diff options
author | jan.nijtmans <nijtmans@users.sourceforge.net> | 2015-10-04 10:10:58 (GMT) |
---|---|---|
committer | jan.nijtmans <nijtmans@users.sourceforge.net> | 2015-10-04 10:10:58 (GMT) |
commit | 5cfe99ddfef51d700eee80c9f766fab9c458038e (patch) | |
tree | f6c4f80405ef3ebc4592a31b77060bd6b7cdae8c /generic/tclStrToD.c | |
parent | 03a3a2d78e1c26683170d32685d3f4d3b9ed902d (diff) | |
download | tcl-5cfe99ddfef51d700eee80c9f766fab9c458038e.zip tcl-5cfe99ddfef51d700eee80c9f766fab9c458038e.tar.gz tcl-5cfe99ddfef51d700eee80c9f766fab9c458038e.tar.bz2 |
Eliminate unnessessary end-of-line spacing. No functional change.
Diffstat (limited to 'generic/tclStrToD.c')
-rw-r--r-- | generic/tclStrToD.c | 198 |
1 files changed, 99 insertions, 99 deletions
diff --git a/generic/tclStrToD.c b/generic/tclStrToD.c index ec5e764..cff9bdd 100644 --- a/generic/tclStrToD.c +++ b/generic/tclStrToD.c @@ -64,7 +64,7 @@ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); /* * MIPS floating-point units need special settings in control registers * to use gradual underflow as we expect. This fix is for the MIPSpro - * compiler. + * compiler. */ #if defined(__sgi) && defined(_COMPILER_VERSION) #include <sys/fpu.h> @@ -102,7 +102,7 @@ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); /* Mask for the exponent field in the * first word of a double */ #define EXP_SHIFT 20 - /* Shift count to make the exponent an + /* Shift count to make the exponent an * integer */ #define HIDDEN_BIT (((Tcl_WideUInt) 0x00100000) << 32) /* Hidden 1 bit for the significand */ @@ -263,7 +263,7 @@ static const Tcl_WideUInt wuipow5[27] = { * Static functions defined in this file. */ -static int AccumulateDecimalDigit(unsigned, int, +static int AccumulateDecimalDigit(unsigned, int, Tcl_WideUInt *, mp_int *, int); static double MakeHighPrecisionDouble(int signum, mp_int *significand, int nSigDigs, int exponent); @@ -286,7 +286,7 @@ static void ComputeScale(int, int, int*, int*, int*, int*); static void SetPrecisionLimits(int, int, int*, int*, int*, int*); static char* BumpUp(char*, char*, int*); static int AdjustRange(double*, int); -static char* ShorteningQuickFormat(double, int, int, double, +static char* ShorteningQuickFormat(double, int, int, double, char*, int*); static char* StrictQuickFormat(double, int, int, double, char*, int*); @@ -302,15 +302,15 @@ static char* StrictInt64Conversion(Double*, int, Tcl_WideUInt, static int ShouldBankerRoundUpPowD(mp_int*, int, int); static int ShouldBankerRoundUpToNextPowD(mp_int*, mp_int*, int, int, int, mp_int*); -static char* ShorteningBignumConversionPowD(Double* dPtr, +static char* ShorteningBignumConversionPowD(Double* dPtr, int convType, Tcl_WideUInt bw, int b2, int b5, int m2plus, int m2minus, int m5, - int sd, int k, int len, + int sd, int k, int len, int ilim, int ilim1, int* decpt, char** endPtr); static char* StrictBignumConversionPowD(Double* dPtr, int convType, Tcl_WideUInt bw, int b2, int b5, - int sd, int k, int len, + int sd, int k, int len, int ilim, int ilim1, int* decpt, char** endPtr); static int ShouldBankerRoundUp(mp_int*, mp_int*, int); @@ -319,12 +319,12 @@ static int ShouldBankerRoundUpToNext(mp_int*, mp_int*, mp_int*, static char* ShorteningBignumConversion(Double* dPtr, int convType, Tcl_WideUInt bw, int b2, int m2plus, int m2minus, - int s2, int s5, int k, int len, + int s2, int s5, int k, int len, int ilim, int ilim1, int* decpt, char** endPtr); static char* StrictBignumConversion(Double* dPtr, int convType, Tcl_WideUInt bw, int b2, - int s2, int s5, int k, int len, + int s2, int s5, int k, int len, int ilim, int ilim1, int* decpt, char** endPtr); static double BignumToBiasedFrExp(mp_int *big, int *machexp); @@ -1905,7 +1905,7 @@ RefineApproximation( if ((rteSigWide & 1) == 0) { return approxResult; } - } + } /* * Convert the numerator and denominator of the corrector term accurately @@ -1994,7 +1994,7 @@ NormalizeRightward(Tcl_WideUInt* wPtr) Tcl_WideUInt w = *wPtr; if (!