summaryrefslogtreecommitdiffstats
path: root/generic/tclOOInt.h
diff options
context:
space:
mode:
authordkf <donal.k.fellows@manchester.ac.uk>2008-07-16 22:08:59 (GMT)
committerdkf <donal.k.fellows@manchester.ac.uk>2008-07-16 22:08:59 (GMT)
commit50c3ec45e663031133f8f9024976f0d5501a3f46 (patch)
tree5b9a400f27bd9a63da7d8ee2cf2d277ed927df28 /generic/tclOOInt.h
parent98c0b4df207d373b44cdb132ffa4f3404b245e57 (diff)
downloadtcl-50c3ec45e663031133f8f9024976f0d5501a3f46.zip
tcl-50c3ec45e663031133f8f9024976f0d5501a3f46.tar.gz
tcl-50c3ec45e663031133f8f9024976f0d5501a3f46.tar.bz2
NRE-aware TclOO.
Diffstat (limited to 'generic/tclOOInt.h')
-rw-r--r--generic/tclOOInt.h11
1 files changed, 7 insertions, 4 deletions
diff --git a/generic/tclOOInt.h b/generic/tclOOInt.h
index 580ea13..569ac2f 100644
--- a/generic/tclOOInt.h
+++ b/generic/tclOOInt.h
@@ -9,7 +9,7 @@
* See the file "license.terms" for information on usage and redistribution of
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
- * RCS: @(#) $Id: tclOOInt.h,v 1.2 2008/05/31 19:56:07 dkf Exp $
+ * RCS: @(#) $Id: tclOOInt.h,v 1.3 2008/07/16 22:09:02 dkf Exp $
*/
#include <tclInt.h>
@@ -493,9 +493,12 @@ MODULE_SCOPE int TclOOGetSortedMethodList(Object *oPtr, int flags,
const char ***stringsPtr);
MODULE_SCOPE int TclOOInit(Tcl_Interp *interp);
MODULE_SCOPE void TclOOInitInfo(Tcl_Interp *interp);
-MODULE_SCOPE int TclOOInvokeContext(Tcl_Interp *const interp,
- CallContext *const contextPtr, int const objc,
- Tcl_Obj *const *const objv);
+MODULE_SCOPE int TclOOInvokeContext(ClientData clientData,
+ Tcl_Interp *interp, int objc,
+ Tcl_Obj *const objv[]);
+MODULE_SCOPE int TclNRObjectContextInvokeNext(Tcl_Interp *interp,
+ Tcl_ObjectContext context, int objc,
+ Tcl_Obj *const *objv, int skip);
MODULE_SCOPE void TclOONewBasicMethod(Tcl_Interp *interp, Class *clsPtr,
const DeclaredClassMethod *dcm);
MODULE_SCOPE Tcl_Obj * TclOOObjectName(Tcl_Interp *interp, Object *oPtr);
>1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the files COPYING and Copyright.html.  COPYING can be found at the root   *
 * of the source code distribution tree; Copyright.html can be found at the  *
 * root level of an installed copy of the electronic HDF5 document set and   *
 * is linked from the top-level documents page.  It can also be found at     *
 * http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html.  If you do not have     *
 * access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
 * Programmer: Robb Matzke <matzke@llnl.gov>
 *	       Friday, October 10, 1997
 */


#include "H5private.h"
#include "H5Eprivate.h"
#include "H5Oprivate.h"
#include "H5Vprivate.h"

/* Local macros */
#define H5V_HYPER_NDIMS H5O_LAYOUT_NDIMS

/* Local prototypes */
static void
H5V_stride_optimize1(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1);
static void
H5V_stride_optimize2(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1, hsize_t *stride2);
#ifdef LATER
static void
H5V_stride_copy2(hsize_t nelmts, hsize_t elmt_size,
     unsigned dst_n, const hsize_t *dst_size, const ssize_t *dst_stride, void *_dst,
     unsigned src_n, const hsize_t *src_size, const ssize_t *src_stride, const void *_src);
#endif /* LATER */


/*-------------------------------------------------------------------------
 * Function:	H5V_stride_optimize1
 *
 * Purpose:	Given a stride vector which references elements of the
 *		specified size, optimize the dimensionality, the stride
 *		vector, and the element size to minimize the dimensionality
 *		and the number of memory accesses.
 *
 *		All arguments are passed by reference and their values may be
 *		modified by this function.
 *
 * Return:	None
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static void
H5V_stride_optimize1(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5V_stride_optimize1);

    /*
     * This has to be true because if we optimize the dimensionality down to
     * zero we still must make one reference.
     */
    assert(1 == H5V_vector_reduce_product(0, NULL));

    /*
     * Combine adjacent memory accesses
     */
    while (*np && stride1[*np-1]>0 &&
           (hsize_t)(stride1[*np-1])==*elmt_size) {
        *elmt_size *= size[*np-1];
        if (--*np)
            stride1[*np-1] += size[*np] * stride1[*np];
    }

    FUNC_LEAVE_NOAPI_VOID
}


/*-------------------------------------------------------------------------
 * Function:	H5V_stride_optimize2
 *
 * Purpose:	Given two stride vectors which reference elements of the
 *		specified size, optimize the dimensionality, the stride
 *		vectors, and the element size to minimize the dimensionality
 *		and the number of memory accesses.
 *
 *		All arguments are passed by reference and their values may be
 *		modified by this function.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
static void
H5V_stride_optimize2(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1, hsize_t *stride2)
{
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5V_stride_optimize2)

