diff options
author | jan.nijtmans <nijtmans@users.sourceforge.net> | 2017-04-12 12:00:11 (GMT) |
---|---|---|
committer | jan.nijtmans <nijtmans@users.sourceforge.net> | 2017-04-12 12:00:11 (GMT) |
commit | ece45e7fb6469e3ee3ad49f168f8711fb36f93ce (patch) | |
tree | db4a77927de2a4d6c6cf2bc672ebda4098b9b1a0 /libtommath/demo | |
parent | 6f3388528ef453d29fbddba3f5a054d2f5268207 (diff) | |
parent | 473bfc0f18451046035f638732a609fc86d5a0aa (diff) | |
download | tcl-ece45e7fb6469e3ee3ad49f168f8711fb36f93ce.zip tcl-ece45e7fb6469e3ee3ad49f168f8711fb36f93ce.tar.gz tcl-ece45e7fb6469e3ee3ad49f168f8711fb36f93ce.tar.bz2 |
merge trunkinitsubsystems
Diffstat (limited to 'libtommath/demo')
-rw-r--r-- | libtommath/demo/demo.c | 736 | ||||
-rw-r--r-- | libtommath/demo/timing.c | 315 |
2 files changed, 0 insertions, 1051 deletions
diff --git a/libtommath/demo/demo.c b/libtommath/demo/demo.c deleted file mode 100644 index e1f8a5e..0000000 --- a/libtommath/demo/demo.c +++ /dev/null @@ -1,736 +0,0 @@ -#include <time.h> - -#ifdef IOWNANATHLON -#include <unistd.h> -#define SLEEP sleep(4) -#else -#define SLEEP -#endif - -#include "tommath.h" - -void ndraw(mp_int * a, char *name) -{ - char buf[16000]; - - printf("%s: ", name); - mp_toradix(a, buf, 10); - printf("%s\n", buf); -} - -static void draw(mp_int * a) -{ - ndraw(a, ""); -} - - -unsigned long lfsr = 0xAAAAAAAAUL; - -int lbit(void) -{ - if (lfsr & 0x80000000UL) { - lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL; - return 1; - } else { - lfsr <<= 1; - return 0; - } -} - -int myrng(unsigned char *dst, int len, void *dat) -{ - int x; - - for (x = 0; x < len; x++) - dst[x] = rand() & 0xFF; - return len; -} - - - -char cmd[4096], buf[4096]; -int main(void) -{ - mp_int a, b, c, d, e, f; - unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, - gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n, t; - unsigned rr; - int i, n, err, cnt, ix, old_kara_m, old_kara_s; - mp_digit mp; - - - mp_init(&a); - mp_init(&b); - mp_init(&c); - mp_init(&d); - mp_init(&e); - mp_init(&f); - - srand(time(NULL)); - -#if 0 - // test montgomery - printf("Testing montgomery...\n"); - for (i = 1; i < 10; i++) { - printf("Testing digit size: %d\n", i); - for (n = 0; n < 1000; n++) { - mp_rand(&a, i); - a.dp[0] |= 1; - - // let's see if R is right - mp_montgomery_calc_normalization(&b, &a); - mp_montgomery_setup(&a, &mp); - - // now test a random reduction - for (ix = 0; ix < 100; ix++) { - mp_rand(&c, 1 + abs(rand()) % (2*i)); - mp_copy(&c, &d); - mp_copy(&c, &e); - - mp_mod(&d, &a, &d); - mp_montgomery_reduce(&c, &a, mp); - mp_mulmod(&c, &b, &a, &c); - - if (mp_cmp(&c, &d) != MP_EQ) { -printf("d = e mod a, c = e MOD a\n"); -mp_todecimal(&a, buf); printf("a = %s\n", buf); -mp_todecimal(&e, buf); printf("e = %s\n", buf); -mp_todecimal(&d, buf); printf("d = %s\n", buf); -mp_todecimal(&c, buf); printf("c = %s\n", buf); -printf("compare no compare!\n"); exit(EXIT_FAILURE); } - } - } - } - printf("done\n"); - - // test mp_get_int - printf("Testing: mp_get_int\n"); - for (i = 0; i < 1000; ++i) { - t = ((unsigned long) rand() * rand() + 1) & 0xFFFFFFFF; - mp_set_int(&a, t); - if (t != mp_get_int(&a)) { - printf("mp_get_int() bad result!\n"); - return 1; - } - } - mp_set_int(&a, 0); - if (mp_get_int(&a) != 0) { - printf("mp_get_int() bad result!\n"); - return 1; - } - mp_set_int(&a, 0xffffffff); - if (mp_get_int(&a) != 0xffffffff) { - printf("mp_get_int() bad result!\n"); - return 1; - } - // test mp_sqrt - printf("Testing: mp_sqrt\n"); - for (i = 0; i < 1000; ++i) { - printf("%6d\r", i); - fflush(stdout); - n = (rand() & 15) + 1; - mp_rand(&a, n); - if (mp_sqrt(&a, &b) != MP_OKAY) { - printf("mp_sqrt() error!\n"); - return 1; - } - mp_n_root(&a, 2, &a); - if (mp_cmp_mag(&b, &a) != MP_EQ) { - printf("mp_sqrt() bad result!\n"); - return 1; - } - } - - printf("\nTesting: mp_is_square\n"); - for (i = 0; i < 1000; ++i) { - printf("%6d\r", i); - fflush(stdout); - - /* test mp_is_square false negatives */ - n = (rand() & 7) + 1; - mp_rand(&a, n); - mp_sqr(&a, &a); - if (mp_is_square(&a, &n) != MP_OKAY) { - printf("fn:mp_is_square() error!\n"); - return 1; - } - if (n == 0) { - printf("fn:mp_is_square() bad result!\n"); - return 1; - } - - /* test for false positives */ - mp_add_d(&a, 1, &a); - if (mp_is_square(&a, &n) != MP_OKAY) { - printf("fp:mp_is_square() error!\n"); - return 1; - } - if (n == 1) { - printf("fp:mp_is_square() bad result!\n"); - return 1; - } - - } - printf("\n\n"); - - /* test for size */ - for (ix = 10; ix < 128; ix++) { - printf("Testing (not safe-prime): %9d bits \r", ix); - fflush(stdout); - err = - mp_prime_random_ex(&a, 8, ix, - (rand() & 1) ? LTM_PRIME_2MSB_OFF : - LTM_PRIME_2MSB_ON, myrng, NULL); - if (err != MP_OKAY) { - printf("failed with err code %d\n", err); - return EXIT_FAILURE; - } - if (mp_count_bits(&a) != ix) { - printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); - return EXIT_FAILURE; - } - } - - for (ix = 16; ix < 128; ix++) { - printf("Testing ( safe-prime): %9d bits \r", ix); - fflush(stdout); - err = - mp_prime_random_ex(&a, 8, ix, - ((rand() & 1) ? LTM_PRIME_2MSB_OFF : - LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng, - NULL); - if (err != MP_OKAY) { - printf("failed with err code %d\n", err); - return EXIT_FAILURE; - } - if (mp_count_bits(&a) != ix) { - printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); - return EXIT_FAILURE; - } - /* let's see if it's really a safe prime */ - mp_sub_d(&a, 1, &a); - mp_div_2(&a, &a); - mp_prime_is_prime(&a, 8, &cnt); - if (cnt != MP_YES) { - printf("sub is not prime!\n"); - return EXIT_FAILURE; - } - } - - printf("\n\n"); - - mp_read_radix(&a, "123456", 10); - mp_toradix_n(&a, buf, 10, 3); - printf("a == %s\n", buf); - mp_toradix_n(&a, buf, 10, 4); - printf("a == %s\n", buf); - mp_toradix_n(&a, buf, 10, 30); - printf("a == %s\n", buf); - - -#if 0 - for (;;) { - fgets(buf, sizeof(buf), stdin); - mp_read_radix(&a, buf, 10); - mp_prime_next_prime(&a, 5, 1); - mp_toradix(&a, buf, 10); - printf("%s, %lu\n", buf, a.dp[0] & 3); - } -#endif - - /* test mp_cnt_lsb */ - printf("testing mp_cnt_lsb...\n"); - mp_set(&a, 1); - for (ix = 0; ix < 1024; ix++) { - if (mp_cnt_lsb(&a) != ix) { - printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); - return 0; - } - mp_mul_2(&a, &a); - } - -/* test mp_reduce_2k */ - printf("Testing mp_reduce_2k...\n"); - for (cnt = 3; cnt <= 128; ++cnt) { - mp_digit tmp; - - mp_2expt(&a, cnt); - mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ - - - printf("\nTesting %4d bits", cnt); - printf("(%d)", mp_reduce_is_2k(&a)); - mp_reduce_2k_setup(&a, &tmp); - printf("(%d)", tmp); - for (ix = 0; ix < 1000; ix++) { - if (!