diff options
| -rw-r--r-- | doc/binary.n | 502 | ||||
| -rw-r--r-- | doc/expr.n | 34 | ||||
| -rw-r--r-- | doc/mathop.n | 67 | ||||
| -rw-r--r-- | generic/tclAssembly.c | 7 | ||||
| -rw-r--r-- | generic/tclBasic.c | 12 | ||||
| -rw-r--r-- | generic/tclBinary.c | 2 | ||||
| -rw-r--r-- | generic/tclCkalloc.c | 2 | ||||
| -rw-r--r-- | generic/tclCompCmdsSZ.c | 44 | ||||
| -rw-r--r-- | generic/tclCompExpr.c | 49 | ||||
| -rw-r--r-- | generic/tclCompile.c | 11 | ||||
| -rw-r--r-- | generic/tclCompile.h | 8 | ||||
| -rw-r--r-- | generic/tclExecute.c | 10 | ||||
| -rw-r--r-- | generic/tclHash.c | 2 | ||||
| -rw-r--r-- | generic/tclIO.h | 2 | ||||
| -rw-r--r-- | generic/tclInt.h | 29 | ||||
| -rw-r--r-- | generic/tclOOMethod.c | 2 | ||||
| -rw-r--r-- | generic/tclProc.c | 2 | ||||
| -rw-r--r-- | generic/tclStrToD.c | 8 | ||||
| -rw-r--r-- | generic/tclTest.c | 2 | ||||
| -rw-r--r-- | generic/tclTrace.c | 6 | ||||
| -rw-r--r-- | generic/tclVar.c | 2 | ||||
| -rw-r--r-- | tests/expr.test | 20 | ||||
| -rw-r--r-- | tests/mathop.test | 44 |
23 files changed, 656 insertions, 211 deletions
diff --git a/doc/binary.n b/doc/binary.n index 5f25d65..77a4ec2 100644 --- a/doc/binary.n +++ b/doc/binary.n @@ -12,12 +12,10 @@ .SH NAME binary \- Insert and extract fields from binary strings .SH SYNOPSIS -.VS 8.6 \fBbinary decode \fIformat\fR ?\fI\-option value ...\fR? \fIdata\fR .br \fBbinary encode \fIformat\fR ?\fI\-option value ...\fR? \fIdata\fR .br -.VE 8.6 \fBbinary format \fIformatString \fR?\fIarg arg ...\fR? .br \fBbinary scan \fIstring formatString \fR?\fIvarName varName ...\fR? @@ -31,11 +29,9 @@ architecture, it might produce an 8-byte binary string consisting of two 4-byte integers, one for each of the numbers. The subcommand \fBbinary scan\fR, does the opposite: it extracts data from a binary string and returns it as ordinary Tcl string values. -.VS 8.6 The \fBbinary encode\fR and \fBbinary decode\fR subcommands convert binary data to or from string encodings such as base64 (used in MIME messages for example). -.VE 8.6 .PP Note that other operations on binary data, such as taking a subsequence of it, getting its length, or reinterpreting it as a string in some encoding, are @@ -44,7 +40,6 @@ done by other Tcl commands (respectively \fBstring range\fR, binary string in Tcl is merely one where all the characters it contains are in the range \eu0000\-\eu00FF. .SH "BINARY ENCODE AND DECODE" -.VS 8.6 .PP When encoding binary data as a readable string, the starting binary data is passed to the \fBbinary encode\fR command, together with the name of the @@ -128,7 +123,6 @@ characters. Otherwise it ignores them. Note that neither the encoder nor the decoder handle the header and footer of the uuencode format. .RE -.VE 8.6 .SH "BINARY FORMAT" .PP The \fBbinary format\fR command generates a binary string whose layout @@ -143,7 +137,9 @@ Most field specifiers consume one argument to obtain the value to be formatted. The type character specifies how the value is to be formatted. The \fIcount\fR typically indicates how many items of the specified type are taken from the value. If present, the \fIcount\fR -is a non-negative decimal integer or \fB*\fR, which normally indicates +is a non-negative decimal integer or +.QW \fB*\fR , +which normally indicates that all of the items in the value are to be used. If the number of arguments does not match the number of fields in the format string that consume arguments, then an error is generated. The flag character @@ -151,6 +147,7 @@ is ignored for \fBbinary format\fR. .PP Here is a small example to clarify the relation between the field specifiers and the arguments: +.PP .CS \fBbinary format\fR d3d {1.0 2.0 3.0 4.0} 0.1 .CE @@ -178,72 +175,126 @@ not part of the ISO 8859\-1 character set.) If \fIarg\fR has fewer than \fIcount\fR bytes, then additional zero bytes are used to pad out the field. If \fIarg\fR is longer than the specified length, the extra characters will be ignored. If -\fIcount\fR is \fB*\fR, then all of the bytes in \fIarg\fR will be +\fIcount\fR is +.QW \fB*\fR , +then all of the bytes in \fIarg\fR will be formatted. If \fIcount\fR is omitted, then one character will be -formatted. For example, -.RS +formatted. For example, the command: +.RS +.PP .CS \fBbinary format\fR a7a*a alpha bravo charlie +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fBalpha\e000\e000bravoc\fR .CE -will return a string equivalent to \fBalpha\e000\e000bravoc\fR, +.PP +the command: +.PP .CS \fBbinary format\fR a* [encoding convertto utf-8 \eu20ac] +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\e342\e202\e254\fR .CE -will return a string equivalent to \fB\e342\e202\e254\fR (which is the -UTF-8 byte sequence for a Euro-currency character) and +.PP +(which is the +UTF-8 byte sequence for a Euro-currency character), and the command: +.PP .CS \fBbinary format\fR a* [encoding convertto iso8859-15 \eu20ac] +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\e244\fR .CE -will return a string equivalent to \fB\e244\fR (which is the ISO +.PP +(which is the ISO 8859\-15 byte sequence for a Euro-currency character). Contrast these -last two with: +last two with: +.PP .CS \fBbinary format\fR a* \eu20ac +.CE +.PP +which returns a binary string equivalent to: +.PP +.CS +\fB\e254\fR .CE -which returns a string equivalent to \fB\e254\fR (i.e. \fB\exac\fR) by +.PP +(i.e. \fB\exac\fR) by truncating the high-bits of the character, and which is probably not what is desired. .RE .IP \fBA\fR 5 This form is the same as \fBa\fR except that spaces are used for padding instead of nulls. For example, -.RS +.RS +.PP .CS \fBbinary format\fR A6A*A alpha bravo charlie +.CE +.PP +will return +.PP +.CS +\fBalpha bravoc\fR .CE -will return \fBalpha bravoc\fR. .RE .IP \fBb\fR 5 Stores a string of \fIcount\fR binary digits in low-to-high order -within each byte in the output string. \fIArg\fR must contain a +within each byte in the output binary string. \fIArg\fR must contain a sequence of \fB1\fR and \fB0\fR characters. The resulting bytes are emitted in first to last order with the bits being formatted in low-to-high order within each byte. If \fIarg\fR has fewer than \fIcount\fR digits, then zeros will be used for the remaining bits. If \fIarg\fR has more than the specified number of digits, the extra -digits will be ignored. If \fIcount\fR is \fB*\fR, then all of the +digits will be ignored. If \fIcount\fR is +.QW \fB*\fR , +then all of the digits in \fIarg\fR will be formatted. If \fIcount\fR is omitted, then one digit will be formatted. If the number of bits formatted does not end at a byte boundary, the remaining bits of the last byte will be zeros. For example, -.RS +.RS +.PP .CS \fBbinary format\fR b5b* 11100 111000011010 +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\ex07\ex87\ex05\fR .CE -will return a string equivalent to \fB\ex07\ex87\ex05\fR. .RE .IP \fBB\fR 5 This form is the same as \fBb\fR except that the bits are stored in high-to-low order within each byte. For example, -.RS +.RS +.PP .CS \fBbinary format\fR B5B* 11100 111000011010 +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\exe0\exe1\exa0\fR .CE -will return a string equivalent to \fB\exe0\exe1\exa0\fR. .RE .IP \fBH\fR 5 Stores a string of \fIcount\fR hexadecimal digits in high-to-low -within each byte in the output string. \fIArg\fR must contain a +within each byte in the output binary string. \fIArg\fR must contain a sequence of characters in the set .QW 0123456789abcdefABCDEF . The resulting bytes are emitted in first to last order with the hex digits @@ -251,43 +302,66 @@ being formatted in high-to-low order within each byte. If \fIarg\fR has fewer than \fIcount\fR digits, then zeros will be used for the remaining digits. If \fIarg\fR has more than the specified number of digits, the extra digits will be ignored. If \fIcount\fR is -\fB*\fR, then all of the digits in \fIarg\fR will be formatted. If +.QW \fB*\fR , +then all of the digits in \fIarg\fR will be formatted. If \fIcount\fR is omitted, then one digit will be formatted. If the number of digits formatted does not end at a byte boundary, the remaining bits of the last byte will be zeros. For example, -.RS +.RS +.PP .CS \fBbinary format\fR H3H*H2 ab DEF 987 +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\exab\ex00\exde\exf0\ex98\fR .CE -will return a string equivalent to \fB\exab\ex00\exde\exf0\ex98\fR. .RE .IP \fBh\fR 5 This form is the same as \fBH\fR except that the digits are stored in low-to-high order within each byte. This is seldom required. For example, -.RS +.RS +.PP .CS \fBbinary format\fR h3h*h2 AB def 987 +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\exba\ex00\exed\ex0f\ex89\fR .CE -will return a string equivalent to \fB\exba\ex00\exed\ex0f\ex89\fR. .RE .IP \fBc\fR 5 Stores one or more 8-bit integer values in the output string. If no \fIcount\fR is specified, then \fIarg\fR must consist of an integer value. If \fIcount\fR is specified, \fIarg\fR must consist of a list containing at least that many integers. The low-order 8 bits of each integer -are stored as a one-byte value at the cursor position. If \fIcount\fR -is \fB*\fR, then all of the integers in the list are formatted. If the +are stored as a one-byte value at the cursor position. If \fIcount\fR is +.QW \fB*\fR , +then all of the integers in the list are formatted. If the number of elements in the list is greater than \fIcount\fR, then the extra elements are ignored. For example, -.RS +.RS +.PP .CS \fBbinary format\fR c3cc* {3 -3 128 1} 260 {2 5} +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\ex03\exfd\ex80\ex04\ex02\ex05\fR .CE -will return a string equivalent to -\fB\ex03\exfd\ex80\ex04\ex02\ex05\fR, whereas +.PP +whereas: +.PP .CS \fBbinary format\fR c {2 5} -.CE +.CE +.PP will generate an error. .RE .IP \fBs\fR 5 @@ -296,23 +370,33 @@ This form is the same as \fBc\fR except that it stores one or more low-order 16-bits of each integer are stored as a two-byte value at the cursor position with the least significant byte stored first. For example, -.RS +.RS +.PP .CS \fBbinary format\fR s3 {3 -3 258 