    /*
     * This has to be true because if we optimize the dimensionality down to
     * zero we still must make one reference.
     */
    assert(1 == H5V_vector_reduce_product(0, NULL));
    assert (*elmt_size>0);

    /*
     * Combine adjacent memory accesses
     */

    /* Unroll loop for common cases */
    switch(*np) {
        case 1: /* For 0-D datasets (dunno if this ever gets used...) */
            if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                *elmt_size *= size[0];
                --*np;  /* *np decrements to a value of 0 now */
            } /* end if */
            break;

        case 2: /* For 1-D datasets */
            if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
                *elmt_size *= size[1];
                --*np;  /* *np decrements to a value of 1 now */
                stride1[0] += size[1] * stride1[1];
                stride2[0] += size[1] * stride2[1];

                if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                    *elmt_size *= size[0];
                    --*np;  /* *np decrements to a value of 0 now */
                } /* end if */
            } /* end if */
            break;

        case 3: /* For 2-D datasets */
            if(stride1[2] == *elmt_size && stride2[2] == *elmt_size) {
                *elmt_size *= size[2];
                --*np;  /* *np decrements to a value of 2 now */
                stride1[1] += size[2] * stride1[2];
                stride2[1] += size[2] * stride2[2];

                if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
                    *elmt_size *= size[1];
                    --*np;  /* *np decrements to a value of 1 now */
                    stride1[0] += size[1] * stride1[1];
                    stride2[0] += size[1] * stride2[1];

                    if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                        *elmt_size *= size[0];
                        --*np;  /* *np decrements to a value of 0 now */
                    } /* end if */
                } /* end if */
            } /* end if */
            break;

        case 4: /* For 3-D datasets */
            if(stride1[3] == *elmt_size && stride2[3] == *elmt_size) {
                *elmt_size *= size[3];
                --*np;  /* *np decrements to a value of 3 now */
                stride1[2] += size[3] * stride1[3];
                stride2[2] += size[3] * stride2[3];

                if(stride1[2] == *elmt_size && stride2[2] == *elmt_size) {
                    *elmt_size *= size[2];
                    --*np;  /* *np decrements to a value of 2 now */
                    stride1[1] += size[2] * stride1[2];
                    stride2[1] += size[2] * stride2[2];

                    if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
                        *elmt_size *= size[1];
                        --*np;  /* *np decrements to a value of 1 now */
                        stride1[0] += size[1] * stride1[1];
                        stride2[0] += size[1] * stride2[1];

                        if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                            *elmt_size *= size[0];
                            --*np;  /* *np decrements to a value of 0 now */
                        } /* end if */
                    } /* end if */
                } /* end if */
            } /* end if */
            break;

        default:
            while (*np &&
                    stride1[*np-1] == *elmt_size &&
                    stride2[*np-1] == *elmt_size) {
                *elmt_size *= size[*np-1];
                if (--*np) {
                    stride1[*np-1] += size[*np] * stride1[*np];
                    stride2[*np-1] += size[*np] * stride2[*np];
                }
            }
            break;
    } /* end switch */

    FUNC_LEAVE_NOAPI_VOID
}


/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_stride
 *
 * Purpose:	Given a description of a hyperslab, this function returns
 *		(through STRIDE[]) the byte strides appropriate for accessing
 *		all bytes of the hyperslab and the byte offset where the
 *		striding will begin.  The SIZE can be passed to the various
 *		stride functions.
 *
 *		The dimensionality of the whole array, the hyperslab, and the
 *		returned stride array is N.  The whole array dimensions are
 *		TOTAL_SIZE and the hyperslab is at offset OFFSET and has
 *		dimensions SIZE.
 *
 *		The stride and starting point returned will cause the
 *		hyperslab elements to be referenced in C order.
 *
 * Return:	Success:	Byte offset from beginning of array to start
 *				of striding.
 *
 *		Failure:	abort() -- should never fail
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5V_hyper_stride(unsigned n, const hsize_t *size,
		 const hsize_t *total_size, const hsize_t *offset,
		 hsize_t *stride/*out*/)
{
    hsize_t	    skip;	/*starting point byte offset		*/
    hsize_t	    acc;	/*accumulator				*/
    int		i;		/*counter				*/
    hsize_t	    ret_value;  /* Return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5V_hyper_stride)

    assert(n <= H5V_HYPER_NDIMS);
    assert(size);
    assert(total_size);
    assert(stride);

    /* init */
    assert(n>0);
    stride[n-1] = 1;
    skip = offset ? offset[n-1] : 0;

    switch(n) {
        case 2: /* 1-D dataset */
            assert (total_size[1]>=size[1]);
            stride[0] = total_size[1]-size[1]; /*overflow checked*/
            acc = total_size[1];
            skip += acc * (offset ? offset[0] : 0);
            break;

        case 3: /* 2-D dataset */
            assert (total_size[2]>=size[2]);
            stride[1] = total_size[2]-size[2]; /*overflow checked*/
            acc = total_size[2];
            skip += acc * (offset ? (hsize_t)offset[1] : 0);

            assert (total_size[1]>=size[1]);
            stride[0] = acc * (total_size[1] - size[1]); /*overflow checked*/
            acc *= total_size[1];
            skip += acc * (offset ? (hsize_t)offset[0] : 0);
            break;