(ix & 127)) { - printf("."); - fflush(stdout); - } - mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2); - mp_copy(&c, &b); - mp_mod(&c, &a, &c); - mp_reduce_2k(&b, &a, 2); - if (mp_cmp(&c, &b)) { - printf("FAILED\n"); - exit(0); - } - } - } - -/* test mp_div_3 */ - printf("Testing mp_div_3...\n"); - mp_set(&d, 3); - for (cnt = 0; cnt < 10000;) { - mp_digit r1, r2; - - if (!(++cnt & 127)) - printf("%9d\r", cnt); - mp_rand(&a, abs(rand()) % 128 + 1); - mp_div(&a, &d, &b, &e); - mp_div_3(&a, &c, &r2); - - if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { - printf("\n\nmp_div_3 => Failure\n"); - } - } - printf("\n\nPassed div_3 testing\n"); - -/* test the DR reduction */ - printf("testing mp_dr_reduce...\n"); - for (cnt = 2; cnt < 32; cnt++) { - printf("%d digit modulus\n", cnt); - mp_grow(&a, cnt); - mp_zero(&a); - for (ix = 1; ix < cnt; ix++) { - a.dp[ix] = MP_MASK; - } - a.used = cnt; - a.dp[0] = 3; - - mp_rand(&b, cnt - 1); - mp_copy(&b, &c); - - rr = 0; - do { - if (!(rr & 127)) { - printf("%9lu\r", rr); - fflush(stdout); - } - mp_sqr(&b, &b); - mp_add_d(&b, 1, &b); - mp_copy(&b, &c); - - mp_mod(&b, &a, &b); - mp_dr_reduce(&c, &a, (((mp_digit) 1) << DIGIT_BIT) - a.dp[0]); - - if (mp_cmp(&b, &c) != MP_EQ) { - printf("Failed on trial %lu\n", rr); - exit(-1); - - } - } while (++rr < 500); - printf("Passed DR test for %d digits\n", cnt); - } - -#endif - -/* test the mp_reduce_2k_l code */ -#if 0 -#if 0 -/* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */ - mp_2expt(&a, 1024); - mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16); - mp_sub(&a, &b, &a); -#elif 1 -/* p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F */ - mp_2expt(&a, 2048); - mp_read_radix(&b, - "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F", - 16); - mp_sub(&a, &b, &a); -#endif - - mp_todecimal(&a, buf); - printf("p==%s\n", buf); -/* now mp_reduce_is_2k_l() should return */ - if (mp_reduce_is_2k_l(&a) != 1) { - printf("mp_reduce_is_2k_l() return 0, should be 1\n"); - return EXIT_FAILURE; - } - mp_reduce_2k_setup_l(&a, &d); - /* now do a million square+1 to see if it varies */ - mp_rand(&b, 64); - mp_mod(&b, &a, &b); - mp_copy(&b, &c); - printf("testing mp_reduce_2k_l..."); - fflush(stdout); - for (cnt = 0; cnt < (1UL << 20); cnt++) { - mp_sqr(&b, &b); - mp_add_d(&b, 1, &b); - mp_reduce_2k_l(&b, &a, &d); - mp_sqr(&c, &c); - mp_add_d(&c, 1, &c); - mp_mod(&c, &a, &c); - if (mp_cmp(&b, &c) != MP_EQ) { - printf("mp_reduce_2k_l() failed at step %lu\n", cnt); - mp_tohex(&b, buf); - printf("b == %s\n", buf); - mp_tohex(&c, buf); - printf("c == %s\n", buf); - return EXIT_FAILURE; - } - } - printf("...Passed\n"); -#endif - - div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = - sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = - sub_d_n = 0; - - /* force KARA and TOOM to enable despite cutoffs */ - KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8; - TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16; - - for (;;) { - /* randomly clear and re-init one variable, this has the affect of triming the alloc space */ - switch (abs(rand()) % 7) { - case 0: - mp_clear(&a); - mp_init(&a); - break; - case 1: - mp_clear(&b); - mp_init(&b); - break; - case 2: - mp_clear(&c); - mp_init(&c); - break; - case 3: - mp_clear(&d); - mp_init(&d); - break; - case 4: - mp_clear(&e); - mp_init(&e); - break; - case 5: - mp_clear(&f); - mp_init(&f); - break; - case 6: - break; /* don't clear any */ - } - - - printf - ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ", - add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, - expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n); - fgets(cmd, 4095, stdin); - cmd[strlen(cmd) - 1] = 0; - printf("%s ]\r", cmd); - fflush(stdout); - if (!strcmp(cmd, "mul2d")) { - ++mul2d_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - sscanf(buf, "%d", &rr); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - - mp_mul_2d(&a, rr, &a); - a.sign = b.sign; - if (mp_cmp(&a, &b) != MP_EQ) { - printf("mul2d failed, rr == %d\n", rr); - draw(&a); - draw(&b); - return 0; - } - } else if (!strcmp(cmd, "div2d")) { - ++div2d_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - sscanf(buf, "%d", &rr); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - - mp_div_2d(&a, rr, &a, &e); - a.sign = b.sign; - if (a.used == b.used && a.used == 0) { - a.sign = b.sign = MP_ZPOS; - } - if (mp_cmp(&a, &b) != MP_EQ) { - printf("div2d failed, rr == %d\n", rr); - draw(&a); - draw(&b); - return 0; - } - } else if (!strcmp(cmd, "add")) { - ++add_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - mp_copy(&a, &d); - mp_add(&d, &b, &d); - if (mp_cmp(&c, &d) != MP_EQ) { - printf("add %lu failure!\n", add_n); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - return 0; - } - - /* test the sign/unsigned storage functions */ - - rr = mp_signed_bin_size(&c); - mp_to_signed_bin(&c, (unsigned char *) cmd); - memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); - mp_read_signed_bin(&d, (unsigned char *) cmd, rr); - if (mp_cmp(&c, &d) != MP_EQ) { - printf("mp_signed_bin failure!\n"); - draw(&c); - draw(&d); - return 0; - } - - - rr = mp_unsigned_bin_size(&c); - mp_to_unsigned_bin(&c, (unsigned char *) cmd); - memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); - mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr); - if (mp_cmp_mag(&c, &d) != MP_EQ) { - printf("mp_unsigned_bin failure!\n"); - draw(&c); - draw(&d); - return 0; - } - - } else if (!strcmp(cmd, "sub")) { - ++sub_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - mp_copy(&a, &d); - mp_sub(&d, &b, &d); - if (mp_cmp(&c, &d) != MP_EQ) { - printf("sub %lu failure!\n", sub_n); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - return 0; - } - } else if (!strcmp(cmd, "mul")) { - ++mul_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - mp_copy(&a, &d); - mp_mul(&d, &b, &d); - if (mp_cmp(&c, &d) != MP_EQ) { - printf("mul %lu failure!\n", mul_n); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - return 0; - } - } else if (!strcmp(cmd, "div")) { - ++div_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&d, buf, 64); - - mp_div(&a, &b, &e, &f); - if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) { - printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e), - mp_cmp(&d, &f)); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - draw(&e); - draw(&f); - return 0; - } - - } else if (!strcmp(cmd, "sqr")) { - ++sqr_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - mp_copy(&a, &c); - mp_sqr(&c, &c); - if (mp_cmp(&b, &c) != MP_EQ) { - printf("sqr %lu failure!\n", sqr_n); - draw(&a); - draw(&b); - draw(&c); - return 0; - } - } else if (!strcmp(cmd, "gcd")) { - ++gcd_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - mp_copy(&a, &d); - mp_gcd(&d, &b, &d); - d.sign = c.sign; - if (mp_cmp(&c, &d) != MP_EQ) { - printf("gcd %lu failure!