summaryrefslogtreecommitdiffstats
path: root/lib/lz4.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/lz4.h')
-rw-r--r--lib/lz4.h294
1 files changed, 211 insertions, 83 deletions
diff --git a/lib/lz4.h b/lib/lz4.h
index a06b8a4..7d13122 100644
--- a/lib/lz4.h
+++ b/lib/lz4.h
@@ -93,7 +93,7 @@ extern "C" {
/*------ Version ------*/
#define LZ4_VERSION_MAJOR 1 /* for breaking interface changes */
#define LZ4_VERSION_MINOR 8 /* for new (non-breaking) interface capabilities */
-#define LZ4_VERSION_RELEASE 1 /* for tweaks, bug-fixes, or development */
+#define LZ4_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
#define LZ4_VERSION_NUMBER (LZ4_VERSION_MAJOR *100*100 + LZ4_VERSION_MINOR *100 + LZ4_VERSION_RELEASE)
@@ -102,8 +102,8 @@ extern "C" {
#define LZ4_EXPAND_AND_QUOTE(str) LZ4_QUOTE(str)
#define LZ4_VERSION_STRING LZ4_EXPAND_AND_QUOTE(LZ4_LIB_VERSION)
-LZ4LIB_API int LZ4_versionNumber (void); /**< library version number; to be used when checking dll version */
-LZ4LIB_API const char* LZ4_versionString (void); /**< library version string; to be used when checking dll version */
+LZ4LIB_API int LZ4_versionNumber (void); /**< library version number; useful to check dll version */
+LZ4LIB_API const char* LZ4_versionString (void); /**< library version string; unseful to check dll version */
/*-************************************
@@ -113,7 +113,7 @@ LZ4LIB_API const char* LZ4_versionString (void); /**< library version string;
* LZ4_MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
- * Reduced memory usage can improve speed, due to cache effect
+ * Reduced memory usage may improve speed, thanks to cache effect
* Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
*/
#ifndef LZ4_MEMORY_USAGE
@@ -128,12 +128,12 @@ LZ4LIB_API const char* LZ4_versionString (void); /**< library version string;
into already allocated 'dst' buffer of size 'dstCapacity'.
Compression is guaranteed to succeed if 'dstCapacity' >= LZ4_compressBound(srcSize).
It also runs faster, so it's a recommended setting.
- If the function cannot compress 'src' into a limited 'dst' budget,
+ If the function cannot compress 'src' into a more limited 'dst' budget,
compression stops *immediately*, and the function result is zero.
- As a consequence, 'dst' content is not valid.
- This function never writes outside 'dst' buffer, nor read outside 'source' buffer.
- srcSize : supported max value is LZ4_MAX_INPUT_VALUE
- dstCapacity : full or partial size of buffer 'dst' (which must be already allocated)
+ Note : as a consequence, 'dst' content is not valid.
+ Note 2 : This function is protected against buffer overflow scenarios (never writes outside 'dst' buffer, nor read outside 'source' buffer).
+ srcSize : max supported value is LZ4_MAX_INPUT_SIZE.
+ dstCapacity : size of buffer 'dst' (which must be already allocated)
return : the number of bytes written into buffer 'dst' (necessarily <= dstCapacity)
or 0 if compression fails */
LZ4LIB_API int LZ4_compress_default(const char* src, char* dst, int srcSize, int dstCapacity);
@@ -144,8 +144,7 @@ LZ4LIB_API int LZ4_compress_default(const char* src, char* dst, int srcSize, int
return : the number of bytes decompressed into destination buffer (necessarily <= dstCapacity)
If destination buffer is not large enough, decoding will stop and output an error code (negative value).
If the source stream is detected malformed, the function will stop decoding and return a negative result.
- This function is protected against buffer overflow exploits, including malicious data packets.
- It never writes outside output buffer, nor reads outside input buffer.
+ This function is protected against malicious data packets.
*/
LZ4LIB_API int LZ4_decompress_safe (const char* src, char* dst, int compressedSize, int dstCapacity);
@@ -161,20 +160,20 @@ LZ4_compressBound() :
Provides the maximum size that LZ4 compression may output in a "worst case" scenario (input data not compressible)
This function is primarily useful for memory allocation purposes (destination buffer size).