        case 4: /* 3-D dataset */
            assert (total_size[3]>=size[3]);
            stride[2] = total_size[3]-size[3]; /*overflow checked*/
            acc = total_size[3];
            skip += acc * (offset ? (hsize_t)offset[2] : 0);

            assert (total_size[2]>=size[2]);
            stride[1] = acc * (total_size[2] - size[2]); /*overflow checked*/
            acc *= total_size[2];
            skip += acc * (offset ? (hsize_t)offset[1] : 0);

            assert (total_size[1]>=size[1]);
            stride[0] = acc * (total_size[1] - size[1]); /*overflow checked*/
            acc *= total_size[1];
            skip += acc * (offset ? (hsize_t)offset[0] : 0);
            break;

        default:
            /* others */
            for (i=(int)(n-2), acc=1; i>=0; --i) {
                assert (total_size[i+1]>=size[i+1]);
                stride[i] = acc * (total_size[i+1] - size[i+1]); /*overflow checked*/
                acc *= total_size[i+1];
                skip += acc * (offset ? (hsize_t)offset[i] : 0);
            }
            break;
    } /* end switch */

    /* Set return value */
    ret_value=skip;

    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_eq
 *
 * Purpose:	Determines whether two hyperslabs are equal.  This function
 *		assumes that both hyperslabs are relative to the same array,
 *		for if not, they could not possibly be equal.
 *
 * Return:	Success:	TRUE if the hyperslabs are equal (that is,
 *				both refer to exactly the same elements of an
 *				array)
 *
 *				FALSE otherwise.
 *
 *		Failure:	TRUE the rank is zero or if both hyperslabs
 *				are of zero size.
 *
 * Programmer:	Robb Matzke
 *		Friday, October 17, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
htri_t
H5V_hyper_eq(unsigned n,
	     const hsize_t *offset1, const hsize_t *size1,
	     const hsize_t *offset2, const hsize_t *size2)
{
    hsize_t	nelmts1 = 1, nelmts2 = 1;
    unsigned	i;
    htri_t      ret_value=TRUE;         /* Return value */

    /* Use FUNC_ENTER_NOAPI_NOINIT_NOFUNC here to avoid performance issues */
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5V_hyper_eq)

    if (n == 0) HGOTO_DONE(TRUE)

    for (i=0; i<n; i++) {
	if ((offset1 ? offset1[i] : 0) != (offset2 ? offset2[i] : 0))
	    HGOTO_DONE(FALSE)
	if ((size1 ? size1[i] : 0) != (size2 ? size2[i] : 0))
	    HGOTO_DONE(FALSE)
	if (0 == (nelmts1 *= (size1 ? size1[i] : 0)))
            HGOTO_DONE(FALSE)
	if (0 == (nelmts2 *= (size2 ? size2[i] : 0)))
            HGOTO_DONE(FALSE)
    }

done:
    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_disjointp
 *
 * Purpose:	Determines if two hyperslabs are disjoint.
 *
 * Return:	Success:	FALSE if they are not disjoint.
 *				TRUE if they are disjoint.
 *
 *		Failure:	A hyperslab of zero size is disjoint from all
 *				other hyperslabs.
 *
 * Programmer:	Robb Matzke
 *		Thursday, October 16, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
htri_t
H5V_hyper_disjointp(unsigned n,
		    const hsize_t *offset1, const size_t *size1,
		    const hsize_t *offset2, const size_t *size2)
{
    unsigned	u;
    htri_t      ret_value=FALSE;        /* Return value */

    /* Use FUNC_ENTER_NOAPI_NOINIT_NOFUNC here to avoid performance issues */
    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5V_hyper_disjointp)

    if (!n || !size1 || !size2)	HGOTO_DONE(TRUE)

    for (u=0; u<n; u++) {
        assert (size1[u]<HSIZET_MAX);
        assert (size2[u]<HSIZET_MAX);

        if (0==size1[u] || 0==size2[u])
            HGOTO_DONE(TRUE)
        if (((offset1?offset1[u]:0) < (offset2?offset2[u]:0) &&
             ((offset1?offset1[u]:0) + size1[u] <= (offset2?offset2[u]:0))) ||
            ((offset2?offset2[u]:0) < (offset1?offset1[u]:0) &&
             ((offset2?offset2[u]:0) + size2[u] <= (offset1?offset1[u]:0))))
            HGOTO_DONE(TRUE)
    }

done:
    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_fill
 *
 * Purpose:	Similar to memset() except it operates on hyperslabs...
 *
 *		Fills a hyperslab of array BUF with some value VAL.  BUF
 *		is treated like a C-order array with N dimensions where the
 *		size of each dimension is TOTAL_SIZE[].	 The hyperslab which
 *		will be filled with VAL begins at byte offset OFFSET[] from
 *		the minimum corner of BUF and continues for SIZE[] bytes in
 *		each dimension.
 *		
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_hyper_fill(unsigned n, const hsize_t *_size,
	       const hsize_t *total_size, const hsize_t *offset, void *_dst,
	       unsigned fill_value)
{
    uint8_t	*dst = (uint8_t*)_dst;	/*cast for ptr arithmetic	*/
    hsize_t	size[H5V_HYPER_NDIMS];	/*a modifiable copy of _size	*/
    hsize_t	dst_stride[H5V_HYPER_NDIMS]; /*destination stride info  */
    hsize_t	dst_start;		/*byte offset to start of stride*/
    hsize_t	elmt_size = 1;		/*bytes per element		*/
    herr_t	ret_value;		/*function return status	*/
#ifndef NDEBUG
    unsigned	u;
#endif

