/* xxHash - Fast Hash algorithm Copyright (C) 2012-2013, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - xxHash source repository : http://code.google.com/p/xxhash/ */ //************************************** // Tuning parameters //************************************** // Unaligned memory access is automatically enabled for "common" CPU, such as x86. // For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected. // If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance. // You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32). #if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) # define XXH_USE_UNALIGNED_ACCESS 1 #endif // XXH_ACCEPT_NULL_INPUT_POINTER : // If the input pointer is a null pointer, xxHash default behavior is to crash, since it is a bad input. // If this option is enabled, xxHash output for null input pointers will be the same as a null-length input. // This option has a very small performance cost (only measurable on small inputs). // By default, this option is disabled. To enable it, uncomment below define : //#define XXH_ACCEPT_NULL_INPUT_POINTER 1 // XXH_FORCE_NATIVE_FORMAT : // By default, xxHash library provides endian-independant Hash values, based on little-endian convention. // Results are therefore identical for little-endian and big-endian CPU. // This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. // Should endian-independance be of no importance for your application, you may uncomment the #define below. // It will improve speed for Big-endian CPU. // This option has no impact on Little_Endian CPU. //#define XXH_FORCE_NATIVE_FORMAT 1 //************************************** // Compiler Options //************************************** #if defined(_MSC_VER) && !defined(__cplusplus) // Visual Studio # define inline __inline // Visual C is not C99, but supports some kind of inline #endif //************************************** // Includes & Memory related functions //************************************** #include "xxhash.h" // Modify the local functions below should you wish to use some other memory related routines // for malloc(), free() #include static inline void* XXH_malloc(size_t s) { return malloc(s); } static inline void XXH_free (void* p) { free(p); } // for memcpy() #include static inline void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } //************************************** // CPU Feature Detection //************************************** // Little Endian or Big Endian ? // You can overwrite the #define below if you know your architecture endianess #if defined(XXH_FORCE_NATIVE_FORMAT) && (XXH_FORCE_NATIVE_FORMAT==1) // Force native format. The result will be endian dependant. # define XXH_BIG_ENDIAN 0 #elif defined (__GLIBC__) # include # if (__BYTE_ORDER == __BIG_ENDIAN) # define XXH_BIG_ENDIAN 1 # endif #elif (defined(__BIG_ENDIAN__) || defined(__BIG_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN) || defined(_LITTLE_ENDIAN)) # define XXH_BIG_ENDIAN 1 #elif defined(__sparc) || defined(__sparc__) \ || defined(__powerpc__) || defined(__ppc__) || defined(__PPC__) \ || defined(__hpux) || defined(__hppa) \ || defined(_MIPSEB) || defined(__s390__) # define XXH_BIG_ENDIAN 1 #endif #if !defined(XXH_BIG_ENDIAN) // Little Endian assumed. PDP Endian and other very rare endian format are unsupported. # define XXH_BIG_ENDIAN 0 #endif //************************************** // Basic Types //************************************** #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99 # include typedef uint8_t BYTE; typedef uint16_t U16; typedef uint32_t U32; typedef int32_t S32; typedef uint64_t U64; #else typedef unsigned char BYTE; typedef unsigned short U16; typedef unsigned int U32; typedef signed int S32; typedef unsigned long long U64; #endif #if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS) # define _PACKED __attribute__ ((packed)) #else # define _PACKED #endif #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) # pragma pack(push, 1) #endif typedef struct _U32_S { U32 v; } _PACKED U32_S; #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__) # pragma pack(pop) #endif #define A32(x) (((U32_S *)(x))->v) //*************************************** // Compiler-specific Functions and Macros //*************************************** #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) // Note : although _rotl exists for minGW (GCC under windows), performance seems poor #if defined(_MSC_VER) # define XXH_rotl32(x,r) _rotl(x,r) #else # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) #endif #if defined(_MSC_VER) // Visual Studio # define XXH_swap32 _byteswap_ulong #elif GCC_VERSION >= 403 # define XXH_swap32 __builtin_bswap32 #else static inline U32 XXH_swap32 (U32 x) { return ((x << 24) & 0xff000000 ) | ((x << 8) & 0x00ff0000 ) | ((x >> 8) & 0x0000ff00 ) | ((x >> 24) & 0x000000ff );} #endif //************************************** // Constants //************************************** #define PRIME32_1 2654435761U #define PRIME32_2 2246822519U #define PRIME32_3 3266489917U #define PRIME32_4 668265263U #define PRIME32_5 374761393U //************************************** // Macros //************************************** #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations #define XXH_LE32(p) (XXH_BIG_ENDIAN ? XXH_swap32(A32(p)) : A32(p)) #define XXH_alignedLE32(p) (XXH_BIG_ENDIAN ? XXH_swap32(*(U32*)(p)) : *(U32*)(p)) //**************************** // Simple Hash Functions //**************************** #if !defined(XXH_USE_UNALIGNED_ACCESS) // Specific version, for aligned 32-bits input. Useless