diff options
author | jan.nijtmans <nijtmans@users.sourceforge.net> | 2019-02-01 20:00:04 (GMT) |
---|---|---|
committer | jan.nijtmans <nijtmans@users.sourceforge.net> | 2019-02-01 20:00:04 (GMT) |
commit | 04ed7f99daa6ac1ca3e5a2903fc7c9325cd4d581 (patch) | |
tree | f20c21e7a9b452eeab3f8cace2601ec59404aed7 /libtommath/bn_mp_sqrtmod_prime.c | |
parent | 99be2974c327e7b37412b3f6c11681bffc3abb31 (diff) | |
download | tcl-04ed7f99daa6ac1ca3e5a2903fc7c9325cd4d581.zip tcl-04ed7f99daa6ac1ca3e5a2903fc7c9325cd4d581.tar.gz tcl-04ed7f99daa6ac1ca3e5a2903fc7c9325cd4d581.tar.bz2 |
Update libtommath to latest stable release (1.1.0)
Diffstat (limited to 'libtommath/bn_mp_sqrtmod_prime.c')
-rw-r--r-- | libtommath/bn_mp_sqrtmod_prime.c | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/libtommath/bn_mp_sqrtmod_prime.c b/libtommath/bn_mp_sqrtmod_prime.c new file mode 100644 index 0000000..cc4da3b --- /dev/null +++ b/libtommath/bn_mp_sqrtmod_prime.c @@ -0,0 +1,131 @@ +#include "tommath_private.h" +#ifdef BN_MP_SQRTMOD_PRIME_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * SPDX-License-Identifier: Unlicense + */ + +/* Tonelli-Shanks algorithm + * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm + * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html + * + */ + +int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) +{ + int res, legendre; + mp_int t1, C, Q, S, Z, M, T, R, two; + mp_digit i; + + /* first handle the simple cases */ + if (mp_cmp_d(n, 0uL) == MP_EQ) { + mp_zero(ret); + return MP_OKAY; + } + if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ + if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; + if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ + + if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { + return res; + } + + /* SPECIAL CASE: if prime mod 4 == 3 + * compute directly: res = n^(prime+1)/4 mod prime + * Handbook of Applied Cryptography algorithm 3.36 + */ + if ((res = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto cleanup; + if (i == 3u) { + if ((res = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; + res = MP_OKAY; + goto cleanup; + } + + /* NOW: Tonelli-Shanks algorithm */ + + /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ + if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto cleanup; + /* Q = prime - 1 */ + mp_zero(&S); + /* S = 0 */ + while (mp_iseven(&Q) != MP_NO) { + if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; + /* Q = Q / 2 */ + if ((res = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto cleanup; + /* S = S + 1 */ + } + + /* find a Z such that the Legendre symbol (Z|prime) == -1 */ + if ((res = mp_set_int(&Z, 2uL)) != MP_OKAY) goto cleanup; + /* Z = 2 */ + while (1) { + if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; + if (legendre == -1) break; + if ((res = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto cleanup; + /* Z = Z + 1 */ + } + + if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; + /* C = Z ^ Q mod prime */ + if ((res = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + /* t1 = (Q + 1) / 2 */ + if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = n ^ ((Q + 1) / 2) mod prime */ + if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; + /* T = n ^ Q mod prime */ + if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; + /* M = S */ + if ((res = mp_set_int(&two, 2uL)) != MP_OKAY) goto cleanup; + + res = MP_VAL; + while (1) { + if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; + i = 0; + while (1) { + if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; + if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; + i++; + } + if (i == 0u) { + if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; + res = MP_OKAY; + goto cleanup; + } + if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = 2 ^ (M - i - 1) */ + if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ + if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; + /* C = (t1 * t1) mod prime */ + if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = (R * t1) mod prime */ + if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; + /* T = (T * C) mod prime */ + mp_set(&M, i); + /* M = i */ + } + +cleanup: + mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); + return res; +} + +#endif + +/* ref: $Format:%D$ */ +/* git commit: $Format:%H$ */ +/* commit time: $Format:%ai$ */ |