summaryrefslogtreecommitdiffstats
path: root/lib/lz4frame.c
blob: a30de4897e0e5658c0bd035a20c33b549e26d84a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
/*
LZ4 auto-framing library
Copyright (C) 2011-2016, Yann Collet.

BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You can contact the author at :
- LZ4 homepage : http://www.lz4.org
- LZ4 source repository : https://github.com/lz4/lz4
*/

/* LZ4F is a stand-alone API to create LZ4-compressed Frames
*  in full conformance with specification v1.6.1 .
*  This library rely upon memory management capabilities.
* */


/*-************************************
*  Compiler Options
**************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
#endif


/*-************************************
*  Tuning parameters
**************************************/
/*
 * LZ4F_HEAPMODE :
 * Select how default compression functions will allocate memory for their hash table,
 * in memory stack (0:default, fastest), or in memory heap (1:requires malloc()).
 */
#ifndef LZ4F_HEAPMODE
#  define LZ4F_HEAPMODE 0
#endif


/*-************************************
*  Memory routines
**************************************/
#include <stdlib.h>   /* malloc, calloc, free */
#define ALLOC(s)       malloc(s)
#define ALLOC_AND_ZERO(s)  calloc(1,(s))
#define FREEMEM(p)     free(p)
#include <string.h>   /* memset, memcpy, memmove */
#define MEM_INIT       memset


/*-************************************
*  Includes
**************************************/
#define LZ4F_STATIC_LINKING_ONLY
#include "lz4frame.h"
#define LZ4_STATIC_LINKING_ONLY
#include "lz4.h"
#define LZ4_HC_STATIC_LINKING_ONLY
#include "lz4hc.h"
#define XXH_STATIC_LINKING_ONLY
#include "xxhash.h"


/*-************************************
*  Debug
**************************************/
#if defined(LZ4_DEBUG) && (LZ4_DEBUG>=1)
#  include <assert.h>
#else
#  ifndef assert
#    define assert(condition) ((void)0)
#  endif
#endif

#define LZ4F_STATIC_ASSERT(c)    { enum { LZ4F_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */

#if defined(LZ4_DEBUG) && (LZ4_DEBUG>=2) && !defined(DEBUGLOG)
#  include <stdio.h>
static int g_debuglog_enable = 1;
#  define DEBUGLOG(l, ...) {                                  \
                if ((g_debuglog_enable) && (l<=LZ4_DEBUG)) {  \
                    fprintf(stderr, __FILE__ ": ");           \
                    fprintf(stderr, __VA_ARGS__);             \
                    fprintf(stderr, " \n");                   \
            }   }
#else
#  define DEBUGLOG(l, ...)      {}    /* disabled */
#endif


/*-************************************
*  Basic Types
**************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
  typedef  uint8_t BYTE;
  typedef uint16_t U16;
  typedef uint32_t U32;
  typedef  int32_t S32;
  typedef uint64_t U64;
#else
  typedef unsigned char       BYTE;
  typedef unsigned short      U16;
  typedef unsigned int        U32;
  typedef   signed int        S32;
  typedef unsigned long long  U64;
#endif


/* unoptimized version; solves endianess & alignment issues */
static U32 LZ4F_readLE32 (const void* src)
{
    const BYTE* const srcPtr = (const BYTE*)src;
    U32 value32 = srcPtr[0];
    value32 += (srcPtr[1]<<8);
    value32 += (srcPtr[2]<<16);
    value32 += ((U32)srcPtr[3])<<24;
    return value32;
}

static void LZ4F_writeLE32 (void* dst, U32 value32)
{
    BYTE* const dstPtr = (BYTE*)dst;
    dstPtr[0] = (BYTE)value32;
    dstPtr[1] = (BYTE)(value32 >> 8);
    dstPtr[2] = (BYTE)(value32 >> 16);
    dstPtr[3] = (BYTE)(value32 >> 24);
}

static U64 LZ4F_readLE64 (const void* src)
{
    const BYTE* const srcPtr = (const BYTE*)src;
    U64 value64 = srcPtr[0];
    value64 += ((U64)srcPtr[1]<<8);
    value64 += ((U64)srcPtr[2]<<16);
    value64 += ((U64)srcPtr[3]<<24);
    value64 += ((U64)srcPtr[4]<<32);
    value64 += ((U64)srcPtr[5]<<40);
    value64 += ((U64)srcPtr[6]<<48);
    value64 += ((U64)srcPtr[7]<<56);
    return value64;
}

static void LZ4F_writeLE64 (void* dst, U64 value64)
{
    BYTE* const dstPtr = (BYTE*)dst;
    dstPtr[0] = (BYTE)value64;
    dstPtr[1] = (BYTE)(value64 >> 8);
    dstPtr[2] = (BYTE)(value64 >> 16);
    dstPtr[3] = (BYTE)(value64 >> 24);
    dstPtr[4] = (BYTE)(value64 >> 32);
    dstPtr[5] = (BYTE)(value64 >> 40);
    dstPtr[6] = (BYTE)(value64 >> 48);
    dstPtr[7] = (BYTE)(value64 >> 56);
}


/*-************************************
*  Constants
**************************************/
#define KB *(1<<10)
#define MB *(1<<20)
#define GB *(1<<30)

#define _1BIT  0x01
#define _2BITS 0x03
#define _3BITS 0x07
#define _4BITS 0x0F
#define _8BITS 0xFF

#define LZ4F_MAGIC_SKIPPABLE_START 0x184D2A50U
#define LZ4F_MAGICNUMBER 0x184D2204U
#define LZ4F_BLOCKUNCOMPRESSED_FLAG 0x80000000U
#define LZ4F_BLOCKSIZEID_DEFAULT LZ4F_max64KB

static const size_t minFHSize = 7;
static const size_t maxFHSize = LZ4F_HEADER_SIZE_MAX;   /* 19 */
static const size_t BHSize = 4;


/*-************************************
*  Structures and local types
**************************************/
typedef struct LZ4F_cctx_s
{
    LZ4F_preferences_t prefs;
    U32    version;
    U32    cStage;
    const LZ4F_CDict* cdict;
    size_t maxBlockSize;
    size_t maxBufferSize;
    BYTE*  tmpBuff;
    BYTE*  tmpIn;
    size_t tmpInSize;
    U64    totalInSize;
    XXH32_state_t xxh;
    void*  lz4CtxPtr;
    U16    lz4CtxAlloc; /* sized for: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */
    U16    lz4CtxState; /* in use as: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */
} LZ4F_cctx_t;


/*-************************************
*  Error management
**************************************/
#define LZ4F_GENERATE_STRING(STRING) #STRING,
static const char* LZ4F_errorStrings[] = { LZ4F_LIST_ERRORS(LZ4F_GENERATE_STRING) };


unsigned LZ4F_isError(LZ4F_errorCode_t code)
{
    return (code > (LZ4F_errorCode_t)(-LZ4F_ERROR_maxCode));
}

const char* LZ4F_getErrorName(LZ4F_errorCode_t code)
{
    static const char* codeError = "Unspecified error code";
    if (LZ4F_isError(code)) return LZ4F_errorStrings[-(int)(code)];
    return codeError;
}

LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult)
{
    if (!LZ4F_isError(functionResult)) return LZ4F_OK_NoError;
    return (LZ4F_errorCodes)(-(ptrdiff_t)functionResult);
}

static LZ4F_errorCode_t err0r(LZ4F_errorCodes code)
{
    /* A compilation error here means sizeof(ptrdiff_t) is not large enough */
    LZ4F_STATIC_ASSERT(sizeof(ptrdiff_t) >= sizeof(size_t));
    return (LZ4F_errorCode_t)-(ptrdiff_t)code;
}

unsigned LZ4F_getVersion(void) { return LZ4F_VERSION; }

int LZ4F_compressionLevel_max(void) { return LZ4HC_CLEVEL_MAX; }


/*-************************************
*  Private functions
**************************************/
#define MIN(a,b)   ( (a) < (b) ? (a) : (b) )

static size_t LZ4F_getBlockSize(unsigned blockSizeID)
{
    static const size_t blockSizes[4] = { 64 KB, 256 KB, 1 MB, 4 MB };

    if (blockSizeID == 0) blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT;
    blockSizeID -= 4;
    if (blockSizeID > 3) return err0r(LZ4F_ERROR_maxBlockSize_invalid);
    return blockSizes[blockSizeID];
}

static BYTE LZ4F_headerChecksum (const void* header, size_t length)
{
    U32 const xxh = XXH32(header, length, 0);
    return (BYTE)(xxh >> 8);
}


/*-************************************
*  Simple-pass compression functions
**************************************/
static LZ4F_blockSizeID_t LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID,
                                           const size_t srcSize)
{
    LZ4F_blockSizeID_t proposedBSID = LZ4F_max64KB;
    size_t maxBlockSize = 64 KB;
    while (requestedBSID > proposedBSID) {
        if (srcSize <= maxBlockSize)
            return proposedBSID;
        proposedBSID = (LZ4F_blockSizeID_t)((int)proposedBSID + 1);
        maxBlockSize <<= 2;
    }
    return requestedBSID;
}

