summaryrefslogtreecommitdiffstats
path: root/win/tclWinThrd.c
diff options
context:
space:
mode:
authorstanton <stanton>1998-09-21 23:39:52 (GMT)
committerstanton <stanton>1998-09-21 23:39:52 (GMT)
commit494c2de3a748b449c69ce322a1a741f5a31fd4d5 (patch)
treec3ece48c0ae3f4ba54787e0e8e729b65752ef3f9 /win/tclWinThrd.c
parent7a698c0488d99c0af42022714638ae1ba2afaa49 (diff)
downloadtcl-494c2de3a748b449c69ce322a1a741f5a31fd4d5.zip
tcl-494c2de3a748b449c69ce322a1a741f5a31fd4d5.tar.gz
tcl-494c2de3a748b449c69ce322a1a741f5a31fd4d5.tar.bz2
Added contents of Tcl 8.1a2
Diffstat (limited to 'win/tclWinThrd.c')
-rw-r--r--win/tclWinThrd.c724
1 files changed, 724 insertions, 0 deletions
diff --git a/win/tclWinThrd.c b/win/tclWinThrd.c
new file mode 100644
index 0000000..f455d54
--- /dev/null
+++ b/win/tclWinThrd.c
@@ -0,0 +1,724 @@
+/*
+ * tclWinThread.c --
+ *
+ * This file implements the Windows-specific thread operations.
+ *
+ * Copyright (c) 1998 by Sun Microsystems, Inc.
+ *
+ * See the file "license.terms" for information on usage and redistribution
+ * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
+ *
+ * SCCS: @(#) tclWinThrd.c 1.13 98/02/18 14:00:23
+ */
+
+#include "tclWinInt.h"
+
+#include <dos.h>
+#include <fcntl.h>
+#include <io.h>
+#include <sys/stat.h>
+
+/*
+ * This is the master lock used to serialize access to other
+ * serialization data structures.
+ */
+
+static CRITICAL_SECTION masterLock;
+static int init = 0;
+#define MASTER_LOCK EnterCriticalSection(&masterLock)
+#define MASTER_UNLOCK LeaveCriticalSection(&masterLock)
+
+/*
+ * This is the master lock used to serialize initialization and finalization
+ * of Tcl as a whole.
+ */
+
+static CRITICAL_SECTION initLock;
+
+/*
+ * This is a preallocated lock for use by memory allocators.
+ */
+
+static CRITICAL_SECTION allocLock;
+static Tcl_Mutex allocMutex;
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpThreadCreate --
+ *
+ * This procedure creates a new thread.
+ *
+ * Results:
+ * TCL_OK if the thread could be created. The thread ID is
+ * returned in a parameter.
+ *
+ * Side effects:
+ * A new thread is created.
+ *
+ *----------------------------------------------------------------------
+ */
+
+int
+TclpThreadCreate(idPtr, proc, clientData)
+ Tcl_ThreadId *idPtr; /* Return, the ID of the thread */
+ Tcl_ThreadCreateProc proc; /* Main() function of the thread */
+ ClientData clientData; /* The one argument to Main() */
+{
+ HANDLE tHandle;
+
+ tHandle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) proc,
+ (DWORD *)clientData, 0, (DWORD *)idPtr);
+ if (tHandle == NULL) {
+ return TCL_ERROR;
+ } else {
+ return TCL_OK;
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpThreadExit --
+ *
+ * This procedure terminates the current thread.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * This procedure terminates the current thread.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpThreadExit(status)
+ int status;
+{
+ ExitThread((DWORD)status);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * Tcl_GetCurrentThread --
+ *
+ * This procedure returns the ID of the currently running thread.
+ *
+ * Results:
+ * A thread ID.
+ *
+ * Side effects:
+ * None.
+ *
+ *----------------------------------------------------------------------
+ */
+
+Tcl_ThreadId
+Tcl_GetCurrentThread()
+{
+ return (Tcl_ThreadId)GetCurrentThreadId();
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpInitLock
+ *
+ * This procedure is used to grab a lock that serializes initialization
+ * and finalization of Tcl. On some platforms this may also initialize
+ * the mutex used to serialize creation of more mutexes and thread
+ * local storage keys.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Acquire the initialization mutex.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpInitLock()
+{
+ if (!init) {
+ /*
+ * There is a fundamental race here that is solved by creating
+ * the first Tcl interpreter in a single threaded environment.
