summaryrefslogtreecommitdiffstats
path: root/lib/xxhash.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/xxhash.c')
-rw-r--r--lib/xxhash.c928
1 files changed, 928 insertions, 0 deletions
diff --git a/lib/xxhash.c b/lib/xxhash.c
new file mode 100644
index 0000000..24a64b5
--- /dev/null
+++ b/lib/xxhash.c
@@ -0,0 +1,928 @@
+/*
+xxHash - Fast Hash algorithm
+Copyright (C) 2012-2014, Yann Collet.
+BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+* Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+* Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+You can contact the author at :
+- xxHash source repository : http://code.google.com/p/xxhash/
+- public discussion board : https://groups.google.com/forum/#!forum/lz4c
+*/
+
+
+//**************************************
+// Tuning parameters
+//**************************************
+// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
+// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
+// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
+// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
+#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+# define XXH_USE_UNALIGNED_ACCESS 1
+#endif
+
+// XXH_ACCEPT_NULL_INPUT_POINTER :
+// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
+// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
+// This option has a very small performance cost (only measurable on small inputs).
+// By default, this option is disabled. To enable it, uncomment below define :
+// #define XXH_ACCEPT_NULL_INPUT_POINTER 1
+
+// XXH_FORCE_NATIVE_FORMAT :
+// By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
+// Results are therefore identical for little-endian and big-endian CPU.
+// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
+// Should endian-independance be of no importance for your application, you may set the #define below to 1.
+// It will improve speed for Big-endian CPU.
+// This option has no impact on Little_Endian CPU.
+#define XXH_FORCE_NATIVE_FORMAT 0
+
+//**************************************
+// Compiler Specific Options
+//**************************************
+// Disable some Visual warning messages
+#ifdef _MSC_VER // Visual Studio
+# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
+#endif
+
+#ifdef _MSC_VER // Visual Studio
+# define FORCE_INLINE static __forceinline
+#else
+# ifdef __GNUC__
+# define FORCE_INLINE static inline __attribute__((always_inline))
+# else
+# define FORCE_INLINE static inline
+# endif
+#endif
+
+//**************************************
+// Includes & Memory related functions
+//**************************************
+#include "xxhash.h"
+// Modify the local functions below should you wish to use some other memory routines
+// for malloc(), free()
+#include <stdlib.h>
+static void* XXH_malloc(size_t s) { return malloc(s); }
+static void XXH_free (void* p) { free(p); }
+// for memcpy()
+#include <string.h>
+static void* XXH_memcpy(void* dest, const void* src, size_t size)
+{
+ return memcpy(dest,src,size);
+}
+
+
+//**************************************
+// Basic Types
+//**************************************
+#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
+# include <stdint.h>
+typedef uint8_t BYTE;
+typedef uint16_t U16;
+typedef uint32_t U32;
+typedef int32_t S32;
+typedef uint64_t U64;
+#else
+typedef unsigned char BYTE;
+typedef unsigned short U16;
+typedef unsigned int U32;
+typedef signed int S32;
+typedef unsigned long long U64;
+#endif
+