(w & (Tcl_WideUInt) 0xffffffff)) { w >>= 32; rv += 32; - } + } if (!(w & (Tcl_WideUInt) 0xffff)) { w >>= 16; rv += 16; } @@ -2145,7 +2145,7 @@ TakeAbsoluteValue(Double* d, /* Number to replace with absolute value */ * * Side effects: * Stores 9999 in *decpt, and sets '*endPtr' to designate the - * terminating NUL byte of the string if 'endPtr' is not NULL. + * terminating NUL byte of the string if 'endPtr' is not NULL. * * The string returned must be freed by the caller using 'ckfree'. * @@ -2233,8 +2233,8 @@ ApproximateLog10(Tcl_WideUInt bw, /* * Compute i and d2 such that d = d2*2**i, and 1 < d2 < 2. - * Compute an approximation to log10(d), - * log10(d) ~ log10(2) * i + log10(1.5) + * Compute an approximation to log10(d), + * log10(d) ~ log10(2) * i + log10(1.5) * + (significand-1.5)/(1.5 * log(10)) */ @@ -2274,7 +2274,7 @@ BetterLog10(double d, /* Original number to format */ int k, /* Characteristic(Log base 10) of the number */ int* k_check) /* Flag == 1 if k is inexact */ { - /* + /* * Performance hack. If k is in the range 0..TEN_PMAX, then we can * use a powers-of-ten table to check it. */ @@ -2318,7 +2318,7 @@ ComputeScale(int be, /* Exponent part of number: d = bw * 2**be */ int* s5) /* OUTPUT: Power of 5 in the denominator */ { - /* + /* * Scale numerator and denominator powers of 2 so that the * input binary number is the ratio of integers */ @@ -2330,7 +2330,7 @@ ComputeScale(int be, /* Exponent part of number: d = bw * 2**be */ *s2 = 0; } - /* + /* * Scale numerator and denominator so that the output decimal number * is the ratio of integers */ @@ -2438,7 +2438,7 @@ SetPrecisionLimits(int convType, inline static char* BumpUp(char* s, /* Cursor pointing one past the end of the - * string */ + * string */ char* retval, /* Start of the string of digits */ int* kPtr) /* Position of the decimal point */ { @@ -2527,7 +2527,7 @@ AdjustRange(double* dPtr, /* INOUT: Number to adjust */ * * Returns a 'quick' format of a double precision number to a string * of digits, preferring a shorter string of digits if the shorter - * string is still within 1/2 ulp of the number. + * string is still within 1/2 ulp of the number. * * Results: * Returns the string of digits. Returns NULL if the 'quick' method @@ -2638,7 +2638,7 @@ StrictQuickFormat(double d, /* Number to convert */ } *s++ = '0' + digit; - /* + /* * When the given digit count is reached, handle trailing strings * of 0 and 9. */ @@ -2852,13 +2852,13 @@ ShorteningInt64Conversion(Double* dPtr, /* OUTPUT: Position of the terminal '\0' * at the end of the returned string */ { - + char* retval = ckalloc(len + 1); /* Output buffer */ Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; /* Numerator of the fraction being converted */ Tcl_WideUInt S = wuipow5[s5] << s2; - /* Denominator of the fraction being + /* Denominator of the fraction being * converted */ Tcl_WideUInt mplus, mminus; /* Ranges for testing whether the result * is within roundoff of being exact */ @@ -2890,7 +2890,7 @@ ShorteningInt64Conversion(Double* dPtr, } b = b % S; - /* + /* * Does the current digit put us on the low side of the exact value * but within within roundoff of being exact? */ @@ -2948,16 +2948,16 @@ ShorteningInt64Conversion(Double* dPtr, } break; } - + /* Advance to the next digit */ - + b = 10 * b; mplus = 10 * mplus; mminus = 10 * mminus; ++i; } - /* + /* * Endgame - store the location of