1} +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\ex03\ex00\exfd\exff\ex02\ex01\fR .CE -will return a string equivalent to -\fB\ex03\ex00\exfd\exff\ex02\ex01\fR. .RE .IP \fBS\fR 5 This form is the same as \fBs\fR except that it stores one or more 16-bit integers in big-endian byte order in the output string. For example, -.RS +.RS +.PP .CS \fBbinary format\fR S3 {3 -3 258 1} +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\ex00\ex03\exff\exfd\ex01\ex02\fR .CE -will return a string equivalent to -\fB\ex00\ex03\exff\exfd\ex01\ex02\fR. .RE .IP \fBt\fR 5 This form (mnemonically \fItiny\fR) is the same as \fBs\fR and \fBS\fR @@ -326,23 +410,33 @@ This form is the same as \fBc\fR except that it stores one or more low-order 32-bits of each integer are stored as a four-byte value at the cursor position with the least significant byte stored first. For example, -.RS +.RS +.PP .CS \fBbinary format\fR i3 {3 -3 65536 1} -.CE -will return a string equivalent to +.CE +.PP +will return a binary string equivalent to: +.PP +.CS \fB\ex03\ex00\ex00\ex00\exfd\exff\exff\exff\ex00\ex00\ex01\ex00\fR +.CE .RE .IP \fBI\fR 5 This form is the same as \fBi\fR except that it stores one or more one or more 32-bit integers in big-endian byte order in the output string. For example, -.RS +.RS +.PP .CS \fBbinary format\fR I3 {3 -3 65536 1} -.CE -will return a string equivalent to +.CE +.PP +will return a binary string equivalent to: +.PP +.CS \fB\ex00\ex00\ex00\ex03\exff\exff\exff\exfd\ex00\ex01\ex00\ex00\fR +.CE .RE .IP \fBn\fR 5 This form (mnemonically \fInumber\fR or \fInormal\fR) is the same as @@ -357,21 +451,25 @@ This form is the same as \fBc\fR except that it stores one or more low-order 64-bits of each integer are stored as an eight-byte value at the cursor position with the least significant byte stored first. For example, -.RS +.RS +.PP .CS \fBbinary format\fR w 7810179016327718216 -.CE -will return the string \fBHelloTcl\fR +.CE +.PP +will return the binary string \fBHelloTcl\fR. .RE .IP \fBW\fR 5 This form is the same as \fBw\fR except that it stores one or more one or more 64-bit integers in big-endian byte order in the output string. For example, -.RS +.RS +.PP .CS \fBbinary format\fR Wc 4785469626960341345 110 -.CE -will return the string \fBBigEndian\fR +.CE +.PP +will return the binary string \fBBigEndian\fR .RE .IP \fBm\fR 5 This form (mnemonically the mirror of \fBw\fR) is the same as \fBw\fR @@ -393,12 +491,17 @@ as defined by the system will be used instead. Because Tcl uses double-precision floating point numbers internally, there may be some loss of precision in the conversion to single-precision. For example, on a Windows system running on an Intel Pentium processor, -.RS +.RS +.PP .CS \fBbinary format\fR f2 {1.6 3.4} +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\excd\excc\excc\ex3f\ex9a\ex99\ex59\ex40\fR .CE -will return a string equivalent to -\fB\excd\excc\excc\ex3f\ex9a\ex99\ex59\ex40\fR. .RE .IP \fBr\fR 5 This form (mnemonically \fIreal\fR) is the same as \fBf\fR except that @@ -414,12 +517,17 @@ This form is the same as \fBf\fR except that it stores one or more one or more double-precision floating point numbers in the machine's native representation in the output string. For example, on a Windows system running on an Intel Pentium processor, -.RS +.RS +.PP .CS \fBbinary format\fR d1 {1.6} +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fB\ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f\fR .CE -will return a string equivalent to -\fB\ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f\fR. .RE .IP \fBq\fR 5 This form (mnemonically the mirror of \fBd\fR) is the same as \fBd\fR @@ -432,26 +540,37 @@ This form is the same as \fBq\fR except that it stores the double-precision floating point numbers in big-endian order. .IP \fBx\fR 5 Stores \fIcount\fR null bytes in the output string. If \fIcount\fR is -not specified, stores one null byte. If \fIcount\fR is \fB*\fR, +not specified, stores one null byte. If \fIcount\fR is +.QW \fB*\fR , generates an error. This type does not consume an argument. For example, -.RS +.RS +.PP .CS \fBbinary format\fR a3xa3x2a3 abc def ghi +.CE +.PP +will return a binary string equivalent to: +.PP +.CS +\fBabc\e000def\e000\e000ghi\fR .CE -will return a string equivalent to \fBabc\e000def\e000\e000ghi\fR. .RE .IP \fBX\fR 5 Moves the cursor back \fIcount\fR bytes in the output string. If -\fIcount\fR is \fB*\fR or is larger than the current cursor position, +\fIcount\fR is +.QW \fB*\fR +or is larger than the current cursor position, then the cursor is positioned at location 0 so that the next byte stored will be the first byte in the result string. If \fIcount\fR is omitted then the cursor is moved back one byte. This type does not consume an argument. For example, -.RS +.RS +.PP .CS \fBbinary format\fR a3X*a3X2a3 abc def ghi -.CE +.CE +.PP will return \fBdghi\fR. .RE .IP \fB@\fR 5 @@ -460,14 +579,22 @@ specified by \fIcount\fR. Position 0 refers to the first byte in the output string. If \fIcount\fR refers to a position beyond