summaryrefslogtreecommitdiffstats
path: root/libtommath
diff options
context:
space:
mode:
authorjan.nijtmans <nijtmans@users.sourceforge.net>2019-05-29 22:48:50 (GMT)
committerjan.nijtmans <nijtmans@users.sourceforge.net>2019-05-29 22:48:50 (GMT)
commit7a1b66b00db2dcc63f4743c36b4e8e6edcfc4211 (patch)
tree770e7df5a9383984bb53ff5db2ae72fea43a3f7d /libtommath
parent4e994192a1fe60802c91b8ffee51720f54093bac (diff)
downloadtcl-7a1b66b00db2dcc63f4743c36b4e8e6edcfc4211.zip
tcl-7a1b66b00db2dcc63f4743c36b4e8e6edcfc4211.tar.gz
tcl-7a1b66b00db2dcc63f4743c36b4e8e6edcfc4211.tar.bz2
Update some libtommath functions to the latest trunk versions. Small step forward in the upgrade to (upcoming) libtommath 1.2.
Advantage: simplify Tcl code accessing those functions.
Diffstat (limited to 'libtommath')
-rw-r--r--libtommath/bn_mp_and.c99
-rw-r--r--libtommath/bn_mp_cmp.c51
-rw-r--r--libtommath/bn_mp_cmp_d.c50
-rw-r--r--libtommath/bn_mp_cmp_mag.c66
-rw-r--r--libtommath/bn_mp_or.c92
-rw-r--r--libtommath/bn_mp_xor.c93
-rw-r--r--libtommath/tommath.h353
7 files changed, 422 insertions, 382 deletions
diff --git a/libtommath/bn_mp_and.c b/libtommath/bn_mp_and.c
index 02bef18..54c0b4e 100644
--- a/libtommath/bn_mp_and.c
+++ b/libtommath/bn_mp_and.c
@@ -1,53 +1,56 @@
#include <tommath.h>
#ifdef BN_MP_AND_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
-
-/* AND two ints together */
-int
-mp_and (mp_int * a, mp_int * b, mp_int * c)
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* two complement and */
+mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c)
{
- int res, ix, px;
- mp_int t, *x;
-
- if (a->used > b->used) {
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
- return res;
- }
- px = b->used;
- x = b;
- } else {
- if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
- return res;
- }
- px = a->used;
- x = a;
- }
-
- for (ix = 0; ix < px; ix++) {
- t.dp[ix] &= x->dp[ix];
- }
-
- /* zero digits above the last from the smallest mp_int */
- for (; ix < t.used; ix++) {
- t.dp[ix] = 0;
- }
-
- mp_clamp (&t);
- mp_exch (c, &t);
- mp_clear (&t);
- return MP_OKAY;
+ int used = MAX(a->used, b->used) + 1, i;
+ mp_err err;
+ mp_digit ac = 1, bc = 1, cc = 1;
+ mp_sign csign = ((a->sign == MP_NEG) && (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS;
+
+ if (c->alloc < used) {
+ if ((err = mp_grow(c, used)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ for (i = 0; i < used; i++) {
+ mp_digit x, y;
+
+ /* convert to two complement if negative */
+ if (a->sign == MP_NEG) {
+ ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK);
+ x = ac & MP_MASK;
+ ac >>= MP_DIGIT_BIT;
+ } else {
+ x = (i >= a->used) ? 0uL : a->dp[i];
+ }
+
+ /* convert to two complement if negative */
+ if (b->sign == MP_NEG) {
+ bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK);
+ y = bc & MP_MASK;
+ bc >>= MP_DIGIT_BIT;
+ } else {
+ y = (i >= b->used) ? 0uL : b->dp[i];
+ }
+
+ c->dp[i] = x & y;
+
+ /* convert to to sign-magnitude if negative */
+ if (csign == MP_NEG) {
+ cc += ~c->dp[i] & MP_MASK;
+ c->dp[i] = cc & MP_MASK;
+ cc >>= MP_DIGIT_BIT;
+ }
+ }
+
+ c->used = used;
+ c->sign = csign;
+ mp_clamp(c);
+ return MP_OKAY;
}
#endif
diff --git a/libtommath/bn_mp_cmp.c b/libtommath/bn_mp_cmp.c
index b965d4b..c042b63 100644
--- a/libtommath/bn_mp_cmp.c
+++ b/libtommath/bn_mp_cmp.c
@@ -1,39 +1,26 @@
#include <tommath.h>
#ifdef BN_MP_CMP_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
/* compare two ints (signed)*/
-int
-mp_cmp (mp_int * a, mp_int * b)
+mp_ord mp_cmp(const mp_int *a, const mp_int *b)
{