Macro LZ4_COMPRESSBOUND() is also provided for compilation-time evaluation (stack memory allocation for example).
- Note that LZ4_compress_default() compress faster when dest buffer size is >= LZ4_compressBound(srcSize)
+ Note that LZ4_compress_default() compresses faster when dstCapacity is >= LZ4_compressBound(srcSize)
inputSize : max supported value is LZ4_MAX_INPUT_SIZE
return : maximum output size in a "worst case" scenario
- or 0, if input size is too large ( > LZ4_MAX_INPUT_SIZE)
+ or 0, if input size is incorrect (too large or negative)
*/
LZ4LIB_API int LZ4_compressBound(int inputSize);
/*!
LZ4_compress_fast() :
- Same as LZ4_compress_default(), but allows to select an "acceleration" factor.
+ Same as LZ4_compress_default(), but allows selection of "acceleration" factor.
The larger the acceleration value, the faster the algorithm, but also the lesser the compression.
It's a trade-off. It can be fine tuned, with each successive value providing roughly +~3% to speed.
An acceleration value of "1" is the same as regular LZ4_compress_default()
- Values <= 0 will be replaced by ACCELERATION_DEFAULT (see lz4.c), which is 1.
+ Values <= 0 will be replaced by ACCELERATION_DEFAULT (currently == 1, see lz4.c).
*/
LZ4LIB_API int LZ4_compress_fast (const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
@@ -205,15 +204,19 @@ LZ4LIB_API int LZ4_compress_destSize (const char* src, char* dst, int* srcSizePt
/*!
-LZ4_decompress_fast() : (unsafe!!)
- originalSize : is the original uncompressed size
- return : the number of bytes read from the source buffer (in other words, the compressed size)
- If the source stream is detected malformed, the function will stop decoding and return a negative result.
- Destination buffer must be already allocated. Its size must be >= 'originalSize' bytes.
- note : This function respects memory boundaries for *properly formed* compressed data.
- It is a bit faster than LZ4_decompress_safe().
- However, it does not provide any protection against intentionally modified data stream (malicious input).
- Use this function in trusted environment only (data to decode comes from a trusted source).
+LZ4_decompress_fast() : **unsafe!**
+This function is a bit faster than LZ4_decompress_safe(),
+but it may misbehave on malformed input because it doesn't perform full validation of compressed data.
+ originalSize : is the uncompressed size to regenerate
+ Destination buffer must be already allocated, and its size must be >= 'originalSize' bytes.
+ return : number of bytes read from source buffer (== compressed size).
+ If the source stream is detected malformed, the function stops decoding and return a negative result.
+ note : This function is only usable if the originalSize of uncompressed data is known in advance.
+ The caller should also check that all the compressed input has been consumed properly,
+ i.e. that the return value matches the size of the buffer with compressed input.
+ The function never writes past the output buffer. However, since it doesn't know its 'src' size,
+ it may read past the intended input. Also, because match offsets are not validated during decoding,
+ reads from 'src' may underflow. Use this function in trusted environment **only**.
*/
LZ4LIB_API int LZ4_decompress_fast (const char* src, char* dst, int originalSize);
@@ -222,12 +225,12 @@ LZ4_decompress_safe_partial() :
This function decompress a compressed block of size 'srcSize' at position 'src'
into destination buffer 'dst' of size 'dstCapacity'.
The function will decompress a minimum of 'targetOutputSize' bytes, and stop after that.
- However, it's not accurate, and may write more than 'targetOutputSize' (but <= dstCapacity).
+ However, it's not accurate, and may write more than 'targetOutputSize' (but always <= dstCapacity).
@return : the number of bytes decoded in the destination buffer (necessarily <= dstCapacity)
- Note : this number can be < 'targetOutputSize' should the compressed block contain less data.
- Always control how many bytes were decoded.
- If the source stream is detected malformed, the function will stop decoding and return a negative result.
