summaryrefslogtreecommitdiffstats
path: root/libtommath/bn_mp_prime_frobenius_underwood.c
diff options
context:
space:
mode:
authorjan.nijtmans <nijtmans@users.sourceforge.net>2019-01-22 16:26:59 (GMT)
committerjan.nijtmans <nijtmans@users.sourceforge.net>2019-01-22 16:26:59 (GMT)
commit3cf1eb2c2370405ae05a7740dfdfdb206883b522 (patch)
tree22c4598980ea3b3377c1d8bfb95f1d33ef9f30fb /libtommath/bn_mp_prime_frobenius_underwood.c
parentf8876cc390ecf388114f426db15e641a5adb20fc (diff)
downloadtcl-3cf1eb2c2370405ae05a7740dfdfdb206883b522.zip
tcl-3cf1eb2c2370405ae05a7740dfdfdb206883b522.tar.gz
tcl-3cf1eb2c2370405ae05a7740dfdfdb206883b522.tar.bz2
Update to libtommath v1.1.0-rc4
Diffstat (limited to 'libtommath/bn_mp_prime_frobenius_underwood.c')
-rw-r--r--libtommath/bn_mp_prime_frobenius_underwood.c198
1 files changed, 198 insertions, 0 deletions
diff --git a/libtommath/bn_mp_prime_frobenius_underwood.c b/libtommath/bn_mp_prime_frobenius_underwood.c
new file mode 100644
index 0000000..4ceb51e
--- /dev/null
+++ b/libtommath/bn_mp_prime_frobenius_underwood.c
@@ -0,0 +1,198 @@
+#include "tommath_private.h"
+#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
+
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * SPDX-License-Identifier: Unlicense
+ */
+
+/*
+ * See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
+ */
+#ifndef LTM_USE_FIPS_ONLY
+
+#ifdef MP_8BIT
+/*
+ * floor of positive solution of
+ * (2^16)-1 = (a+4)*(2*a+5)
+ * TODO: Both values are smaller than N^(1/4), would have to use a bigint
+ * for a instead but any a biger than about 120 are already so rare that
+ * it is possible to ignore them and still get enough pseudoprimes.
+ * But it is still a restriction of the set of available pseudoprimes
+ * which makes this implementation less secure if used stand-alone.
+ */
+#define LTM_FROBENIUS_UNDERWOOD_A 177
+#else
+#define LTM_FROBENIUS_UNDERWOOD_A 32764
+#endif
+int mp_prime_frobenius_underwood(const mp_int *N, int *result)
+{
+ mp_int T1z, T2z, Np1z, sz, tz;
+
+ int a, ap2, length, i, j, isset;
+ int e;
+
+ *result = MP_NO;
+
+ if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
+ return e;
+ }
+
+ for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
+ /* TODO: That's ugly! No, really, it is! */
+ if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
+ (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
+ continue;
+ }
+ /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
+ if ((e = mp_set_long(&T1z, (unsigned long)a)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ if (j == -1) {
+ break;
+ }
+
+ if (j == 0) {
+ /* composite */
+ goto LBL_FU_ERR;
+ }
+ }
+ /* Tell it a composite and set return value accordingly */
+ if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
+ e = MP_ITER;
+ goto LBL_FU_ERR;
+ }
+ /* Composite if N and (a+4)*(2*a+5) are not coprime */
+ if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)))) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) {
+ goto LBL_FU_ERR;
+ }
+
+ ap2 = a + 2;
+ if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ mp_set(&sz, 1uL);
+ mp_set(&tz, 2uL);
+ length = mp_count_bits(&Np1z);
+
+ for (i = length - 2; i >= 0; i--) {
+ /*
+ * temp = (sz*(a*sz+2*tz))%N;
+ * tz = ((tz-sz)*(tz+sz))%N;
+ * sz = temp;
+ */
+ if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+
+ /* a = 0 at about 50% of the cases (non-square and odd input) */
+ if (a != 0) {
+ if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ }
+
+ if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((isset = mp_get_bit(&Np1z, i)) == MP_VAL) {
+ e = isset;
+ goto LBL_FU_ERR;
+ }
+ if (isset == MP_YES) {
+ /*
+ * temp = (a+2) * sz + tz
+ * tz = 2 * tz - sz
+ * sz = temp
+ */
+ if (a == 0) {
+ if ((e = mp_mul_2(&sz, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ } else {
+ if ((e = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ }
+ if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ mp_exch(&sz, &T1z);
+ }
+ }
+
+ if ((e = mp_set_long(&T1z, (unsigned long)((2 * a) + 5))) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((e = mp_mod(&T1z, N, &T1z)) != MP_OKAY) {
+ goto LBL_FU_ERR;
+ }
+ if ((mp_iszero(&sz) != MP_NO) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
+ *result = MP_YES;
+ goto LBL_FU_ERR;
+ }
+
+LBL_FU_ERR:
+ mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
+ return e;
+}
+
+#endif
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */