/* LZ4 HC - High Compression Mode of LZ4 Copyright (C) 2011-2017, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - LZ4 source repository : https://github.com/lz4/lz4 - LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c */ /* note : lz4hc is not an independent module, it requires lz4.h/lz4.c for proper compilation */ /* ************************************* * Tuning Parameter ***************************************/ /*! HEAPMODE : * Select how default compression function will allocate workplace memory, * in stack (0:fastest), or in heap (1:requires malloc()). * Since workplace is rather large, heap mode is recommended. */ #ifndef LZ4HC_HEAPMODE # define LZ4HC_HEAPMODE 1 #endif /*=== Dependency ===*/ #include "lz4hc.h" /*=== Common LZ4 definitions ===*/ #if defined(__GNUC__) # pragma GCC diagnostic ignored "-Wunused-function" #endif #if defined (__clang__) # pragma clang diagnostic ignored "-Wunused-function" #endif #define LZ4_COMMONDEFS_ONLY #include "lz4.c" /* LZ4_count, constants, mem */ /*=== Constants ===*/ #define OPTIMAL_ML (int)((ML_MASK-1)+MINMATCH) /*=== Macros ===*/ #define MIN(a,b) ( (a) < (b) ? (a) : (b) ) #define MAX(a,b) ( (a) > (b) ? (a) : (b) ) #define HASH_FUNCTION(i) (((i) * 2654435761U) >> ((MINMATCH*8)-LZ4HC_HASH_LOG)) #define DELTANEXTMAXD(p) chainTable[(p) & LZ4HC_MAXD_MASK] /* flexible, LZ4HC_MAXD dependent */ #define DELTANEXTU16(table, pos) table[(U16)(pos)] /* faster */ static U32 LZ4HC_hashPtr(const void* ptr) { return HASH_FUNCTION(LZ4_read32(ptr)); } /************************************** * HC Compression **************************************/ static void LZ4HC_init (LZ4HC_CCtx_internal* hc4, const BYTE* start) { MEM_INIT((void*)hc4->hashTable, 0, sizeof(hc4->hashTable)); MEM_INIT(hc4->chainTable, 0xFF, sizeof(hc4->chainTable)); hc4->nextToUpdate = 64 KB; hc4->base = start - 64 KB; hc4->end = start; hc4->dictBase = start - 64 KB; hc4->dictLimit = 64 KB; hc4->lowLimit = 64 KB; } /* Update chains up to ip (excluded) */ FORCE_INLINE void LZ4HC_Insert (LZ4HC_CCtx_internal* hc4, const BYTE* ip) { U16* const chainTable = hc4->chainTable; U32* const hashTable = hc4->hashTable; const BYTE* const base = hc4->base; U32 const target = (U32)(ip - base); U32 idx = hc4->nextToUpdate; while (idx < target) { U32 const h = LZ4HC_hashPtr(base+idx); size_t delta = idx - hashTable[h]; if (delta>MAX_DISTANCE) delta = MAX_DISTANCE; DELTANEXTU16(chainTable, idx) = (U16)delta; hashTable[h] = idx; idx++; } hc4->nextToUpdate = target; } FORCE_INLINE int LZ4HC_InsertAndFindBestMatch (LZ4HC_CCtx_internal* const hc4, /* Index table will be updated */ const BYTE* const ip, const BYTE* const iLimit, const BYTE** matchpos, const int maxNbAttempts) { U16* const chainTable = hc4->chainTable; U32* const HashTable = hc4->hashTable; const BYTE* const base = hc4->base; const BYTE* const dictBase = hc4->dictBase; const U32 dictLimit = hc4->dictLimit; const U32 lowLimit = (hc4->lowLimit + 64 KB > (U32)(ip-base)) ? hc4->lowLimit : (U32)(ip - base) - (64 KB - 1); U32 matchIndex; int nbAttempts = maxNbAttempts; size_t ml = 0; /* HC4 match finder */ LZ4HC_Insert(hc4, ip); matchIndex = HashTable[LZ4HC_hashPtr(ip)]; while ((matchIndex>=lowLimit) && (nbAttempts)) { nbAttempts--; if (matchIndex >= dictLimit) { const BYTE* const match = base + matchIndex; if ( (*(match+ml) == *(ip+ml)) /* can be longer */ && (LZ4_read32(match) == LZ4_read32(ip)) ) { size_t const mlt = LZ4_count(ip+MINMATCH, match+MINMATCH, iLimit) + MINMATCH; if (mlt > ml) { ml = mlt; *matchpos = match; } } } else { const BYTE* const match = dictBase + matchIndex; if (LZ4_read32(match) == LZ4_read32(ip)) { size_t mlt; const BYTE* vLimit = ip + (dictLimit - matchIndex); if (vLimit > iLimit) vLimit = iLimit; mlt = LZ4_count(ip+MINMATCH, match+MINMATCH, vLimit) + MINMATCH; if ((ip+mlt == vLimit) && (vLimit < iLimit)) mlt += LZ4_count(ip+mlt, base+dictLimit, iLimit); if (mlt > ml) { ml = mlt; *matchpos = base + matchIndex; } /* virtual matchpos */ } } matchIndex -= DELTANEXTU16(chainTable, matchIndex); } return (int)ml; } FORCE_INLINE int LZ4HC_InsertAndGetWiderMatch ( LZ4HC_CCtx_internal* hc4, const BYTE* const ip, const BYTE* const iLowLimit, const BYTE* const iHighLimit, int longest, const BYTE** matchpos, const BYTE** startpos, const int maxNbAttempts) { U16* const chainTable = hc4->chainTable; U32* const HashTable = hc4->hashTable; const BYTE* const base = hc4->base; const U32 dictLimit = hc4->dictLimit; const BYTE* const lowPrefixPtr = base + dictLimit; const U32 lowLimit = (hc4->lowLimit + 64 KB > (U32)(ip-base)) ? hc4->lowLimit : (U32)(ip - base) - (64 KB - 1); const BYTE* const dictBase = hc4->dictBase; int const delta = (int)(ip-iLowLimit); int nbAttempts = maxNbAttempts; U32 matchIndex; /* First Match */ LZ4HC_Insert(hc4, ip); matchIndex = HashTable[LZ4HC_hashPtr(ip)]; while ((matchIndex>=lowLimit) && (nbAttempts)) { nbAttempts--; if (matchIndex >= dictLimit) { const BYTE* const matchPtr = base + matchIndex; if (*(iLowLimit + longest) == *(matchPtr - delta + longest)) { if (LZ4_read32(matchPtr) == LZ4_read32(ip)) { int mlt = MINMATCH + LZ4_count(ip+MINMATCH, matchPtr+MINMATCH, iHighLimit); int back = 0; while ( (ip+back > iLowLimit) && (matchPtr+back > lowPrefixPtr) && (ip[back-1] == matchPtr[back-1])) { back--; } mlt -= back; if (mlt > longest) { longest = mlt; *matchpos = matchPtr+back; *startpos = ip+back; } } } } else { const BYTE* const matchPtr = dictBase + matchIndex; if (LZ4_read32(matchPtr) == LZ4_read32(ip)) { int mlt; int back=0; const BYTE* vLimit = ip + (dictLimit - matchIndex); if (vLimit > iHighLimit) vLimit = iHighLimit; mlt = LZ4_count(ip+MINMATCH, matchPtr+MINMATCH, vLimit) + MINMATCH; if ((ip+mlt == vLimit) && (vLimit < iHighLimit)) mlt += LZ4_count(ip+mlt, base+dictLimit, iHighLimit); while ((ip+back > iLowLimit) && (matchIndex+back > lowLimit) && (ip[back-1] == matchPtr[back-1])) back--; mlt -= back; if (mlt > longest) { longest = mlt; *matchpos = base + matchIndex + back; *startpos = ip+back; } } } matchIndex -= DELTANEXTU16(chainTable, matchIndex); } return longest; } typedef enum { noLimit = 0, limitedOutput = 1, limitedDestSize = 2, } limitedOutput_directive; #ifndef LZ4HC_DEBUG # define LZ4HC_DEBUG 0 #endif /* LZ4HC_encodeSequence() : * @return : 0 if ok, * 1 if buffer issue detected */ FORCE_INLINE int LZ4HC_encodeSequence ( const BYTE** ip, BYTE** op, const BYTE** anchor, int matchLength, const BYTE* const match, limitedOutput_directive limit, BYTE* oend) { size_t length; BYTE* const token = (*op)++; #if LZ4HC_DEBUG printf("literal : %u -- match : %u -- offset : %u\n", (U32)(*ip - *anchor), (U32)matchLength, (U32)(*ip-match)); #endif /* Encode Literal length */ length = (size_t)(*ip - *anchor); if ((limit) && ((*op + (length >> 8) + length + (2 + 1 + LASTLITERALS)) > oend)) return 1; /* Check output limit */ if (length >= RUN_MASK) { size_t len = length - RUN_MASK; *token = (RUN_MASK << ML_BITS); for(; len >= 255 ; len -= 255) *(*op)++ = 255; *(*op)++ = (BYTE)len; } else { *token = (BYTE)(length << ML_BITS); } /* Copy Literals */ LZ4_wildCopy(*op, *anchor, (*op) + length); *op += length; /* Encode Offset */ LZ4_writeLE16(*op, (U16)(*ip-match)); *op += 2; /* Encode MatchLength */ length = (size_t)(matchLength - MINMATCH); if ((limit) && (*op + (length >> 8) + (1 + LASTLITERALS) > oend)) return 1; /* Check output limit */ if (length >= ML_MASK) { *token += ML_MASK; length -= ML_MASK; for(; length >= 510 ; length -= 510) { *(*op)++ = 255; *(*op)++ = 255; } if (length >= 255) { length -= 255; *(*op)++ = 255; } *(*op)++ = (BYTE)length; } else { *token += (BYTE)(length); } /* Prepare next loop */ *ip += matchLength; *anchor = *ip; return 0; } /* btopt */ #include "lz4opt.h" static int LZ4HC_compress_hashChain ( LZ4HC_CCtx_internal* const ctx, const char* const source, char* const dest, int* srcSizePtr, int const maxOutputSize, unsigned maxNbAttempts, limitedOutput_directive limit ) { const int inputSize = *srcSizePtr; const BYTE* ip = (const BYTE*) source; const BYTE* anchor = ip; const BYTE* const iend = ip + inputSize; const BYTE* const mflimit = iend - MFLIMIT; const BYTE* const matchlimit = (iend - LASTLITERALS); BYTE* optr = (BYTE*) dest; BYTE* op = (BYTE*) dest; BYTE* oend = op + maxOutputSize; int ml, ml2, ml3, ml0; const BYTE* ref = NULL; const BYTE* start2 = NULL; const BYTE* ref2 = NULL; const BYTE* start3 = NULL; const BYTE* ref3 = NULL; const BYTE* start0; const BYTE* ref0; /* init */ *srcSizePtr = 0; if (limit == limitedDestSize && maxOutputSize < 1) return 0; /* Impossible to store anything */ if ((U32)inputSize > (U32)LZ4_MAX_INPUT_SIZE) return 0; /* Unsupported input size, too large (or negative) */ ctx->end += inputSize; if (limit == limitedDestSize) oend -= LASTLITERALS; /* Hack for support limitations LZ4 decompressor */ if (inputSize < LZ4_minLength) goto _last_literals; /* Input too small, no compression (all literals) */ ip++; /* Main Loop */ while (ip < mflimit) { ml = LZ4HC_InsertAndFindBestMatch (ctx, ip, matchlimit, (&ref), maxNbAttempts); if (!ml) { ip++; continue; } /* saved, in case we would skip too much */ start0 = ip; ref0 = ref; ml0 = ml; _Search2: if (ip+ml < mflimit) ml2 = LZ4HC_InsertAndGetWiderMatch(ctx, ip + ml - 2, ip + 0, matchlimit, ml, &ref2, &start2, maxNbAttempts); else ml2 = ml; if (ml2 == ml) { /* No better match */ optr = op; if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) goto _dest_overflow; continue; } if (start0 < ip) { if (start2 < ip + ml0) { /* empirical */ ip = start0; ref = ref0; ml = ml0; } } /* Here, start0==ip */ if ((start2 - ip) < 3) { /* First Match too small : removed */ ml = ml2; ip = start2; ref =ref2; goto _Search2; } _Search3: /* At this stage, we have : * ml2 > ml1, and * ip1+3 <= ip2 (usually < ip1+ml1) */ if ((start2 - ip) < OPTIMAL_ML) { int correction; int new_ml = ml; if (new_ml > OPTIMAL_ML) new_ml = OPTIMAL_ML; if (ip+new_ml > start2 + ml2 - MINMATCH) new_ml = (int)(start2 - ip) + ml2 - MINMATCH; correction = new_ml - (int)(start2 - ip); if (correction > 0) { start2 += correction; ref2 += correction; ml2 -= correction; } } /* Now, we have start2 = ip+new_ml, with new_ml = min(ml, OPTIMAL_ML=18) */ if (start2 + ml2 < mflimit) ml3 = LZ4HC_InsertAndGetWiderMatch(ctx, start2 + ml2 - 3, start2, matchlimit, ml2, &ref3, &start3, maxNbAttempts); else ml3 = ml2; if (ml3 == ml2) { /* No better match : 2 sequences to encode */ /* ip & ref are known; Now for ml */ if (start2 < ip+ml) ml = (int)(start2 - ip); /* Now, encode 2 sequences */ optr = op; if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) goto _dest_overflow; ip = start2; optr = op; if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml2, ref2, limit, oend)) goto _dest_overflow; continue; } if (start3 < ip+ml+3) { /* Not enough space for match 2 : remove it */ if (start3 >= (ip+ml)) { /* can write Seq1 immediately ==> Seq2 is removed, so Seq3 becomes Seq1 */ if (start2 < ip+ml) { int correction = (int)(ip+ml - start2); start2 += correction; ref2 += correction; ml2 -= correction; if (ml2 < MINMATCH) { start2 = start3; ref2 = ref3; ml2 = ml3; } } optr = op; if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) goto _dest_overflow; ip = start3; ref = ref3; ml = ml3; start0 = start2; ref0 = ref2; ml0 = ml2; goto _Search2; } start2 = start3; ref2 = ref3; ml2 = ml3; goto _Search3; } /* * OK, now we have 3 ascending matches; let's write at least the first one * ip & ref are known; Now for ml */ if (start2 < ip+ml) { if ((start2 - ip) < (int)ML_MASK) { int correction; if (ml > OPTIMAL_ML) ml = OPTIMAL_ML; if (ip + ml > start2 + ml2 - MINMATCH) ml = (int)(start2 - ip) + ml2 - MINMATCH; correction = ml - (int)(start2 - ip); if (correction > 0) { start2 += correction; ref2 += correction; ml2 -= correction; } } else { ml = (int)(start2 - ip); } } optr = op; if (LZ4HC_encodeSequence(&ip, &op, &anchor, ml, ref, limit, oend)) goto _dest_overflow; ip = start2; ref = ref2; ml = ml2; start2 = start3; ref2 = ref3; ml2 = ml3; goto _Search3; } _last_literals: /* Encode Last Literals */ { size_t lastRunSize = (size_t)(iend - anchor); /* literals */ size_t litLength = (lastRunSize + 255 - RUN_MASK) / 255; size_t const totalSize = 1 + litLength + lastRunSize; if (limit == limitedDestSize) oend += LASTLITERALS; /* restore correct value */ if (limit && (op + totalSize > oend)) { if (limit == limitedOutput) return 0; /* Check output limit */ /* adapt lastRunSize to fill 'dest' */ lastRunSize = (size_t)(oend - op) - 1; litLength = (lastRunSize + 255 - RUN_MASK) / 255; lastRunSize -= litLength; } ip = anchor + lastRunSize; if (lastRunSize >= RUN_MASK) { size_t accumulator = lastRunSize - RUN_MASK; *op++ = (RUN_MASK << ML_BITS); for(; accumulator >= 255 ; accumulator -= 255) *op++ = 255; *op++ = (BYTE) accumulator; } else { *op++ = (BYTE)(lastRunSize << ML_BITS); } memcpy(op, anchor, lastRunSize); op += lastRunSize; } /* End */ *srcSizePtr = (int) (((const char*)ip) - source); return (int) (((char*)op)-dest); _dest_overflow: if (limit == limitedDestSize) { op = optr; /* restore correct out pointer */ goto _last_literals; } return 0; } static int LZ4HC_getSearchNum(int compressionLevel) { switch (compressionLevel) { default: return 0; /* unused */ case 11: return 128; case 12: return 1<<10; } } static int LZ4HC_compress_generic ( LZ4HC_CCtx_internal* const ctx, const char* const src, char* const dst, int* const srcSizePtr, int const dstCapacity, int cLevel, limitedOutput_directive limit ) { if (cLevel < 1) cLevel = LZ4HC_CLEVEL_DEFAULT; /* note : convention is different from lz4frame, maybe to reconsider */ if (cLevel > 9) { if (limit == limitedDestSize) cLevel = 10; switch (cLevel) { case 10: return LZ4HC_compress_hashChain(ctx, src, dst, srcSizePtr, dstCapacity, 1 << 12, limit); case 11: ctx->searchNum = LZ4HC_getSearchNum(cLevel); return LZ4HC_compress_optimal(ctx, src, dst, *srcSizePtr, dstCapacity, limit, 128, 0); default: cLevel = 12; /* fall-through */ case 12: ctx->searchNum = LZ4HC_getSearchNum(cLevel); return LZ4HC_compress_optimal(ctx, src, dst, *srcSizePtr, dstCapacity, limit, LZ4_OPT_NUM, 1); } } return LZ4HC_compress_hashChain(ctx, src, dst, srcSizePtr, dstCapacity, 1 << (cLevel-1), limit); /* levels 1-9 */ } int LZ4_sizeofStateHC(void) { return sizeof(LZ4_streamHC_t); } int LZ4_compress_HC_extStateHC (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int compressionLevel) { LZ4HC_CCtx_internal* const ctx = &((LZ4_streamHC_t*)state)->internal_donotuse; if (((size_t)(state)&(sizeof(void*)-1)) != 0) return 0; /* Error : state is not aligned for pointers (32 or 64 bits) */ LZ4HC_init (ctx, (const BYTE*)src); if (dstCapacity < LZ4_compressBound(srcSize)) return LZ4HC_compress_generic (ctx, src, dst, &srcSize, dstCapacity, compressionLevel, limitedOutput); else return LZ4HC_compress_generic (ctx, src, dst, &srcSize, dstCapacity, compressionLevel, noLimit); } int LZ4_compress_HC(const char* src, char* dst, int srcSize, int dstCapacity, int compressionLevel) { #if defined(LZ4HC_HEAPMODE) && LZ4HC_HEAPMODE==1 LZ4_streamHC_t* const statePtr = (LZ4_streamHC_t*)malloc(sizeof(LZ4_streamHC_t)); #else LZ4_streamHC_t state; LZ4_streamHC_t* const statePtr = &state; #endif int const cSize = LZ4_compress_HC_extStateHC(statePtr, src, dst, srcSize, dstCapacity, compressionLevel); #if defined(LZ4HC_HEAPMODE) && LZ4HC_HEAPMODE==1 free(statePtr); #endif return cSize; } /* LZ4_compress_HC_destSize() : * currently, only compatible with Hash Chain implementation, * hence limit compression level to LZ4HC_CLEVEL_OPT_MIN-1*/ int LZ4_compress_HC_destSize(void* LZ4HC_Data, const char* source, char* dest, int* sourceSizePtr, int targetDestSize, int cLevel) { LZ4HC_CCtx_internal* const ctx = &((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse; LZ4HC_init(ctx, (const BYTE*) source); return