- This function never writes outside of output buffer, and never reads outside of input buffer. It is therefore protected against malicious data packets.
+ Note : this number can also be < targetOutputSize, if compressed block contains less data.
+ Therefore, always control how many bytes were decoded.
+ If source stream is detected malformed, function returns a negative result.
+ This function is protected against malicious data packets.
*/
LZ4LIB_API int LZ4_decompress_safe_partial (const char* src, char* dst, int srcSize, int targetOutputSize, int dstCapacity);
@@ -235,7 +238,7 @@ LZ4LIB_API int LZ4_decompress_safe_partial (const char* src, char* dst, int srcS
/*-*********************************************
* Streaming Compression Functions
***********************************************/
-typedef union LZ4_stream_u LZ4_stream_t; /* incomplete type (defined later) */
+typedef union LZ4_stream_u LZ4_stream_t; /* incomplete type (defined later) */
/*! LZ4_createStream() and LZ4_freeStream() :
* LZ4_createStream() will allocate and initialize an `LZ4_stream_t` structure.
@@ -259,67 +262,93 @@ LZ4LIB_API void LZ4_resetStream (LZ4_stream_t* streamPtr);
LZ4LIB_API int LZ4_loadDict (LZ4_stream_t* streamPtr, const char* dictionary, int dictSize);
/*! LZ4_compress_fast_continue() :
- * Compress content into 'src' using data from previously compressed blocks, improving compression ratio.
+ * Compress 'src' content using data from previously compressed blocks, for better compression ratio.
* 'dst' buffer must be already allocated.
* If dstCapacity >= LZ4_compressBound(srcSize), compression is guaranteed to succeed, and runs faster.
*
- * Important : Up to 64KB of previously compressed data is assumed to remain present and unmodified in memory !
- * Special 1 : If input buffer is a double-buffer, it can have any size, including < 64 KB.
- * Special 2 : If input buffer is a ring-buffer, it can have any size, including < 64 KB.
+ * Important : The previous 64KB of compressed data is assumed to remain present and unmodified in memory!
+ *
+ * Special 1 : When input is a double-buffer, they can have any size, including < 64 KB.
+ * Make sure that buffers are separated by at least one byte.
+ * This way, each block only depends on previous block.
+ * Special 2 : If input buffer is a ring-buffer, it can have any size, including < 64 KB.
*
* @return : size of compressed block
- * or 0 if there is an error (typically, compressed data cannot fit into 'dst')
+ * or 0 if there is an error (typically, cannot fit into 'dst').
* After an error, the stream status is invalid, it can only be reset or freed.
*/
LZ4LIB_API int LZ4_compress_fast_continue (LZ4_stream_t* streamPtr, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
/*! LZ4_saveDict() :
- * If previously compressed data block is not guaranteed to remain available at its current memory location,
+ * If last 64KB data cannot be guaranteed to remain available at its current memory location,
* save it into a safer place (char* safeBuffer).
- * Note : it's not necessary to call LZ4_loadDict() after LZ4_saveDict(), dictionary is immediately usable.
- * @return : saved dictionary size in bytes (necessarily <= dictSize), or 0 if error.
+ * This is schematically equivalent to a memcpy() followed by LZ4_loadDict(),
+ * but is much faster, because LZ4_saveDict() doesn't need to rebuild tables.
+ * @return : saved dictionary size in bytes (necessarily <= maxDictSize), or 0 if error.
*/
-LZ4LIB_API int LZ4_saveDict (LZ4_stream_t* streamPtr, char* safeBuffer, int dictSize);
+LZ4LIB_API int LZ4_saveDict (LZ4_stream_t* streamPtr, char* safeBuffer, int maxDictSize);
/*-**********************************************
* Streaming Decompression Functions
* Bufferless synchronous API
************************************************/
-typedef union LZ4_streamDecode_u LZ4_streamDecode_t; /* incomplete type (defined later) */
+typedef union LZ4_streamDecode_u LZ4_streamDecode_t; /* tracking context */
/*! LZ4_createStreamDecode() and LZ4_freeStreamDecode() :
- * creation / destruction of streaming decompression tracking structure.