the decimal point and the end of the * string. */ @@ -3020,13 +3020,13 @@ StrictInt64Conversion(Double* dPtr, /* OUTPUT: Position of the terminal '\0' * at the end of the returned string */ { - + char* retval = ckalloc(len + 1); /* Output buffer */ Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; /* Numerator of the fraction being converted */ Tcl_WideUInt S = wuipow5[s5] << s2; - /* Denominator of the fraction being + /* Denominator of the fraction being * converted */ int digit; /* Current output digit */ char* s = retval; /* Cursor in the output buffer */ @@ -3066,14 +3066,14 @@ StrictInt64Conversion(Double* dPtr, } break; } - + /* Advance to the next digit */ - + b = 10 * b; ++i; } - /* + /* * Endgame - store the location of the decimal point and the end of the * string. */ @@ -3144,10 +3144,10 @@ ShouldBankerRoundUpToNextPowD(mp_int* b, /* Numerator of the fraction */ mp_int* m, /* Numerator of the rounding tolerance */ - int sd, + int sd, /* Common denominator is 2**(sd*DIGIT_BIT) */ int convType, - /* Conversion type: STEELE defeats + /* Conversion type: STEELE defeats * round-to-even (Not sure why one wants to * do this; I copied it from Gay) FIXME */ int isodd, @@ -3157,7 +3157,7 @@ ShouldBankerRoundUpToNextPowD(mp_int* b, { int i; - /* + /* * Compare B and S-m -- which is the same as comparing B+m and S -- * which we do by computing b+m and doing a bitwhack compare against * 2**(DIGIT_BIT*sd) @@ -3238,7 +3238,7 @@ ShorteningBignumConversionPowD(Double* dPtr, /* OUTPUT: Position of the terminal '\0' * at the end of the returned string */ { - + char* retval = ckalloc(len + 1); /* Output buffer */ mp_int b; /* Numerator of the fraction being converted */ @@ -3249,7 +3249,7 @@ ShorteningBignumConversionPowD(Double* dPtr, mp_int temp; int r1; - /* + /* * b = bw * 2**b2 * 5**b5 * mminus = 5**m5 */ @@ -3296,11 +3296,11 @@ ShorteningBignumConversionPowD(Double* dPtr, --b.used; mp_clamp(&b); } - /* + /* * Does the current digit put us on the low side of the exact value * but within within roundoff of being exact? */ - + r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus); if (r1 == MP_LT || (r1 == MP_EQ @@ -3329,8 +3329,8 @@ ShorteningBignumConversionPowD(Double* dPtr, * Does one plus the current digit put us within roundoff of the * number? */ - - if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd, + + if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd, convType, dPtr->w.word1 & 1, &temp)) { if (digit == 9) { @@ -3353,9 +3353,9 @@ ShorteningBignumConversionPowD(Double* dPtr, } break; } - + /* Advance to the next digit */ - + mp_mul_d(&b, 10, &b); mp_mul_d(&mminus, 10, &mminus); if (m2plus > m2minus) { @@ -3364,7 +3364,7 @@ ShorteningBignumConversionPowD(Double* dPtr, ++i; } - /* + /* * Endgame - store the location of the decimal point and the end of the * string. */ @@ -3388,7 +3388,7 @@ ShorteningBignumConversionPowD(Double* dPtr, * Converts a double-precision number to a fixed-lengt string of * 'ilim' digits (or 'ilim1' if log10(d) has been overestimated.) * The denominator in David Gay's conversion algorithm is known to - * be a power of 2**DIGIT_BIT, and hence the division in the main + * be a power of 2**DIGIT_BIT, and hence the division in the main * loop may be replaced by a digit shift and mask. * * Results: @@ -3430,7 +3430,7 @@ StrictBignumConversionPowD(Double* dPtr, /* OUTPUT: Position of the terminal '\0' * at the end of the returned string */ { - + char* retval = ckalloc(len + 1); /* Output buffer */ mp_int b; /* Numerator of the fraction being converted */ @@ -3439,7 +3439,7 @@ StrictBignumConversionPowD(Double* dPtr, int i; /* Index in the output buffer */ mp_int