+#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
+# define _PACKED __attribute__ ((packed))
+#else
+# define _PACKED
+#endif
+
+#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
+# ifdef __IBMC__
+# pragma pack(1)
+# else
+# pragma pack(push, 1)
+# endif
+#endif
+
+typedef struct _U32_S
+{
+ U32 v;
+} _PACKED U32_S;
+typedef struct _U64_S
+{
+ U64 v;
+} _PACKED U64_S;
+
+#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
+# pragma pack(pop)
+#endif
+
+#define A32(x) (((U32_S *)(x))->v)
+#define A64(x) (((U64_S *)(x))->v)
+
+
+//***************************************
+// Compiler-specific Functions and Macros
+//***************************************
+#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+// Note : although _rotl exists for minGW (GCC under windows), performance seems poor
+#if defined(_MSC_VER)
+# define XXH_rotl32(x,r) _rotl(x,r)
+# define XXH_rotl64(x,r) _rotl64(x,r)
+#else
+# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
+# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
+#endif
+
+#if defined(_MSC_VER) // Visual Studio
+# define XXH_swap32 _byteswap_ulong
+# define XXH_swap64 _byteswap_uint64
+#elif GCC_VERSION >= 403
+# define XXH_swap32 __builtin_bswap32
+# define XXH_swap64 __builtin_bswap64
+#else
+static inline U32 XXH_swap32 (U32 x)
+{
+ return ((x << 24) & 0xff000000 ) |
+ ((x << 8) & 0x00ff0000 ) |
+ ((x >> 8) & 0x0000ff00 ) |
+ ((x >> 24) & 0x000000ff );
+}
+static inline U64 XXH_swap64 (U64 x)
+{
+ return ((x << 56) & 0xff00000000000000ULL) |
+ ((x << 40) & 0x00ff000000000000ULL) |
+ ((x << 24) & 0x0000ff0000000000ULL) |
+ ((x << 8) & 0x000000ff00000000ULL) |
+ ((x >> 8) & 0x00000000ff000000ULL) |
+ ((x >> 24) & 0x0000000000ff0000ULL) |
+ ((x >> 40) & 0x000000000000ff00ULL) |
+ ((x >> 56) & 0x00000000000000ffULL);
+}
+#endif
+
+
+//**************************************
+// Constants
+//**************************************
+#define PRIME32_1 2654435761U
+#define PRIME32_2 2246822519U
+#define PRIME32_3 3266489917U
+#define PRIME32_4 668265263U
+#define PRIME32_5 374761393U
+
+#define PRIME64_1 11400714785074694791ULL
+#define PRIME64_2 14029467366897019727ULL
+#define PRIME64_3 1609587929392839161ULL
+#define PRIME64_4 9650029242287828579ULL
+#define PRIME64_5 2870177450012600261ULL
+
+//**************************************
+// Architecture Macros
+//**************************************
+typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
+#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
+static const int one = 1;
+# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
+#endif
+
+
+//**************************************
+// Macros
+//**************************************
+#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
+
+
+//****************************
+// Memory reads
+//****************************
+typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
+
+FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+ if (align==XXH_unaligned)
+ return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
+ else
+ return endian==XXH_littleEndian ? *(U32*)ptr : XXH_swap32(*(U32*)ptr);
+}
+
+FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
+{
+ return XXH_readLE32_align(ptr, endian, XXH_unaligned);
+}
+
+FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
+{
+ if (align==XXH_unaligned)
+ return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
+ else
+ return endian==XXH_littleEndian ? *(U64*)ptr : XXH_swap64(*(U64*)ptr);
+}
+
+FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
+{
+ return XXH_readLE64_align(ptr, endian, XXH_unaligned);
+}
+
+
+//****************************
+// Simple Hash Functions
+//****************************
+FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
+{
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* bEnd = p + len;
+ U32 h32;
+#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (p==NULL)
+ {
+ len=0;
+ bEnd=p=(const BYTE*)(size_t)16;
+ }
+#endif
+
+ if (len>=16)
+ {
+ const BYTE* const limit = bEnd - 16;
+ U32 v1 = seed + PRIME32_1 + PRIME32_2;
+ U32 v2 = seed + PRIME32_2;
+ U32 v3 = seed + 0;
+ U32 v4 = seed - PRIME32_1;
+
+ do
+ {
+ v1 += XXH_get32bits(p) * PRIME32_2;
+ v1 = XXH_rotl32(v1, 13);
+ v1 *= PRIME32_1;
+ p+=4;
+ v2 += XXH_get32bits(p) * PRIME32_2;
+ v2 = XXH_rotl32(v2, 13);
+ v2 *= PRIME32_1;
+ p+=4;
+ v3 += XXH_get32bits(p) * PRIME32_2;
+ v3 = XXH_rotl32(v3, 13);
+ v3 *= PRIME32_1;
+ p+=4;
+ v4 += XXH_get32bits(p) * PRIME32_2;
+ v4 = XXH_rotl32(v4, 13);
+ v4 *= PRIME32_1;
+ p+=4;
+ }
+ while (p<=limit);
+
+ h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+ }
+ else
+ {
+ h32 = seed + PRIME32_5;
+ }
+
+ h32 += (U32) len;
+
+ while (p+4<=bEnd)
+ {
+ h32 += XXH_get32bits(p) * PRIME32_3;
+ h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
+ p+=4;
+ }
+
+ while (p<bEnd)
+ {
+ h32 += (*p) * PRIME32_5;
+ h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
+ p++;
+ }
+
+ h32 ^= h32 >> 15;
+ h32 *= PRIME32_2;
+ h32 ^= h32 >> 13;
+ h32 *= PRIME32_3;
+ h32 ^= h32 >> 16;
+
+ return h32;
+}
+
+
+unsigned int XXH32 (const void* input, size_t len, unsigned seed)
+{
+#if 0
+ // Simple version, good for code maintenance, but unfortunately slow for small inputs
+ XXH32_state_t state;
+ XXH32_reset(&state, seed);
+ XXH32_update(&state, input, len);
+ return XXH32_digest(&state);
+#else
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+# if !defined(XXH_USE_UNALIGNED_ACCESS)
+ if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
+ {
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+ else
+ return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+ }
+# endif
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+ else
+ return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
+{
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* bEnd = p + len;
+ U64 h64;
+#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (p==NULL)
+ {
+ len=0;
+ bEnd=p=(const BYTE*)(size_t)32;
+ }
+#endif
+
+ if (len>=32)
+ {
+ const BYTE* const limit = bEnd - 32;
+ U64 v1 = seed + PRIME64_1 + PRIME64_2;
+ U64 v2 = seed + PRIME64_2;
+ U64 v3 = seed + 0;
+ U64 v4 = seed - PRIME64_1;
+
+ do
+ {
+ v1 += XXH_get64bits(p) * PRIME64_2;
+ p+=8;
+ v1 = XXH_rotl64(v1, 31);
+ v1 *= PRIME64_1;
+ v2 += XXH_get64bits(p) * PRIME64_2;
+ p+=8;
+ v2 = XXH_rotl64(v2, 31);
+ v2 *= PRIME64_1;
+ v3 += XXH_get64bits(p) * PRIME64_2;
+ p+=8;
+ v3 = XXH_rotl64(v3, 31);
+ v3 *= PRIME64_1;
+ v4 += XXH_get64bits(p) * PRIME64_2;
+ p+=8;
+ v4 = XXH_rotl64(v4, 31);
+ v4 *= PRIME64_1;
+ }
+ while (p<=limit);
+
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+
+ v1 *= PRIME64_2;
+ v1 = XXH_rotl64(v1, 31);
+ v1 *= PRIME64_1;
+ h64 ^= v1;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+
+ v2 *= PRIME64_2;
+ v2 = XXH_rotl64(v2, 31);
+ v2 *= PRIME64_1;
+ h64 ^= v2;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+
+ v3 *= PRIME64_2;
+ v3 = XXH_rotl64(v3, 31);
+ v3 *= PRIME64_1;
+ h64 ^= v3;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+