+ * Once the interpreter has been created, it is safe to create
+ * more threads that create interpreters in parallel.
+ */
+ init = 1;
+ InitializeCriticalSection(&initLock);
+ InitializeCriticalSection(&masterLock);
+ }
+ EnterCriticalSection(&initLock);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpInitUnlock
+ *
+ * This procedure is used to release a lock that serializes initialization
+ * and finalization of Tcl.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Release the initialization mutex.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpInitUnlock()
+{
+ LeaveCriticalSection(&initLock);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpMasterLock
+ *
+ * This procedure is used to grab a lock that serializes creation
+ * of mutexes, condition variables, and thread local storage keys.
+ *
+ * This lock must be different than the initLock because the
+ * initLock is held during creation of syncronization objects.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Acquire the master mutex.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpMasterLock()
+{
+ if (!init) {
+ /*
+ * There is a fundamental race here that is solved by creating
+ * the first Tcl interpreter in a single threaded environment.
+ * Once the interpreter has been created, it is safe to create
+ * more threads that create interpreters in parallel.
+ */
+ init = 1;
+ InitializeCriticalSection(&initLock);
+ InitializeCriticalSection(&masterLock);
+ }
+ EnterCriticalSection(&masterLock);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpMasterUnlock
+ *
+ * This procedure is used to release a lock that serializes creation
+ * and deletion of synchronization objects.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Release the master mutex.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpMasterUnlock()
+{
+ LeaveCriticalSection(&masterLock);
+}
+
+#ifdef TCL_THREADS
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpMutexInit --
+ * TclpMutexLock --
+ * TclpMutexUnlock --
+ *
+ * These procedures use an explicitly initialized mutex.
+ * These are used by memory allocators for their own mutex.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Initialize, Lock, and Unlock the mutex.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpMutexInit(mPtr)
+ TclpMutex *mPtr;
+{
+ InitializeCriticalSection((CRITICAL_SECTION *)mPtr);
+}
+void
+TclpMutexLock(mPtr)
+ TclpMutex *mPtr;
+{
+ EnterCriticalSection((CRITICAL_SECTION *)mPtr);
+}
+void
+TclpMutexUnlock(mPtr)
+ TclpMutex *mPtr;
+{
+ LeaveCriticalSection((CRITICAL_SECTION *)mPtr);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * Tcl_MutexLock --
+ *
+ * This procedure is invoked to lock a mutex. This is a self
+ * initializing mutex that is automatically finalized during
+ * Tcl_Finalization.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * May block the current thread. The mutex is aquired when
+ * this returns.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+Tcl_MutexLock(mutexPtr)
+ Tcl_Mutex *mutexPtr; /* The lock */
+{
+ CRITICAL_SECTION *csPtr;
+ if (*mutexPtr == NULL) {
+ MASTER_LOCK;
+
+ /*
+ * Double inside master lock check to avoid a race.
+ */
+
+ if (*mutexPtr == NULL) {
+ csPtr = (CRITICAL_SECTION *)ckalloc(sizeof(CRITICAL_SECTION));
+ InitializeCriticalSection(csPtr);
+ *mutexPtr = (Tcl_Mutex)csPtr;
+ TclRememberMutex(mutexPtr);
+ }
+ MASTER_UNLOCK;
+ }
+ csPtr = *((CRITICAL_SECTION **)mutexPtr);
+ EnterCriticalSection(csPtr);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * Tcl_MutexUnlock --
+ *
+ * This procedure is invoked to unlock a mutex.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The mutex is released when this returns.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+Tcl_MutexUnlock(mutexPtr)
+ Tcl_Mutex *mutexPtr; /* The lock */
+{
+ CRITICAL_SECTION *csPtr = *((CRITICAL_SECTION **)mutexPtr);
+ LeaveCriticalSection(csPtr);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpFinalizeMutex --
+ *
+ * This procedure is invoked to clean up one mutex. This is only
+ * safe to call at the end of time.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The mutex list is deallocated.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpFinalizeMutex(mutexPtr)
+ Tcl_Mutex *mutexPtr;
+{
+ CRITICAL_SECTION *csPtr = *(CRITICAL_SECTION **)mutexPtr;
+ if (csPtr != NULL) {
+ ckfree((char *)csPtr);
+ *mutexPtr = NULL;
+ }
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpThreadDataKeyInit --
+ *
+ * This procedure initializes a thread specific data block key.