the last byte stored so far, then null bytes will be placed in the uninitialized locations and the cursor will be placed at the specified location. If -\fIcount\fR is \fB*\fR, then the cursor is moved to the current end of +\fIcount\fR is +.QW \fB*\fR , +then the cursor is moved to the current end of the output string. If \fIcount\fR is omitted, then an error will be generated. This type does not consume an argument. For example, -.RS +.RS +.PP .CS \fBbinary format\fR a5@2a1@*a3@10a1 abcde f ghi j +.CE +.PP +will return +.PP +.CS +\fBabfdeghi\e000\e000j\fR .CE -will return \fBabfdeghi\e000\e000j\fR. .RE .SH "BINARY SCAN" .PP @@ -489,8 +616,9 @@ argument to obtain the variable into which the scanned values should be placed. The type character specifies how the binary data is to be interpreted. The \fIcount\fR typically indicates how many items of the specified type are taken from the data. If present, the -\fIcount\fR is a non-negative decimal integer or \fB*\fR, which -normally indicates that all of the remaining items in the data are to +\fIcount\fR is a non-negative decimal integer or +.QW \fB*\fR , +which normally indicates that all of the remaining items in the data are to be used. If there are not enough bytes left after the current cursor position to satisfy the current field specifier, then the corresponding variable is left untouched and \fBbinary scan\fR returns @@ -503,7 +631,8 @@ is accepted for all field types but is ignored for non-integer fields. .PP A similar example as with \fBbinary format\fR should explain the relation between field specifiers and arguments in case of the binary -scan subcommand: +scan subcommand: +.PP .CS \fBbinary scan\fR $bytes s3s first second .CE @@ -514,13 +643,16 @@ is long enough) assigns a list of three integers to the variable If \fIbytes\fR contains fewer than 8 bytes (i.e. four 2-byte integers), no assignment to \fIsecond\fR will be made, and if \fIbytes\fR contains fewer than 6 bytes (i.e. three 2-byte integers), -no assignment to \fIfirst\fR will be made. Hence: +no assignment to \fIfirst\fR will be made. Hence: +.PP .CS puts [\fBbinary scan\fR abcdefg s3s first second] puts $first puts $second -.CE -will print (assuming neither variable is set previously): +.CE +.PP +will print (assuming neither variable is set previously): +.PP .CS 1 25185 25699 26213 @@ -531,15 +663,18 @@ It is \fIimportant\fR to note that the \fBc\fR, \fBs\fR, and \fBS\fR (and \fBi\fR and \fBI\fR on 64bit systems) will be scanned into long data size values. In doing this, values that have their high bit set (0x80 for chars, 0x8000 for shorts, 0x80000000 for ints), -will be sign extended. Thus the following will occur: +will be sign extended. Thus the following will occur: +.PP .CS set signShort [\fBbinary format\fR s1 0x8000] \fBbinary scan\fR $signShort s1 val; \fI# val == 0xFFFF8000\fR -.CE +.CE +.PP If you require unsigned values you can include the .QW u flag character following -the field type. For example, to read an unsigned short value: +the field type. For example, to read an unsigned short value: +.PP .CS set signShort [\fBbinary format\fR s1 0x8000] \fBbinary scan\fR $signShort su1 val; \fI# val == 0x00008000\fR @@ -550,8 +685,9 @@ reading bytes from the current position. The cursor is initially at position 0 at the beginning of the data. The type may be any one of the following characters: .IP \fBa\fR 5 -The data is a byte string of length \fIcount\fR. If \fIcount\fR -is \fB*\fR, then all of the remaining bytes in \fIstring\fR will be +The data is a byte string of length \fIcount\fR. If \fIcount\fR is +.QW \fB*\fR , +then all of the remaining bytes in \fIstring\fR will be scanned into the variable. If \fIcount\fR is omitted, then one byte will be scanned. All bytes scanned will be interpreted as being characters in the @@ -559,25 +695,31 @@ range \eu0000-\eu00ff so the \fBencoding convertfrom\fR command will be needed if the string is not a binary string or a string encoded in ISO 8859\-1. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR abcde\e000fghi a6a10 var1 var2 -.CE +.CE +.PP will return \fB1\fR with the string equivalent to \fBabcde\e000\fR -stored in \fIvar1\fR and \fIvar2\fR left unmodified, and +stored in \fIvar1\fR and \fIvar2\fR left unmodified, and +.PP .CS \fBbinary scan\fR \e342\e202\e254 a* var1 set var2 [encoding convertfrom utf-8 $var1] -.CE +.CE +.PP will store a Euro-currency character in \fIvar2\fR. .RE .IP \fBA\fR 5 This form is the same as \fBa\fR, except trailing blanks and nulls are stripped from the scanned value before it is stored in the variable. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR "abc efghi \e000" A* var1 -.CE +.CE +.PP will return \fB1\fR with \fBabc efghi\fR stored in \fIvar1\fR. .RE .IP \fBb\fR 5 @@ -588,23 +730,28 @@ and .QW 0 characters. The data bytes are scanned in first to last order with the bits being taken in low-to-high order within each byte. Any extra -bits in the last byte are ignored. If \fIcount\fR is \fB*\fR, then -all of the remaining bits in \fIstring\fR will be scanned. If +bits in the last byte are ignored. If \fIcount\fR is +.QW \fB*\fR , +then all of the remaining bits in \fIstring\fR will be scanned. If \fIcount\fR is omitted, then one bit will be scanned. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex07\ex87\ex05 b5b* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB11100\fR stored in \fIvar1\fR and \fB1110000110100000\fR stored in \fIvar2\fR. .RE .IP \fBB\fR 5 This form is the same as \fBb\fR, except the bits are taken in high-to-low order within each byte. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex70\ex87\ex05 B5B* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB01110\fR stored in \fIvar1\fR and \fB1000011100000101\fR stored in \fIvar2\fR. .RE @@ -615,23 +762,28 @@ high-to-low order represented as a sequence of characters in the set The data bytes are scanned in first to last order with the hex digits being taken in high-to-low order within each byte. Any extra bits in the last byte are ignored. If \fIcount\fR is -\fB*\fR, then all of the remaining hex digits in \fIstring\fR will be +.QW \fB*\fR , +then all of the remaining hex digits in \fIstring\fR will be scanned. If \fIcount\fR is omitted, then one hex digit will be scanned. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex07\exC6\ex05\ex1f\ex34 H3H* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB07c\fR stored in \fIvar1\fR and \fB051f34\fR stored in \fIvar2\fR. .RE .IP \fBh\fR 5 This form is the same as \fBH\fR, except the digits are taken in reverse (low-to-high) order within each byte. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex07\ex86\ex05\ex12\ex34 h3h* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB706\fR stored in \fIvar1\fR and \fB502143\fR stored in \fIvar2\fR. .PP @@ -640,135 +792,151 @@ multiple bytes in order should use the \fBH\fR format. .RE .IP \fBc\fR 5 The data is turned into \fIcount\fR 8-bit signed integers and stored -in the corresponding variable as a list. If \fIcount\fR is \fB*\fR, +in the corresponding variable as a list, or as unsigned if \fBu\fR is placed +immediately after the \fBc\fR. If \fIcount\fR is +.QW \fB*\fR , then all of the remaining bytes in \fIstring\fR will be scanned. If \fIcount\fR is omitted, then one 8-bit integer will be scanned. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex07\ex86\ex05 c2c* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB7 -122\fR stored in \fIvar1\fR and \fB5\fR -stored in \fIvar2\fR. Note that the integers returned are signed, but -they can be converted to unsigned 8-bit quantities using an expression -like: -.CS -set num [expr { $num & 0xff }] -.CE +stored in \fIvar2\fR. Note that the integers returned are signed unless +\fBcu\fR in place of \fBc\fR. .RE .IP \fBs\fR 5 The data is interpreted as \fIcount\fR 16-bit signed integers -represented in little-endian byte order. The integers are stored in -the corresponding variable as a list. If \fIcount\fR is \fB*\fR, then -all of the remaining bytes in \fIstring\fR will be scanned. If +represented in little-endian byte order, or as unsigned if \fBu\fR is placed +immediately after the \fBs\fR. The integers are stored in +the corresponding variable as a list. If \fIcount\fR is +.QW \fB*\fR , +then all of the remaining bytes in \fIstring\fR will be scanned. If \fIcount\fR is omitted, then one 16-bit integer will be scanned. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex05\ex00\ex07\ex00\exf0\exff s2s* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR -stored in \fIvar2\fR. Note that the integers returned are signed, but -they can be converted to unsigned 16-bit quantities using an expression -like: -.CS -set num [expr { $num & 0xffff }] -.CE +stored in \fIvar2\fR. Note that the integers returned are signed unless +\fBsu\fR is used in place of \fBs\fR. .RE .IP \fBS\fR 5 This form is the same as \fBs\fR except that the data is interpreted -as \fIcount\fR 16-bit signed integers represented in big-endian byte +as \fIcount\fR 16-bit integers represented in big-endian byte order. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex00\ex05\ex00\ex07\exff\exf0 S2S* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR stored in \fIvar2\fR. .RE .IP \fBt\fR 5 The data is interpreted as \fIcount\fR 16-bit signed integers represented in the native byte order of the machine running the Tcl -script. It is otherwise identical to \fBs\fR and \fBS\fR. +script, or as unsigned if \fBu\fR is placed +immediately after the \fBt\fR. It is otherwise identical to \fBs\fR and \fBS\fR. To determine what the native byte order of the machine is, refer to the \fBbyteOrder\fR element of the \fBtcl_platform\fR array. .IP \fBi\fR 5 The data is interpreted as \fIcount\fR 32-bit signed integers -represented in little-endian byte order. The integers are stored in -the corresponding variable as a list. If \fIcount\fR is \fB*\fR, then -all of the remaining bytes in \fIstring\fR will be scanned. If +represented in little-endian byte order, or as unsigned if \fBu\fR is placed +immediately after the \fBi\fR. The integers