summaryrefslogtreecommitdiffstats
path: root/libtommath/bn_mp_invmod_slow.c
diff options
context:
space:
mode:
authorKevin B Kenny <kennykb@acm.org>2005-01-19 22:41:26 (GMT)
committerKevin B Kenny <kennykb@acm.org>2005-01-19 22:41:26 (GMT)
commitb9cf65a08e6a59e434685e894e3189c201ac6791 (patch)
tree1f0868ef44c9f17d83d10dc94343df7b8cfe1842 /libtommath/bn_mp_invmod_slow.c
parentc6a259aeeca4814a97cf6694814c63e74e4e18fa (diff)
downloadtcl-b9cf65a08e6a59e434685e894e3189c201ac6791.zip
tcl-b9cf65a08e6a59e434685e894e3189c201ac6791.tar.gz
tcl-b9cf65a08e6a59e434685e894e3189c201ac6791.tar.bz2
Import of libtommath 0.33
Diffstat (limited to 'libtommath/bn_mp_invmod_slow.c')
-rw-r--r--libtommath/bn_mp_invmod_slow.c171
1 files changed, 171 insertions, 0 deletions
diff --git a/libtommath/bn_mp_invmod_slow.c b/libtommath/bn_mp_invmod_slow.c
new file mode 100644
index 0000000..c1884c0
--- /dev/null
+++ b/libtommath/bn_mp_invmod_slow.c
@@ -0,0 +1,171 @@
+#include <tommath.h>
+#ifdef BN_MP_INVMOD_SLOW_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* hac 14.61, pp608 */
+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, A, B, C, D;
+ int res;
+
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ return MP_VAL;
+ }
+
+ /* init temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v,
+ &A, &B, &C, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x = a, y = b */
+ if ((res = mp_copy (a, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (b, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 2. [modified] if x,y are both even then return an error! */
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ mp_set (&A, 1);
+ mp_set (&D, 1);
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if A or B is odd then */
+ if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
+ /* A = (A+y)/2, B = (B-x)/2 */
+ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* A = A/2, B = B/2 */
+ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if C or D is odd then */
+ if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
+ /* C = (C+y)/2, D = (D-x)/2 */
+ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* C = C/2, D = D/2 */
+ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, A = A - C, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, C = C - A, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0)
+ goto top;
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* if its too low */
+ while (mp_cmp_d(&C, 0) == MP_LT) {
+ if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* too big */
+ while (mp_cmp_mag(&C, b) != MP_LT) {
+ if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* C is now the inverse */
+ mp_exch (&C, c);
+ res = MP_OKAY;
+LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
+ return res;
+}
+#endif