle(struct rtnl_tc *tc, uint32_t id) { tc->tc_handle = id; tc->ce_mask |= TCA_ATTR_HANDLE; } /** * Return identifier of a traffic control object * @arg tc traffic control object */ uint32_t rtnl_tc_get_handle(struct rtnl_tc *tc) { return tc->tc_handle; } /** * Set the parent identifier of a traffic control object * @arg tc traffic control object * @arg parent identifier of parent traffif control object * */ void rtnl_tc_set_parent(struct rtnl_tc *tc, uint32_t parent) { tc->tc_parent = parent; tc->ce_mask |= TCA_ATTR_PARENT; } /** * Return parent identifier of a traffic control object * @arg tc traffic control object */ uint32_t rtnl_tc_get_parent(struct rtnl_tc *tc) { return tc->tc_parent; } /** * Define the type of traffic control object * @arg tc traffic control object * @arg kind name of the tc object type * * @return 0 on success or a negative error code */ int rtnl_tc_set_kind(struct rtnl_tc *tc, const char *kind) { if (tc->ce_mask & TCA_ATTR_KIND) return -NLE_EXIST; strncpy(tc->tc_kind, kind, sizeof(tc->tc_kind) - 1); tc->ce_mask |= TCA_ATTR_KIND; /* Force allocation of data */ rtnl_tc_data(tc); return 0; } /** * Return kind of traffic control object * @arg tc traffic control object * * @return Kind of traffic control object or NULL if not set. */ char *rtnl_tc_get_kind(struct rtnl_tc *tc) { if (tc->ce_mask & TCA_ATTR_KIND) return tc->tc_kind; else return NULL; } /** * Return value of a statistical counter of a traffic control object * @arg tc traffic control object * @arg id identifier of statistical counter * * @return Value of requested statistic counter or 0. */ uint64_t rtnl_tc_get_stat(struct rtnl_tc *tc, enum rtnl_tc_stat id) { if ((unsigned int) id > RTNL_TC_STATS_MAX) return 0; return tc->tc_stats[id]; } /** @} */ /** * @name Utilities * @{ */ static const struct trans_tbl tc_stats[] = { __ADD(RTNL_TC_PACKETS, packets), __ADD(RTNL_TC_BYTES, bytes), __ADD(RTNL_TC_RATE_BPS, rate_bps), __ADD(RTNL_TC_RATE_PPS, rate_pps), __ADD(RTNL_TC_QLEN, qlen), __ADD(RTNL_TC_BACKLOG, backlog), __ADD(RTNL_TC_DROPS, drops), __ADD(RTNL_TC_REQUEUES, requeues), __ADD(RTNL_TC_OVERLIMITS, overlimits), }; char *rtnl_tc_stat2str(enum rtnl_tc_stat st, char *buf, size_t len) { return __type2str(st, buf, len, tc_stats, ARRAY_SIZE(tc_stats)); } int rtnl_tc_str2stat(const char *name) { return __str2type(name, tc_stats, ARRAY_SIZE(tc_stats)); } /** * Calculate time required to transmit buffer at a specific rate * @arg bufsize Size of buffer to be transmited in bytes. * @arg rate Transmit rate in bytes per second. * * Calculates the number of micro seconds required to transmit a * specific buffer at a specific transmit rate. * * @f[ * txtime=\frac{bufsize}{rate}10^6 * @f] * * @return Required transmit time in micro seconds. */ int rtnl_tc_calc_txtime(int bufsize, int rate) { double tx_time_secs; tx_time_secs = (double) bufsize / (double) rate; return tx_time_secs * 1000000.; } /** * Calculate buffer size able to transmit in a specific time and rate. * @arg txtime Available transmit time in micro seconds. * @arg rate Transmit rate in bytes per second. * * Calculates the size of the buffer that can be transmitted in a * specific time period at a specific transmit rate. * * @f[ * bufsize=\frac{{txtime} \times {rate}}{10^6} * @f] * * @return Size of buffer in bytes. */ int rtnl_tc_calc_bufsize(int txtime, int rate) { double bufsize; bufsize = (double) txtime * (double) rate; return bufsize / 1000000.; } /** * Calculate the binary logarithm for a