+ v4 *= PRIME64_2;
+ v4 = XXH_rotl64(v4, 31);
+ v4 *= PRIME64_1;
+ h64 ^= v4;
+ h64 = h64 * PRIME64_1 + PRIME64_4;
+ }
+ else
+ {
+ h64 = seed + PRIME64_5;
+ }
+
+ h64 += (U64) len;
+
+ while (p+8<=bEnd)
+ {
+ U64 k1 = XXH_get64bits(p);
+ k1 *= PRIME64_2;
+ k1 = XXH_rotl64(k1,31);
+ k1 *= PRIME64_1;
+ h64 ^= k1;
+ h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+ p+=8;
+ }
+
+ if (p+4<=bEnd)
+ {
+ h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
+ h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+ p+=4;
+ }
+
+ while (p<bEnd)
+ {
+ h64 ^= (*p) * PRIME64_5;
+ h64 = XXH_rotl64(h64, 11) * PRIME64_1;
+ p++;
+ }
+
+ h64 ^= h64 >> 33;
+ h64 *= PRIME64_2;
+ h64 ^= h64 >> 29;
+ h64 *= PRIME64_3;
+ h64 ^= h64 >> 32;
+
+ return h64;
+}
+
+
+unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
+{
+#if 0
+ // Simple version, good for code maintenance, but unfortunately slow for small inputs
+ XXH64_state_t state;
+ XXH64_reset(&state, seed);
+ XXH64_update(&state, input, len);
+ return XXH64_digest(&state);
+#else
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+# if !defined(XXH_USE_UNALIGNED_ACCESS)
+ if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
+ {
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
+ else
+ return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
+ }
+# endif
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
+ else
+ return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
+#endif
+}
+
+/****************************************************
+ * Advanced Hash Functions
+****************************************************/
+
+/*** Allocation ***/
+typedef struct
+{
+ U64 total_len;
+ U32 seed;
+ U32 v1;
+ U32 v2;
+ U32 v3;
+ U32 v4;
+ U32 mem32[4]; /* defined as U32 for alignment */
+ U32 memsize;
+} XXH_istate32_t;
+
+typedef struct
+{
+ U64 total_len;
+ U64 seed;
+ U64 v1;
+ U64 v2;
+ U64 v3;
+ U64 v4;
+ U64 mem64[4]; /* defined as U64 for alignment */
+ U32 memsize;
+} XXH_istate64_t;
+
+
+XXH32_state_t* XXH32_createState(void)
+{
+ XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); // A compilation error here means XXH32_state_t is not large enough
+ return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
+}
+XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
+{
+ XXH_free(statePtr);
+ return XXH_OK;
+};
+
+XXH64_state_t* XXH64_createState(void)
+{
+ XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); // A compilation error here means XXH64_state_t is not large enough
+ return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
+}
+XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+{
+ XXH_free(statePtr);
+ return XXH_OK;
+};
+
+
+/*** Hash feed ***/
+
+XXH_errorcode XXH32_reset(XXH32_state_t* state_in, U32 seed)
+{
+ XXH_istate32_t* state = (XXH_istate32_t*) state_in;
+ state->seed = seed;
+ state->v1 = seed + PRIME32_1 + PRIME32_2;
+ state->v2 = seed + PRIME32_2;
+ state->v3 = seed + 0;
+ state->v4 = seed - PRIME32_1;
+ state->total_len = 0;
+ state->memsize = 0;
+ return XXH_OK;
+}
+
+XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
+{
+ XXH_istate64_t* state = (XXH_istate64_t*) state_in;
+ state->seed = seed;
+ state->v1 = seed + PRIME64_1 + PRIME64_2;
+ state->v2 = seed + PRIME64_2;
+ state->v3 = seed + 0;
+ state->v4 = seed - PRIME64_1;
+ state->total_len = 0;
+ state->memsize = 0;
+ return XXH_OK;
+}
+
+
+FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
+{
+ XXH_istate32_t* state = (XXH_istate32_t *) state_in;