    FUNC_ENTER_NOAPI_NOFUNC(H5V_hyper_fill)

    /* check args */
    assert(n > 0 && n <= H5V_HYPER_NDIMS);
    assert(_size);
    assert(total_size);
    assert(dst);
#ifndef NDEBUG
    for (u = 0; u < n; u++) {
        assert(_size[u] > 0);
        assert(total_size[u] > 0);
    }
#endif

    /* Copy the size vector so we can modify it */
    H5V_vector_cpy(n, size, _size);

    /* Compute an optimal destination stride vector */
    dst_start = H5V_hyper_stride(n, size, total_size, offset, dst_stride);
    H5V_stride_optimize1(&n, &elmt_size, size, dst_stride);

    /* Copy */
    ret_value = H5V_stride_fill(n, elmt_size, size, dst_stride, dst+dst_start,
			     fill_value);

    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5V_hyper_copy
 *
 * Purpose:	Copies a hyperslab from the source to the destination.
 *
 *		A hyperslab is a logically contiguous region of
 *		multi-dimensional size SIZE of an array whose dimensionality
 *		is N and whose total size is DST_TOTAL_SIZE or SRC_TOTAL_SIZE.
 *		The minimum corner of the hyperslab begins at a
 *		multi-dimensional offset from the minimum corner of the DST
 *		(destination) or SRC (source) array.  The sizes and offsets
 *		are assumed to be in C order, that is, the first size/offset
 *		varies the slowest while the last varies the fastest in the
 *		mapping from N-dimensional space to linear space.  This
 *		function assumes that the array elements are single bytes (if
 *		your array has multi-byte elements then add an additional
 *		dimension whose size is that of your element).
 *
 *		The SRC and DST array may be the same array, but the results
 *		are undefined if the source hyperslab overlaps the
 *		destination hyperslab.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_hyper_copy(unsigned n, const hsize_t *_size,

	       /*destination*/
	       const hsize_t *dst_size, const hsize_t *dst_offset,
	       void *_dst,

	       /*source*/
	       const hsize_t *src_size, const hsize_t *src_offset,
	       const void *_src)
{
    const uint8_t *src = (const uint8_t*)_src;	/*cast for ptr arithmtc */
    uint8_t	*dst = (uint8_t*) _dst;		/*cast for ptr arithmtc */
    hsize_t	size[H5V_HYPER_NDIMS];		/*a modifiable _size	*/
    hsize_t	src_stride[H5V_HYPER_NDIMS];	/*source stride info	*/
    hsize_t	dst_stride[H5V_HYPER_NDIMS];	/*dest stride info	*/
    hsize_t	dst_start, src_start;		/*offset to start at	*/
    hsize_t	elmt_size = 1;			/*element size in bytes */
    herr_t	ret_value;			/*return status		*/
#ifndef NDEBUG		
    unsigned	u;
#endif

    FUNC_ENTER_NOAPI_NOFUNC(H5V_hyper_copy)

    /* check args */
    assert(n > 0 && n <= H5V_HYPER_NDIMS);
    assert(_size);
    assert(dst_size);
    assert(src_size);
    assert(dst);
    assert(src);
#ifndef NDEBUG
    for (u = 0; u < n; u++) {
        assert(_size[u] > 0);
        assert(dst_size[u] > 0);
        assert(src_size[u] > 0);
    }
#endif

    /* Copy the size vector so we can modify it */
    H5V_vector_cpy(n, size, _size);

    /* Compute stride vectors for source and destination */
#ifdef NO_INLINED_CODE
    dst_start = H5V_hyper_stride(n, size, dst_size, dst_offset, dst_stride);
    src_start = H5V_hyper_stride(n, size, src_size, src_offset, src_stride);
#else /* NO_INLINED_CODE */
    /* in-line version of two calls to H5V_hyper_stride() */
    {
        hsize_t	    dst_acc;	/*accumulator				*/
        hsize_t	    src_acc;	/*accumulator				*/
        int        ii;		    /*counter				*/

        /* init */
        assert(n>0);
        dst_stride[n-1] = 1;
        src_stride[n-1] = 1;
        dst_start = dst_offset ? dst_offset[n-1] : 0;
        src_start = src_offset ? src_offset[n-1] : 0;

        /* Unroll loop for common cases */
        switch(n) {
            case 2:
                assert (dst_size[1]>=size[1]);
                assert (src_size[1]>=size[1]);
                dst_stride[0] = dst_size[1] - size[1]; /*overflow checked*/
                src_stride[0] = src_size[1] - size[1]; /*overflow checked*/
                dst_acc = dst_size[1];
                src_acc = src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            case 3:
                assert (dst_size[2]>=size[2]);
                assert (src_size[2]>=size[2]);
                dst_stride[1] = dst_size[2] - size[2]; /*overflow checked*/
                src_stride[1] = src_size[2] - size[2]; /*overflow checked*/
                dst_acc = dst_size[2];
                src_acc = src_size[2];
                dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
                src_start += src_acc * (src_offset ? src_offset[1] : 0);