specific cell size * @arg cell_size Size of cell, must be a power of two. * @return Binary logirhtm of cell size or a negative error code. */ int rtnl_tc_calc_cell_log(int cell_size) { int i; for (i = 0; i < 32; i++) if ((1 << i) == cell_size) return i; return -NLE_INVAL; } /** @} */ /** * @name Rate Tables * @{ */ /* * COPYRIGHT NOTE: * align_to_atm() and adjust_size() derived/coped from iproute2 source. */ /* * The align to ATM cells is used for determining the (ATM) SAR * alignment overhead at the ATM layer. (SAR = Segmentation And * Reassembly). This is for example needed when scheduling packet on * an ADSL connection. Note that the extra ATM-AAL overhead is _not_ * included in this calculation. This overhead is added in the kernel * before doing the rate table lookup, as this gives better precision * (as the table will always be aligned for 48 bytes). * --Hawk, d.7/11-2004. */ static unsigned int align_to_atm(unsigned int size) { int linksize, cells; cells = size / ATM_CELL_PAYLOAD; if ((size % ATM_CELL_PAYLOAD) > 0) cells++; linksize = cells * ATM_CELL_SIZE; /* Use full cell size to add ATM tax */ return linksize; } static unsigned int adjust_size(unsigned int size, unsigned int mpu, uint32_t linktype) { if (size < mpu) size = mpu; switch (linktype) { case ARPHRD_ATM: return align_to_atm(size); case ARPHRD_ETHER: default: return size; } } /** * Compute a transmission time lookup table * @arg tc traffic control object * @arg spec Rate specification * @arg dst Destination buffer of RTNL_TC_RTABLE_SIZE uint32_t[]. * * Computes a table of RTNL_TC_RTABLE_SIZE entries specyfing the * transmission times for various packet sizes, e.g. the transmission * time for a packet of size \c pktsize could be looked up: * @code * txtime = table[pktsize >> log2(mtu)]; * @endcode */ int rtnl_tc_build_rate_table(struct rtnl_tc *tc, struct rtnl_ratespec *spec, uint32_t *dst) { uint32_t mtu = rtnl_tc_get_mtu(tc); uint32_t linktype = rtnl_tc_get_linktype(tc); uint8_t cell_log = spec->rs_cell_log; unsigned int size, i; spec->rs_mpu = rtnl_tc_get_mpu(tc); spec->rs_overhead = rtnl_tc_get_overhead(tc); if (mtu == 0) mtu = 2047; if (cell_log == UINT8_MAX) { /* * cell_log not specified, calculate it. It has to specify the * minimum number of rshifts required to break the MTU to below * RTNL_TC_RTABLE_SIZE. */ cell_log = 0; while ((mtu >> cell_log) >= RTNL_TC_RTABLE_SIZE) cell_log++; } for (i = 0; i < RTNL_TC_RTABLE_SIZE; i++) { size = adjust_size((i + 1) << cell_log, spec->rs_mpu, linktype); dst[i] = nl_us2ticks(rtnl_tc_calc_txtime(size, spec->rs_rate)); } spec->rs_cell_align = -1; spec->rs_cell_log = cell_log; return 0; } /** @} */ /** * @name TC implementation of cache functions */ void rtnl_tc_free_data(struct nl_object *obj) { struct rtnl_tc *tc = TC_CAST(obj); struct rtnl_tc_ops *ops; rtnl_link_put(tc->tc_link); nl_data_free(tc->tc_opts); nl_data_free(tc->tc_xstats); if (tc->tc_subdata) { ops = rtnl_tc_get_ops(tc); if (ops && ops->to_free_data) ops->to_free_data(tc, nl_data_get(tc->tc_subdata)); nl_data_free(tc->tc_subdata); } } int rtnl_tc_clone(struct nl_object *dstobj, struct nl_object *srcobj) { struct rtnl_tc *dst = TC_CAST(dstobj); struct rtnl_tc *src = TC_CAST(srcobj); struct rtnl_tc_ops *ops; if (src->tc_link) { nl_object_get(OBJ_CAST(src->tc_link)); dst->tc_link = src->tc_link; } dst->tc_opts = NULL; dst->tc_xstats = NULL; dst->tc_subdata = NULL; dst->ce_mask &= ~(TCA_ATTR_OPTS | TCA_ATTR_XSTATS); if (src->tc_opts) { dst->tc_opts = nl_data_clone(src->tc_opts); if (!dst->tc_opts) return -NLE_NOMEM; dst->ce_mask |= TCA_ATTR_OPTS; } if (src->tc_xstats) { dst->tc_xstats = nl_data_clone(src->tc_xstats); if (!dst->tc_xstats) return -NLE_NOMEM; dst->ce_mask |= TCA_ATTR_XSTATS; } if (src->tc_subdata) { if (!