- /* compare based on sign */
- if (a->sign != b->sign) {
- if (a->sign == MP_NEG) {
- return MP_LT;
- } else {
- return MP_GT;
- }
- }
-
- /* compare digits */
- if (a->sign == MP_NEG) {
- /* if negative compare opposite direction */
- return mp_cmp_mag(b, a);
- } else {
- return mp_cmp_mag(a, b);
- }
+ /* compare based on sign */
+ if (a->sign != b->sign) {
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ } else {
+ return MP_GT;
+ }
+ }
+
+ /* compare digits */
+ if (a->sign == MP_NEG) {
+ /* if negative compare opposite direction */
+ return mp_cmp_mag(b, a);
+ } else {
+ return mp_cmp_mag(a, b);
+ }
}
#endif
diff --git a/libtommath/bn_mp_cmp_d.c b/libtommath/bn_mp_cmp_d.c
index a446bb4..947c57a 100644
--- a/libtommath/bn_mp_cmp_d.c
+++ b/libtommath/bn_mp_cmp_d.c
@@ -1,40 +1,28 @@
#include <tommath.h>
#ifdef BN_MP_CMP_D_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
/* compare a digit */
-int mp_cmp_d(mp_int * a, mp_digit b)
+mp_ord mp_cmp_d(const mp_int *a, mp_digit b)
{
- /* compare based on sign */
- if (a->sign == MP_NEG) {
- return MP_LT;
- }
+ /* compare based on sign */
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ }
- /* compare based on magnitude */
- if (a->used > 1) {
- return MP_GT;
- }
+ /* compare based on magnitude */
+ if (a->used > 1) {
+ return MP_GT;
+ }
- /* compare the only digit of a to b */
- if (a->dp[0] > b) {
- return MP_GT;
- } else if (a->dp[0] < b) {
- return MP_LT;
- } else {
- return MP_EQ;
- }
+ /* compare the only digit of a to b */
+ if (a->dp[0] > b) {
+ return MP_GT;
+ } else if (a->dp[0] < b) {
+ return MP_LT;
+ } else {
+ return MP_EQ;
+ }
}
#endif
diff --git a/libtommath/bn_mp_cmp_mag.c b/libtommath/bn_mp_cmp_mag.c
index 3506d2b..850e083 100644
--- a/libtommath/bn_mp_cmp_mag.c
+++ b/libtommath/bn_mp_cmp_mag.c
@@ -1,51 +1,39 @@
#include <tommath.h>
#ifdef BN_MP_CMP_MAG_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
/* compare maginitude of two ints (unsigned) */
-int mp_cmp_mag (mp_int * a, mp_int * b)
+mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b)
{
- int n;
- mp_digit *tmpa, *tmpb;
+ int n;
+ const mp_digit *tmpa, *tmpb;
- /* compare based on # of non-zero digits */
- if (a->used > b->used) {
- return MP_GT;
- }
-
- if (a->used < b->used) {
- return MP_LT;
- }
+ /* compare based on # of non-zero digits */
+ if (a->used > b->used) {
+ return MP_GT;
+ }
- /* alias for a */
- tmpa = a->dp + (a->used - 1);
+ if (a->used < b->used) {
+ return MP_LT;
+ }
- /* alias for b */
- tmpb = b->dp + (a->used - 1);
+ /* alias for a */
+ tmpa = a->dp + (a->used - 1);
- /* compare based on digits */
- for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
- if (*tmpa > *tmpb) {
- return MP_GT;
- }
+ /* alias for b */
+ tmpb = b->dp + (a->used - 1);
- if (*tmpa < *tmpb) {
- return MP_LT;
- }
- }
- return MP_EQ;
+ /* compare based on digits */
+ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
+ if (*tmpa > *tmpb) {
+ return MP_GT;
+ }
+
+ if (*tmpa < *tmpb) {
+ return MP_LT;
+ }
+ }
+ return MP_EQ;
}
#endif
diff --git a/libtommath/bn_mp_or.c b/libtommath/bn_mp_or.c
index aa5b1bd..afcdd9b 100644
--- a/libtommath/bn_mp_or.c
+++ b/libtommath/bn_mp_or.c
@@ -1,46 +1,56 @@
#include <tommath.h>
#ifdef BN_MP_OR_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
-
-/* OR two ints together */
-int mp_or (mp_int * a, mp_int * b, mp_int * c)
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* two complement or */
+mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c)
{
- int res, ix, px;
- mp_int t, *x;
-
- if (a->used > b->used) {