\n", gcd_n); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - return 0; - } - } else if (!strcmp(cmd, "lcm")) { - ++lcm_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - mp_copy(&a, &d); - mp_lcm(&d, &b, &d); - d.sign = c.sign; - if (mp_cmp(&c, &d) != MP_EQ) { - printf("lcm %lu failure!\n", lcm_n); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - return 0; - } - } else if (!strcmp(cmd, "expt")) { - ++expt_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&d, buf, 64); - mp_copy(&a, &e); - mp_exptmod(&e, &b, &c, &e); - if (mp_cmp(&d, &e) != MP_EQ) { - printf("expt %lu failure!\n", expt_n); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - draw(&e); - return 0; - } - } else if (!strcmp(cmd, "invmod")) { - ++inv_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&c, buf, 64); - mp_invmod(&a, &b, &d); - mp_mulmod(&d, &a, &b, &e); - if (mp_cmp_d(&e, 1) != MP_EQ) { - printf("inv [wrong value from MPI?!] failure\n"); - draw(&a); - draw(&b); - draw(&c); - draw(&d); - mp_gcd(&a, &b, &e); - draw(&e); - return 0; - } - - } else if (!strcmp(cmd, "div2")) { - ++div2_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - mp_div_2(&a, &c); - if (mp_cmp(&c, &b) != MP_EQ) { - printf("div_2 %lu failure\n", div2_n); - draw(&a); - draw(&b); - draw(&c); - return 0; - } - } else if (!strcmp(cmd, "mul2")) { - ++mul2_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - mp_mul_2(&a, &c); - if (mp_cmp(&c, &b) != MP_EQ) { - printf("mul_2 %lu failure\n", mul2_n); - draw(&a); - draw(&b); - draw(&c); - return 0; - } - } else if (!strcmp(cmd, "add_d")) { - ++add_d_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - sscanf(buf, "%d", &ix); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - mp_add_d(&a, ix, &c); - if (mp_cmp(&b, &c) != MP_EQ) { - printf("add_d %lu failure\n", add_d_n); - draw(&a); - draw(&b); - draw(&c); - printf("d == %d\n", ix); - return 0; - } - } else if (!strcmp(cmd, "sub_d")) { - ++sub_d_n; - fgets(buf, 4095, stdin); - mp_read_radix(&a, buf, 64); - fgets(buf, 4095, stdin); - sscanf(buf, "%d", &ix); - fgets(buf, 4095, stdin); - mp_read_radix(&b, buf, 64); - mp_sub_d(&a, ix, &c); - if (mp_cmp(&b, &c) != MP_EQ) { - printf("sub_d %lu failure\n", sub_d_n); - draw(&a); - draw(&b); - draw(&c); - printf("d == %d\n", ix); - return 0; - } - } - } - return 0; -} diff --git a/libtommath/demo/timing.c b/libtommath/demo/timing.c deleted file mode 100644 index bb3be52..0000000 --- a/libtommath/demo/timing.c +++ /dev/null @@ -1,315 +0,0 @@ -#include <tommath.h> -#include <time.h> - -ulong64 _tt; - -#ifdef IOWNANATHLON -#include <unistd.h> -#define SLEEP sleep(4) -#else -#define SLEEP -#endif - - -void ndraw(mp_int * a, char *name) -{ - char buf[4096]; - - printf("%s: ", name); - mp_toradix(a, buf, 64); - printf("%s\n", buf); -} - -static void draw(mp_int * a) -{ - ndraw(a, ""); -} - - -unsigned long lfsr = 0xAAAAAAAAUL; - -int lbit(void) -{ - if (lfsr & 0x80000000UL) { - lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL; - return 1; - } else { - lfsr <<= 1; - return 0; - } -} - -/* RDTSC from Scott Duplichan */ -static ulong64 TIMFUNC(void) -{ -#if defined __GNUC__ -#if defined(__i386__) || defined(__x86_64__) - unsigned long long a; - __asm__ __volatile__("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n":: - "m"(a):"%eax", "%edx"); - return a; -#else /* gcc-IA64 version */ - unsigned long result; - __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory"); - - while (__builtin_expect((int) result == -1, 0)) - __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory"); - - return result; -#endif - - // Microsoft and Intel Windows compilers -#elif defined _M_IX86 - __asm rdtsc -#elif defined _M_AMD64 - return __rdtsc(); -#elif defined _M_IA64 -#if defined __INTEL_COMPILER -#include <ia64intrin.h> -#endif - return __getReg(3116); -#else -#error need rdtsc function for this build -#endif -} - -#define DO(x) x; x; -//#define DO4(x) DO2(x); DO2(x); -//#define DO8(x) DO4(x); DO4(x); -//#define DO(x) DO8(x); DO8(x); - -int main(void) -{ - ulong64 tt, gg, CLK_PER_SEC; - FILE *log, *logb, *logc, *logd; - mp_int a, b, c, d, e, f; - int n, cnt, ix, old_kara_m, old_kara_s; - unsigned rr; - - mp_init(&a); - mp_init(&b); - mp_init(&c); - mp_init(&d); - mp_init(&e); - mp_init(&f); - - srand(time(NULL)); - - - /* temp. turn off TOOM */ - TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; - - CLK_PER_SEC = TIMFUNC(); - sleep(1); - CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC; - - printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC); - goto exptmod; - log = fopen("logs/add.log", "w"); - for (cnt = 8; cnt <= 128; cnt += 8) { - SLEEP; - mp_rand(&a, cnt); - mp_rand(&b, cnt); - rr = 0; - tt = -1; - do { - gg = TIMFUNC(); - DO(mp_add(&a, &b, &c)); - gg = (TIMFUNC() - gg) >> 1; - if (tt > gg) - tt = gg; - } while (++rr < 100000); - printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", - mp_count_bits(&a), CLK_PER_SEC / tt, tt); - fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); - fflush(log); - } - fclose(log); - - log = fopen("logs/sub.log", "w"); - for (cnt = 8; cnt <= 128; cnt += 8) { - SLEEP; - mp_rand(&a, cnt); - mp_rand(&b, cnt); - rr = 0; - tt = -1; - do { - gg = TIMFUNC(); - DO(mp_sub(&a, &b, &c)); - gg = (TIMFUNC() - gg) >> 1; - if (tt > gg) - tt = gg; - } while (++rr < 100000); - - printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", - mp_count_bits(&a), CLK_PER_SEC / tt, tt); - fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); - fflush(log); - } - fclose(log); - - /* do mult/square twice, first without karatsuba and second with */ - multtest: - old_kara_m = KARATSUBA_MUL_CUTOFF; - old_kara_s = KARATSUBA_SQR_CUTOFF; - for (ix = 0; ix < 2; ix++) { - printf("With%s Karatsuba\n", (ix == 0) ? "out" : ""); - - KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m; - KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s; - - log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w"); - for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { - SLEEP; - mp_rand(&a, cnt); - mp_rand(&b, cnt); - rr = 0; - tt = -1; - do { - gg = TIMFUNC(); - DO(mp_mul(&a, &b, &c)); - gg = (TIMFUNC() - gg) >> 1; - if (tt > gg) - tt = gg; - } while (++rr < 100); - printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", - mp_count_bits(&a), CLK_PER_SEC / tt, tt); - fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); - fflush(log); - } - fclose(log); - - log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w"); - for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { - SLEEP; - mp_rand(&a, cnt); - rr = 0; - tt = -1; - do { - gg = TIMFUNC(); - DO(mp_sqr(&a, &b)); - gg = (TIMFUNC() - gg) >> 1; - if (tt > gg) - tt = gg; - } while (++rr < 100); - printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", - mp_count_bits(&a), CLK_PER_SEC / tt, tt); - fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); - fflush(log); - } - fclose(log); - - } - exptmod: - - { - char *primes[] = { - /* 2K large moduli */ - "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217", - "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169", - "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283", - /* 2K moduli mersenne primes */ - "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", - "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", - "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", - "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", - "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", - "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", - - /* DR moduli */ - "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", - "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", - "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", - "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", - "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", - "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", - "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", - - /* generic unrestricted moduli */ - "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", - "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", - "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", - "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", - "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", - "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", - "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", - NULL - }; - log = fopen("logs/expt.log", "w"); - logb = fopen("logs/expt_dr.log", "w"); - logc = fopen("logs/expt_2k.log", "w"); - logd = fopen("logs/expt_2kl.log", "w"); - for (n = 0; primes[n]; n++) { - SLEEP; - mp_read_radix(&a, primes[n], 10); - mp_zero(&b); - for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) { - mp_mul_2(&b, &b); - b.dp[0] |= lbit(); - b.used += 1; - } - mp_sub_d(&a, 1, &c); - mp_mod(&b, &c, &b); - mp_set(&c, 3); - rr = 0; - tt = -1; - do { - gg = TIMFUNC(); - DO(mp_exptmod(&c, &b, &a, &d)); - gg = (TIMFUNC() - gg) >> 1; - if (tt > gg) - tt = gg; - } while (++rr < 10); - mp_sub_d(&a, 1, &e); - mp_sub(&e, &b, &b); - mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */ - mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */ - if (mp_cmp_d(&d, 1)) { - printf("Different (%d)!!!\n", mp_count_bits(&a)); - draw(&d); - exit(0); - } - printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", - mp_count_bits(&a), CLK_PER_SEC / tt, tt); - fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log, - "%d %9llu\n", mp_count_bits(&a), tt); - } - } - fclose(log); - fclose(logb); - fclose(logc); - fclose(logd); - - log = fopen("logs/invmod.log", "w"); - for (cnt = 4; cnt <= 128; cnt += 4) { - SLEEP; - mp_rand(&a, cnt); - mp_rand(&b, cnt); - - do { - mp_add_d(&b, 1, &b); - mp_gcd(&a, &b, &c); - } while (mp_cmp_d(&c, 1) != MP_EQ); - - rr = 0; - tt = -1; - do { - gg = TIMFUNC(); - DO(mp_invmod(&b, &a, &c)); - gg = (TIMFUNC() - gg) >> 1; - if (tt > gg) - tt = gg; - } while (++rr < 1000); - mp_mulmod(&b, &c, &a, &d); - if (mp_cmp_d(&d, 1) != MP_EQ) { - printf("Failed to invert\n"); - return 0; - } - printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", - mp_count_bits(&a), CLK_PER_SEC / tt, tt); - fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); - } - fclose(log); - - return 0; -} |