+ * Each thread has table of pointers to thread specific data.
+ * all threads agree on which table entry is used by each module.
+ * this is remembered in a "data key", that is just an index into
+ * this table. To allow self initialization, the interface
+ * passes a pointer to this key and the first thread to use
+ * the key fills in the pointer to the key. The key should be
+ * a process-wide static.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Will allocate memory the first time this process calls for
+ * this key. In this case it modifies its argument
+ * to hold the pointer to information about the key.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpThreadDataKeyInit(keyPtr)
+ Tcl_ThreadDataKey *keyPtr; /* Identifier for the data chunk,
+ * really (pthread_key_t **) */
+{
+ DWORD *indexPtr;
+
+ MASTER_LOCK;
+ if (*keyPtr == NULL) {
+ indexPtr = (DWORD *)ckalloc(sizeof(DWORD));
+ *indexPtr = TlsAlloc();
+ *keyPtr = (Tcl_ThreadDataKey)indexPtr;
+ TclRememberDataKey(keyPtr);
+ }
+ MASTER_UNLOCK;
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpThreadDataKeyGet --
+ *
+ * This procedure returns a pointer to a block of thread local storage.
+ *
+ * Results:
+ * A thread-specific pointer to the data structure, or NULL
+ * if the memory has not been assigned to this key for this thread.
+ *
+ * Side effects:
+ * None.
+ *
+ *----------------------------------------------------------------------
+ */
+
+VOID *
+TclpThreadDataKeyGet(keyPtr)
+ Tcl_ThreadDataKey *keyPtr; /* Identifier for the data chunk,
+ * really (DWORD **) */
+{
+ DWORD *indexPtr = *(DWORD **)keyPtr;
+ if (indexPtr == NULL) {
+ return NULL;
+ } else {
+ return (VOID *) TlsGetValue(*indexPtr);
+ }
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpThreadDataKeySet --
+ *
+ * This procedure sets the pointer to a block of thread local storage.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Sets up the thread so future calls to TclpThreadDataKeyGet with
+ * this key will return the data pointer.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpThreadDataKeySet(keyPtr, data)
+ Tcl_ThreadDataKey *keyPtr; /* Identifier for the data chunk,
+ * really (pthread_key_t **) */
+ VOID *data; /* Thread local storage */
+{
+ DWORD *indexPtr = *(DWORD **)keyPtr;
+ TlsSetValue(*indexPtr, (void *)data);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpFinalizeThreadData --
+ *
+ * This procedure cleans up the thread-local storage. This is
+ * called once for each thread.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * Frees up the memory.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpFinalizeThreadData(keyPtr)
+ Tcl_ThreadDataKey *keyPtr;
+{
+ VOID *result;
+ DWORD *indexPtr;
+
+ if (*keyPtr != NULL) {
+ indexPtr = *(DWORD **)keyPtr;
+ result = (VOID *)TlsGetValue(*indexPtr);
+ if (result != NULL) {
+ ckfree((char *)result);
+ TlsSetValue(*indexPtr, (void *)NULL);
+ }
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpFinalizeThreadDataKey --
+ *
+ * This procedure is invoked to clean up one key. This is a
+ * process-wide storage identifier. The thread finalization code
+ * cleans up the thread local storage itself.
+ *
+ * This assumes the master lock is held.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The key is deallocated.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpFinalizeThreadDataKey(keyPtr)
+ Tcl_ThreadDataKey *keyPtr;
+{
+ DWORD *indexPtr;
+ if (*keyPtr != NULL) {
+ indexPtr = *(DWORD **)keyPtr;
+ TlsFree(*indexPtr);
+ ckfree((char *)indexPtr);
+ *keyPtr = NULL;
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpConditionWait --
+ *
+ * This procedure is invoked to wait on a condition variable.
+ * The mutex is automically released as part of the wait, and
+ * automatically grabbed when the condition is signaled.