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
- return res;
- }
- px = b->used;
- x = b;
- } else {
- if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
- return res;
- }
- px = a->used;
- x = a;
- }
-
- for (ix = 0; ix < px; ix++) {
- t.dp[ix] |= x->dp[ix];
- }
- mp_clamp (&t);
- mp_exch (c, &t);
- mp_clear (&t);
- return MP_OKAY;
+ int used = MAX(a->used, b->used) + 1, i;
+ mp_err err;
+ mp_digit ac = 1, bc = 1, cc = 1;
+ mp_sign csign = ((a->sign == MP_NEG) || (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS;
+
+ if (c->alloc < used) {
+ if ((err = mp_grow(c, used)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ for (i = 0; i < used; i++) {
+ mp_digit x, y;
+
+ /* convert to two complement if negative */
+ if (a->sign == MP_NEG) {
+ ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK);
+ x = ac & MP_MASK;
+ ac >>= MP_DIGIT_BIT;
+ } else {
+ x = (i >= a->used) ? 0uL : a->dp[i];
+ }
+
+ /* convert to two complement if negative */
+ if (b->sign == MP_NEG) {
+ bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK);
+ y = bc & MP_MASK;
+ bc >>= MP_DIGIT_BIT;
+ } else {
+ y = (i >= b->used) ? 0uL : b->dp[i];
+ }
+
+ c->dp[i] = x | y;
+
+ /* convert to to sign-magnitude if negative */
+ if (csign == MP_NEG) {
+ cc += ~c->dp[i] & MP_MASK;
+ c->dp[i] = cc & MP_MASK;
+ cc >>= MP_DIGIT_BIT;
+ }
+ }
+
+ c->used = used;
+ c->sign = csign;
+ mp_clamp(c);
+ return MP_OKAY;
}
#endif
diff --git a/libtommath/bn_mp_xor.c b/libtommath/bn_mp_xor.c
index 432f42e..fba6617 100644
--- a/libtommath/bn_mp_xor.c
+++ b/libtommath/bn_mp_xor.c
@@ -1,47 +1,56 @@
#include <tommath.h>
#ifdef BN_MP_XOR_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
-
-/* XOR two ints together */
-int
-mp_xor (mp_int * a, mp_int * b, mp_int * c)
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* two complement xor */
+mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
{
- int res, ix, px;
- mp_int t, *x;
-
- if (a->used > b->used) {
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
- return res;
- }
- px = b->used;
- x = b;
- } else {
- if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
- return res;
- }
- px = a->used;
- x = a;
- }
-
- for (ix = 0; ix < px; ix++) {
- t.dp[ix] ^= x->dp[ix];
- }
- mp_clamp (&t);
- mp_exch (c, &t);
- mp_clear (&t);
- return MP_OKAY;
+ int used = MAX(a->used, b->used) + 1, i;
+ mp_err err;
+ mp_digit ac = 1, bc = 1, cc = 1;
+ mp_sign csign = (a->sign != b->sign) ? MP_NEG : MP_ZPOS;
+
+ if (c->alloc < used) {
+ if ((err = mp_grow(c, used)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ for (i = 0; i < used; i++) {
+ mp_digit x, y;
+
+ /* convert to two complement if negative */
+ if (a->sign == MP_NEG) {
+ ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK);
+ x = ac & MP_MASK;
+ ac >>= MP_DIGIT_BIT;
+ } else {
+ x = (i >= a->used) ? 0uL : a->dp[i];
+ }
+
+ /* convert to two complement if negative */
+ if (b->sign == MP_NEG) {
+ bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK);
+ y = bc & MP_MASK;
+ bc >>= MP_DIGIT_BIT;
+ } else {
+ y = (i >= b->used) ? 0uL : b->dp[i];
+ }
+
+ c->dp[i] = x ^ y;
+
+ /* convert to to sign-magnitude if negative */
+ if (csign == MP_NEG) {
+ cc += ~c->dp[i] & MP_MASK;
+ c->dp[i] = cc & MP_MASK;
+ cc >>= MP_DIGIT_BIT;
+ }
+ }
+
+ c->used = used;
+ c->sign = csign;
+ mp_clamp(c);
+ return MP_OKAY;
}
#endif
diff --git a/libtommath/tommath.h b/libtommath/tommath.h
index 49b2c2a..df460f6 100644
--- a/libtommath/tommath.h
+++ b/libtommath/tommath.h
@@ -1,28 +1,14 @@
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
#ifndef BN_H_