temp; - /* + /* * b = bw * 2**b2 * 5**b5 */ @@ -3456,9 +3456,9 @@ StrictBignumConversionPowD(Double* dPtr, } mp_init(&temp); - /* + /* * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT) - * by mp_digit extraction + * by mp_digit extraction */ i = 1; @@ -3488,14 +3488,14 @@ StrictBignumConversionPowD(Double* dPtr, } break; } - + /* Advance to the next digit */ - + mp_mul_d(&b, 10, &b); ++i; } - /* + /* * Endgame - store the location of the decimal point and the end of the * string. */ @@ -3592,7 +3592,7 @@ ShouldBankerRoundUpToNext(mp_int* b, Tcl_Panic("in ShouldBankerRoundUpToNext, trichotomy fails!"); return 0; } - + /* *----------------------------------------------------------------------------- * @@ -3662,10 +3662,10 @@ ShorteningBignumConversion(Double* dPtr, MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); /* - * Handle the case where we guess the position of the decimal point - * wrong. + * Handle the case where we guess the position of the decimal point + * wrong. */ - + if (mp_cmp_mag(&b, &S) == MP_LT) { mp_mul_d(&b, 10, &b); minit = 10; @@ -3694,7 +3694,7 @@ ShorteningBignumConversion(Double* dPtr, } digit = dig.dp[0]; - /* + /* * Does the current digit leave us with a remainder small enough to * round to it? */ @@ -3740,7 +3740,7 @@ ShorteningBignumConversion(Double* dPtr, if (i == ilim) { mp_mul_2d(&b, 1, &b); if (ShouldBankerRoundUp(&b, &S, digit&1)) { - s = BumpUp(s, retval, &k); + s = BumpUp(s, retval, &k); } break; } @@ -3757,7 +3757,7 @@ ShorteningBignumConversion(Double* dPtr, } mp_div_d(&S, 5, &S, NULL); --s5; - /* + /* * IDEA: It might possibly be a win to fall back to * int64 arithmetic here if S < 2**64/10. But it's * a win only for a fairly narrow range of magnitudes @@ -3767,7 +3767,7 @@ ShorteningBignumConversion(Double* dPtr, * Possible savings: * 10**26 1 trip through loop before fallback possible * 10**27 1 trip - * 10**28 2 trips + * 10**28 2 trips * 10**29 3 trips * 10**30 4 trips * 10**31 5 trips @@ -3796,7 +3796,7 @@ ShorteningBignumConversion(Double* dPtr, } - /* + /* * Endgame - store the location of the decimal point and the end of the * string. */ @@ -3812,7 +3812,7 @@ ShorteningBignumConversion(Double* dPtr, return retval; } - + /* *----------------------------------------------------------------------------- * @@ -3862,7 +3862,7 @@ StrictBignumConversion(Double* dPtr, mp_int temp; /* Work area */ int g; /* Size of the current digit groun */ int i, j; - + /* * b = bw * 2**b2 * 5**b5 * S = 2**s2 * 5*s5 @@ -3875,10 +3875,10 @@ StrictBignumConversion(Double* dPtr, MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); /* - * Handle the case where we guess the position of the decimal point - * wrong. + * Handle the case where we guess the position of the decimal point + * wrong. */ - + if (mp_cmp_mag(&b, &S) == MP_LT) { mp_mul_d(&b, 10, &b); ilim =ilim1; @@ -3900,7 +3900,7 @@ StrictBignumConversion(Double* dPtr, if (++i >= ilim) { mp_mul_2d(&b, 1, &b); if (ShouldBankerRoundUp(&b, &S, digit&1)) { - s = BumpUp(s, retval, &k); + s = BumpUp(s, retval, &k); } } else { @@ -3923,7 +3923,7 @@ StrictBignumConversion(Double* dPtr, mp_mul_d(&b, dpow5[g], &b); } mp_mul_2d(&b, g, &b); - + /* * As with the shortening bignum conversion, it's possible at * this point that we will have reduced the denominator to @@ -3936,7 +3936,7 @@ StrictBignumConversion(Double* dPtr, */ /* Extract the next group of digits */ - + mp_div(&b, &S, &dig, &b); if (dig.used > 1) { Tcl_Panic("wrong digit!"); @@ -3948,24 +3948,24 @@ StrictBignumConversion(Double* dPtr, digit %= t; } i += g; - + /* Have we converted all the requested digits? */ - + if (i == ilim) { mp_mul_2d(&b, 1, &b); if (ShouldBankerRoundUp(&b, &S, digit&1)) { - s = BumpUp(s, retval, &k); + s = BumpUp(s, retval, &k); } else { while (*--s == '0') { /* do nothing */ } ++s; - } + } break; } } } - /* + /* * Endgame - store the location of the decimal point and the end of the * string. */ @@ -4009,7 +4009,7 @@ StrictBignumConversion(Double* dPtr, * TCL_DD_STEELE - This value is not recommended and may be removed * in the future. It follows the conversion algorithm outlined * in "How to Print Floating-Point Numbers Accurately" by - * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, * pp. 112-126]. This rule has the effect of rendering 1e23 * as 9.9999999999999999e22 - which is a 'better' approximation * in the sense that it will reconvert correctly even if @@ -4021,14 +4021,14 @@ StrictBignumConversion(Double* dPtr, * 'ndigits' digits, choosing the one that is closest to the * given number (and resolving ties with 'round to even'). * It is allowed to return fewer than 'ndigits' if the number - * converts exactly; if the TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG - * is supplied instead, it also returns fewer digits if the + * converts exactly; if the TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG + * is supplied instead, it also returns fewer digits if the * shorter string will still reconvert to the given input number. * In any case, strings of trailing zeroes are suppressed. * TCL_DD_F_FORMAT - This value is used to prepare numbers for %f * format conversion. It requests that conversion proceed until * 'ndigits' digits after the decimal point have been converted. - * It is possible for this format to result in a zero-length + * It is possible for this format to result in a zero-length * string if the number is sufficiently small. Again, it * is permissible for TCL_DD_F_FORMAT to return fewer digits * for a number that converts exactly, and changing the @@ -4045,12 +4045,12 @@ StrictBignumConversion(Double* dPtr, * midpoint between two decimal strings that more precision is needed * to resolve which string is correct. * - * The value stored in the 'decpt' argument on return may be negative - * (indicating that the decimal point falls to the left of the string) + * The value stored in the 'decpt' argument on return may be negative + * (indicating that the decimal point falls to the left of the string) * or greater than the length of the string. In addition, the value -9999 * is used as a sentinel to indicate that the string is one of the special * values "Infinity" and "NaN", and that no decimal point should be inserted. - * + * *----------------------------------------------------------------------------- */ char* @@ -4076,12 +4076,12 @@ TclDoubleDigits(double dv, /* Number to convert */ int denorm; /* Flag == 1 iff the input number was * denormalized */ int k; /* Estimate of floor(log10(d)) */ - int k_check; /* Flag == 1 if d is near enough to a + int k_check; /* Flag == 1 if d is near enough to a * power of ten that k must be checked */ int b2, b5, s2, s5; /* Powers of 2 and 5 in the numerator and * denominator of intermediate results */ int ilim = -1, ilim1 = -1; /* Number of digits to convert, and number - * to convert if log10(d) has been + * to convert if log10(d) has been * overestimated */ char* retval; /* Return value from this function */ int i = -1; @@ -4090,7 +4090,7 @@ TclDoubleDigits(double dv, /* Number to convert */ d.d = dv; - /* + /* * Handle the cases of negative numbers (by taking the absolute value: * this includes -Inf and -NaN!), infinity, Not a Number, and zero. */ @@ -4103,7 +4103,7 @@ TclDoubleDigits(double dv, /* Number to convert */ return FormatZero(decpt, endPtr); } - /* + /* * Unpack the floating point