summaryrefslogtreecommitdiffstats
path: root/doc/binary.n
diff options
context:
space:
mode:
authordkf <donal.k.fellows@manchester.ac.uk>2008-06-29 22:28:20 (GMT)
committerdkf <donal.k.fellows@manchester.ac.uk>2008-06-29 22:28:20 (GMT)
commit131a59f68c8b1673c1fcd9b035bb7791eea72bc9 (patch)
treecdb9d2219449fc94b2623bab245f0b0cdcf45c52 /doc/binary.n
parent7b7bac281c6cba5b97c0962a4032cc39dcc6308f (diff)
downloadtcl-131a59f68c8b1673c1fcd9b035bb7791eea72bc9.zip
tcl-131a59f68c8b1673c1fcd9b035bb7791eea72bc9.tar.gz
tcl-131a59f68c8b1673c1fcd9b035bb7791eea72bc9.tar.bz2
Prepare Tcl's docs for life as 8.6 (remove out of date change bars, fix
typedefs, add a few missing bits)
Diffstat (limited to 'doc/binary.n')
-rw-r--r--doc/binary.n32
1 files changed, 3 insertions, 29 deletions
diff --git a/doc/binary.n b/doc/binary.n
index 16f7533..95373fb 100644
--- a/doc/binary.n
+++ b/doc/binary.n
@@ -4,7 +4,7 @@
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\"
-'\" RCS: @(#) $Id: binary.n,v 1.38 2008/01/02 21:21:37 dkf Exp $
+'\" RCS: @(#) $Id: binary.n,v 1.39 2008/06/29 22:28:24 dkf Exp $
'\"
.so man.macros
.TH binary n 8.0 Tcl "Tcl Built-In Commands"
@@ -212,13 +212,11 @@ will return a string equivalent to
\fB\ex00\ex03\exff\exfd\ex01\ex02\fR.
.RE
.IP \fBt\fR 5
-.VS 8.5
This form (mnemonically \fItiny\fR) is the same as \fBs\fR and \fBS\fR
except that it stores the 16-bit integers in the output string in the
native byte order of the machine where the Tcl script is running.
To determine what the native byte order of the machine is, refer to
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
-.VE 8.5
.IP \fBi\fR 5
This form is the same as \fBc\fR except that it stores one or more
32-bit integers in little-endian byte order in the output string. The
@@ -244,14 +242,12 @@ will return a string equivalent to
\fB\ex00\ex00\ex00\ex03\exff\exff\exff\exfd\ex00\ex01\ex00\ex00\fR
.RE
.IP \fBn\fR 5
-.VS 8.5
This form (mnemonically \fInumber\fR or \fInormal\fR) is the same as
\fBi\fR and \fBI\fR except that it stores the 32-bit integers in the
output string in the native byte order of the machine where the Tcl
script is running.
To determine what the native byte order of the machine is, refer to
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
-.VE 8.5
.IP \fBw\fR 5
This form is the same as \fBc\fR except that it stores one or more
64-bit integers in little-endian byte order in the output string. The
@@ -275,14 +271,12 @@ For example,
will return the string \fBBigEndian\fR
.RE
.IP \fBm\fR 5
-.VS 8.5
This form (mnemonically the mirror of \fBw\fR) is the same as \fBw\fR
and \fBW\fR except that it stores the 64-bit integers in the output
string in the native byte order of the machine where the Tcl script is
running.
To determine what the native byte order of the machine is, refer to
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
-.VE 8.5
.IP \fBf\fR 5
This form is the same as \fBc\fR except that it stores one or more one
or more single-precision floating point numbers in the machine's native
@@ -304,18 +298,14 @@ will return a string equivalent to
\fB\excd\excc\excc\ex3f\ex9a\ex99\ex59\ex40\fR.
.RE
.IP \fBr\fR 5
-.VS 8.5
This form (mnemonically \fIreal\fR) is the same as \fBf\fR except that
it stores the single-precision floating point numbers in little-endian
order. This conversion only produces meaningful output when used on
machines which use the IEEE floating point representation (very
common, but not universal.)
-.VE 8.5
.IP \fBR\fR 5
-.VS 8.5
This form is the same as \fBr\fR except that it stores the
single-precision floating point numbers in big-endian order.
-.VE 8.5
.IP \fBd\fR 5
This form is the same as \fBf\fR except that it stores one or more one
or more double-precision floating point numbers in the machine's native
@@ -329,18 +319,14 @@ will return a string equivalent to
\fB\ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f\fR.
.RE
.IP \fBq\fR 5
-.VS 8.5
This form (mnemonically the mirror of \fBd\fR) is the same as \fBd\fR
except that it stores the double-precision floating point numbers in
little-endian order. This conversion only produces meaningful output
when used on machines which use the IEEE floating point representation
(very common, but not universal.)