#define BN_H_
-#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>
-#include <tommath_class.h>
-
#ifndef MIN
#define MIN(x,y) ((x)<(y)?(x):(y))
#endif
@@ -31,6 +17,10 @@
#define MAX(x,y) ((x)>(y)?(x):(y))
#endif
+#ifndef MP_NO_FILE
+# include <stdio.h>
+#endif
+
#ifdef __cplusplus
extern "C" {
@@ -131,45 +121,74 @@ extern "C" {
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX MP_MASK
-/* equalities */
-#define MP_LT -1 /* less than */
-#define MP_EQ 0 /* equal to */
-#define MP_GT 1 /* greater than */
+/* Primality generation flags */
+#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
+#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
+#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
+#ifdef MP_USE_ENUMS
+typedef enum {
+ MP_ZPOS = 0,
+ MP_NEG = 1
+} mp_sign;
+typedef enum {
+ MP_LT = -1,
+ MP_EQ = 0,
+ MP_GT = 1
+} mp_ord;
+typedef enum {
+ MP_NO = 0,
+ MP_YES = 1
+} mp_bool;
+typedef enum {
+ MP_OKAY = 0,
+ MP_ERR = -1,
+ MP_MEM = -2,
+ MP_VAL = -3,
+ MP_ITER = -4
+} mp_err;
+#else
+typedef int mp_sign;
#define MP_ZPOS 0 /* positive integer */
#define MP_NEG 1 /* negative */
-
+typedef int mp_ord;
+#define MP_LT -1 /* less than */
+#define MP_EQ 0 /* equal to */
+#define MP_GT 1 /* greater than */
+typedef int mp_bool;
+#define MP_YES 1 /* yes response */
+#define MP_NO 0 /* no response */
+typedef int mp_err;
#define MP_OKAY 0 /* ok result */
+#define MP_ERR -1 /* unknown error */
#define MP_MEM -2 /* out of mem */
#define MP_VAL -3 /* invalid input */
#define MP_RANGE MP_VAL
+#define MP_ITER -4 /* Max. iterations reached */
+#endif
-#define MP_YES 1 /* yes response */
-#define MP_NO 0 /* no response */
-
-/* Primality generation flags */
-#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
-#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
-#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
-
-typedef int mp_err;
+/* tunable cutoffs */
-/* you'll have to tune these... */
-extern int KARATSUBA_MUL_CUTOFF,
- KARATSUBA_SQR_CUTOFF,
- TOOM_MUL_CUTOFF,
- TOOM_SQR_CUTOFF;
+#ifndef MP_FIXED_CUTOFFS
+extern int
+KARATSUBA_MUL_CUTOFF,
+KARATSUBA_SQR_CUTOFF,
+TOOM_MUL_CUTOFF,
+TOOM_SQR_CUTOFF;
+#endif
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
/* default precision */
#ifndef MP_PREC
- #ifndef MP_LOW_MEM
- #define MP_PREC 32 /* default digits of precision */
- #else
- #define MP_PREC 8 /* default digits of precision */
- #endif
+# ifndef MP_LOW_MEM
+# define MP_PREC 32 /* default digits of precision */
+# elif defined(MP_8BIT)
+# define MP_PREC 16 /* default digits of precision */
+# else
+# define MP_PREC 8 /* default digits of precision */
+# endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
@@ -177,8 +196,9 @@ extern int KARATSUBA_MUL_CUTOFF,
/* the infamous mp_int structure */
typedef struct {
- int used, alloc, sign;
- mp_digit *dp;
+ int used, alloc;
+ mp_sign sign;
+ mp_digit *dp;
} mp_int;
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
@@ -190,17 +210,17 @@ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
#define SIGN(m) ((m)->sign)
/* error code to char* string */
-char *mp_error_to_string(int code);
+const char *mp_error_to_string(mp_err code);
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
-int mp_init(mp_int *a);
+mp_err mp_init(mp_int *a);
/* free a bignum */
void mp_clear(mp_int *a);
/* init a null terminated series of arguments */
-int mp_init_multi(mp_int *mp, ...);
+mp_err mp_init_multi(mp_int *mp, ...);
/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...);
@@ -209,18 +229,19 @@ void mp_clear_multi(mp_int *mp, ...);