are stored in +the corresponding variable as a list. If \fIcount\fR is +.QW \fB*\fR , +then all of the remaining bytes in \fIstring\fR will be scanned. If \fIcount\fR is omitted, then one 32-bit integer will be scanned. For example, -.RS +.RS +.PP .CS set str \ex05\ex00\ex00\ex00\ex07\ex00\ex00\ex00\exf0\exff\exff\exff \fBbinary scan\fR $str i2i* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR -stored in \fIvar2\fR. Note that the integers returned are signed, but -they can be converted to unsigned 32-bit quantities using an expression -like: -.CS -set num [expr { $num & 0xffffffff }] -.CE +stored in \fIvar2\fR. Note that the integers returned are signed unless +\fBiu\fR is used in place of \fBi\fR. .RE .IP \fBI\fR 5 This form is the same as \fBI\fR except that the data is interpreted as \fIcount\fR 32-bit signed integers represented in big-endian byte -order. For example, -.RS +order, or as unsigned if \fBu\fR is placed +immediately after the \fBI\fR. For example, +.RS +.PP .CS set str \ex00\ex00\ex00\ex05\ex00\ex00\ex00\ex07\exff\exff\exff\exf0 \fBbinary scan\fR $str I2I* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB5 7\fR stored in \fIvar1\fR and \fB\-16\fR stored in \fIvar2\fR. .RE .IP \fBn\fR 5 The data is interpreted as \fIcount\fR 32-bit signed integers represented in the native byte order of the machine running the Tcl -script. It is otherwise identical to \fBi\fR and \fBI\fR. +script, or as unsigned if \fBu\fR is placed +immediately after the \fBn\fR. It is otherwise identical to \fBi\fR and \fBI\fR. To determine what the native byte order of the machine is, refer to the \fBbyteOrder\fR element of the \fBtcl_platform\fR array. .IP \fBw\fR 5 The data is interpreted as \fIcount\fR 64-bit signed integers -represented in little-endian byte order. The integers are stored in -the corresponding variable as a list. If \fIcount\fR is \fB*\fR, then -all of the remaining bytes in \fIstring\fR will be scanned. If +represented in little-endian byte order, or as unsigned if \fBu\fR is placed +immediately after the \fBw\fR. The integers are stored in +the corresponding variable as a list. If \fIcount\fR is +.QW \fB*\fR , +then all of the remaining bytes in \fIstring\fR will be scanned. If \fIcount\fR is omitted, then one 64-bit integer will be scanned. For example, -.RS +.RS +.PP .CS set str \ex05\ex00\ex00\ex00\ex07\ex00\ex00\ex00\exf0\exff\exff\exff \fBbinary scan\fR $str wi* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB30064771077\fR stored in \fIvar1\fR and -\fB\-16\fR stored in \fIvar2\fR. Note that the integers returned are -signed and cannot be represented by Tcl as unsigned values. +\fB\-16\fR stored in \fIvar2\fR. .RE .IP \fBW\fR 5 This form is the same as \fBw\fR except that the data is interpreted as \fIcount\fR 64-bit signed integers represented in big-endian byte -order. For example, -.RS +order, or as unsigned if \fBu\fR is placed +immediately after the \fBW\fR. For example, +.RS +.PP .CS set str \ex00\ex00\ex00\ex05\ex00\ex00\ex00\ex07\exff\exff\exff\exf0 \fBbinary scan\fR $str WI* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB21474836487\fR stored in \fIvar1\fR and \fB\-16\fR stored in \fIvar2\fR. .RE .IP \fBm\fR 5 The data is interpreted as \fIcount\fR 64-bit signed integers represented in the native byte order of the machine running the Tcl -script. It is otherwise identical to \fBw\fR and \fBW\fR. +script, or as unsigned if \fBu\fR is placed +immediately after the \fBm\fR. It is otherwise identical to \fBw\fR and \fBW\fR. To determine what the native byte order of the machine is, refer to the \fBbyteOrder\fR element of the \fBtcl_platform\fR array. .IP \fBf\fR 5 The data is interpreted as \fIcount\fR single-precision floating point numbers in the machine's native representation. The floating point numbers are stored in the corresponding variable as a list. If -\fIcount\fR is \fB*\fR, then all of the remaining bytes in +\fIcount\fR is +.QW \fB*\fR , +then all of the remaining bytes in \fIstring\fR will be scanned. If \fIcount\fR is omitted, then one single-precision floating point number will be scanned. The size of a floating point number may vary across architectures, so the number of @@ -776,10 +944,12 @@ bytes that are scanned may vary. If the data does not represent a valid floating point number, the resulting value is undefined and compiler dependent. For example, on a Windows system running on an Intel Pentium processor, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex3f\excc\excc\excd f var1 -.CE +.CE +.PP will return \fB1\fR with \fB1.6000000238418579\fR stored in \fIvar1\fR. .RE @@ -798,10 +968,12 @@ This form is the same as \fBf\fR except that the data is interpreted as \fIcount\fR double-precision floating point numbers in the machine's native representation. For example, on a Windows system running on an Intel Pentium processor, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex9a\ex99\ex99\ex99\ex99\ex99\exf9\ex3f d var1 -.CE +.CE +.PP will return \fB1\fR with \fB1.6000000000000001\fR stored in \fIvar1\fR. .RE @@ -817,28 +989,36 @@ order. This conversion is not portable to the minority of systems not using IEEE floating point representations. .IP \fBx\fR 5 Moves the cursor forward \fIcount\fR bytes in \fIstring\fR. If -\fIcount\fR is \fB*\fR or is larger than the number of bytes after the +\fIcount\fR is +.QW \fB*\fR +or is larger than the number of bytes after the current cursor position, then the cursor is positioned after the last byte in \fIstring\fR. If \fIcount\fR is omitted, then the cursor is moved forward one byte. Note that this type does not consume an argument. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex01\ex02\ex03\ex04 x2H* var1 -.CE +.CE +.PP will return \fB1\fR with \fB0304\fR stored in \fIvar1\fR. .RE .IP \fBX\fR 5 Moves the cursor back \fIcount\fR bytes in \fIstring\fR. If -\fIcount\fR is \fB*\fR or is larger than the current cursor position, +\fIcount\fR is +.QW \fB*\fR +or is larger than the current cursor position, then the cursor is positioned at location 0 so that the next byte scanned will be the first byte in \fIstring\fR. If \fIcount\fR is omitted then the cursor is moved back one byte. Note that this type does not consume an argument. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex01\ex02\ex03\ex04 c2XH* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB1 2\fR stored in \fIvar1\fR and \fB020304\fR stored in \fIvar2\fR. .RE @@ -848,10 +1028,12 @@ by \fIcount\fR. Note that position 0 refers to the first byte in \fIstring\fR. If \fIcount\fR refers to a position beyond the end of \fIstring\fR, then the cursor is positioned after the last byte. If \fIcount\fR is omitted, then an error will be generated. For example, -.RS +.RS +.PP .CS \fBbinary scan\fR \ex01\ex02\ex03\ex04 c2@1H* var1 var2 -.CE +.CE +.PP will return \fB2\fR with \fB1 2\fR stored in \fIvar1\fR and \fB020304\fR stored in \fIvar2\fR. .RE @@ -97,7 +97,7 @@ and the value of \fBb\fR is 6. The command on the left side of each line produces the value on the right side. .PP .CS -.ta 8c +.ta 9c \fBexpr\fR 3.1 + $a \fI6.1\fR \fBexpr\fR 2 + "$a.$b" \fI5.6\fR \fBexpr\fR 4*[llength "6 2"] \fI8\fR @@ -159,7 +159,18 @@ A right shift always propagates the sign bit. .TP 20 \fB<\0\0>\0\0<=\0\0>=\fR . -Boolean less than, greater than, less than or equal, and greater than or equal. +Boolean numeric-preferring comparisons: less than, greater than, less than or +equal, and greater than or equal. If either argument is not numeric, the +comparison is done using UNICODE string comparison, as with the string +comparison operators below, which have the same precedence. +.TP 20 +\fBlt\0\0gt\0\0le\0\0ge\fR +.VS "8.7, TIP461" +Boolean string comparisons: less than, greater than, less than or equal, and +greater than or equal. These always compare values using their UNICODE strings +(also see \fBstring compare\fR), unlike with the numeric-preferring +comparisons abov, which have the same precedence. +.VE "8.7, TIP461" .TP 20 \fB==\0\0!=\fR . @@ -192,6 +203,8 @@ Bit-wise OR. Valid for integer operands. Logical AND. If both operands are true, the result is 1, or 0 otherwise. This operator evaluates lazily; it only evaluates its second operand if it must in order to determine its result. +This operator evaluates lazily; it only evaluates its second operand if it +must in order to determine its result. .TP 20 \fB||\fR . @@ -211,6 +224,7 @@ and divide operators do, and the result is is the same as the result of Exponentiation groups right-to-left within a precedence level. Other binary operators group left-to-right. For example, the value of .PP +.PP .CS \fBexpr\fR {4*2 < 7} .CE @@ -341,8 +355,12 @@ This also avoids issues that can arise if Tcl is allowed to perform substitution on the value before \fBexpr\fR is called. .PP In the following example, the value of the expression is 11 because the Tcl parser first -substitutes \fB$b\fR and \fBexpr\fR then substitutes \fB$a\fR. Enclosing the -expression in braces would result in a syntax error. +substitutes \fB$b\fR and \fBexpr\fR then substitutes \fB$a\fR as part +of evaluating the expression +.QW "$a + 2*4" . +Enclosing the +expression in braces would result in a syntax error as \fB$b\fR does +not evaluate to a numeric value. .PP .CS set a 3 @@ -396,6 +414,14 @@ A string comparison whose result is 1: \fBexpr\fR {"0y" > "0x12"} .CE .PP +.VS "8.7, TIP461" +A forced string comparison whose result is 0: +.PP +.CS +\fBexpr\fR {"0x03" gt "2"} +.CE +.VE "8.7, TIP461" +.PP Define a procedure that computes an .QW interesting mathematical function: diff --git a/doc/mathop.n b/doc/mathop.n index 84cf308..1c70e95 100644 --- a/doc/mathop.n +++ b/doc/mathop.n @@ -55,6 +55,16 @@ package require \fBTcl 8.5\fR .br \fB::tcl::mathop::ne\fR \fIarg arg\fR .br +.VS "8.7, TIP461" +\fB::tcl::mathop::lt\fR ?\fIarg\fR ...? +.br +\fB::tcl::mathop::le\fR ?\fIarg\fR ...? +.br +\fB::tcl::mathop::gt\fR ?\fIarg\fR ...? +.br +\fB::tcl::mathop::ge\fR ?\fIarg\fR ...? +.VE "8.7, TIP461" +.br \fB::tcl::mathop::in\fR \fIarg list\fR .br \fB::tcl::mathop::ni\fR \fIarg list\fR @@ -76,7 +86,8 @@ The following operator commands are supported: \fB/\fR \fB%\fR \fB**\fR \fB&\fR \fB|\fR \fB^\fR \fB>>\fR \fB<<\fR \fB==\fR \fBeq\fR \fB!