/*! LZ4F_compressBound_internal() :
 *  Provides dstCapacity given a srcSize to guarantee operation success in worst case situations.
 *  prefsPtr is optional : if NULL is provided, preferences will be set to cover worst case scenario.
 * @return is always the same for a srcSize and prefsPtr, so it can be relied upon to size reusable buffers.
 *  When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() operations.
 */
static size_t LZ4F_compressBound_internal(size_t srcSize,
                                    const LZ4F_preferences_t* preferencesPtr,
                                          size_t alreadyBuffered)
{
    LZ4F_preferences_t prefsNull;
    MEM_INIT(&prefsNull, 0, sizeof(prefsNull));
    prefsNull.frameInfo.contentChecksumFlag = LZ4F_contentChecksumEnabled;   /* worst case */
    {   const LZ4F_preferences_t* const prefsPtr = (preferencesPtr==NULL) ? &prefsNull : preferencesPtr;
        U32 const flush = prefsPtr->autoFlush | (srcSize==0);
        LZ4F_blockSizeID_t const blockID = prefsPtr->frameInfo.blockSizeID;
        size_t const blockSize = LZ4F_getBlockSize(blockID);
        size_t const maxBuffered = blockSize - 1;
        size_t const bufferedSize = MIN(alreadyBuffered, maxBuffered);
        size_t const maxSrcSize = srcSize + bufferedSize;
        unsigned const nbFullBlocks = (unsigned)(maxSrcSize / blockSize);
        size_t const partialBlockSize = maxSrcSize & (blockSize-1);
        size_t const lastBlockSize = flush ? partialBlockSize : 0;
        unsigned const nbBlocks = nbFullBlocks + (lastBlockSize>0);

        size_t const blockHeaderSize = 4;
        size_t const blockCRCSize = 4 * prefsPtr->frameInfo.blockChecksumFlag;
        size_t const frameEnd = 4 + (prefsPtr->frameInfo.contentChecksumFlag*4);

        return ((blockHeaderSize + blockCRCSize) * nbBlocks) +
               (blockSize * nbFullBlocks) + lastBlockSize + frameEnd;
    }
}

size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr)
{
    LZ4F_preferences_t prefs;
    size_t const headerSize = maxFHSize;      /* max header size, including optional fields */

    if (preferencesPtr!=NULL) prefs = *preferencesPtr;
    else MEM_INIT(&prefs, 0, sizeof(prefs));
    prefs.autoFlush = 1;

    return headerSize + LZ4F_compressBound_internal(srcSize, &prefs, 0);;
}


/*! LZ4F_compressFrame_usingCDict() :
 *  Compress srcBuffer using a dictionary, in a single step.
 *  cdict can be NULL, in which case, no dictionary is used.
 *  dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
 *  The LZ4F_preferences_t structure is optional : you may provide NULL as argument,
 *  however, it's the only way to provide a dictID, so it's not recommended.
 * @return : number of bytes written into dstBuffer,
 *           or an error code if it fails (can be tested using LZ4F_isError())
 */
size_t LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx,
                                     void* dstBuffer, size_t dstCapacity,
                               const void* srcBuffer, size_t srcSize,
                               const LZ4F_CDict* cdict,
                               const LZ4F_preferences_t* preferencesPtr)
{
    LZ4F_preferences_t prefs;
    LZ4F_compressOptions_t options;
    BYTE* const dstStart = (BYTE*) dstBuffer;
    BYTE* dstPtr = dstStart;
    BYTE* const dstEnd = dstStart + dstCapacity;

    if (preferencesPtr!=NULL)
        prefs = *preferencesPtr;
    else
        MEM_INIT(&prefs, 0, sizeof(prefs));
    if (prefs.frameInfo.contentSize != 0)
        prefs.frameInfo.contentSize = (U64)srcSize;   /* auto-correct content size if selected (!=0) */

    prefs.frameInfo.blockSizeID = LZ4F_optimalBSID(prefs.frameInfo.blockSizeID, srcSize);
    prefs.autoFlush = 1;
    if (srcSize <= LZ4F_getBlockSize(prefs.frameInfo.blockSizeID))
        prefs.frameInfo.blockMode = LZ4F_blockIndependent;   /* only one block => no need for inter-block link */

    MEM_INIT(&options, 0, sizeof(options));
    options.stableSrc = 1;

    if (dstCapacity < LZ4F_compressFrameBound(srcSize, &prefs))  /* condition to guarantee success */
        return err0r(LZ4F_ERROR_dstMaxSize_tooSmall);

    { size_t const headerSize = LZ4F_compressBegin_usingCDict(cctx, dstBuffer, dstCapacity, cdict, &prefs);  /* write header */
      if (LZ4F_isError(headerSize)) return headerSize;
      dstPtr += headerSize;   /* header size */ }

    { size_t const cSize = LZ4F_compressUpdate(cctx, dstPtr, dstEnd-dstPtr, srcBuffer, srcSize, &options);
      if (LZ4F_isError(cSize)) return cSize;
      dstPtr += cSize; }

    { size_t const tailSize = LZ4F_compressEnd(cctx, dstPtr, dstEnd-dstPtr, &options);   /* flush last block, and generate suffix */
      if (LZ4F_isError(tailSize)) return tailSize;
      dstPtr += tailSize; }

    return (dstPtr - dstStart);
}


/*! LZ4F_compressFrame() :
 *  Compress an entire srcBuffer into a valid LZ4 frame, in a single step.
 *  dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
 *  The LZ4F_preferences_t structure is optional : you can provide NULL as argument. All preferences will be set to default.
 * @return : number of bytes written into dstBuffer.
 *           or an error code if it fails (can be tested using LZ4F_isError())
 */
size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity,
                    const void* srcBuffer, size_t srcSize,
                    const LZ4F_preferences_t* preferencesPtr)
{
    size_t result;
#if (LZ4F_HEAPMODE)
    LZ4F_cctx_t *cctxPtr;
    result = LZ4F_createCompressionContext(&cctxPtr, LZ4F_VERSION);
    if (LZ4F_isError(result)) return result;
#else
    LZ4F_cctx_t cctx;
    LZ4_stream_t lz4ctx;
    LZ4F_cctx_t *cctxPtr = &cctx;

    DEBUGLOG(4, "LZ4F_compressFrame");
    MEM_INIT(&cctx, 0, sizeof(cctx));
    cctx.version = LZ4F_VERSION;
    cctx.maxBufferSize = 5 MB;   /* mess with real buffer size to prevent dynamic allocation; works only because autoflush==1 & stableSrc==1 */
    if (preferencesPtr == NULL ||
        preferencesPtr->compressionLevel < LZ4HC_CLEVEL_MIN)
    {
        LZ4_resetStream(&lz4ctx);
        cctxPtr->lz4CtxPtr = &lz4ctx;
        cctxPtr->lz4CtxAlloc = 1;
        cctxPtr->lz4CtxState = 1;
    }
#endif

    result = LZ4F_compressFrame_usingCDict(cctxPtr, dstBuffer, dstCapacity,
                                           srcBuffer, srcSize,
                                           NULL, preferencesPtr);

#if (LZ4F_HEAPMODE)
    LZ4F_freeCompressionContext(cctxPtr);
#else
    if (preferencesPtr != NULL &&
        preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN)
    {
        FREEMEM(cctxPtr->lz4CtxPtr);
    }
#endif
    return result;
}


/*-***************************************************
*   Dictionary compression
*****************************************************/

struct LZ4F_CDict_s {
    void* dictContent;
    LZ4_stream_t* fastCtx;
    LZ4_streamHC_t* HCCtx;
}; /* typedef'd to LZ4F_CDict within lz4frame_static.h */

/*! LZ4F_createCDict() :
 *  When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once.
 *  LZ4F_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay.
 *  LZ4F_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only.
 * `dictBuffer` can be released after LZ4F_CDict creation, since its content is copied within CDict
 * @return : digested dictionary for compression, or NULL if failed */
LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize)
{
    const char* dictStart = (const char*)dictBuffer;
    LZ4F_CDict* cdict = (LZ4F_CDict*) ALLOC(sizeof(*cdict));
    DEBUGLOG(4, "LZ4F_createCDict");
    if (!cdict) return NULL;
    if (dictSize > 64 KB) {
        dictStart += dictSize - 64 KB;
        dictSize = 64 KB;
    }
    cdict->dictContent = ALLOC(dictSize);
    cdict->fastCtx = LZ4_createStream();
    cdict->HCCtx = LZ4_createStreamHC();
    if (!cdict->dictContent || !cdict->fastCtx || !cdict->HCCtx) {
        LZ4F_freeCDict(cdict);
        return NULL;
    }
    memcpy(cdict->dictContent, dictStart, dictSize);
    LZ4_loadDict (cdict->fastCtx, (const char*)cdict->dictContent, (int)dictSize);
    LZ4_setCompressionLevel(cdict->HCCtx, LZ4HC_CLEVEL_DEFAULT);
    LZ4_loadDictHC(cdict->HCCtx, (const char*)cdict->dictContent, (int)dictSize);
    return cdict;
}

void LZ4F_freeCDict(LZ4F_CDict* cdict)
{
    if (cdict==NULL) return;  /* support free on NULL */
    FREEMEM(cdict->dictContent);
    LZ4_freeStream(cdict->fastCtx);
    LZ4_freeStreamHC(cdict->HCCtx);
    FREEMEM(cdict);
}


/*-*********************************
*  Advanced compression functions
***********************************/