                assert (dst_size[1]>=size[1]);
                assert (src_size[1]>=size[1]);
                dst_stride[0] = dst_acc * (dst_size[1] - size[1]); /*overflow checked*/
                src_stride[0] = src_acc * (src_size[1] - size[1]); /*overflow checked*/
                dst_acc *= dst_size[1];
                src_acc *= src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            case 4:
                assert (dst_size[3]>=size[3]);
                assert (src_size[3]>=size[3]);
                dst_stride[2] = dst_size[3] - size[3]; /*overflow checked*/
                src_stride[2] = src_size[3] - size[3]; /*overflow checked*/
                dst_acc = dst_size[3];
                src_acc = src_size[3];
                dst_start += dst_acc * (dst_offset ? dst_offset[2] : 0);
                src_start += src_acc * (src_offset ? src_offset[2] : 0);

                assert (dst_size[2]>=size[2]);
                assert (src_size[2]>=size[2]);
                dst_stride[1] = dst_acc * (dst_size[2] - size[2]); /*overflow checked*/
                src_stride[1] = src_acc * (src_size[2] - size[2]); /*overflow checked*/
                dst_acc *= dst_size[2];
                src_acc *= src_size[2];
                dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
                src_start += src_acc * (src_offset ? src_offset[1] : 0);

                assert (dst_size[1]>=size[1]);
                assert (src_size[1]>=size[1]);
                dst_stride[0] = dst_acc * (dst_size[1] - size[1]); /*overflow checked*/
                src_stride[0] = src_acc * (src_size[1] - size[1]); /*overflow checked*/
                dst_acc *= dst_size[1];
                src_acc *= src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            default:
                /* others */
                for (ii=(int)(n-2), dst_acc=1, src_acc=1; ii>=0; --ii) {
                    assert (dst_size[ii+1]>=size[ii+1]);
                    assert (src_size[ii+1]>=size[ii+1]);
                    dst_stride[ii] = dst_acc * (dst_size[ii+1] - size[ii+1]); /*overflow checked*/
                    src_stride[ii] = src_acc * (src_size[ii+1] - size[ii+1]); /*overflow checked*/
                    dst_acc *= dst_size[ii+1];
                    src_acc *= src_size[ii+1];
                    dst_start += dst_acc * (dst_offset ? dst_offset[ii] : 0);
                    src_start += src_acc * (src_offset ? src_offset[ii] : 0);
                }
                break;
        } /* end switch */
    }
#endif /* NO_INLINED_CODE */

    /* Optimize the strides as a pair */
    H5V_stride_optimize2(&n, &elmt_size, size, dst_stride, src_stride);

    /* Perform the copy in terms of stride */
    ret_value = H5V_stride_copy(n, elmt_size, size,
             dst_stride, dst+dst_start, src_stride, src+src_start);

    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5V_stride_fill
 *
 * Purpose:	Fills all bytes of a hyperslab with the same value using
 *		memset().
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_fill(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hsize_t *stride, void *_dst, unsigned fill_value)
{
    uint8_t	*dst = (uint8_t*)_dst; 	/*cast for ptr arithmetic	*/
    hsize_t	idx[H5V_HYPER_NDIMS]; 	/*1-origin indices		*/
    hsize_t	nelmts;			/*number of elements to fill	*/
    hsize_t	i;			/*counter			*/
    int	j;			/*counter			*/
    hbool_t	carry;			/*subtraction carray value	*/

    FUNC_ENTER_NOAPI_NOFUNC(H5V_stride_fill)
    assert (elmt_size < SIZET_MAX);

    H5V_vector_cpy(n, idx, size);
    nelmts = H5V_vector_reduce_product(n, size);
    for (i=0; i<nelmts; i++) {
        /* Copy an element */
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
        HDmemset(dst, (int)fill_value, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

        /* Decrement indices and advance pointer */
        for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
            dst += stride[j];

            if (--idx[j])
                carry = FALSE;
            else {
                assert(size);
                idx[j] = size[j];
            } /* end else */
        }
    }

    FUNC_LEAVE_NOAPI(SUCCEED)
}


/*-------------------------------------------------------------------------
 * Function:	H5V_stride_copy
 *
 * Purpose:	Uses DST_STRIDE and SRC_STRIDE to advance through the arrays
 *		DST and SRC while copying bytes from SRC to DST.  This
 *		function minimizes the number of calls to memcpy() by
 *		combining various strides, but it will never touch memory
 *		outside the hyperslab defined by the strides.
 *
 * Note:	If the src_stride is all zero and elmt_size is one, then it's
 *		probably more efficient to use H5V_stride_fill() instead.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_copy(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hsize_t *dst_stride, void *_dst,
		const hsize_t *src_stride, const void *_src)
{
    uint8_t	*dst = (uint8_t*)_dst;		/*cast for ptr arithmetic*/
    const uint8_t *src = (const uint8_t*) _src;	/*cast for ptr arithmetic*/
    hsize_t	idx[H5V_HYPER_NDIMS];		/*1-origin indices	*/
    hsize_t	nelmts;				/*num elements to copy	*/
    hsize_t	i;				/*counter		*/
    int	j;				/*counters		*/
    hbool_t	carry;				/*carray for subtraction*/

    FUNC_ENTER_NOAPI_NOFUNC(H5V_stride_copy)
    assert (elmt_size<SIZET_MAX);

    if (n) {
        H5V_vector_cpy(n, idx, size);
        nelmts = H5V_vector_reduce_product(n, size);
        for (i=0; i<nelmts; i++) {