- * A tracking structure can be re-used multiple times sequentially. */
+ * creation / destruction of streaming decompression tracking context.
+ * A tracking context can be re-used multiple times.
+ */
LZ4LIB_API LZ4_streamDecode_t* LZ4_createStreamDecode(void);
LZ4LIB_API int LZ4_freeStreamDecode (LZ4_streamDecode_t* LZ4_stream);
/*! LZ4_setStreamDecode() :
- * An LZ4_streamDecode_t structure can be allocated once and re-used multiple times.
+ * An LZ4_streamDecode_t context can be allocated once and re-used multiple times.
* Use this function to start decompression of a new stream of blocks.
- * A dictionary can optionnally be set. Use NULL or size 0 for a simple reset order.
+ * A dictionary can optionnally be set. Use NULL or size 0 for a reset order.
+ * Dictionary is presumed stable : it must remain accessible and unmodified during next decompression.
* @return : 1 if OK, 0 if error
*/
LZ4LIB_API int LZ4_setStreamDecode (LZ4_streamDecode_t* LZ4_streamDecode, const char* dictionary, int dictSize);
+/*! LZ4_decoderRingBufferSize() : v1.8.2
+ * Note : in a ring buffer scenario (optional),
+ * blocks are presumed decompressed next to each other
+ * up to the moment there is not enough remaining space for next block (remainingSize < maxBlockSize),
+ * at which stage it resumes from beginning of ring buffer.
+ * When setting such a ring buffer for streaming decompression,
+ * provides the minimum size of this ring buffer
+ * to be compatible with any source respecting maxBlockSize condition.
+ * @return : minimum ring buffer size,
+ * or 0 if there is an error (invalid maxBlockSize).
+ */
+LZ4LIB_API int LZ4_decoderRingBufferSize(int maxBlockSize);
+#define LZ4_DECODER_RING_BUFFER_SIZE(mbs) (65536 + 14 + (mbs)) /* for static allocation; mbs presumed valid */
+
/*! LZ4_decompress_*_continue() :
* These decoding functions allow decompression of consecutive blocks in "streaming" mode.
* A block is an unsplittable entity, it must be presented entirely to a decompression function.
- * Decompression functions only accept one block at a time.
- * Previously decoded blocks *must* remain available at the memory position where they were decoded (up to 64 KB).
+ * Decompression functions only accepts one block at a time.
+ * The last 64KB of previously decoded data *must* remain available and unmodified at the memory position where they were decoded.
+ * If less than 64KB of data has been decoded, all the data must be present.
*
- * Special : if application sets a ring buffer for decompression, it must respect one of the following conditions :
- * - Exactly same size as encoding buffer, with same update rule (block boundaries at same positions)
- * In which case, the decoding & encoding ring buffer can have any size, including very small ones ( < 64 KB).
- * - Larger than encoding buffer, by a minimum of maxBlockSize more bytes.
- * maxBlockSize is implementation dependent. It's the maximum size of any single block.
+ * Special : if decompression side sets a ring buffer, it must respect one of the following conditions :
+ * - Decompression buffer size is _at least_ LZ4_decoderRingBufferSize(maxBlockSize).
+ * maxBlockSize is the maximum size of any single block. It can have any value > 16 bytes.
+ * In which case, encoding and decoding buffers do not need to be synchronized.
+ * Actually, data can be produced by any source compliant with LZ4 format specification, and respecting maxBlockSize.
+ * - Synchronized mode :
+ * Decompression buffer size is _exactly_ the same as compression buffer size,
+ * and follows exactly same update rule (block boundaries at same positions),
+ * and decoding function is provided with exact decompressed size of each block (exception for last block of the stream),
+ * _then_ decoding & encoding ring buffer can have any size, including small ones ( < 64 KB).
+ * - Decompression buffer is larger than encoding buffer, by a minimum of maxBlockSize more bytes.
* In which case, encoding and decoding buffers do not need to be synchronized,
* and encoding ring buffer can have any size, including small ones ( < 64 KB).