/*! LZ4F_createCompressionContext() :
 *  The first thing to do is to create a compressionContext object, which will be used in all compression operations.
 *  This is achieved using LZ4F_createCompressionContext(), which takes as argument a version and an LZ4F_preferences_t structure.
 *  The version provided MUST be LZ4F_VERSION. It is intended to track potential incompatible differences between different binaries.
 *  The function will provide a pointer to an allocated LZ4F_compressionContext_t object.
 *  If the result LZ4F_errorCode_t is not OK_NoError, there was an error during context creation.
 *  Object can release its memory using LZ4F_freeCompressionContext();
 */
LZ4F_errorCode_t LZ4F_createCompressionContext(LZ4F_compressionContext_t* LZ4F_compressionContextPtr, unsigned version)
{
    LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)ALLOC_AND_ZERO(sizeof(LZ4F_cctx_t));
    if (cctxPtr==NULL) return err0r(LZ4F_ERROR_allocation_failed);

    cctxPtr->version = version;
    cctxPtr->cStage = 0;   /* Next stage : init stream */

    *LZ4F_compressionContextPtr = (LZ4F_compressionContext_t)cctxPtr;

    return LZ4F_OK_NoError;
}


LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_compressionContext_t LZ4F_compressionContext)
{
    LZ4F_cctx_t* const cctxPtr = (LZ4F_cctx_t*)LZ4F_compressionContext;

    if (cctxPtr != NULL) {  /* support free on NULL */
       FREEMEM(cctxPtr->lz4CtxPtr);  /* works because LZ4_streamHC_t and LZ4_stream_t are simple POD types */
       FREEMEM(cctxPtr->tmpBuff);
       FREEMEM(LZ4F_compressionContext);
    }

    return LZ4F_OK_NoError;
}


/**
 * This function prepares the internal LZ4(HC) stream for a new compression,
 * resetting the context and attaching the dictionary, if there is one.
 *
 * It needs to be called at the beginning of each independent compression
 * stream (i.e., at the beginning of a frame in blockLinked mode, or at the
 * beginning of each block in blockIndependent mode).
 */
static void LZ4F_initStream(void* ctx,
                            const LZ4F_CDict* cdict,
                            int level,
                            LZ4F_blockMode_t blockMode) {
    if (level < LZ4HC_CLEVEL_MIN) {
        if (cdict != NULL || blockMode == LZ4F_blockLinked) {
            /* In these cases, we will call LZ4_compress_fast_continue(),
             * which needs an already reset context. Otherwise, we'll call a
             * one-shot API. The non-continued APIs internally perform their own
             * resets at the beginning of their calls, where they know what
             * tableType they need the context to be in. So in that case this
             * would be misguided / wasted work. */
            LZ4_resetStream_fast((LZ4_stream_t*)ctx);
        }
        LZ4_attach_dictionary((LZ4_stream_t *)ctx, cdict ? cdict->fastCtx : NULL);
    } else {
        LZ4_resetStreamHC_fast((LZ4_streamHC_t*)ctx, level);
        LZ4_attach_HC_dictionary((LZ4_streamHC_t *)ctx, cdict ? cdict->HCCtx : NULL);
    }
}


/*! LZ4F_compressBegin_usingCDict() :
 *  init streaming compression and writes frame header into dstBuffer.
 *  dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes.
 * @return : number of bytes written into dstBuffer for the header
 *           or an error code (can be tested using LZ4F_isError())
 */
size_t LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctxPtr,
                          void* dstBuffer, size_t dstCapacity,
                          const LZ4F_CDict* cdict,
                          const LZ4F_preferences_t* preferencesPtr)
{
    LZ4F_preferences_t prefNull;
    BYTE* const dstStart = (BYTE*)dstBuffer;
    BYTE* dstPtr = dstStart;
    BYTE* headerStart;

    if (dstCapacity < maxFHSize) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall);
    MEM_INIT(&prefNull, 0, sizeof(prefNull));
    if (preferencesPtr == NULL) preferencesPtr = &prefNull;
    cctxPtr->prefs = *preferencesPtr;

    /* Ctx Management */
    {   U16 const ctxTypeID = (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ? 1 : 2;
        if (cctxPtr->lz4CtxAlloc < ctxTypeID) {
            FREEMEM(cctxPtr->lz4CtxPtr);
            if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) {
                cctxPtr->lz4CtxPtr = (void*)LZ4_createStream();
            } else {
                cctxPtr->lz4CtxPtr = (void*)LZ4_createStreamHC();
            }
            if (cctxPtr->lz4CtxPtr == NULL) return err0r(LZ4F_ERROR_allocation_failed);
            cctxPtr->lz4CtxAlloc = ctxTypeID;
            cctxPtr->lz4CtxState = ctxTypeID;
        } else if (cctxPtr->lz4CtxState != ctxTypeID) {
            /* otherwise, a sufficient buffer is allocated, but we need to
             * reset it to the correct context type */
            if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) {
                LZ4_resetStream((LZ4_stream_t *) cctxPtr->lz4CtxPtr);
            } else {
                LZ4_resetStreamHC((LZ4_streamHC_t *) cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel);
            }
            cctxPtr->lz4CtxState = ctxTypeID;
        }
    }

    /* Buffer Management */
    if (cctxPtr->prefs.frameInfo.blockSizeID == 0)
        cctxPtr->prefs.frameInfo.blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT;
    cctxPtr->maxBlockSize = LZ4F_getBlockSize(cctxPtr->prefs.frameInfo.blockSizeID);

    {   size_t const requiredBuffSize = preferencesPtr->autoFlush ?
                (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) * 64 KB :  /* only needs windows size */
                cctxPtr->maxBlockSize + ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) * 128 KB);

        if (cctxPtr->maxBufferSize < requiredBuffSize) {
            cctxPtr->maxBufferSize = 0;
            FREEMEM(cctxPtr->tmpBuff);
            cctxPtr->tmpBuff = (BYTE*)ALLOC_AND_ZERO(requiredBuffSize);
            if (cctxPtr->tmpBuff == NULL) return err0r(LZ4F_ERROR_allocation_failed);
            cctxPtr->maxBufferSize = requiredBuffSize;
    }   }
    cctxPtr->tmpIn = cctxPtr->tmpBuff;
    cctxPtr->tmpInSize = 0;
    XXH32_reset(&(cctxPtr->xxh), 0);

    /* context init */
    cctxPtr->cdict = cdict;
    if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) {
        /* frame init only for blockLinked : blockIndependent will be init at each block */
        LZ4F_initStream(cctxPtr->lz4CtxPtr, cdict, cctxPtr->prefs.compressionLevel, LZ4F_blockLinked);
    }
    if (preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) {
          LZ4_favorDecompressionSpeed((LZ4_streamHC_t*)cctxPtr->lz4CtxPtr, (int)preferencesPtr->favorDecSpeed);
    }

    /* Magic Number */
    LZ4F_writeLE32(dstPtr, LZ4F_MAGICNUMBER);
    dstPtr += 4;
    headerStart = dstPtr;

    /* FLG Byte */
    *dstPtr++ = (BYTE)(((1 & _2BITS) << 6)    /* Version('01') */
        + ((cctxPtr->prefs.frameInfo.blockMode & _1BIT ) << 5)
        + ((cctxPtr->prefs.frameInfo.blockChecksumFlag & _1BIT ) << 4)
        + ((cctxPtr->prefs.frameInfo.contentSize > 0) << 3)
        + ((cctxPtr->prefs.frameInfo.contentChecksumFlag & _1BIT ) << 2)
        +  (cctxPtr->prefs.frameInfo.dictID > 0) );
    /* BD Byte */
    *dstPtr++ = (BYTE)((cctxPtr->prefs.frameInfo.blockSizeID & _3BITS) << 4);
    /* Optional Frame content size field */
    if (cctxPtr->prefs.frameInfo.contentSize) {
        LZ4F_writeLE64(dstPtr, cctxPtr->prefs.frameInfo.contentSize);
        dstPtr += 8;
        cctxPtr->totalInSize = 0;
    }
    /* Optional dictionary ID field */
    if (cctxPtr->prefs.frameInfo.dictID) {
        LZ4F_writeLE32(dstPtr, cctxPtr->prefs.frameInfo.dictID);
        dstPtr += 4;
    }
    /* Header CRC Byte */
    *dstPtr = LZ4F_headerChecksum(headerStart, dstPtr - headerStart);
    dstPtr++;

    cctxPtr->cStage = 1;   /* header written, now request input data block */
    return (dstPtr - dstStart);
}


/*! LZ4F_compressBegin() :
 *  init streaming compression and writes frame header into dstBuffer.
 *  dstBuffer must be >= LZ4F_HEADER_SIZE_MAX bytes.
 *  preferencesPtr can be NULL, in which case default parameters are selected.
 * @return : number of bytes written into dstBuffer for the header
 *           or an error code (can be tested using LZ4F_isError())
 */
size_t LZ4F_compressBegin(LZ4F_cctx* cctxPtr,
                          void* dstBuffer, size_t dstCapacity,
                          const LZ4F_preferences_t* preferencesPtr)
{
    return LZ4F_compressBegin_usingCDict(cctxPtr, dstBuffer, dstCapacity,
                                         NULL, preferencesPtr);
}


/*  LZ4F_compressBound() :
 * @return minimum capacity of dstBuffer for a given srcSize to handle worst case scenario.
 *  LZ4F_preferences_t structure is optional : if NULL, preferences will be set to cover worst case scenario.
 *  This function cannot fail.
 */
size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr)
{
    return LZ4F_compressBound_internal(srcSize, preferencesPtr, (size_t)-1);
}


typedef int (*compressFunc_t)(void* ctx, const char* src, char* dst, int srcSize, int dstSize, int level, const LZ4F_CDict* cdict);