LZ4HC_compress_generic(ctx, source, dest, sourceSizePtr, targetDestSize, cLevel, limitedDestSize); } /************************************** * Streaming Functions **************************************/ /* allocation */ LZ4_streamHC_t* LZ4_createStreamHC(void) { return (LZ4_streamHC_t*)malloc(sizeof(LZ4_streamHC_t)); } int LZ4_freeStreamHC (LZ4_streamHC_t* LZ4_streamHCPtr) { if (!LZ4_streamHCPtr) return 0; /* support free on NULL */ free(LZ4_streamHCPtr); return 0; } /* initialization */ void LZ4_resetStreamHC (LZ4_streamHC_t* LZ4_streamHCPtr, int compressionLevel) { LZ4_STATIC_ASSERT(sizeof(LZ4HC_CCtx_internal) <= sizeof(size_t) * LZ4_STREAMHCSIZE_SIZET); /* if compilation fails here, LZ4_STREAMHCSIZE must be increased */ LZ4_streamHCPtr->internal_donotuse.base = NULL; if (compressionLevel > LZ4HC_CLEVEL_MAX) compressionLevel = LZ4HC_CLEVEL_MAX; /* cap compression level */ LZ4_streamHCPtr->internal_donotuse.compressionLevel = compressionLevel; LZ4_streamHCPtr->internal_donotuse.searchNum = LZ4HC_getSearchNum(compressionLevel); } void LZ4_setCompressionLevel(LZ4_streamHC_t* LZ4_streamHCPtr, int compressionLevel) { int const currentCLevel = LZ4_streamHCPtr->internal_donotuse.compressionLevel; int const minCLevel = currentCLevel < LZ4HC_CLEVEL_OPT_MIN ? 1 : LZ4HC_CLEVEL_OPT_MIN; int const maxCLevel = currentCLevel < LZ4HC_CLEVEL_OPT_MIN ? LZ4HC_CLEVEL_OPT_MIN-1 : LZ4HC_CLEVEL_MAX; compressionLevel = MIN(compressionLevel, minCLevel); compressionLevel = MAX(compressionLevel, maxCLevel); LZ4_streamHCPtr->internal_donotuse.compressionLevel = compressionLevel; } int LZ4_loadDictHC (LZ4_streamHC_t* LZ4_streamHCPtr, const char* dictionary, int dictSize) { LZ4HC_CCtx_internal* const ctxPtr = &LZ4_streamHCPtr->internal_donotuse; if (dictSize > 64 KB) { dictionary += dictSize - 64 KB; dictSize = 64 KB; } LZ4HC_init (ctxPtr, (const BYTE*)dictionary); ctxPtr->end = (const BYTE*)dictionary + dictSize; if (ctxPtr->compressionLevel >= LZ4HC_CLEVEL_OPT_MIN) LZ4HC_updateBinTree(ctxPtr, ctxPtr->end - MFLIMIT, ctxPtr->end - LASTLITERALS); else if (dictSize >= 4) LZ4HC_Insert (ctxPtr, ctxPtr->end-3); return dictSize; } /* compression */ static void LZ4HC_setExternalDict(LZ4HC_CCtx_internal* ctxPtr, const BYTE* newBlock) { if (ctxPtr->compressionLevel >= LZ4HC_CLEVEL_OPT_MIN) LZ4HC_updateBinTree(ctxPtr, ctxPtr->end - MFLIMIT, ctxPtr->end - LASTLITERALS); else if (ctxPtr->end >= ctxPtr->base + 4) LZ4HC_Insert (ctxPtr, ctxPtr->end-3); /* Referencing remaining dictionary content */ /* Only one memory segment for extDict, so any previous extDict is lost at this stage */ ctxPtr->lowLimit = ctxPtr->dictLimit; ctxPtr->dictLimit = (U32)(ctxPtr->end - ctxPtr->base); ctxPtr->dictBase = ctxPtr->base; ctxPtr->base = newBlock - ctxPtr->dictLimit; ctxPtr->end = newBlock; ctxPtr->nextToUpdate = ctxPtr->dictLimit; /* match referencing will resume from there */ } static int LZ4_compressHC_continue_generic (LZ4_streamHC_t* LZ4_streamHCPtr, const char* src, char* dst, int* srcSizePtr, int dstCapacity, limitedOutput_directive limit) { LZ4HC_CCtx_internal* const ctxPtr = &LZ4_streamHCPtr->internal_donotuse; /* auto-init if forgotten */ if (ctxPtr->base == NULL) LZ4HC_init (ctxPtr, (const BYTE*) src); /* Check overflow */ if ((size_t)(ctxPtr->end - ctxPtr->base) > 2 GB) { size_t dictSize = (size_t)(ctxPtr->end - ctxPtr->base) - ctxPtr->dictLimit; if (dictSize > 64 KB) dictSize = 64 KB; LZ4_loadDictHC(LZ4_streamHCPtr, (const char*)(ctxPtr->end) - dictSize, (int)dictSize); } /* Check if blocks follow each other */ if ((const BYTE*)src != ctxPtr->end) LZ4HC_setExternalDict(ctxPtr, (const BYTE*)src); /* Check overlapping input/dictionary space */ { const BYTE* sourceEnd = (const BYTE*) src + *srcSizePtr; const BYTE* const dictBegin = ctxPtr->dictBase + ctxPtr->lowLimit; const BYTE* const dictEnd = ctxPtr->dictBase + ctxPtr->dictLimit; if ((sourceEnd > dictBegin) && ((const BYTE*)src < dictEnd)) { if (sourceEnd > dictEnd) sourceEnd = dictEnd; ctxPtr->lowLimit = (U32)(sourceEnd - ctxPtr->dictBase); if (ctxPtr->dictLimit - ctxPtr->lowLimit < 4) ctxPtr->lowLimit = ctxPtr->dictLimit; } } return LZ4HC_compress_generic (ctxPtr, src, dst, srcSizePtr, dstCapacity, ctxPtr->compressionLevel, limit); } int LZ4_compress_HC_continue (LZ4_streamHC_t* LZ4_streamHCPtr, const char* src, char* dst, int srcSize, int dstCapacity) { if (dstCapacity < LZ4_compressBound(srcSize)) return LZ4_compressHC_continue_generic (LZ4_streamHCPtr, src, dst, &srcSize, dstCapacity, limitedOutput); else return LZ4_compressHC_continue_generic (LZ4_streamHCPtr, src, dst, &srcSize, dstCapacity, noLimit); } int LZ4_compress_HC_continue_destSize (LZ4_streamHC_t* LZ4_streamHCPtr, const char* src, char* dst, int* srcSizePtr, int targetDestSize) { LZ4HC_CCtx_internal* const ctxPtr = &LZ4_streamHCPtr->internal_donotuse; if (ctxPtr->compressionLevel >= LZ4HC_CLEVEL_OPT_MIN) LZ4HC_init(ctxPtr, (const BYTE*)src); /* not compatible with btopt implementation */ return LZ4_compressHC_continue_generic(LZ4_streamHCPtr, src, dst, srcSizePtr, targetDestSize, limitedDestSize); } /* dictionary saving */ int LZ4_saveDictHC (LZ4_streamHC_t* LZ4_streamHCPtr, char* safeBuffer, int dictSize) { LZ4HC_CCtx_internal* const streamPtr = &LZ4_streamHCPtr->internal_donotuse; int const prefixSize = (int)(streamPtr->end - (streamPtr->base + streamPtr->dictLimit)); if (dictSize > 64 KB) dictSize = 64 KB; if (dictSize < 4) dictSize = 0; if (dictSize > prefixSize) dictSize = prefixSize; memmove(safeBuffer, streamPtr->end - dictSize, dictSize); { U32 const endIndex = (U32)(streamPtr->end - streamPtr->base); streamPtr->end = (const BYTE*)safeBuffer + dictSize; streamPtr->base = streamPtr->end - endIndex; streamPtr->dictLimit = endIndex - dictSize; streamPtr->lowLimit = endIndex - dictSize; if (streamPtr->nextToUpdate < streamPtr->dictLimit) streamPtr->nextToUpdate = streamPtr->dictLimit; } return dictSize; } /*********************************** * Deprecated Functions ***********************************/ /* These functions currently generate deprecation warnings */ /* Deprecated compression functions */ int LZ4_compressHC(const char* src, char* dst, int srcSize) { return LZ4_compress_HC (src, dst, srcSize, LZ4_compressBound(srcSize), 0); } int LZ4_compressHC_limitedOutput(const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC(src, dst, srcSize, maxDstSize, 