(dst->tc_subdata = nl_data_clone(src->tc_subdata))) { return -NLE_NOMEM; } } ops = rtnl_tc_get_ops(src); if (ops && ops->to_clone) { void *a = rtnl_tc_data(dst), *b = rtnl_tc_data(src); if (!a) return 0; else if (!b) return -NLE_NOMEM; return ops->to_clone(a, b); } return 0; } static int tc_dump(struct rtnl_tc *tc, enum nl_dump_type type, struct nl_dump_params *p) { struct rtnl_tc_type_ops *type_ops; struct rtnl_tc_ops *ops; void *data = rtnl_tc_data(tc); type_ops = tc_type_ops[tc->tc_type]; if (type_ops && type_ops->tt_dump[type]) type_ops->tt_dump[type](tc, p); ops = rtnl_tc_get_ops(tc); if (ops && ops->to_dump[type]) { ops->to_dump[type](tc, data, p); return 1; } return 0; } void rtnl_tc_dump_line(struct nl_object *obj, struct nl_dump_params *p) { struct rtnl_tc_type_ops *type_ops; struct rtnl_tc *tc = TC_CAST(obj); struct nl_cache *link_cache; char buf[32]; nl_new_line(p); type_ops = tc_type_ops[tc->tc_type]; if (type_ops && type_ops->tt_dump_prefix) nl_dump(p, "%s ", type_ops->tt_dump_prefix); nl_dump(p, "%s ", tc->tc_kind); if ((link_cache = nl_cache_mngt_require_safe("route/link"))) { nl_dump(p, "dev %s ", rtnl_link_i2name(link_cache, tc->tc_ifindex, buf, sizeof(buf))); } else nl_dump(p, "dev %u ", tc->tc_ifindex); nl_dump(p, "id %s ", rtnl_tc_handle2str(tc->tc_handle, buf, sizeof(buf))); nl_dump(p, "parent %s", rtnl_tc_handle2str(tc->tc_parent, buf, sizeof(buf))); tc_dump(tc, NL_DUMP_LINE, p); nl_dump(p, "\n"); if (link_cache) nl_cache_put(link_cache); } void rtnl_tc_dump_details(struct nl_object *obj, struct nl_dump_params *p) { struct rtnl_tc *tc = TC_CAST(obj); rtnl_tc_dump_line(OBJ_CAST(tc), p); nl_dump_line(p, " "); if (tc->ce_mask & TCA_ATTR_MTU) nl_dump(p, " mtu %u", tc->tc_mtu); if (tc->ce_mask & TCA_ATTR_MPU) nl_dump(p, " mpu %u", tc->tc_mpu); if (tc->ce_mask & TCA_ATTR_OVERHEAD) nl_dump(p, " overhead %u", tc->tc_overhead); if (!tc_dump(tc, NL_DUMP_DETAILS, p)) nl_dump(p, "no options"); nl_dump(p, "\n"); } void rtnl_tc_dump_stats(struct nl_object *obj, struct nl_dump_params *p) { struct rtnl_tc *tc = TC_CAST(obj); char *unit; float res; rtnl_tc_dump_details(OBJ_CAST(tc), p); nl_dump_line(p, " stats: %-14s %-10s %-10s %-10s %-10s %-10s\n", "bytes", "packets", "drops", "overlimits", "qlen", "backlog"); res = nl_cancel_down_bytes(tc->tc_stats[RTNL_TC_BYTES], &unit); nl_dump_line(p, " %10.2f %3s %10u %-10u %-10u %-10u %-10u\n", res, unit, tc->tc_stats[RTNL_TC_PACKETS], tc->tc_stats[RTNL_TC_DROPS], tc->tc_stats[RTNL_TC_OVERLIMITS], tc->tc_stats[RTNL_TC_QLEN], tc->tc_stats[RTNL_TC_BACKLOG]); res = nl_cancel_down_bytes(tc->tc_stats[RTNL_TC_RATE_BPS], &unit); nl_dump_line(p, " %10.2f %3s/s %10u/s\n", res, unit, tc->tc_stats[RTNL_TC_RATE_PPS]); } int rtnl_tc_compare(struct nl_object *aobj, struct nl_object *bobj, uint32_t attrs, int flags) { struct rtnl_tc *a = TC_CAST(aobj); struct rtnl_tc *b = TC_CAST(bobj); int diff = 0; #define TC_DIFF(ATTR, EXPR) ATTR_DIFF(attrs, TCA_ATTR_##ATTR, a, b, EXPR) diff |= TC_DIFF(HANDLE, a->tc_handle != b->tc_handle); diff |= TC_DIFF(PARENT, a->tc_parent != b->tc_parent); diff |= TC_DIFF(IFINDEX, a->tc_ifindex != b->tc_ifindex); diff |= TC_DIFF(KIND, strcmp(a->tc_kind, b->tc_kind)); #undef TC_DIFF return diff; } /** @} */ /** * @name Modules API */ struct rtnl_tc_ops *rtnl_tc_lookup_ops(enum rtnl_tc_type type, const char *kind) { struct rtnl_tc_ops *ops; nl_list_for_each_entry(ops, &tc_ops_list[type], to_list) if (!strcmp(kind, ops->to_kind)) return ops; return NULL; } struct rtnl_tc_ops *rtnl_tc_get_ops(struct rtnl_tc *tc) { if (!tc->tc_ops) tc->tc_ops = rtnl_tc_lookup_ops(tc->tc_type, tc->tc_kind); return tc->tc_ops; } /** * Register a traffic control module * @arg ops traffic control module operations */ int rtnl_tc_register(struct rtnl_tc_ops *ops) { static int init = 0; /* * Initialiation hack, make sure list is initialized when * the first tc module registers. Putting this in a * separate __init would required correct ordering of init * functions */ if (!init) { int i; for (i = 0; i < __RTNL_TC_TYPE_MAX; i++) nl_init_list_head(&tc_ops_list[i]); init = 1; } if (!ops->to_kind || ops->to_type > RTNL_TC_TYPE_MAX) BUG(); if (rtnl_tc_lookup_ops(ops->to_type, ops->to_kind)) return -NLE_EXIST; nl_list_add_tail(&ops->to_list, &tc_ops_list[ops->to_type]); return 0; } /** * Unregister a traffic control module * @arg ops traffic control module operations */ void rtnl_tc_unregister(struct rtnl_tc_ops *ops) { nl_list_del(&ops->to_list); } /** * Returns the private data of the traffic control object. * Contrary to rtnl_tc_data(), this returns NULL if the data is * not yet allocated * @arg tc traffic control object * * @return pointer to the private data or NULL if not allocated. */ void *rtnl_tc_data_peek(struct rtnl_tc *tc) { return tc->tc_subdata ? nl_data_get(tc->tc_subdata) : NULL; } /** * Return pointer to private data of traffic control object * @arg tc traffic control object * * Allocates the private traffic control object data section * as necessary and returns it. * * @return Pointer to private tc data or NULL if allocation failed. */ void *rtnl_tc_data(struct rtnl_tc *tc) { if (!tc->tc_subdata) { size_t size; if (!tc->tc_ops) { if (!rtnl_tc_get_ops(tc)) return NULL; } if (!(size = tc->tc_ops->to_size)) BUG(); if (!(tc->tc_subdata = nl_data_alloc(NULL, size))) return NULL; } return nl_data_get(tc->tc_subdata); } /** * Check traffic control object type and return private data section * @arg tc traffic control object * @arg ops expected traffic control object operations * @arg err the place where saves the error code if fails * * Checks whether the traffic control object matches the type * specified with the traffic control object operations. If the * type matches, the private tc object data is returned. If type * mismatches, APPBUG() will print a application bug warning. * * @see rtnl_tc_data() * * @return Pointer to private tc data or NULL if type mismatches. */ void *rtnl_tc_data_check(struct rtnl_tc *tc, struct rtnl_tc_ops *ops, int *err) { void *ret; if (tc->tc_ops != ops) { char buf[64]; snprintf(buf, sizeof(buf), "tc object %p used in %s context but is of type %s", tc, ops->to_kind, tc->tc_ops->to_kind); APPBUG(buf); if (err) *err = -NLE_OPNOTSUPP; return NULL; } ret = rtnl_tc_data(tc); if (ret == NULL) { if (err) *err = -NLE_NOMEM; } return ret; } struct nl_af_group tc_groups[] = { { AF_UNSPEC, RTNLGRP_TC }, { END_OF_GROUP_LIST }, }; void rtnl_tc_type_register(struct rtnl_tc_type_ops *ops) { if (ops->tt_type > RTNL_TC_TYPE_MAX) BUG(); tc_type_ops[ops->tt_type] = ops; } void rtnl_tc_type_unregister(struct rtnl_tc_type_ops *ops) { if (ops->tt_type > RTNL_TC_TYPE_MAX) BUG(); tc_type_ops[ops->tt_type] = NULL; } /** @} */ /** @} */