/*! LZ4F_makeBlock():
 *  compress a single block, add header and checksum
 *  assumption : dst buffer capacity is >= srcSize */
static size_t LZ4F_makeBlock(void* dst, const void* src, size_t srcSize,
                             compressFunc_t compress, void* lz4ctx, int level,
                             const LZ4F_CDict* cdict, LZ4F_blockChecksum_t crcFlag)
{
    BYTE* const cSizePtr = (BYTE*)dst;
    U32 cSize = (U32)compress(lz4ctx, (const char*)src, (char*)(cSizePtr+4),
                                      (int)(srcSize), (int)(srcSize-1),
                                      level, cdict);
    LZ4F_writeLE32(cSizePtr, cSize);
    if (cSize == 0) {  /* compression failed */
        cSize = (U32)srcSize;
        LZ4F_writeLE32(cSizePtr, cSize | LZ4F_BLOCKUNCOMPRESSED_FLAG);
        memcpy(cSizePtr+4, src, srcSize);
    }
    if (crcFlag) {
        U32 const crc32 = XXH32(cSizePtr+4, cSize, 0);  /* checksum of compressed data */
        LZ4F_writeLE32(cSizePtr+4+cSize, crc32);
    }
    return 4 + cSize + ((U32)crcFlag)*4;
}


static int LZ4F_compressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
{
    int const acceleration = (level < 0) ? -level + 1 : 1;
    LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent);
    if (cdict) {
        return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration);
    } else {
        return LZ4_compress_fast_extState_fastReset(ctx, src, dst, srcSize, dstCapacity, acceleration);
    }
}

static int LZ4F_compressBlock_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
{
    int const acceleration = (level < 0) ? -level + 1 : 1;
    (void)cdict; /* init once at beginning of frame */
    return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration);
}

static int LZ4F_compressBlockHC(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
{
    LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent);
    if (cdict) {
        return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity);
    }
    return LZ4_compress_HC_extStateHC_fastReset(ctx, src, dst, srcSize, dstCapacity, level);
}

static int LZ4F_compressBlockHC_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
{
    (void)level; (void)cdict; /* init once at beginning of frame */
    return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity);
}

static compressFunc_t LZ4F_selectCompression(LZ4F_blockMode_t blockMode, int level)
{
    if (level < LZ4HC_CLEVEL_MIN) {
        if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlock;
        return LZ4F_compressBlock_continue;
    }
    if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlockHC;
    return LZ4F_compressBlockHC_continue;
}

static int LZ4F_localSaveDict(LZ4F_cctx_t* cctxPtr)
{
    if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN)
        return LZ4_saveDict ((LZ4_stream_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB);
    return LZ4_saveDictHC ((LZ4_streamHC_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB);
}

typedef enum { notDone, fromTmpBuffer, fromSrcBuffer } LZ4F_lastBlockStatus;

/*! LZ4F_compressUpdate() :
 *  LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary.
 *  dstBuffer MUST be >= LZ4F_compressBound(srcSize, preferencesPtr).
 *  LZ4F_compressOptions_t structure is optional : you can provide NULL as argument.
 * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered.
 *           or an error code if it fails (which can be tested using LZ4F_isError())
 */
size_t LZ4F_compressUpdate(LZ4F_cctx* cctxPtr,
                           void* dstBuffer, size_t dstCapacity,
                     const void* srcBuffer, size_t srcSize,
                     const LZ4F_compressOptions_t* compressOptionsPtr)
{
    LZ4F_compressOptions_t cOptionsNull;
    size_t const blockSize = cctxPtr->maxBlockSize;
    const BYTE* srcPtr = (const BYTE*)srcBuffer;
    const BYTE* const srcEnd = srcPtr + srcSize;
    BYTE* const dstStart = (BYTE*)dstBuffer;
    BYTE* dstPtr = dstStart;
    LZ4F_lastBlockStatus lastBlockCompressed = notDone;
    compressFunc_t const compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel);

    DEBUGLOG(4, "LZ4F_compressUpdate (srcSize=%zu)", srcSize);

    if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC);
    if (dstCapacity < LZ4F_compressBound_internal(srcSize, &(cctxPtr->prefs), cctxPtr->tmpInSize))
        return err0r(LZ4F_ERROR_dstMaxSize_tooSmall);
    MEM_INIT(&cOptionsNull, 0, sizeof(cOptionsNull));
    if (compressOptionsPtr == NULL) compressOptionsPtr = &cOptionsNull;

    /* complete tmp buffer */
    if (cctxPtr->tmpInSize > 0) {   /* some data already within tmp buffer */
        size_t const sizeToCopy = blockSize - cctxPtr->tmpInSize;
        if (sizeToCopy > srcSize) {
            /* add src to tmpIn buffer */
            memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, srcSize);
            srcPtr = srcEnd;
            cctxPtr->tmpInSize += srcSize;
            /* still needs some CRC */
        } else {
            /* complete tmpIn block and then compress it */
            lastBlockCompressed = fromTmpBuffer;
            memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, sizeToCopy);
            srcPtr += sizeToCopy;

            dstPtr += LZ4F_makeBlock(dstPtr, cctxPtr->tmpIn, blockSize,
                                     compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
                                     cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag);

            if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += blockSize;
            cctxPtr->tmpInSize = 0;
        }
    }

    while ((size_t)(srcEnd - srcPtr) >= blockSize) {
        /* compress full blocks */
        lastBlockCompressed = fromSrcBuffer;
        dstPtr += LZ4F_makeBlock(dstPtr, srcPtr, blockSize,
                                 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
                                 cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag);
        srcPtr += blockSize;
    }

    if ((cctxPtr->prefs.autoFlush) && (srcPtr < srcEnd)) {
        /* compress remaining input < blockSize */
        lastBlockCompressed = fromSrcBuffer;
        dstPtr += LZ4F_makeBlock(dstPtr, srcPtr, srcEnd - srcPtr,
                                 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
                                 cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag);
        srcPtr  = srcEnd;
    }

    /* preserve dictionary if necessary */
    if ((cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) && (lastBlockCompressed==fromSrcBuffer)) {
        if (compressOptionsPtr->stableSrc) {
            cctxPtr->tmpIn = cctxPtr->tmpBuff;
        } else {
            int const realDictSize = LZ4F_localSaveDict(cctxPtr);
            if (realDictSize==0) return err0r(LZ4F_ERROR_GENERIC);
            cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize;
        }
    }

    /* keep tmpIn within limits */
    if ((cctxPtr->tmpIn + blockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)   /* necessarily LZ4F_blockLinked && lastBlockCompressed==fromTmpBuffer */
        && !(cctxPtr->prefs.autoFlush))
    {
        int const realDictSize = LZ4F_localSaveDict(cctxPtr);
        cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize;
    }

    /* some input data left, necessarily < blockSize */
    if (srcPtr < srcEnd) {
        /* fill tmp buffer */
        size_t const sizeToCopy = srcEnd - srcPtr;
        memcpy(cctxPtr->tmpIn, srcPtr, sizeToCopy);
        cctxPtr->tmpInSize = sizeToCopy;
    }

    if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled)
        XXH32_update(&(cctxPtr->xxh), srcBuffer, srcSize);

    cctxPtr->totalInSize += srcSize;
    return dstPtr - dstStart;
}


/*! LZ4F_flush() :
 *  Should you need to create compressed data immediately, without waiting for a block to be filled,
 *  you can call LZ4_flush(), which will immediately compress any remaining data stored within compressionContext.
 *  The result of the function is the number of bytes written into dstBuffer
 *  (it can be zero, this means there was no data left within compressionContext)
 *  The function outputs an error code if it fails (can be tested using LZ4F_isError())
 *  The LZ4F_compressOptions_t structure is optional : you can provide NULL as argument.
 */
size_t LZ4F_flush(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstCapacity, const LZ4F_compressOptions_t* compressOptionsPtr)
{
    BYTE* const dstStart = (BYTE*)dstBuffer;
    BYTE* dstPtr = dstStart;
    compressFunc_t compress;

    if (cctxPtr->tmpInSize == 0) return 0;   /* nothing to flush */
    if (cctxPtr->cStage != 1) return err0r(LZ4F_ERROR_GENERIC);
    if (dstCapacity < (cctxPtr->tmpInSize + 4)) return err0r(LZ4F_ERROR_dstMaxSize_tooSmall);   /* +4 : block header(4)  */
    (void)compressOptionsPtr;   /* not yet useful */

    /* select compression function */
    compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel);

    /* compress tmp buffer */
    dstPtr += LZ4F_makeBlock(dstPtr, cctxPtr->tmpIn, cctxPtr->tmpInSize,
                             compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
                             cctxPtr->cdict, cctxPtr->prefs.frameInfo.blockChecksumFlag);
    if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += cctxPtr->tmpInSize;
    cctxPtr->tmpInSize = 0;