0); } int LZ4_compressHC2(const char* src, char* dst, int srcSize, int cLevel) { return LZ4_compress_HC (src, dst, srcSize, LZ4_compressBound(srcSize), cLevel); } int LZ4_compressHC2_limitedOutput(const char* src, char* dst, int srcSize, int maxDstSize, int cLevel) { return LZ4_compress_HC(src, dst, srcSize, maxDstSize, cLevel); } int LZ4_compressHC_withStateHC (void* state, const char* src, char* dst, int srcSize) { return LZ4_compress_HC_extStateHC (state, src, dst, srcSize, LZ4_compressBound(srcSize), 0); } int LZ4_compressHC_limitedOutput_withStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC_extStateHC (state, src, dst, srcSize, maxDstSize, 0); } int LZ4_compressHC2_withStateHC (void* state, const char* src, char* dst, int srcSize, int cLevel) { return LZ4_compress_HC_extStateHC(state, src, dst, srcSize, LZ4_compressBound(srcSize), cLevel); } int LZ4_compressHC2_limitedOutput_withStateHC (void* state, const char* src, char* dst, int srcSize, int maxDstSize, int cLevel) { return LZ4_compress_HC_extStateHC(state, src, dst, srcSize, maxDstSize, cLevel); } int LZ4_compressHC_continue (LZ4_streamHC_t* ctx, const char* src, char* dst, int srcSize) { return LZ4_compress_HC_continue (ctx, src, dst, srcSize, LZ4_compressBound(srcSize)); } int LZ4_compressHC_limitedOutput_continue (LZ4_streamHC_t* ctx, const char* src, char* dst, int srcSize, int maxDstSize) { return LZ4_compress_HC_continue (ctx, src, dst, srcSize, maxDstSize); } /* Deprecated streaming functions */ int LZ4_sizeofStreamStateHC(void) { return LZ4_STREAMHCSIZE; } int LZ4_resetStreamStateHC(void* state, char* inputBuffer) { LZ4HC_CCtx_internal *ctx = &((LZ4_streamHC_t*)state)->internal_donotuse; if ((((size_t)state) & (sizeof(void*)-1)) != 0) return 1; /* Error : pointer is not aligned for pointer (32 or 64 bits) */ LZ4HC_init(ctx, (const BYTE*)inputBuffer); ctx->inputBuffer = (BYTE*)inputBuffer; return 0; } void* LZ4_createHC (char* inputBuffer) { LZ4_streamHC_t* hc4 = (LZ4_streamHC_t*)ALLOCATOR(1, sizeof(LZ4_streamHC_t)); if (hc4 == NULL) return NULL; /* not enough memory */ LZ4HC_init (&hc4->internal_donotuse, (const BYTE*)inputBuffer); hc4->internal_donotuse.inputBuffer = (BYTE*)inputBuffer; return hc4; } int LZ4_freeHC (void* LZ4HC_Data) { if (!LZ4HC_Data) return 0; /* support free on NULL */ FREEMEM(LZ4HC_Data); return 0; } int LZ4_compressHC2_continue (void* LZ4HC_Data, const char* src, char* dst, int srcSize, int cLevel) { return LZ4HC_compress_generic (&((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse, src, dst, &srcSize, 0, cLevel, noLimit); } int LZ4_compressHC2_limitedOutput_continue (void* LZ4HC_Data, const char* src, char* dst, int srcSize, int dstCapacity, int cLevel) { return LZ4HC_compress_generic (&((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse, src, dst, &srcSize, dstCapacity, cLevel, limitedOutput); } char* LZ4_slideInputBufferHC(void* LZ4HC_Data) { LZ4HC_CCtx_internal* const hc4 = &((LZ4_streamHC_t*)LZ4HC_Data)->internal_donotuse; int const dictSize = LZ4_saveDictHC((LZ4_streamHC_t*)LZ4HC_Data, (char*)(hc4->inputBuffer), 64 KB); return (char*)(hc4->inputBuffer + dictSize); }