void mp_exch(mp_int *a, mp_int *b);
/* shrink ram required for a bignum */
-int mp_shrink(mp_int *a);
+mp_err mp_shrink(mp_int *a);
/* grow an int to a given size */
-int mp_grow(mp_int *a, int size);
+mp_err mp_grow(mp_int *a, int size);
/* init to a given number of digits */
-int mp_init_size(mp_int *a, int size);
+mp_err mp_init_size(mp_int *a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
+#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
/* set to zero */
void mp_zero(mp_int *a);
@@ -241,141 +262,153 @@ int mp_init_set (mp_int * a, mp_digit b);
int mp_init_set_int (mp_int * a, unsigned long b);
/* copy, b = a */
-int mp_copy(mp_int *a, mp_int *b);
+mp_err mp_copy(const mp_int *a, mp_int *b);
/* inits and copies, a = b */
-int mp_init_copy(mp_int *a, mp_int *b);
+mp_err mp_init_copy(mp_int *a, const mp_int *b);
/* trim unused digits */
void mp_clamp(mp_int *a);
+/* import binary data */
+mp_err mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
+
+/* export binary data */
+mp_err mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
+
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);
/* left shift by "b" digits */
-int mp_lshd(mp_int *a, int b);
+mp_err mp_lshd(mp_int *a, int b);
-/* c = a / 2**b */
-int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
+/* c = a / 2**b, implemented as c = a >> b */
+mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
/* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
+mp_err mp_div_2(const mp_int *a, mp_int *b);
-/* c = a * 2**b */
-int mp_mul_2d(mp_int *a, int b, mp_int *c);
+/* c = a * 2**b, implemented as c = a << b */
+mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c);
/* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
+mp_err mp_mul_2(const mp_int *a, mp_int *b);
-/* c = a mod 2**d */
-int mp_mod_2d(mp_int *a, int b, mp_int *c);
+/* c = a mod 2**b */
+mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c);
/* computes a = 2**b */
-int mp_2expt(mp_int *a, int b);
+mp_err mp_2expt(mp_int *a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
-int mp_cnt_lsb(mp_int *a);
+int mp_cnt_lsb(const mp_int *a);
/* I Love Earth! */
/* makes a pseudo-random int of a given size */
-int mp_rand(mp_int *a, int digits);
+mp_err mp_rand(mp_int *a, int digits);
/* ---> binary operations <--- */
-/* c = a XOR b */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+/* c = a XOR b (two complement) */
+mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
-/* c = a OR b */
-int mp_or(mp_int *a, mp_int *b, mp_int *c);
+/* c = a OR b (two complement) */
+mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c);
-/* c = a AND b */
-int mp_and(mp_int *a, mp_int *b, mp_int *c);
+/* c = a AND b (two complement) */
+mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> Basic arithmetic <--- */
/* b = -a */
-int mp_neg(mp_int *a, mp_int *b);
+mp_err mp_neg(const mp_int *a, mp_int *b);
/* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
+mp_err mp_abs(const mp_int *a, mp_int *b);
/* compare a to b */
-int mp_cmp(mp_int *a, mp_int *b);
+mp_ord mp_cmp(const mp_int *a, const mp_int *b);
/* compare |a| to |b| */
-int mp_cmp_mag(mp_int *a, mp_int *b);
+mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b);
/* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
/* b = a*a */
-int mp_sqr(mp_int *a, mp_int *b);
+mp_err mp_sqr(const mp_int *a, mp_int *b);
/* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* c = a mod b, 0 <= c < b */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
/* compare against a single digit */