into a wide integer and an exponent. * Determine the number of bits that the big integer requires, and * compute a quick approximation (which may be one too high) of @@ -4116,12 +4116,12 @@ TclDoubleDigits(double dv, /* Number to convert */ /* At this point, we have: * d is the number to convert. - * bw are significand and exponent: d == bw*2**be, + * bw are significand and exponent: d == bw*2**be, * bbits is the length of bw: 2**bbits-1 <= bw < 2**bbits * k is either ceil(log10(d)) or ceil(log10(d))+1. k_check is 0 * if we know that k is exactly ceil(log10(d)) and 1 if we need to * check. - * We want a rational number + * We want a rational number * r = b * 10**(1-k) = bw * 2**b2 * 5**b5 / (2**s2 / 5**s5), * with b2, b5, s2, s5 >= 0. Note that the most significant decimal * digit is floor(r) and that successive digits can be obtained @@ -4149,7 +4149,7 @@ TclDoubleDigits(double dv, /* Number to convert */ SetPrecisionLimits(convType, k, &ndigits, &i, &ilim, &ilim1); - /* + /* * Try to do low-precision conversion in floating point rather * than resorting to expensive multiprecision arithmetic */ @@ -4161,7 +4161,7 @@ TclDoubleDigits(double dv, /* Number to convert */ } } - /* + /* * For shortening conversions, determine the upper and lower bounds * for the remainder at which we can stop. * m+ = (2**m2plus * 5**m5) / (2**s2 * 5**s5) is the limit on the @@ -4178,9 +4178,9 @@ TclDoubleDigits(double dv, /* Number to convert */ int m5 = b5; int len = i; - /* + /* * Find the quantity i so that (2**i*5**b5)/(2**s2*5**s5) - * is 1/2 unit in the least significant place of the floating + * is 1/2 unit in the least significant place of the floating * point number. */ if (denorm) { @@ -4191,7 +4191,7 @@ TclDoubleDigits(double dv, /* Number to convert */ b2 += i; s2 += i; - /* + /* * Reduce the fractions to lowest terms, since the above calculation * may have left excess powers of 2 in numerator and denominator */ @@ -4220,7 +4220,7 @@ TclDoubleDigits(double dv, /* Number to convert */ return ShorteningInt64Conversion(&d, convType, bw, b2, b5, m2plus, m2minus, m5, - s2, s5, k, len, ilim, ilim1, + s2, s5, k, len, ilim, ilim1, decpt, endPtr); } else if (s5 == 0) { /* @@ -4239,11 +4239,11 @@ TclDoubleDigits(double dv, /* Number to convert */ } return ShorteningBignumConversionPowD(&d, convType, bw, b2, b5, m2plus, m2minus, m5, - s2/DIGIT_BIT, k, len, + s2/DIGIT_BIT, k, len, ilim, ilim1, decpt, endPtr); } else { - /* + /* * Alas, there's no helpful special case; use full-up * bignum arithmetic for the conversion */ @@ -4279,7 +4279,7 @@ TclDoubleDigits(double dv, /* Number to convert */ */ return StrictInt64Conversion(&d, convType, bw, b2, b5, - s2, s5, k, len, ilim, ilim1, + s2, s5, k, len, ilim, ilim1, decpt, endPtr); } else if (s5 == 0) { @@ -4296,7 +4296,7 @@ TclDoubleDigits(double dv, /* Number to convert */ s2 += delta; } return StrictBignumConversionPowD(&d, convType, bw, b2, b5, - s2/DIGIT_BIT, k, len, + s2/DIGIT_BIT, k, len, ilim, ilim1, decpt, endPtr); } else { /* @@ -4308,7 +4308,7 @@ TclDoubleDigits(double dv, /* Number to convert */ return StrictBignumConversion(&d, convType, bw, b2, s2, s5, k, len, ilim, ilim1, decpt, endPtr); } - } + } } @@ -4558,7 +4558,7 @@ TclBignumToDouble( /* - * We need a 'mantBits'-bit significand. Determine what shift will + * We need a 'mantBits'-bit significand. Determine what shift will * give us that. */ @@ -4573,7 +4573,7 @@ TclBignumToDouble( } shift = mantBits - bits; - /* + /* * If shift > 0, shift the significand left by the requisite number of * bits. If shift == 0, the significand is already exactly 'mantBits' * in length. If shift < 0, we will need to shift the significand right |