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (input==NULL) return XXH_ERROR;
+#endif
+
+ state->total_len += len;
+
+ if (state->memsize + len < 16) // fill in tmp buffer
+ {
+ XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
+ state->memsize += (U32)len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) // some data left from previous update
+ {
+ XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
+ {
+ const U32* p32 = state->mem32;
+ state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
+ state->v1 = XXH_rotl32(state->v1, 13);
+ state->v1 *= PRIME32_1;
+ p32++;
+ state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
+ state->v2 = XXH_rotl32(state->v2, 13);
+ state->v2 *= PRIME32_1;
+ p32++;
+ state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
+ state->v3 = XXH_rotl32(state->v3, 13);
+ state->v3 *= PRIME32_1;
+ p32++;
+ state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
+ state->v4 = XXH_rotl32(state->v4, 13);
+ state->v4 *= PRIME32_1;
+ p32++;
+ }
+ p += 16-state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p <= bEnd-16)
+ {
+ const BYTE* const limit = bEnd - 16;
+ U32 v1 = state->v1;
+ U32 v2 = state->v2;
+ U32 v3 = state->v3;
+ U32 v4 = state->v4;
+
+ do
+ {
+ v1 += XXH_readLE32(p, endian) * PRIME32_2;
+ v1 = XXH_rotl32(v1, 13);
+ v1 *= PRIME32_1;
+ p+=4;
+ v2 += XXH_readLE32(p, endian) * PRIME32_2;
+ v2 = XXH_rotl32(v2, 13);
+ v2 *= PRIME32_1;
+ p+=4;
+ v3 += XXH_readLE32(p, endian) * PRIME32_2;
+ v3 = XXH_rotl32(v3, 13);
+ v3 *= PRIME32_1;
+ p+=4;
+ v4 += XXH_readLE32(p, endian) * PRIME32_2;
+ v4 = XXH_rotl32(v4, 13);
+ v4 *= PRIME32_1;
+ p+=4;
+ }
+ while (p<=limit);
+
+ state->v1 = v1;
+ state->v2 = v2;
+ state->v3 = v3;
+ state->v4 = v4;
+ }
+
+ if (p < bEnd)
+ {
+ XXH_memcpy(state->mem32, p, bEnd-p);
+ state->memsize = (int)(bEnd-p);
+ }
+
+ return XXH_OK;
+}
+
+XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
+ else
+ return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianess endian)
+{
+ XXH_istate32_t* state = (XXH_istate32_t*) state_in;
+ const BYTE * p = (const BYTE*)state->mem32;
+ BYTE* bEnd = (BYTE*)(state->mem32) + state->memsize;
+ U32 h32;
+
+ if (state->total_len >= 16)
+ {
+ h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
+ }
+ else
+ {
+ h32 = state->seed + PRIME32_5;
+ }
+
+ h32 += (U32) state->total_len;
+
+ while (p+4<=bEnd)
+ {
+ h32 += XXH_readLE32(p, endian) * PRIME32_3;
+ h32 = XXH_rotl32(h32, 17) * PRIME32_4;
+ p+=4;
+ }
+
+ while (p<bEnd)
+ {
+ h32 += (*p) * PRIME32_5;
+ h32 = XXH_rotl32(h32, 11) * PRIME32_1;
+ p++;
+ }
+
+ h32 ^= h32 >> 15;
+ h32 *= PRIME32_2;
+ h32 ^= h32 >> 13;
+ h32 *= PRIME32_3;
+ h32 ^= h32 >> 16;
+
+ return h32;
+}
+
+
+U32 XXH32_digest (const XXH32_state_t* state_in)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH32_digest_endian(state_in, XXH_littleEndian);
+ else
+ return XXH32_digest_endian(state_in, XXH_bigEndian);
+}
+
+
+FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
+{
+ XXH_istate64_t * state = (XXH_istate64_t *) state_in;
+ const BYTE* p = (const BYTE*)input;
+ const BYTE* const bEnd = p + len;
+
+#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
+ if (input==NULL) return XXH_ERROR;
+#endif
+
+ state->total_len += len;
+
+ if (state->memsize + len < 32) // fill in tmp buffer
+ {
+ XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
+ state->memsize += (U32)len;
+ return XXH_OK;
+ }
+
+ if (state->memsize) // some data left from previous update
+ {
+ XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