            /* Copy an element */
            H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
            HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

            /* Decrement indices and advance pointers */
            for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
                src += src_stride[j];
                dst += dst_stride[j];

                if (--idx[j])
                    carry = FALSE;
                else {
                    assert(size);
                    idx[j] = size[j];
                }
            }
        }
    } else {
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
        HDmemcpy (dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
    }

    FUNC_LEAVE_NOAPI(SUCCEED)
}


/*-------------------------------------------------------------------------
 * Function:	H5V_stride_copy_s
 *
 * Purpose:	Uses DST_STRIDE and SRC_STRIDE to advance through the arrays
 *		DST and SRC while copying bytes from SRC to DST.  This
 *		function minimizes the number of calls to memcpy() by
 *		combining various strides, but it will never touch memory
 *		outside the hyperslab defined by the strides.
 *
 * Note:	If the src_stride is all zero and elmt_size is one, then it's
 *		probably more efficient to use H5V_stride_fill() instead.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_stride_copy_s(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hssize_t *dst_stride, void *_dst,
		const hssize_t *src_stride, const void *_src)
{
    uint8_t	*dst = (uint8_t*)_dst;		/*cast for ptr arithmetic*/
    const uint8_t *src = (const uint8_t*) _src;	/*cast for ptr arithmetic*/
    hsize_t	idx[H5V_HYPER_NDIMS];		/*1-origin indices	*/
    hsize_t	nelmts;				/*num elements to copy	*/
    hsize_t	i;				/*counter		*/
    int	j;				/*counters		*/
    hbool_t	carry;				/*carray for subtraction*/

    FUNC_ENTER_NOAPI_NOFUNC(H5V_stride_copy_s)
    assert (elmt_size<SIZET_MAX);

    if (n) {
        H5V_vector_cpy(n, idx, size);
        nelmts = H5V_vector_reduce_product(n, size);
        for (i=0; i<nelmts; i++) {

            /* Copy an element */
            H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
            HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

            /* Decrement indices and advance pointers */
            for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
                src += src_stride[j];
                dst += dst_stride[j];

                if (--idx[j])
                    carry = FALSE;
                else {
                    assert(size);
                    idx[j] = size[j];
                }
            }
        }
    } else {
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
        HDmemcpy (dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
    }

    FUNC_LEAVE_NOAPI(SUCCEED)
}

#ifdef LATER

/*-------------------------------------------------------------------------
 * Function:	H5V_stride_copy2
 *
 * Purpose:	Similar to H5V_stride_copy() except the source and
 *		destination each have their own dimensionality and size and
 *		we copy exactly NELMTS elements each of size ELMT_SIZE.	 The
 *		size counters wrap if NELMTS is more than a size counter.
 *
 * Return:	None
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static void
H5V_stride_copy2(hsize_t nelmts, hsize_t elmt_size,

		 /* destination */
		 unsigned dst_n, const hsize_t *dst_size,
		 const hsize_t *dst_stride,
		 void *_dst,

		 /* source */
		 unsigned src_n, const hsize_t *src_size,
		 const hsize_t *src_stride,
		 const void *_src)
{
    uint8_t	*dst = (uint8_t *) _dst;
    const uint8_t *src = (const uint8_t *) _src;
    hsize_t	dst_idx[H5V_HYPER_NDIMS];
    hsize_t	src_idx[H5V_HYPER_NDIMS];
    hsize_t	i;              /* Local index variable */
    int		j;              /* Local index variable */
    hbool_t	carry;

    FUNC_ENTER_NOAPI_NOINIT_NOFUNC(H5V_stride_copy2)

    assert (elmt_size < SIZET_MAX);
    assert(dst_n>0);
    assert(src_n>0);

    H5V_vector_cpy(dst_n, dst_idx, dst_size);
    H5V_vector_cpy(src_n, src_idx, src_size);

    for (i=0; i<nelmts; i++) {

	/* Copy an element */
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
	HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

	/* Decrement indices and advance pointers */
	for (j=(int)(dst_n-1), carry=TRUE; j>=0 && carry; --j) {
	    dst += dst_stride[j];
	    if (--dst_idx[j])
                carry = FALSE;
	    else {
                assert(dst_size);
                dst_idx[j] = dst_size[j];
            } /* end else */
	}
	for (j=(int)(src_n-1), carry=TRUE; j>=0 && carry; --j) {
	    src += src_stride[j];
	    if (--src_idx[j])
                carry = FALSE;
	    else {
                assert(src_size);
                src_idx[j] = src_size[j];
            } /* end else */
	}
    }

    FUNC_LEAVE_NOAPI_VOID
}
#endif /* LATER */


/*-------------------------------------------------------------------------
 * Function:	H5V_array_fill
 *
 * Purpose:	Fills all bytes of an array with the same value using
 *		memset(). Increases amount copied by power of two until the
 *		halfway point is crossed, then copies the rest in one swoop.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Thursday, June 18, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_array_fill(void *_dst, const void *src, size_t size, size_t count)
{
    size_t      copy_size;          /* size of the buffer to copy	*/
    size_t      copy_items;         /* number of items currently copying*/
    size_t      items_left;         /* number of items left to copy 	*/
    uint8_t     *dst=(uint8_t*)_dst;/* alias for pointer arithmetic	*/

    FUNC_ENTER_NOAPI_NOFUNC(H5V_array_fill)

    assert (dst);
    assert (src);
    assert (size < SIZET_MAX && size > 0);
    assert (count < SIZET_MAX && count > 0);