    /* keep tmpIn within limits */
    if ((cctxPtr->tmpIn + cctxPtr->maxBlockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)) {  /* necessarily LZ4F_blockLinked */
        int realDictSize = LZ4F_localSaveDict(cctxPtr);
        cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize;
    }

    return dstPtr - dstStart;
}


/*! LZ4F_compressEnd() :
 * When you want to properly finish the compressed frame, just call LZ4F_compressEnd().
 * It will flush whatever data remained within compressionContext (like LZ4_flush())
 * but also properly finalize the frame, with an endMark and a checksum.
 * The result of the function is the number of bytes written into dstBuffer (necessarily >= 4 (endMark size))
 * The function outputs an error code if it fails (can be tested using LZ4F_isError())
 * The LZ4F_compressOptions_t structure is optional : you can provide NULL as argument.
 * compressionContext can then be used again, starting with LZ4F_compressBegin(). The preferences will remain the same.
 */
size_t LZ4F_compressEnd(LZ4F_cctx* cctxPtr, void* dstBuffer, size_t dstMaxSize, const LZ4F_compressOptions_t* compressOptionsPtr)
{
    BYTE* const dstStart = (BYTE*)dstBuffer;
    BYTE* dstPtr = dstStart;

    size_t const flushSize = LZ4F_flush(cctxPtr, dstBuffer, dstMaxSize, compressOptionsPtr);
    if (LZ4F_isError(flushSize)) return flushSize;
    dstPtr += flushSize;

    LZ4F_writeLE32(dstPtr, 0);
    dstPtr+=4;   /* endMark */

    if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) {
        U32 const xxh = XXH32_digest(&(cctxPtr->xxh));
        LZ4F_writeLE32(dstPtr, xxh);
        dstPtr+=4;   /* content Checksum */
    }

    cctxPtr->cStage = 0;   /* state is now re-usable (with identical preferences) */
    cctxPtr->maxBufferSize = 0;  /* reuse HC context */

    if (cctxPtr->prefs.frameInfo.contentSize) {
        if (cctxPtr->prefs.frameInfo.contentSize != cctxPtr->totalInSize)
            return err0r(LZ4F_ERROR_frameSize_wrong);
    }

    return dstPtr - dstStart;
}


/*-***************************************************
*   Frame Decompression
*****************************************************/

typedef enum {
    dstage_getFrameHeader=0, dstage_storeFrameHeader,
    dstage_init,
    dstage_getBlockHeader, dstage_storeBlockHeader,
    dstage_copyDirect, dstage_getBlockChecksum,
    dstage_getCBlock, dstage_storeCBlock,
    dstage_flushOut,
    dstage_getSuffix, dstage_storeSuffix,
    dstage_getSFrameSize, dstage_storeSFrameSize,
    dstage_skipSkippable
} dStage_t;

struct LZ4F_dctx_s {
    LZ4F_frameInfo_t frameInfo;
    U32    version;
    dStage_t dStage;
    U64    frameRemainingSize;
    size_t maxBlockSize;
    size_t maxBufferSize;
    BYTE*  tmpIn;
    size_t tmpInSize;
    size_t tmpInTarget;
    BYTE*  tmpOutBuffer;
    const BYTE* dict;
    size_t dictSize;
    BYTE*  tmpOut;
    size_t tmpOutSize;
    size_t tmpOutStart;
    XXH32_state_t xxh;
    XXH32_state_t blockChecksum;
    BYTE   header[LZ4F_HEADER_SIZE_MAX];
};  /* typedef'd to LZ4F_dctx in lz4frame.h */


/*! LZ4F_createDecompressionContext() :
 *  Create a decompressionContext object, which will track all decompression operations.
 *  Provides a pointer to a fully allocated and initialized LZ4F_decompressionContext object.
 *  Object can later be released using LZ4F_freeDecompressionContext().
 * @return : if != 0, there was an error during context creation.
 */
LZ4F_errorCode_t LZ4F_createDecompressionContext(LZ4F_dctx** LZ4F_decompressionContextPtr, unsigned versionNumber)
{
    LZ4F_dctx* const dctx = (LZ4F_dctx*)ALLOC_AND_ZERO(sizeof(LZ4F_dctx));
    if (dctx==NULL) return err0r(LZ4F_ERROR_GENERIC);

    dctx->version = versionNumber;
    *LZ4F_decompressionContextPtr = dctx;
    return LZ4F_OK_NoError;
}

LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx)
{
    LZ4F_errorCode_t result = LZ4F_OK_NoError;
    if (dctx != NULL) {   /* can accept NULL input, like free() */
      result = (LZ4F_errorCode_t)dctx->dStage;
      FREEMEM(dctx->tmpIn);
      FREEMEM(dctx->tmpOutBuffer);
      FREEMEM(dctx);
    }
    return result;
}


/*==---   Streaming Decompression operations   ---==*/

void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx)
{
    dctx->dStage = dstage_getFrameHeader;
    dctx->dict = NULL;
    dctx->dictSize = 0;
}


/*! LZ4F_headerSize() :
 *   @return : size of frame header
 *             or an error code, which can be tested using LZ4F_isError()
 */
static size_t LZ4F_headerSize(const void* src, size_t srcSize)
{
    /* minimal srcSize to determine header size */
    if (srcSize < 5) return err0r(LZ4F_ERROR_frameHeader_incomplete);

    /* special case : skippable frames */
    if ((LZ4F_readLE32(src) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) return 8;

    /* control magic number */
    if (LZ4F_readLE32(src) != LZ4F_MAGICNUMBER)
        return err0r(LZ4F_ERROR_frameType_unknown);

    /* Frame Header Size */
    {   BYTE const FLG = ((const BYTE*)src)[4];
        U32 const contentSizeFlag = (FLG>>3) & _1BIT;
        U32 const dictIDFlag = FLG & _1BIT;
        return minFHSize + (contentSizeFlag*8) + (dictIDFlag*4);
    }
}


/*! LZ4F_decodeHeader() :
 *  input   : `src` points at the **beginning of the frame**
 *  output  : set internal values of dctx, such as
 *            dctx->frameInfo and dctx->dStage.
 *            Also allocates internal buffers.
 *  @return : nb Bytes read from src (necessarily <= srcSize)
 *            or an error code (testable with LZ4F_isError())
 */
static size_t LZ4F_decodeHeader(LZ4F_dctx* dctx, const void* src, size_t srcSize)
{
    unsigned blockMode, blockChecksumFlag, contentSizeFlag, contentChecksumFlag, dictIDFlag, blockSizeID;
    size_t frameHeaderSize;
    const BYTE* srcPtr = (const BYTE*)src;

    /* need to decode header to get frameInfo */
    if (srcSize < minFHSize) return err0r(LZ4F_ERROR_frameHeader_incomplete);   /* minimal frame header size */
    MEM_INIT(&(dctx->frameInfo), 0, sizeof(dctx->frameInfo));

    /* special case : skippable frames */
    if ((LZ4F_readLE32(srcPtr) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) {
        dctx->frameInfo.frameType = LZ4F_skippableFrame;
        if (src == (void*)(dctx->header)) {
            dctx->tmpInSize = srcSize;
            dctx->tmpInTarget = 8;
            dctx->dStage = dstage_storeSFrameSize;
            return srcSize;
        } else {
            dctx->dStage = dstage_getSFrameSize;
            return 4;
        }
    }

    /* control magic number */
    if (LZ4F_readLE32(srcPtr) != LZ4F_MAGICNUMBER)
        return err0r(LZ4F_ERROR_frameType_unknown);
    dctx->frameInfo.frameType = LZ4F_frame;

    /* Flags */
    {   U32 const FLG = srcPtr[4];
        U32 const version = (FLG>>6) & _2BITS;
        blockChecksumFlag = (FLG>>4) & _1BIT;
        blockMode = (FLG>>5) & _1BIT;
        contentSizeFlag = (FLG>>3) & _1BIT;
        contentChecksumFlag = (FLG>>2) & _1BIT;
        dictIDFlag = FLG & _1BIT;
        /* validate */
        if (((FLG>>1)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set); /* Reserved bit */
        if (version != 1) return err0r(LZ4F_ERROR_headerVersion_wrong);        /* Version Number, only supported value */
    }

    /* Frame Header Size */
    frameHeaderSize = minFHSize + (contentSizeFlag*8) + (dictIDFlag*4);

    if (srcSize < frameHeaderSize) {
        /* not enough input to fully decode frame header */
        if (srcPtr != dctx->header)
            memcpy(dctx->header, srcPtr, srcSize);
        dctx->tmpInSize = srcSize;
        dctx->tmpInTarget = frameHeaderSize;
        dctx->dStage = dstage_storeFrameHeader;
        return srcSize;
    }

    {   U32 const BD = srcPtr[5];
        blockSizeID = (BD>>4) & _3BITS;
        /* validate */
        if (((BD>>7)&_1BIT) != 0) return err0r(LZ4F_ERROR_reservedFlag_set);   /* Reserved bit */
        if (blockSizeID < 4) return err0r(LZ4F_ERROR_maxBlockSize_invalid);    /* 4-7 only supported values for the time being */
        if (((BD>>0)&_4BITS) != 0) return err0r(LZ4F_ERROR_reservedFlag_set);  /* Reserved bits */
    }

    /* check header */
    {   BYTE const HC = LZ4F_headerChecksum(srcPtr+4, frameHeaderSize-5);
        if (HC != srcPtr[frameHeaderSize-1])
            return err0r(LZ4F_ERROR_headerChecksum_invalid);
    }