- * - _At least_ 64 KB + 8 bytes + maxBlockSize.
- * In which case, encoding and decoding buffers do not need to be synchronized,
- * and encoding ring buffer can have any size, including larger than decoding buffer.
- * Whenever these conditions are not possible, save the last 64KB of decoded data into a safe buffer,
- * and indicate where it is saved using LZ4_setStreamDecode() before decompressing next block.
+ *
+ * Whenever these conditions are not possible,
+ * save the last 64KB of decoded data into a safe buffer where it can't be modified during decompression,
+ * then indicate where this data is saved using LZ4_setStreamDecode(), before decompressing next block.
*/
LZ4LIB_API int LZ4_decompress_safe_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* src, char* dst, int srcSize, int dstCapacity);
LZ4LIB_API int LZ4_decompress_fast_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* src, char* dst, int originalSize);
@@ -329,6 +358,7 @@ LZ4LIB_API int LZ4_decompress_fast_continue (LZ4_streamDecode_t* LZ4_streamDecod
* These decoding functions work the same as
* a combination of LZ4_setStreamDecode() followed by LZ4_decompress_*_continue()
* They are stand-alone, and don't need an LZ4_streamDecode_t structure.
+ * Dictionary is presumed stable : it must remain accessible and unmodified during next decompression.
*/
LZ4LIB_API int LZ4_decompress_safe_usingDict (const char* src, char* dst, int srcSize, int dstCapcity, const char* dictStart, int dictSize);
LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* src, char* dst, int originalSize, const char* dictStart, int dictSize);
@@ -337,6 +367,94 @@ LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* src, char* dst, int or
/*^**********************************************
* !!!!!! STATIC LINKING ONLY !!!!!!
***********************************************/
+
+/*-************************************
+ * Unstable declarations
+ **************************************
+ * Declarations in this section should be considered unstable.
+ * Use at your own peril, etc., etc.
+ * They may be removed in the future.
+ * Their signatures may change.
+ **************************************/
+
+#ifdef LZ4_STATIC_LINKING_ONLY
+
+/*! LZ4_resetStream_fast() :
+ * Use this, like LZ4_resetStream(), to prepare a context for a new chain of
+ * calls to a streaming API (e.g., LZ4_compress_fast_continue()).
+ *
+ * Note:
+ * Using this in advance of a non- streaming-compression function is redundant,
+ * and potentially bad for performance, since they all perform their own custom
+ * reset internally.
+ *
+ * Differences from LZ4_resetStream():
+ * When an LZ4_stream_t is known to be in a internally coherent state,
+ * it can often be prepared for a new compression with almost no work, only
+ * sometimes falling back to the full, expensive reset that is always required
+ * when the stream is in an indeterminate state (i.e., the reset performed by
+ * LZ4_resetStream()).
+ *
+ * LZ4_streams are guaranteed to be in a valid state when:
+ * - returned from LZ4_createStream()
+ * - reset by LZ4_resetStream()
+ * - memset(stream, 0, sizeof(LZ4_stream_t)), though this is discouraged
+ * - the stream was in a valid state and was reset by LZ4_resetStream_fast()
+ * - the stream was in a valid state and was then used in any compression call
+ * that returned success
+ * - the stream was in an indeterminate state and was used in a compression
+ * call that fully reset the state (e.g., LZ4_compress_fast_extState()) and
+ * that returned success
+ *
+ * When a stream isn't known to be in a valid state, it is not safe to pass to
+ * any fastReset or streaming function. It must first be cleansed by the full
+ * LZ4_resetStream().
+ */
+LZ4LIB_API void LZ4_resetStream_fast (LZ4_stream_t* streamPtr);
+
+/*! LZ4_compress_fast_extState_fastReset() :
+ * A variant of LZ4_compress_fast_extState().
+ *
+ * Using this variant avoids an expensive initialization step. It is only safe
+ * to call if the state buffer is known to be correctly initialized already
+ * (see above comment on LZ4_resetStream_fast() for a definition of "correctly
+ * initialized"). From a high level, the difference is that this function
+ * initializes the provided state with a call to something like
+ * LZ4_resetStream_fast() while LZ4_compress_fast_extState() starts with a
+ * call to LZ4_resetStream().