-.VE 8.5
.IP \fBQ\fR 5
-.VS 8.5
This form is the same as \fBq\fR except that it stores the
double-precision floating point numbers in big-endian order.
-.VE 8.5
.IP \fBx\fR 5
Stores \fIcount\fR null bytes in the output string. If \fIcount\fR is
not specified, stores one null byte. If \fIcount\fR is \fB*\fR,
@@ -597,13 +583,11 @@ will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBt\fR 5
-.VS 8.5
The data is interpreted as \fIcount\fR 16-bit signed integers
represented in the native byte order of the machine running the Tcl
script. It is otherwise identical to \fBs\fR and \fBS\fR.
To determine what the native byte order of the machine is, refer to
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
-.VE 8.5
.IP \fBi\fR 5
The data is interpreted as \fIcount\fR 32-bit signed integers
represented in little-endian byte order. The integers are stored in
@@ -637,13 +621,11 @@ will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBn\fR 5
-.VS 8.5
The data is interpreted as \fIcount\fR 32-bit signed integers
represented in the native byte order of the machine running the Tcl
script. It is otherwise identical to \fBi\fR and \fBI\fR.
To determine what the native byte order of the machine is, refer to
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
-.VE 8.5
.IP \fBw\fR 5
The data is interpreted as \fIcount\fR 64-bit signed integers
represented in little-endian byte order. The integers are stored in
@@ -673,13 +655,11 @@ will return \fB2\fR with \fB21474836487\fR stored in \fIvar1\fR and \fB\-16\fR
stored in \fIvar2\fR.
.RE
.IP \fBm\fR 5
-.VS 8.5
The data is interpreted as \fIcount\fR 64-bit signed integers
represented in the native byte order of the machine running the Tcl
script. It is otherwise identical to \fBw\fR and \fBW\fR.
To determine what the native byte order of the machine is, refer to
the \fBbyteOrder\fR element of the \fBtcl_platform\fR array.
-.VE 8.5
.IP \fBf\fR 5
The data is interpreted as \fIcount\fR single-precision floating point
numbers in the machine's native representation. The floating point
@@ -700,19 +680,15 @@ will return \fB1\fR with \fB1.6000000238418579\fR stored in
\fIvar1\fR.
.RE
.IP \fBr\fR 5
-.VS 8.5
This form is the same as \fBf\fR except that the data is interpreted
as \fIcount\fR single-precision floating point number in little-endian
order. This conversion is not portable to the minority of systems not
using IEEE floating point representations.
-.VE 8.5
.IP \fBR\fR 5
-.VS 8.5
This form is the same as \fBf\fR except that the data is interpreted
as \fIcount\fR single-precision floating point number in big-endian
order. This conversion is not portable to the minority of systems not
using IEEE floating point representations.
-.VE 8.5
.IP \fBd\fR 5
This form is the same as \fBf\fR except that the data is interpreted
as \fIcount\fR double-precision floating point numbers in the
@@ -726,19 +702,15 @@ will return \fB1\fR with \fB1.6000000000000001\fR
stored in \fIvar1\fR.
.RE
.IP \fBq\fR 5
-.VS 8.5
This form is the same as \fBd\fR except that the data is interpreted
as \fIcount\fR double-precision floating point number in little-endian
order. This conversion is not portable to the minority of systems not
using IEEE floating point representations.
-.VE 8.5
.IP \fBQ\fR 5
-.VS 8.5
This form is the same as \fBd\fR except that the data is interpreted
as \fIcount\fR double-precision floating point number in big-endian
order. This conversion is not portable to the minority of systems not
using IEEE floating point representations.
-.VE 8.5
.IP \fBx\fR 5
Moves the cursor forward \fIcount\fR bytes in \fIstring\fR. If
\fIcount\fR is \fB*\fR or is larger than the number of bytes after the
@@ -780,6 +752,7 @@ will return \fB2\fR with \fB1 2\fR stored in \fIvar1\fR and \fB020304\fR
stored in \fIvar2\fR.
.RE
.SH "PORTABILITY ISSUES"
+.PP
The \fBr\fR, \fBR\fR, \fBq\fR and \fBQ\fR conversions will only work
reliably for transferring data between computers which are all using
IEEE floating point representations. This is very common, but not
@@ -787,6 +760,7 @@ universal. To transfer floating-point numbers portably between all
architectures, use their textual representation (as produced by
\fBformat\fR) instead.
.SH EXAMPLES
+.PP
This is a procedure to write a Tcl string to a binary-encoded channel as
UTF-8 data preceded by a length word:
.CS