    /* save */
    dctx->frameInfo.blockMode = (LZ4F_blockMode_t)blockMode;
    dctx->frameInfo.blockChecksumFlag = (LZ4F_blockChecksum_t)blockChecksumFlag;
    dctx->frameInfo.contentChecksumFlag = (LZ4F_contentChecksum_t)contentChecksumFlag;
    dctx->frameInfo.blockSizeID = (LZ4F_blockSizeID_t)blockSizeID;
    dctx->maxBlockSize = LZ4F_getBlockSize(blockSizeID);
    if (contentSizeFlag)
        dctx->frameRemainingSize =
            dctx->frameInfo.contentSize = LZ4F_readLE64(srcPtr+6);
    if (dictIDFlag)
        dctx->frameInfo.dictID = LZ4F_readLE32(srcPtr + frameHeaderSize - 5);

    dctx->dStage = dstage_init;

    return frameHeaderSize;
}


/*! LZ4F_getFrameInfo() :
 *  This function extracts frame parameters (max blockSize, frame checksum, etc.).
 *  Usage is optional. Objective is to provide relevant information for allocation purposes.
 *  This function works in 2 situations :
 *   - At the beginning of a new frame, in which case it will decode this information from `srcBuffer`, and start the decoding process.
 *     Amount of input data provided must be large enough to successfully decode the frame header.
 *     A header size is variable, but is guaranteed to be <= LZ4F_HEADER_SIZE_MAX bytes. It's possible to provide more input data than this minimum.
 *   - After decoding has been started. In which case, no input is read, frame parameters are extracted from dctx.
 *  The number of bytes consumed from srcBuffer will be updated within *srcSizePtr (necessarily <= original value).
 *  Decompression must resume from (srcBuffer + *srcSizePtr).
 * @return : an hint about how many srcSize bytes LZ4F_decompress() expects for next call,
 *           or an error code which can be tested using LZ4F_isError()
 *  note 1 : in case of error, dctx is not modified. Decoding operations can resume from where they stopped.
 *  note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure.
 */
LZ4F_errorCode_t LZ4F_getFrameInfo(LZ4F_dctx* dctx, LZ4F_frameInfo_t* frameInfoPtr,
                                   const void* srcBuffer, size_t* srcSizePtr)
{
    if (dctx->dStage > dstage_storeFrameHeader) {  /* assumption :  dstage_* header enum at beginning of range */
        /* frameInfo already decoded */
        size_t o=0, i=0;
        *srcSizePtr = 0;
        *frameInfoPtr = dctx->frameInfo;
        /* returns : recommended nb of bytes for LZ4F_decompress() */
        return LZ4F_decompress(dctx, NULL, &o, NULL, &i, NULL);
    } else {
        if (dctx->dStage == dstage_storeFrameHeader) {
            /* frame decoding already started, in the middle of header => automatic fail */
            *srcSizePtr = 0;
            return err0r(LZ4F_ERROR_frameDecoding_alreadyStarted);
        } else {
            size_t decodeResult;
            size_t const hSize = LZ4F_headerSize(srcBuffer, *srcSizePtr);
            if (LZ4F_isError(hSize)) { *srcSizePtr=0; return hSize; }
            if (*srcSizePtr < hSize) {
                *srcSizePtr=0;
                return err0r(LZ4F_ERROR_frameHeader_incomplete);
            }

            decodeResult = LZ4F_decodeHeader(dctx, srcBuffer, hSize);
            if (LZ4F_isError(decodeResult)) {
                *srcSizePtr = 0;
            } else {
                *srcSizePtr = decodeResult;
                decodeResult = BHSize;   /* block header size */
            }
            *frameInfoPtr = dctx->frameInfo;
            return decodeResult;
    }   }
}


/* LZ4F_updateDict() :
 * only used for LZ4F_blockLinked mode */
static void LZ4F_updateDict(LZ4F_dctx* dctx,
                      const BYTE* dstPtr, size_t dstSize, const BYTE* dstBufferStart,
                      unsigned withinTmp)
{
    if (dctx->dictSize==0)
        dctx->dict = (const BYTE*)dstPtr;   /* priority to dictionary continuity */

    if (dctx->dict + dctx->dictSize == dstPtr) {  /* dictionary continuity, directly within dstBuffer */
        dctx->dictSize += dstSize;
        return;
    }

    if (dstPtr - dstBufferStart + dstSize >= 64 KB) {  /* history in dstBuffer becomes large enough to become dictionary */
        dctx->dict = (const BYTE*)dstBufferStart;
        dctx->dictSize = dstPtr - dstBufferStart + dstSize;
        return;
    }

    assert(dstSize < 64 KB);   /* if dstSize >= 64 KB, dictionary would be set into dstBuffer directly */

    /* dstBuffer does not contain whole useful history (64 KB), so it must be saved within tmpOut */

    if ((withinTmp) && (dctx->dict == dctx->tmpOutBuffer)) {   /* continue history within tmpOutBuffer */
        /* withinTmp expectation : content of [dstPtr,dstSize] is same as [dict+dictSize,dstSize], so we just extend it */
        assert(dctx->dict + dctx->dictSize == dctx->tmpOut + dctx->tmpOutStart);
        dctx->dictSize += dstSize;
        return;
    }

    if (withinTmp) { /* copy relevant dict portion in front of tmpOut within tmpOutBuffer */
        size_t const preserveSize = dctx->tmpOut - dctx->tmpOutBuffer;
        size_t copySize = 64 KB - dctx->tmpOutSize;
        const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart;
        if (dctx->tmpOutSize > 64 KB) copySize = 0;
        if (copySize > preserveSize) copySize = preserveSize;

        memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize);

        dctx->dict = dctx->tmpOutBuffer;
        dctx->dictSize = preserveSize + dctx->tmpOutStart + dstSize;
        return;
    }

    if (dctx->dict == dctx->tmpOutBuffer) {    /* copy dst into tmp to complete dict */
        if (dctx->dictSize + dstSize > dctx->maxBufferSize) {  /* tmp buffer not large enough */
            size_t const preserveSize = 64 KB - dstSize;
            memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize);
            dctx->dictSize = preserveSize;
        }
        memcpy(dctx->tmpOutBuffer + dctx->dictSize, dstPtr, dstSize);
        dctx->dictSize += dstSize;
        return;
    }

    /* join dict & dest into tmp */
    {   size_t preserveSize = 64 KB - dstSize;
        if (preserveSize > dctx->dictSize) preserveSize = dctx->dictSize;
        memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize);
        memcpy(dctx->tmpOutBuffer + preserveSize, dstPtr, dstSize);
        dctx->dict = dctx->tmpOutBuffer;
        dctx->dictSize = preserveSize + dstSize;
    }
}



/*! LZ4F_decompress() :
 *  Call this function repetitively to regenerate compressed data in srcBuffer.
 *  The function will attempt to decode up to *srcSizePtr bytes from srcBuffer
 *  into dstBuffer of capacity *dstSizePtr.
 *
 *  The number of bytes regenerated into dstBuffer will be provided within *dstSizePtr (necessarily <= original value).
 *
 *  The number of bytes effectively read from srcBuffer will be provided within *srcSizePtr (necessarily <= original value).
 *  If number of bytes read is < number of bytes provided, then decompression operation is not complete.
 *  Remaining data will have to be presented again in a subsequent invocation.
 *
 *  The function result is an hint of the better srcSize to use for next call to LZ4F_decompress.
 *  Schematically, it's the size of the current (or remaining) compressed block + header of next block.
 *  Respecting the hint provides a small boost to performance, since it allows less buffer shuffling.
 *  Note that this is just a hint, and it's always possible to any srcSize value.
 *  When a frame is fully decoded, @return will be 0.
 *  If decompression failed, @return is an error code which can be tested using LZ4F_isError().
 */
size_t LZ4F_decompress(LZ4F_dctx* dctx,
                       void* dstBuffer, size_t* dstSizePtr,
                       const void* srcBuffer, size_t* srcSizePtr,
                       const LZ4F_decompressOptions_t* decompressOptionsPtr)
{
    LZ4F_decompressOptions_t optionsNull;
    const BYTE* const srcStart = (const BYTE*)srcBuffer;
    const BYTE* const srcEnd = srcStart + *srcSizePtr;
    const BYTE* srcPtr = srcStart;
    BYTE* const dstStart = (BYTE*)dstBuffer;
    BYTE* const dstEnd = dstStart + *dstSizePtr;
    BYTE* dstPtr = dstStart;
    const BYTE* selectedIn = NULL;
    unsigned doAnotherStage = 1;
    size_t nextSrcSizeHint = 1;


    MEM_INIT(&optionsNull, 0, sizeof(optionsNull));
    if (decompressOptionsPtr==NULL) decompressOptionsPtr = &optionsNull;
    *srcSizePtr = 0;
    *dstSizePtr = 0;