    HDmemcpy(dst, src, size);   /* copy first item */

    /* Initialize counters, etc. while compensating for first element copied */
    copy_size = size;
    copy_items = 1;
    items_left = count - 1;
    dst += size;

    /* copy until we've copied at least half of the items */
    while (items_left >= copy_items)
    {
        HDmemcpy(dst, _dst, copy_size);   /* copy the current chunk */
        dst += copy_size;     /* move the offset for the next chunk */
        items_left -= copy_items;   /* decrement the number of items left */

        copy_size *= 2;     /* increase the size of the chunk to copy */
        copy_items *= 2;    /* increase the count of items we are copying */
    }   /* end while */
    if (items_left > 0)   /* if there are any items left to copy */
        HDmemcpy(dst, _dst, items_left * size);

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5V_array_fill() */


/*-------------------------------------------------------------------------
 * Function:	H5V_array_down
 *
 * Purpose:	Given a set of dimension sizes, calculate the size of each
 *              "down" slice.  This is the size of the dimensions for all the
 *              dimensions below the current one, which is used for indexing
 *              offsets in this dimension.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Monday, April 28, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_array_down(unsigned n, const hsize_t *total_size, hsize_t *down)
{
    hsize_t	acc;	                /*accumulator			*/
    int	        i;		        /*counter			*/

    FUNC_ENTER_NOAPI_NOFUNC(H5V_array_down)

    assert(n <= H5V_HYPER_NDIMS);
    assert(total_size);
    assert(down);

    /* Build the sizes of each dimension in the array */
    /* (From fastest to slowest) */
    for(i=(int)(n-1),acc=1; i>=0; i--) {
        down[i]=acc;
        acc *= total_size[i];
    } /* end for */

    FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5V_array_down() */


/*-------------------------------------------------------------------------
 * Function:	H5V_array_offset_pre
 *
 * Purpose:	Given a coordinate description of a location in an array, this
 *      function returns the byte offset of the coordinate.
 *
 *		The dimensionality of the whole array, and the offset is N.
 *              The whole array dimensions are TOTAL_SIZE and the coordinate
 *              is at offset OFFSET.
 *
 * Return:	Success: Byte offset from beginning of array to element offset
 *		Failure: abort() -- should never fail
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, June 22, 1999
 *
 * Modifications:
 *              Use precomputed accumulator array
 *              Quincey Koziol
 *		Saturday, April 26, 2003
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5V_array_offset_pre(unsigned n, const hsize_t *acc, const hsize_t *offset)
{
    int             i;		/*counter				*/
    hsize_t	    ret_value;  /* Return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5V_array_offset_pre)

    assert(n <= H5V_HYPER_NDIMS);
    assert(acc);
    assert(offset);

    /* Compute offset in array */
    for (i=(int)(n-1), ret_value=0; i>=0; --i)
        ret_value += acc[i] * offset[i];

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_array_offset_pre() */


/*-------------------------------------------------------------------------
 * Function:	H5V_array_offset
 *
 * Purpose:	Given a coordinate description of a location in an array, this
 *      function returns the byte offset of the coordinate.
 *
 *		The dimensionality of the whole array, and the offset is N.
 *              The whole array dimensions are TOTAL_SIZE and the coordinate
 *              is at offset OFFSET.
 *
 * Return:	Success: Byte offset from beginning of array to element offset
 *		Failure: abort() -- should never fail
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, June 22, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5V_array_offset(unsigned n, const hsize_t *total_size, const hsize_t *offset)
{
    hsize_t	acc_arr[H5V_HYPER_NDIMS];	/* Accumulated size of down dimensions */
    hsize_t	ret_value;  /* Return value */

    FUNC_ENTER_NOAPI(H5V_array_offset, (HDabort(), 0)) /*lint !e527 Don't worry about unreachable statement */

    assert(n <= H5V_HYPER_NDIMS);
    assert(total_size);
    assert(offset);

    /* Build the sizes of each dimension in the array */
    if(H5V_array_down(n,total_size,acc_arr)<0)
        HGOTO_ERROR(H5E_INTERNAL, H5E_BADVALUE, UFAIL, "can't compute down sizes")

    /* Set return value */
    ret_value=H5V_array_offset_pre(n,acc_arr,offset);

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_array_offset() */


/*-------------------------------------------------------------------------
 * Function:	H5V_array_calc
 *
 * Purpose:	Given a linear offset in an array and the dimensions of that
 *              array, this function computes the coordinates of that offset
 *              in the array.
 *
 *		The dimensionality of the whole array, and the coordinates is N.
 *              The array dimensions are TOTAL_SIZE and the coordinates
 *              are returned in COORD.  The linear offset is in OFFSET.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Wednesday, April 16, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_array_calc(hsize_t offset, unsigned n, const hsize_t *total_size, hsize_t *coords)
{
    hsize_t	idx[H5V_HYPER_NDIMS];	/* Size of each dimension in bytes */
    hsize_t     acc;                    /* Size accumulator */
    unsigned    u;                      /* Local index variable */
    int         i;                      /* Local index variable */

    FUNC_ENTER_NOAPI_NOFUNC(H5V_array_calc)

    /* Sanity check */
    assert(n <= H5V_HYPER_NDIMS);
    assert(total_size);
    assert(coords);