+ {
+ const U64* p64 = state->mem64;
+ state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
+ state->v1 = XXH_rotl64(state->v1, 31);
+ state->v1 *= PRIME64_1;
+ p64++;
+ state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
+ state->v2 = XXH_rotl64(state->v2, 31);
+ state->v2 *= PRIME64_1;
+ p64++;
+ state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
+ state->v3 = XXH_rotl64(state->v3, 31);
+ state->v3 *= PRIME64_1;
+ p64++;
+ state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
+ state->v4 = XXH_rotl64(state->v4, 31);
+ state->v4 *= PRIME64_1;
+ p64++;
+ }
+ p += 32-state->memsize;
+ state->memsize = 0;
+ }
+
+ if (p+32 <= bEnd)
+ {
+ const BYTE* const limit = bEnd - 32;
+ U64 v1 = state->v1;
+ U64 v2 = state->v2;
+ U64 v3 = state->v3;
+ U64 v4 = state->v4;
+
+ do
+ {
+ v1 += XXH_readLE64(p, endian) * PRIME64_2;
+ v1 = XXH_rotl64(v1, 31);
+ v1 *= PRIME64_1;
+ p+=8;
+ v2 += XXH_readLE64(p, endian) * PRIME64_2;
+ v2 = XXH_rotl64(v2, 31);
+ v2 *= PRIME64_1;
+ p+=8;
+ v3 += XXH_readLE64(p, endian) * PRIME64_2;
+ v3 = XXH_rotl64(v3, 31);
+ v3 *= PRIME64_1;
+ p+=8;
+ v4 += XXH_readLE64(p, endian) * PRIME64_2;
+ v4 = XXH_rotl64(v4, 31);
+ v4 *= PRIME64_1;
+ p+=8;
+ }
+ while (p<=limit);
+
+ state->v1 = v1;
+ state->v2 = v2;
+ state->v3 = v3;
+ state->v4 = v4;
+ }
+
+ if (p < bEnd)
+ {
+ XXH_memcpy(state->mem64, p, bEnd-p);
+ state->memsize = (int)(bEnd-p);
+ }
+
+ return XXH_OK;
+}
+
+XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
+ else
+ return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
+}
+
+
+
+FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianess endian)
+{
+ XXH_istate64_t * state = (XXH_istate64_t *) state_in;
+ const BYTE * p = (const BYTE*)state->mem64;
+ BYTE* bEnd = (BYTE*)state->mem64 + state->memsize;
+ U64 h64;
+
+ if (state->total_len >= 32)
+ {
+ U64 v1 = state->v1;
+ U64 v2 = state->v2;
+ U64 v3 = state->v3;
+ U64 v4 = state->v4;
+
+ h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+
+ v1 *= PRIME64_2;
+ v1 = XXH_rotl64(v1, 31);
+ v1 *= PRIME64_1;
+ h64 ^= v1;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+
+ v2 *= PRIME64_2;
+ v2 = XXH_rotl64(v2, 31);
+ v2 *= PRIME64_1;
+ h64 ^= v2;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+
+ v3 *= PRIME64_2;
+ v3 = XXH_rotl64(v3, 31);
+ v3 *= PRIME64_1;
+ h64 ^= v3;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+
+ v4 *= PRIME64_2;
+ v4 = XXH_rotl64(v4, 31);
+ v4 *= PRIME64_1;
+ h64 ^= v4;
+ h64 = h64*PRIME64_1 + PRIME64_4;
+ }
+ else
+ {
+ h64 = state->seed + PRIME64_5;
+ }
+
+ h64 += (U64) state->total_len;
+
+ while (p+8<=bEnd)
+ {
+ U64 k1 = XXH_readLE64(p, endian);
+ k1 *= PRIME64_2;
+ k1 = XXH_rotl64(k1,31);
+ k1 *= PRIME64_1;
+ h64 ^= k1;
+ h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
+ p+=8;
+ }
+
+ if (p+4<=bEnd)
+ {
+ h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
+ h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
+ p+=4;
+ }
+
+ while (p<bEnd)
+ {
+ h64 ^= (*p) * PRIME64_5;
+ h64 = XXH_rotl64(h64, 11) * PRIME64_1;
+ p++;
+ }
+
+ h64 ^= h64 >> 33;
+ h64 *= PRIME64_2;
+ h64 ^= h64 >> 29;
+ h64 *= PRIME64_3;
+ h64 ^= h64 >> 32;
+
+ return h64;
+}
+
+
+unsigned long long XXH64_digest (const XXH64_state_t* state_in)
+{
+ XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
+
+ if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
+ return XXH64_digest_endian(state_in, XXH_littleEndian);
+ else
+ return XXH64_digest_endian(state_in, XXH_bigEndian);
+}
+
+