    /* behaves as a state machine */

    while (doAnotherStage) {

        switch(dctx->dStage)
        {

        case dstage_getFrameHeader:
            if ((size_t)(srcEnd-srcPtr) >= maxFHSize) {  /* enough to decode - shortcut */
                size_t const hSize = LZ4F_decodeHeader(dctx, srcPtr, srcEnd-srcPtr);  /* will update dStage appropriately */
                if (LZ4F_isError(hSize)) return hSize;
                srcPtr += hSize;
                break;
            }
            dctx->tmpInSize = 0;
            if (srcEnd-srcPtr == 0) return minFHSize;   /* 0-size input */
            dctx->tmpInTarget = minFHSize;   /* minimum size to decode header */
            dctx->dStage = dstage_storeFrameHeader;
            /* fall-through */

        case dstage_storeFrameHeader:
            {   size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr));
                memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
                dctx->tmpInSize += sizeToCopy;
                srcPtr += sizeToCopy;
            }
            if (dctx->tmpInSize < dctx->tmpInTarget) {
                nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize;   /* rest of header + nextBlockHeader */
                doAnotherStage = 0;   /* not enough src data, ask for some more */
                break;
            }
            {   size_t const hSize = LZ4F_decodeHeader(dctx, dctx->header, dctx->tmpInTarget);  /* will update dStage appropriately */
                if (LZ4F_isError(hSize)) return hSize;
            }
            break;

        case dstage_init:
            if (dctx->frameInfo.contentChecksumFlag) XXH32_reset(&(dctx->xxh), 0);
            /* internal buffers allocation */
            {   size_t const bufferNeeded = dctx->maxBlockSize
                    + ((dctx->frameInfo.blockMode==LZ4F_blockLinked) * 128 KB);
                if (bufferNeeded > dctx->maxBufferSize) {   /* tmp buffers too small */
                    dctx->maxBufferSize = 0;   /* ensure allocation will be re-attempted on next entry*/
                    FREEMEM(dctx->tmpIn);
                    dctx->tmpIn = (BYTE*)ALLOC(dctx->maxBlockSize + 4 /* block checksum */);
                    if (dctx->tmpIn == NULL)
                        return err0r(LZ4F_ERROR_allocation_failed);
                    FREEMEM(dctx->tmpOutBuffer);
                    dctx->tmpOutBuffer= (BYTE*)ALLOC(bufferNeeded);
                    if (dctx->tmpOutBuffer== NULL)
                        return err0r(LZ4F_ERROR_allocation_failed);
                    dctx->maxBufferSize = bufferNeeded;
            }   }
            dctx->tmpInSize = 0;
            dctx->tmpInTarget = 0;
            dctx->tmpOut = dctx->tmpOutBuffer;
            dctx->tmpOutStart = 0;
            dctx->tmpOutSize = 0;

            dctx->dStage = dstage_getBlockHeader;
            /* fall-through */

        case dstage_getBlockHeader:
            if ((size_t)(srcEnd - srcPtr) >= BHSize) {
                selectedIn = srcPtr;
                srcPtr += BHSize;
            } else {
                /* not enough input to read cBlockSize field */
                dctx->tmpInSize = 0;
                dctx->dStage = dstage_storeBlockHeader;
            }

            if (dctx->dStage == dstage_storeBlockHeader)   /* can be skipped */
        case dstage_storeBlockHeader:
            {   size_t const remainingInput = (size_t)(srcEnd - srcPtr);
                size_t const wantedData = BHSize - dctx->tmpInSize;
                size_t const sizeToCopy = MIN(wantedData, remainingInput);
                memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
                srcPtr += sizeToCopy;
                dctx->tmpInSize += sizeToCopy;

                if (dctx->tmpInSize < BHSize) {   /* not enough input for cBlockSize */
                    nextSrcSizeHint = BHSize - dctx->tmpInSize;
                    doAnotherStage  = 0;
                    break;
                }
                selectedIn = dctx->tmpIn;
            }   /* if (dctx->dStage == dstage_storeBlockHeader) */

        /* decode block header */
            {   size_t const nextCBlockSize = LZ4F_readLE32(selectedIn) & 0x7FFFFFFFU;
                size_t const crcSize = dctx->frameInfo.blockChecksumFlag * 4;
                if (nextCBlockSize==0) {  /* frameEnd signal, no more block */
                    dctx->dStage = dstage_getSuffix;
                    break;
                }
                if (nextCBlockSize > dctx->maxBlockSize)
                    return err0r(LZ4F_ERROR_maxBlockSize_invalid);
                if (LZ4F_readLE32(selectedIn) & LZ4F_BLOCKUNCOMPRESSED_FLAG) {
                    /* next block is uncompressed */
                    dctx->tmpInTarget = nextCBlockSize;
                    if (dctx->frameInfo.blockChecksumFlag) {
                        XXH32_reset(&dctx->blockChecksum, 0);
                    }
                    dctx->dStage = dstage_copyDirect;
                    break;
                }
                /* next block is a compressed block */
                dctx->tmpInTarget = nextCBlockSize + crcSize;
                dctx->dStage = dstage_getCBlock;
                if (dstPtr==dstEnd) {
                    nextSrcSizeHint = nextCBlockSize + crcSize + BHSize;
                    doAnotherStage = 0;
                }
                break;
            }

        case dstage_copyDirect:   /* uncompressed block */
            {   size_t const minBuffSize = MIN((size_t)(srcEnd-srcPtr), (size_t)(dstEnd-dstPtr));
                size_t const sizeToCopy = MIN(dctx->tmpInTarget, minBuffSize);
                memcpy(dstPtr, srcPtr, sizeToCopy);
                if (dctx->frameInfo.blockChecksumFlag) {
                    XXH32_update(&dctx->blockChecksum, srcPtr, sizeToCopy);
                }
                if (dctx->frameInfo.contentChecksumFlag)
                    XXH32_update(&dctx->xxh, srcPtr, sizeToCopy);
                if (dctx->frameInfo.contentSize)
                    dctx->frameRemainingSize -= sizeToCopy;

                /* history management (linked blocks only)*/
                if (dctx->frameInfo.blockMode == LZ4F_blockLinked)
                    LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 0);

                srcPtr += sizeToCopy;
                dstPtr += sizeToCopy;
                if (sizeToCopy == dctx->tmpInTarget) {   /* all done */
                    if (dctx->frameInfo.blockChecksumFlag) {
                        dctx->tmpInSize = 0;
                        dctx->dStage = dstage_getBlockChecksum;
                    } else
                        dctx->dStage = dstage_getBlockHeader;  /* new block */
                    break;
                }
                dctx->tmpInTarget -= sizeToCopy;  /* need to copy more */
                nextSrcSizeHint = dctx->tmpInTarget +
                                + dctx->frameInfo.contentChecksumFlag * 4  /* block checksum */
                                + BHSize /* next header size */;
                doAnotherStage = 0;
                break;
            }

        /* check block checksum for recently transferred uncompressed block */
        case dstage_getBlockChecksum:
            {   const void* crcSrc;
                if ((srcEnd-srcPtr >= 4) && (dctx->tmpInSize==0)) {
                    crcSrc = srcPtr;
                    srcPtr += 4;
                } else {
                    size_t const stillToCopy = 4 - dctx->tmpInSize;
                    size_t const sizeToCopy = MIN(stillToCopy, (size_t)(srcEnd-srcPtr));
                    memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
                    dctx->tmpInSize += sizeToCopy;
                    srcPtr += sizeToCopy;
                    if (dctx->tmpInSize < 4) {  /* all input consumed */
                        doAnotherStage = 0;
                        break;
                    }
                    crcSrc = dctx->header;
                }
                {   U32 const readCRC = LZ4F_readLE32(crcSrc);
                    U32 const calcCRC = XXH32_digest(&dctx->blockChecksum);
                    if (readCRC != calcCRC)
                        return err0r(LZ4F_ERROR_blockChecksum_invalid);
            }   }
            dctx->dStage = dstage_getBlockHeader;  /* new block */
            break;

        case dstage_getCBlock:
            if ((size_t)(srcEnd-srcPtr) < dctx->tmpInTarget) {
                dctx->tmpInSize = 0;
                dctx->dStage = dstage_storeCBlock;
                break;
            }
            /* input large enough to read full block directly */
            selectedIn = srcPtr;
            srcPtr += dctx->tmpInTarget;

            if (0)  /* jump over next block */
        case dstage_storeCBlock:
            {   size_t const wantedData = dctx->tmpInTarget - dctx->tmpInSize;
                size_t const inputLeft = (size_t)(srcEnd-srcPtr);
                size_t const sizeToCopy = MIN(wantedData, inputLeft);
                memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
                dctx->tmpInSize += sizeToCopy;
                srcPtr += sizeToCopy;
                if (dctx->tmpInSize < dctx->tmpInTarget) { /* need more input */
                    nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize;
                    doAnotherStage=0;
                    break;
                }
                selectedIn = dctx->tmpIn;
            }

            /* At this stage, input is large enough to decode a block */
            if (dctx->frameInfo.blockChecksumFlag) {
                dctx->tmpInTarget -= 4;
                assert(selectedIn != NULL);  /* selectedIn is defined at this stage (either srcPtr, or dctx->tmpIn) */
                {   U32 const readBlockCrc = LZ4F_readLE32(selectedIn + dctx->tmpInTarget);
                    U32 const calcBlockCrc = XXH32(selectedIn, dctx->tmpInTarget, 0);
                    if (readBlockCrc != calcBlockCrc)
                        return err0r(LZ4F_ERROR_blockChecksum_invalid);
            }   }

            if ((size_t)(dstEnd-dstPtr) >= dctx->maxBlockSize) {
                const char* dict = (const char*)dctx->dict;
                size_t dictSize = dctx->dictSize;
                int decodedSize;
                if (dict && dictSize > 1 GB) {
                    /* the dictSize param is an int, avoid truncation / sign issues */
                    dict += dictSize - 64 KB;
                    dictSize = 64 KB;
                }
                /* enough capacity in `dst` to decompress directly there */
                decodedSize = LZ4_decompress_safe_usingDict(
                        (const char*)selectedIn, (char*)dstPtr,
                        (int)dctx->tmpInTarget, (int)dctx->maxBlockSize,
                        dict, (int)dictSize);
                if (decodedSize < 0) return err0r(LZ4F_ERROR_GENERIC);   /* decompression failed */
                if (dctx->frameInfo.contentChecksumFlag)
                    XXH32_update(&(dctx->xxh), dstPtr, decodedSize);
                if (dctx->frameInfo.contentSize)
                    dctx->frameRemainingSize -= decodedSize;