-int mp_cmp_d(mp_int *a, mp_digit b);
+mp_ord mp_cmp_d(const mp_int *a, mp_digit b);
/* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
+
+/* Increment "a" by one like "a++". Changes input! */
+mp_err mp_incr(mp_int *a);
/* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+mp_err mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
+
+/* Decrement "a" by one like "a--". Changes input! */
+mp_err mp_decr(mp_int *a);
/* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
/* a/3 => 3c + d == a */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
+mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
/* c = a mod b, 0 <= c < b */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
@@ -384,64 +417,64 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
/* special sqrt algo */
-int mp_sqrt(mp_int *arg, mp_int *ret);
+mp_err mp_sqrt(const mp_int *arg, mp_int *ret);
/* is number a square? */
-int mp_is_square(mp_int *arg, int *ret);
+mp_err mp_is_square(const mp_int *arg, mp_bool *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
int mp_jacobi(mp_int *a, mp_int *n, int *c);
/* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
+mp_err mp_reduce_setup(mp_int *a, const mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
- * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
- * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
+ * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
+ * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
*/
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
/* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
/* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a);
+mp_bool mp_dr_is_modulus(const mp_int *a);
/* sets the value of "d" required for mp_dr_reduce */
-void mp_dr_setup(mp_int *a, mp_digit *d);
+void mp_dr_setup(const mp_int *a, mp_digit *d);
-/* reduces a modulo b using the Diminished Radix method */
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+/* reduces a modulo n using the Diminished Radix method */
+mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
/* returns true if a can be reduced with mp_reduce_2k */
-int mp_reduce_is_2k(mp_int *a);
+mp_bool mp_reduce_is_2k(const mp_int *a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
-int mp_reduce_is_2k_l(mp_int *a);
+mp_bool mp_reduce_is_2k_l(const mp_int *a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
+mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
+mp_err mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
-/* d = a**b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+/* Y = G**X (mod P) */
+mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
/* ---> Primes <--- */
@@ -456,41 +489,58 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
extern const mp_digit ltm_prime_tab[];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-int mp_prime_is_divisible(mp_int *a, int *result);
+mp_err mp_prime_is_divisible(mp_int *a, mp_bool *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result);
/* This gives [for a given bit size] the number of trials required
- * such that Miller-Rabin gives a prob of failure lower than 2^-96
+ * such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
int mp_prime_rabin_miller_trials(int size);
-/* performs t rounds of Miller-Rabin on "a" using the first
- * t prime bases. Also performs an initial sieve of trial
+/* performs one strong Lucas-Selfridge test of "a".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result);
+
+/* performs one Frobenius test of "a" as described by Paul Underwood.