+ */
+LZ4LIB_API int LZ4_compress_fast_extState_fastReset (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
+
+/*! LZ4_attach_dictionary() :
+ * This is an experimental API that allows for the efficient use of a
+ * static dictionary many times.
+ *
+ * Rather than re-loading the dictionary buffer into a working context before
+ * each compression, or copying a pre-loaded dictionary's LZ4_stream_t into a
+ * working LZ4_stream_t, this function introduces a no-copy setup mechanism,
+ * in which the working stream references the dictionary stream in-place.
+ *
+ * Several assumptions are made about the state of the dictionary stream.
+ * Currently, only streams which have been prepared by LZ4_loadDict() should
+ * be expected to work.
+ *
+ * Alternatively, the provided dictionary stream pointer may be NULL, in which
+ * case any existing dictionary stream is unset.
+ *
+ * If a dictionary is provided, it replaces any pre-existing stream history.
+ * The dictionary contents are the only history that can be referenced and
+ * logically immediately precede the data compressed in the first subsequent
+ * compression call.
+ *
+ * The dictionary will only remain attached to the working stream through the
+ * first compression call, at the end of which it is cleared. The dictionary
+ * stream (and source buffer) must remain in-place / accessible / unchanged
+ * through the completion of the first compression call on the stream.
+ */
+LZ4LIB_API void LZ4_attach_dictionary(LZ4_stream_t *working_stream, const LZ4_stream_t *dictionary_stream);
+
+#endif
+
/*-************************************
* Private definitions
**************************************
@@ -351,14 +469,16 @@ LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* src, char* dst, int or
#if defined(__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
#include <stdint.h>
-typedef struct {
+typedef struct LZ4_stream_t_internal LZ4_stream_t_internal;
+struct LZ4_stream_t_internal {
uint32_t hashTable[LZ4_HASH_SIZE_U32];
uint32_t currentOffset;
- uint32_t initCheck;
+ uint16_t initCheck;
+ uint16_t tableType;
const uint8_t* dictionary;
- uint8_t* bufferStart; /* obsolete, used for slideInputBuffer */
+ const LZ4_stream_t_internal* dictCtx;
uint32_t dictSize;
-} LZ4_stream_t_internal;
+};
typedef struct {
const uint8_t* externalDict;
@@ -369,14 +489,16 @@ typedef struct {
#else
-typedef struct {
+typedef struct LZ4_stream_t_internal LZ4_stream_t_internal;
+struct LZ4_stream_t_internal {
unsigned int hashTable[LZ4_HASH_SIZE_U32];
unsigned int currentOffset;
- unsigned int initCheck;
+ unsigned short initCheck;
+ unsigned short tableType;
const unsigned char* dictionary;
- unsigned char* bufferStart; /* obsolete, used for slideInputBuffer */
+ const LZ4_stream_t_internal* dictCtx;
unsigned int dictSize;
-} LZ4_stream_t_internal;
+};
typedef struct {
const unsigned char* externalDict;
@@ -433,11 +555,9 @@ union LZ4_streamDecode_u {
# define LZ4_DEPRECATED(message) /* disable deprecation warnings */
#else
# define LZ4_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
-# if defined(__clang__) /* clang doesn't handle mixed C++11 and CNU attributes */
-# define LZ4_DEPRECATED(message) __attribute__((deprecated(message)))
-# elif defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
+# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define LZ4_DEPRECATED(message) [[deprecated(message)]]
-# elif (LZ4_GCC_VERSION >= 405)
+# elif (LZ4_GCC_VERSION >= 405) || defined(__clang__)
# define LZ4_DEPRECATED(message) __attribute__((deprecated(message)))
# elif (LZ4_GCC_VERSION >= 301)
# define LZ4_DEPRECATED(message) __attribute__((deprecated))
@@ -450,26 +570,34 @@ union LZ4_streamDecode_u {
#endif /* LZ4_DISABLE_DEPRECATE_WARNINGS */
/* Obsolete compression functions */
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_compress_default() instead") int LZ4_compress (const char* source, char* dest, int sourceSize);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_compress_default() instead") int LZ4_compress_limitedOutput (const char* source, char* dest, int sourceSize, int maxOutputSize);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") int LZ4_compress_withState (void* state, const char* source, char* dest, int inputSize);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") int LZ4_compress_limitedOutput_withState (void* state, const char* source, char* dest, int inputSize, int maxOutputSize);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") int LZ4_compress_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") int LZ4_compress_limitedOutput_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize, int maxOutputSize);
+LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress (const char* source, char* dest, int sourceSize);
+LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress_limitedOutput (const char* source, char* dest, int sourceSize, int maxOutputSize);
+LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") LZ4LIB_API int LZ4_compress_withState (void* state, const char* source, char* dest, int inputSize);
+LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") LZ4LIB_API int LZ4_compress_limitedOutput_withState (void* state, const char* source, char* dest, int inputSize, int maxOutputSize);
+LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") LZ4LIB_API int LZ4_compress_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize);
+LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") LZ4LIB_API int LZ4_compress_limitedOutput_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize, int maxOutputSize);
/* Obsolete decompression functions */
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_decompress_fast() instead") int LZ4_uncompress (const char* source, char* dest, int outputSize);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_decompress_safe() instead") int LZ4_uncompress_unknownOutputSize (const char* source, char* dest, int isize, int maxOutputSize);
+LZ4_DEPRECATED("use LZ4_decompress_fast() instead") LZ4LIB_API int LZ4_uncompress (const char* source, char* dest, int outputSize);
+LZ4_DEPRECATED("use LZ4_decompress_safe() instead") LZ4LIB_API int LZ4_uncompress_unknownOutputSize (const char* source, char* dest, int isize, int maxOutputSize);
-/* Obsolete streaming functions; use new streaming interface whenever possible */
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_createStream() instead") void* LZ4_create (char* inputBuffer);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_createStream() instead") int LZ4_sizeofStreamState(void);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_resetStream() instead") int LZ4_resetStreamState(void* state, char* inputBuffer);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_saveDict() instead") char* LZ4_slideInputBuffer (void* state);
+/* Obsolete streaming functions; degraded functionality; do not use!
+ *
+ * In order to perform streaming compression, these functions depended on data
+ * that is no longer tracked in the state. They have been preserved as well as
+ * possible: using them will still produce a correct output. However, they don't
+ * actually retain any history between compression calls. The compression ratio
+ * achieved will therefore be no better than compressing each chunk
+ * independently.
+ */
+LZ4_DEPRECATED("Use LZ4_createStream() instead") LZ4LIB_API void* LZ4_create (char* inputBuffer);
+LZ4_DEPRECATED("Use LZ4_createStream() instead") LZ4LIB_API int LZ4_sizeofStreamState(void);
+LZ4_DEPRECATED("Use LZ4_resetStream() instead") LZ4LIB_API int LZ4_resetStreamState(void* state, char* inputBuffer);
+LZ4_DEPRECATED("Use LZ4_saveDict() instead") LZ4LIB_API char* LZ4_slideInputBuffer (void* state);
/* Obsolete streaming decoding functions */
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_decompress_safe_usingDict() instead") int LZ4_decompress_safe_withPrefix64k (const char* src, char* dst, int compressedSize, int maxDstSize);
-LZ4LIB_API LZ4_DEPRECATED("use LZ4_decompress_fast_usingDict() instead") int LZ4_decompress_fast_withPrefix64k (const char* src, char* dst, int originalSize);
+LZ4_DEPRECATED("use LZ4_decompress_safe_usingDict() instead") LZ4LIB_API int LZ4_decompress_safe_withPrefix64k (const char* src, char* dst, int compressedSize, int maxDstSize);
+LZ4_DEPRECATED("use LZ4_decompress_fast_usingDict() instead") LZ4LIB_API int LZ4_decompress_fast_withPrefix64k (const char* src, char* dst, int originalSize);
#endif /* LZ4_H_2983827168210 */