                /* dictionary management */
                if (dctx->frameInfo.blockMode==LZ4F_blockLinked)
                    LZ4F_updateDict(dctx, dstPtr, decodedSize, dstStart, 0);

                dstPtr += decodedSize;
                dctx->dStage = dstage_getBlockHeader;
                break;
            }

            /* not enough place into dst : decode into tmpOut */
            /* ensure enough place for tmpOut */
            if (dctx->frameInfo.blockMode == LZ4F_blockLinked) {
                if (dctx->dict == dctx->tmpOutBuffer) {
                    if (dctx->dictSize > 128 KB) {
                        memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - 64 KB, 64 KB);
                        dctx->dictSize = 64 KB;
                    }
                    dctx->tmpOut = dctx->tmpOutBuffer + dctx->dictSize;
                } else {  /* dict not within tmp */
                    size_t const reservedDictSpace = MIN(dctx->dictSize, 64 KB);
                    dctx->tmpOut = dctx->tmpOutBuffer + reservedDictSpace;
            }   }

            /* Decode block */
            {   const char* dict = (const char*)dctx->dict;
                size_t dictSize = dctx->dictSize;
                int decodedSize;
                if (dict && dictSize > 1 GB) {
                    /* the dictSize param is an int, avoid truncation / sign issues */
                    dict += dictSize - 64 KB;
                    dictSize = 64 KB;
                }
                decodedSize = LZ4_decompress_safe_usingDict(
                        (const char*)selectedIn, (char*)dctx->tmpOut,
                        (int)dctx->tmpInTarget, (int)dctx->maxBlockSize,
                        dict, (int)dictSize);
                if (decodedSize < 0)  /* decompression failed */
                    return err0r(LZ4F_ERROR_decompressionFailed);
                if (dctx->frameInfo.contentChecksumFlag)
                    XXH32_update(&(dctx->xxh), dctx->tmpOut, decodedSize);
                if (dctx->frameInfo.contentSize)
                    dctx->frameRemainingSize -= decodedSize;
                dctx->tmpOutSize = decodedSize;
                dctx->tmpOutStart = 0;
                dctx->dStage = dstage_flushOut;
            }
            /* fall-through */

        case dstage_flushOut:  /* flush decoded data from tmpOut to dstBuffer */
            {   size_t const sizeToCopy = MIN(dctx->tmpOutSize - dctx->tmpOutStart, (size_t)(dstEnd-dstPtr));
                memcpy(dstPtr, dctx->tmpOut + dctx->tmpOutStart, sizeToCopy);

                /* dictionary management */
                if (dctx->frameInfo.blockMode == LZ4F_blockLinked)
                    LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 1 /*withinTmp*/);

                dctx->tmpOutStart += sizeToCopy;
                dstPtr += sizeToCopy;

                if (dctx->tmpOutStart == dctx->tmpOutSize) { /* all flushed */
                    dctx->dStage = dstage_getBlockHeader;  /* get next block */
                    break;
                }
                /* could not flush everything : stop there, just request a block header */
                doAnotherStage = 0;
                nextSrcSizeHint = BHSize;
                break;
            }

        case dstage_getSuffix:
            if (dctx->frameRemainingSize)
                return err0r(LZ4F_ERROR_frameSize_wrong);   /* incorrect frame size decoded */
            if (!dctx->frameInfo.contentChecksumFlag) {  /* no checksum, frame is completed */
                nextSrcSizeHint = 0;
                LZ4F_resetDecompressionContext(dctx);
                doAnotherStage = 0;
                break;
            }
            if ((srcEnd - srcPtr) < 4) {  /* not enough size for entire CRC */
                dctx->tmpInSize = 0;
                dctx->dStage = dstage_storeSuffix;
            } else {
                selectedIn = srcPtr;
                srcPtr += 4;
            }

            if (dctx->dStage == dstage_storeSuffix)   /* can be skipped */
        case dstage_storeSuffix:
            {   size_t const remainingInput = (size_t)(srcEnd - srcPtr);
                size_t const wantedData = 4 - dctx->tmpInSize;
                size_t const sizeToCopy = MIN(wantedData, remainingInput);
                memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
                srcPtr += sizeToCopy;
                dctx->tmpInSize += sizeToCopy;
                if (dctx->tmpInSize < 4) { /* not enough input to read complete suffix */
                    nextSrcSizeHint = 4 - dctx->tmpInSize;
                    doAnotherStage=0;
                    break;
                }
                selectedIn = dctx->tmpIn;
            }   /* if (dctx->dStage == dstage_storeSuffix) */

        /* case dstage_checkSuffix: */   /* no direct entry, avoid initialization risks */
            {   U32 const readCRC = LZ4F_readLE32(selectedIn);
                U32 const resultCRC = XXH32_digest(&(dctx->xxh));
                if (readCRC != resultCRC)
                    return err0r(LZ4F_ERROR_contentChecksum_invalid);
                nextSrcSizeHint = 0;
                LZ4F_resetDecompressionContext(dctx);
                doAnotherStage = 0;
                break;
            }

        case dstage_getSFrameSize:
            if ((srcEnd - srcPtr) >= 4) {
                selectedIn = srcPtr;
                srcPtr += 4;
            } else {
                /* not enough input to read cBlockSize field */
                dctx->tmpInSize = 4;
                dctx->tmpInTarget = 8;
                dctx->dStage = dstage_storeSFrameSize;
            }

            if (dctx->dStage == dstage_storeSFrameSize)
        case dstage_storeSFrameSize:
            {   size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize,
                                             (size_t)(srcEnd - srcPtr) );
                memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
                srcPtr += sizeToCopy;
                dctx->tmpInSize += sizeToCopy;
                if (dctx->tmpInSize < dctx->tmpInTarget) {
                    /* not enough input to get full sBlockSize; wait for more */
                    nextSrcSizeHint = dctx->tmpInTarget - dctx->tmpInSize;
                    doAnotherStage = 0;
                    break;
                }
                selectedIn = dctx->header + 4;
            }   /* if (dctx->dStage == dstage_storeSFrameSize) */

        /* case dstage_decodeSFrameSize: */   /* no direct entry */
            {   size_t const SFrameSize = LZ4F_readLE32(selectedIn);
                dctx->frameInfo.contentSize = SFrameSize;
                dctx->tmpInTarget = SFrameSize;
                dctx->dStage = dstage_skipSkippable;
                break;
            }

        case dstage_skipSkippable:
            {   size_t const skipSize = MIN(dctx->tmpInTarget, (size_t)(srcEnd-srcPtr));
                srcPtr += skipSize;
                dctx->tmpInTarget -= skipSize;
                doAnotherStage = 0;
                nextSrcSizeHint = dctx->tmpInTarget;
                if (nextSrcSizeHint) break;  /* still more to skip */
                /* frame fully skipped : prepare context for a new frame */
                LZ4F_resetDecompressionContext(dctx);
                break;
            }
        }   /* switch (dctx->dStage) */
    }   /* while (doAnotherStage) */

    /* preserve history within tmp whenever necessary */
    LZ4F_STATIC_ASSERT((unsigned)dstage_init == 2);
    if ( (dctx->frameInfo.blockMode==LZ4F_blockLinked)  /* next block will use up to 64KB from previous ones */
      && (dctx->dict != dctx->tmpOutBuffer)             /* dictionary is not already within tmp */
      && (!decompressOptionsPtr->stableDst)             /* cannot rely on dst data to remain there for next call */
      && ((unsigned)(dctx->dStage)-2 < (unsigned)(dstage_getSuffix)-2) )  /* valid stages : [init ... getSuffix[ */
    {
        if (dctx->dStage == dstage_flushOut) {
            size_t const preserveSize = dctx->tmpOut - dctx->tmpOutBuffer;
            size_t copySize = 64 KB - dctx->tmpOutSize;
            const BYTE* oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart;
            if (dctx->tmpOutSize > 64 KB) copySize = 0;
            if (copySize > preserveSize) copySize = preserveSize;

            if (copySize > 0)
                memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize);

            dctx->dict = dctx->tmpOutBuffer;
            dctx->dictSize = preserveSize + dctx->tmpOutStart;
        } else {
            const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize;
            size_t const newDictSize = MIN(dctx->dictSize, 64 KB);

            if (newDictSize > 0)
                memcpy(dctx->tmpOutBuffer, oldDictEnd - newDictSize, newDictSize);

            dctx->dict = dctx->tmpOutBuffer;
            dctx->dictSize = newDictSize;
            dctx->tmpOut = dctx->tmpOutBuffer + newDictSize;
        }
    }

    *srcSizePtr = (srcPtr - srcStart);
    *dstSizePtr = (dstPtr - dstStart);
    return nextSrcSizeHint;
}

/*! LZ4F_decompress_usingDict() :
 *  Same as LZ4F_decompress(), using a predefined dictionary.
 *  Dictionary is used "in place", without any preprocessing.
 *  It must remain accessible throughout the entire frame decoding.
 */
size_t LZ4F_decompress_usingDict(LZ4F_dctx* dctx,
                       void* dstBuffer, size_t* dstSizePtr,
                       const void* srcBuffer, size_t* srcSizePtr,
                       const void* dict, size_t dictSize,
                       const LZ4F_decompressOptions_t* decompressOptionsPtr)
{
    if (dctx->dStage <= dstage_init) {
        dctx->dict = (const BYTE*)dict;
        dctx->dictSize = dictSize;
    }
    return LZ4F_decompress(dctx, dstBuffer, dstSizePtr,
                           srcBuffer, srcSizePtr,
                           decompressOptionsPtr);
}