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result);
+
+/* performs t random rounds of Miller-Rabin on "a" additional to
+ * bases 2 and 3. Also performs an initial sieve of trial
* division. Determines if "a" is prime with probability
* of error no more than (1/4)**t.
+ * Both a strong Lucas-Selfridge to complete the BPSW test
+ * and a separate Frobenius test are available at compile time.
+ * With t<0 a deterministic test is run for primes up to
+ * 318665857834031151167461. With t<13 (abs(t)-13) additional
+ * tests with sequential small primes are run starting at 43.
+ * Is Fips 186.4 compliant if called with t as computed by
+ * mp_prime_rabin_miller_trials();
*
* Sets result to 1 if probably prime, 0 otherwise
*/
-int mp_prime_is_prime(mp_int *a, int t, int *result);
+mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
+mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style);
/* makes a truly random prime of a given size (bytes),
- * call with bbs = 1 if you want it to be congruent to 3 mod 4
+ * call with bbs = 1 if you want it to be congruent to 3 mod 4
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
@@ -503,38 +553,43 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
- *
- * LTM_PRIME_BBS - make prime congruent to 3 mod 4
- * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
- * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
+ *
+ * MP_PRIME_BBS - make prime congruent to 3 mod 4
+ * MP_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS)
+ * MP_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
-int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
+mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
-/* ---> radix conversion <--- */
-int mp_count_bits(mp_int *a);
-
-int mp_unsigned_bin_size(mp_int *a);
-int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
-
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
+/* Integer logarithm to integer base */
+mp_err mp_ilogb(const mp_int *a, mp_digit base, mp_int *c);
-int mp_read_radix(mp_int *a, const char *str, int radix);
-int mp_toradix(mp_int *a, char *str, int radix);
-int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
-int mp_radix_size(mp_int *a, int radix, int *size);
-
-int mp_fread(mp_int *a, int radix, FILE *stream);
-int mp_fwrite(mp_int *a, int radix, FILE *stream);
+/* ---> radix conversion <--- */
+int mp_count_bits(const mp_int *a);
+
+int mp_unsigned_bin_size(const mp_int *a);
+mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
+mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
+mp_err mp_to_unsigned_bin_n(const mp_int * a, unsigned char *b, unsigned long *outlen);
+
+int mp_signed_bin_size(const mp_int *a);
+mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
+mp_err mp_to_signed_bin(const mp_int *a, unsigned char *b);
+mp_err mp_to_signed_bin_n(const mp_int * a, unsigned char *b, unsigned long *outlen);
+
+mp_err mp_read_radix(mp_int *a, const char *str, int radix);
+mp_err mp_toradix(const mp_int *a, char *str, int radix);
+mp_err mp_toradix_n(const mp_int * a, char *str, int radix, int maxlen);
+mp_err mp_radix_size(const mp_int *a, int radix, int *size);
+
+#ifndef MP_NO_FILE
+mp_err mp_fread(mp_int *a, int radix, FILE *stream);
+mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream);
+#endif
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp) mp_signed_bin_size(mp)