+ *
+ * The mutex must be held when this procedure is called.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * May block the current thread. The mutex is aquired when
+ * this returns. Will allocate memory for a HANDLE
+ * and initialize this the first time this Tcl_Condition is used.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpConditionWait(condPtr, mutexPtr, timePtr)
+ Tcl_Condition *condPtr; /* Really (pthread_cond_t **) */
+ Tcl_Mutex *mutexPtr; /* Really (pthread_mutex_t **) */
+ Tcl_Time *timePtr; /* Timeout on waiting period */
+{
+ HANDLE *eventPtr;
+ CRITICAL_SECTION *csPtr;
+ DWORD wtime;
+
+ if (*condPtr == NULL) {
+ MASTER_LOCK;
+
+ /*
+ * Double check inside mutex to avoid race,
+ * then initialize condition variable if necessary.
+ */
+
+ if (*condPtr == NULL) {
+ eventPtr = (HANDLE *)ckalloc(sizeof(HANDLE));
+ *eventPtr = CreateEvent(NULL, TRUE /* manual reset */,
+ FALSE /* non signaled */, NULL);
+ *condPtr = (Tcl_Condition)eventPtr;
+ TclRememberCondition(condPtr);
+ }
+ MASTER_UNLOCK;
+ }
+ csPtr = *((CRITICAL_SECTION **)mutexPtr);
+ eventPtr = *((HANDLE **)condPtr);
+ if (timePtr == NULL) {
+ wtime = INFINITE;
+ } else {
+ wtime = timePtr->sec * 1000 + timePtr->usec / 1000;
+ }
+
+ /*
+ * Clear the event it case there are old notifies.
+ */
+
+ ResetEvent(*eventPtr);
+ LeaveCriticalSection(csPtr);
+
+ /*
+ * This point is a race with a notification, but this is handled
+ * by the "stickiness" of the event. If a notification occurs here,
+ * then WaitForSingleObject will not block.
+ */
+
+ WaitForSingleObject(*eventPtr, wtime);
+
+ /*
+ * This point is a race with other waiters. Someone else can grab
+ * the mutex first. This is why our caller must check its invariant
+ * and perhaps wait again.
+ */
+
+ EnterCriticalSection(csPtr);
+
+ /*
+ * "Consume" the event - hmm - this may not be necessary because it
+ * will be done before the next wait.
+ */
+
+ ResetEvent(*eventPtr);
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpConditionNotify --
+ *
+ * This procedure is invoked to signal a condition variable.
+ *
+ * The mutex must be held during this call to avoid races,
+ * but this interface does not enforce that.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * May unblock another thread.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpConditionNotify(condPtr)
+ Tcl_Condition *condPtr;
+{
+ HANDLE *eventPtr;
+ if (condPtr != NULL) {
+ eventPtr = *((HANDLE **)condPtr);
+
+ /*
+ * The PulseEvent may not be necessary, but it's documentation says
+ * it releases all waiting processes, which is what we want. However,
+ * it also clears the signal, which is not good because of the race
+ * in ConditionWait. The SetEvent makes sure the signal remains
+ * even if there are no waiters, but we are not sure that it really
+ * marks all waiters as runnable. So we do both.
+ */
+
+ PulseEvent(*eventPtr);
+ SetEvent(*eventPtr);
+ } else {
+ /*
+ * Noone has used the condition variable, so there are no waiters.
+ */
+ }
+}
+
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclpFinalizeCondition --
+ *
+ * This procedure is invoked to clean up a condition variable.
+ * This is only safe to call at the end of time.
+ *
+ * This assumes the Master Lock is held.
+ *
+ * Results:
+ * None.
+ *
+ * Side effects:
+ * The condition variable is deallocated.
+ *
+ *----------------------------------------------------------------------
+ */
+
+void
+TclpFinalizeCondition(condPtr)
+ Tcl_Condition *condPtr;
+{
+ HANDLE *eventPtr = *(HANDLE **)condPtr;
+ if (eventPtr != NULL) {
+ CloseHandle(*eventPtr);
+ ckfree((char *)eventPtr);
+ *condPtr = NULL;
+ }
+}
+#endif TCL_THREADS
+
+