for CPU supporting unaligned access. static U32 XXH32_alignedInput(const void* input, int len, U32 seed) { const BYTE* p = (const BYTE*)input; const BYTE* const bEnd = p + len; U32 h32; if (len>=16) { const BYTE* const limit = bEnd - 16; U32 v1 = seed + PRIME32_1 + PRIME32_2; U32 v2 = seed + PRIME32_2; U32 v3 = seed + 0; U32 v4 = seed - PRIME32_1; do { v1 += XXH_alignedLE32(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; v2 += XXH_alignedLE32(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; v3 += XXH_alignedLE32(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; v4 += XXH_alignedLE32(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; } while (p<=limit); h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); } else { h32 = seed + PRIME32_5; } h32 += (U32) len; while (p<=bEnd-4) { h32 += XXH_alignedLE32(p) * PRIME32_3; h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; p+=4; } while (p> 15; h32 *= PRIME32_2; h32 ^= h32 >> 13; h32 *= PRIME32_3; h32 ^= h32 >> 16; return h32; } #endif U32 XXH32(const void* input, int len, U32 seed) { #if 0 // Simple version, good for code maintenance, but unfortunately slow for small inputs void* state = XXH32_init(seed); XXH32_update(state, input, len); return XXH32_digest(state); #else const BYTE* p = (const BYTE*)input; const BYTE* const bEnd = p + len; U32 h32; #ifdef XXH_ACCEPT_NULL_INPUT_POINTER if (p==NULL) { len=0; p=(const BYTE*)16; } #endif #if !defined(XXH_USE_UNALIGNED_ACCESS) if ((((U32)p) & 3) == 0) return XXH32_alignedInput(input, len, seed); // Input is aligned, let's leverage the speed advantage #endif if (len>=16) { const BYTE* const limit = bEnd - 16; U32 v1 = seed + PRIME32_1 + PRIME32_2; U32 v2 = seed + PRIME32_2; U32 v3 = seed + 0; U32 v4 = seed - PRIME32_1; do { v1 += XXH_LE32(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; v2 += XXH_LE32(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; v3 += XXH_LE32(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; v4 += XXH_LE32(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; } while (p<=limit); h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); } else { h32 = seed + PRIME32_5; } h32 += (U32) len; while (p<=bEnd-4) { h32 += XXH_LE32(p) * PRIME32_3; h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; p+=4; } while (p> 15; h32 *= PRIME32_2; h32 ^= h32 >> 13; h32 *= PRIME32_3; h32 ^= h32 >> 16; return h32; #endif } //**************************** // Advanced Hash Functions //**************************** struct XXH_state32_t { U64 total_len; U32 seed; U32 v1; U32 v2; U32 v3; U32 v4; int memsize; char memory[16]; }; int XXH32_sizeofState() { XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough return sizeof(struct XXH_state32_t); } XXH_errorcode XXH32_resetState(void* state_in, U32 seed) { struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; state->seed = seed; state->v1 = seed + PRIME32_1 + PRIME32_2; state->v2 = seed + PRIME32_2; state->v3 = seed + 0; state->v4 = seed - PRIME32_1; state->total_len = 0; state->memsize = 0; return XXH_OK; } void* XXH32_init (U32 seed) { void* state = XXH_malloc (sizeof(struct XXH_state32_t)); XXH32_resetState(state, seed); return state; } XXH_errorcode XXH32_update (void* state_in, const void* input, int len) { struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; const BYTE* p = (const BYTE*)input; const BYTE* const bEnd = p + len; #ifdef XXH_ACCEPT_NULL_INPUT_POINTER if (input==NULL) return XXH_ERROR; #endif state->total_len += len; if (state->memsize + len < 16) // fill in tmp buffer { XXH_memcpy(state->memory + state->memsize, input, len); state->memsize += len; return XXH_OK; } if (state->memsize) // some data left from previous update { XXH_memcpy(state->memory + state->memsize, input, 16-state->memsize); { const U32* p32 = (const U32*)state->memory; state->v1 += XXH_LE32(p32) * PRIME32_2; state->v1 = XXH_rotl32(state->v1, 13); state->v1 *= PRIME32_1; p32++; state->v2 += XXH_LE32(p32) * PRIME32_2; state->v2 = XXH_rotl32(state->v2, 13); state->v2 *= PRIME32_1; p32++; state->v3 += XXH_LE32(p32) * PRIME32_2; state->v3 = XXH_rotl32(state->v3, 13); state->v3 *= PRIME32_1; p32++; state->v4 += XXH_LE32(p32) * PRIME32_2; state->v4 = XXH_rotl32(state->v4, 13); state->v4 *= PRIME32_1; p32++; } p += 16-state->memsize; state->memsize = 0; } if (p <= bEnd-16) { const BYTE* const limit = bEnd - 16; U32 v1 = state->v1; U32 v2 = state->v2; U32 v3 = state->v3; U32 v4 = state->v4; do { v1 += XXH_LE32(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4; v2 += XXH_LE32(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4; v3 += XXH_LE32(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4; v4 += XXH_LE32(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4; } while (p<=limit); state->v1 = v1; state->v2 = v2; state->v3 = v3; state->v4 = v4; } if (p < bEnd) { XXH_memcpy(state->memory, p, bEnd-p); state->memsize = (int)(bEnd-p); } return XXH_OK; } U32 XXH32_intermediateDigest (void* state_in) { struct XXH_state32_t * state = (struct XXH_state32_t *) state_in; BYTE * p = (BYTE*)state->memory; BYTE* bEnd = (BYTE*)state->memory + state->memsize; U32 h32; if (state->total_len >= 16) { h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); } else { h32 = state->seed + PRIME32_5; } h32 += (U32) state->total_len; while (p<=bEnd-4) { h32 += XXH_LE32(p) * PRIME32_3; h32 = XXH_rotl32(h32, 17) * PRIME32_4; p+=4; } while (p> 15; h32 *= PRIME32_2; h32 ^= h32 >> 13; h32 *= PRIME32_3; h32 ^= h32 >> 16; return h32; } U32 XXH32_digest (void* state_in) { U32 h32 = XXH32_intermediateDigest(state_in); XXH_free(state_in); return h32; }