    /* Build the sizes of each dimension in the array */
    /* (From fastest to slowest) */
    for(i=(int)(n-1),acc=1; i>=0; i--) {
        idx[i]=acc;
        acc *= total_size[i];
    } /* end for */

    /* Compute the coordinates from the offset */
    for(u=0; u<n; u++) {
        coords[u]=offset/idx[u];
        offset %= idx[u];
    } /* end for */

    FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5V_array_calc() */


/*-------------------------------------------------------------------------
 * Function:	H5V_chunk_index
 *
 * Purpose:	Given a coordinate offset (COORD), the size of each chunk
 *              (CHUNK), the number of chunks in each dimension (NCHUNKS)
 *              and the number of dimensions of all of these (NDIMS), calculate
 *              a "chunk index" for the chunk that the coordinate offset is
 *              located in.
 *
 *              The chunk index starts at 0 and increases according to the 
 *              fastest changing dimension, then the next fastest, etc.
 *
 *              For example, with a 3x5 chunk size and 6 chunks in the fastest
 *              changing dimension and 3 chunks in the slowest changing
 *              dimension, the chunk indices are as follows:
 *
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              |  0  |  1  |  2  |  3  |  4  |  5  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              |  6  |  7  |  8  |  9  | 10  | 11  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              | 12  | 13  | 14  | 15  | 16  | 17  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *
 *              The chunk index is placed in the CHUNK_IDX location for return
 *              from this function
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Monday, April 21, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5V_chunk_index(unsigned ndims, const hsize_t *coord, const size_t *chunk,
    const hsize_t *down_nchunks, hsize_t *chunk_idx)
{
    hsize_t	scaled_coord[H5V_HYPER_NDIMS];	/* Scaled, coordinates, in terms of chunks */
    unsigned    u;                      /* Local index variable */

    FUNC_ENTER_NOAPI_NOFUNC(H5V_chunk_index)

    /* Sanity check */
    assert(ndims <= H5V_HYPER_NDIMS);
    assert(coord);
    assert(chunk);
    assert(chunk_idx);

    /* Compute the scaled coordinates for actual coordinates */
    for(u=0; u<ndims; u++)
        scaled_coord[u]=coord[u]/chunk[u];

    /* Compute the chunk index */
    *chunk_idx=H5V_array_offset_pre(ndims,down_nchunks,scaled_coord); /*lint !e772 scaled_coord will always be initialized */

    FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5V_chunk_index() */


/*-------------------------------------------------------------------------
 * Function:	H5V_memcpyvv
 *
 * Purpose:	Given source and destination buffers in memory (SRC & DST)
 *              copy sequences of from the source buffer into the destination
 *              buffer.  Each set of sequnces has an array of lengths, an
 *              array of offsets, the maximum number of sequences and the
 *              current sequence to start at in the sequence.
 *
 *              There may be different numbers of bytes in the source and
 *              destination sequences, data copying stops when either the
 *              source or destination buffer runs out of sequence information.
 *
 * Return:	Non-negative # of bytes copied on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Friday, May 2, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
ssize_t
H5V_memcpyvv(void *_dst,
    size_t dst_max_nseq, size_t *dst_curr_seq, size_t dst_len_arr[], hsize_t dst_off_arr[],
    const void *_src,
    size_t src_max_nseq, size_t *src_curr_seq, size_t src_len_arr[], hsize_t src_off_arr[])
{
    unsigned char *dst;         /* Destination buffer pointer */
    const unsigned char *src;   /* Source buffer pointer */
    size_t total_size=0;        /* Total size of sequence in bytes */
    size_t size;                /* Size of sequence in bytes */
    size_t u,v;                 /* Local index variables */
    ssize_t ret_value;          /* Return value */

    FUNC_ENTER_NOAPI_NOFUNC(H5V_memcpyvv)

    /* Sanity check */
    assert(_dst);
    assert(dst_curr_seq);
    assert(*dst_curr_seq<dst_max_nseq);
    assert(dst_len_arr);
    assert(dst_off_arr);
    assert(_src);
    assert(src_curr_seq);
    assert(*src_curr_seq<src_max_nseq);
    assert(src_len_arr);
    assert(src_off_arr);

    /* Work through all the sequences */
    for(u=*dst_curr_seq, v=*src_curr_seq; u<dst_max_nseq && v<src_max_nseq; ) {
        /* Choose smallest buffer to write */
        if(src_len_arr[v]<dst_len_arr[u])
            size=src_len_arr[v];
        else
            size=dst_len_arr[u];

        /* Compute offset on disk */
        dst=(unsigned char *)_dst+dst_off_arr[u];

        /* Compute offset in memory */
        src=(const unsigned char *)_src+src_off_arr[v];

        /* Copy data */
        HDmemcpy(dst,src,size);

        /* Update source information */
        src_len_arr[v]-=size;
        src_off_arr[v]+=size;
        if(src_len_arr[v]==0)
            v++;

        /* Update destination information */
        dst_len_arr[u]-=size;
        dst_off_arr[u]+=size;
        if(dst_len_arr[u]==0)
            u++;

        /* Increment number of bytes copied */
        total_size+=size;
    } /* end for */

    /* Update current sequence vectors */
    *dst_curr_seq=u;
    *src_curr_seq=v;

    /* Set return value */
    H5_ASSIGN_OVERFLOW(ret_value,total_size,size_t,ssize_t);

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5V_memcpyvv() */