=\fR \fBne\fR \fB<\fR \fB<=\fR \fB>\fR -\fB>=\fR \fBin\fR \fBni\fR +\fB>=\fR \fBin\fR \fBni\fR \fBlt\fR \fBle\fR +\fBgt\fR \fBge\fR .DE .SS "MATHEMATICAL OPERATORS" .PP @@ -192,8 +203,8 @@ after the first having to be strictly more than the one preceding it. Comparisons are performed preferentially on the numeric values, and are otherwise performed using UNICODE string comparison. If fewer than two arguments are present, this operation always returns a true value. When the -arguments are numeric but should be compared as strings, the \fBstring -compare\fR command should be used instead. +arguments are numeric but should be compared as strings, the \fBlt\fR +operator or the \fBstring compare\fR command should be used instead. .TP \fB<=\fR ?\fIarg\fR ...? . @@ -202,8 +213,8 @@ after the first having to be equal to or more than the one preceding it. Comparisons are performed preferentially on the numeric values, and are otherwise performed using UNICODE string comparison. If fewer than two arguments are present, this operation always returns a true value. When the -arguments are numeric but should be compared as strings, the \fBstring -compare\fR command should be used instead. +arguments are numeric but should be compared as strings, the \fBle\fR +operator or the \fBstring compare\fR command should be used instead. .TP \fB>\fR ?\fIarg\fR ...? . @@ -212,8 +223,8 @@ after the first having to be strictly less than the one preceding it. Comparisons are performed preferentially on the numeric values, and are otherwise performed using UNICODE string comparison. If fewer than two arguments are present, this operation always returns a true value. When the -arguments are numeric but should be compared as strings, the \fBstring -compare\fR command should be used instead. +arguments are numeric but should be compared as strings, the \fBgt\fR +operator or the \fBstring compare\fR command should be used instead. .TP \fB>=\fR ?\fIarg\fR ...? . @@ -222,8 +233,40 @@ after the first having to be equal to or less than the one preceding it. Comparisons are performed preferentially on the numeric values, and are otherwise performed using UNICODE string comparison. If fewer than two arguments are present, this operation always returns a true value. When the -arguments are numeric but should be compared as strings, the \fBstring -compare\fR command should be used instead. +arguments are numeric but should be compared as strings, the \fBge\fR +operator or the \fBstring compare\fR command should be used instead. +.TP +\fBlt\fR ?\fIarg\fR ...? +.VS "8.7, TIP461" +Returns whether the arbitrarily-many arguments are ordered, with each argument +after the first having to be strictly more than the one preceding it. +Comparisons are performed using UNICODE string comparison. If fewer than two +arguments are present, this operation always returns a true value. +.VE "8.7, TIP461" +.TP +\fBle\fR ?\fIarg\fR ...? +.VS "8.7, TIP461" +Returns whether the arbitrarily-many arguments are ordered, with each argument +after the first having to be equal to or strictly more than the one preceding it. +Comparisons are performed using UNICODE string comparison. If fewer than two +arguments are present, this operation always returns a true value. +.VE "8.7, TIP461" +.TP +\fBgt\fR ?\fIarg\fR ...? +.VS "8.7, TIP461" +Returns whether the arbitrarily-many arguments are ordered, with each argument +after the first having to be strictly less than the one preceding it. +Comparisons are performed using UNICODE string comparison. If fewer than two +arguments are present, this operation always returns a true value. +.VE "8.7, TIP461" +.TP +\fBge\fR ?\fIarg\fR ...? +.VS "8.7, TIP461" +Returns whether the arbitrarily-many arguments are ordered, with each argument +after the first having to be equal to or strictly less than the one preceding it. +Comparisons are performed using UNICODE string comparison. If fewer than two +arguments are present, this operation always returns a true value. +.VE "8.7, TIP461" .SS "BIT-WISE OPERATORS" .PP The behaviors of the bit-wise operator commands (all of which only operate on @@ -299,8 +342,12 @@ set gotIt [\fBin\fR 3 $list] \fI# Test to see if a value is within some defined range\fR set inRange [\fB<=\fR 1 $x 5] -\fI# Test to see if a list is sorted\fR +\fI# Test to see if a list is numerically sorted\fR set sorted [\fB<=\fR {*}$list] + +\fI# Test to see if a list is lexically sorted\fR +set alphaList {a b c d e f} +set sorted [\fBle\fR {*}$alphaList] .CE .SH "SEE ALSO" expr(n), mathfunc(n), namespace(n) diff --git a/generic/tclAssembly.c b/generic/tclAssembly.c index 3615f33..c70fb08 100644 --- a/generic/tclAssembly.c +++ b/generic/tclAssembly.c @@ -474,8 +474,12 @@ static const TalInstDesc TalInstructionTable[] = { {"strcat", ASSEM_CONCAT1, INST_STR_CONCAT1, INT_MIN,1}, {"streq", ASSEM_1BYTE, INST_STR_EQ, 2, 1}, {"strfind", ASSEM_1BYTE, INST_STR_FIND, 2, 1}, + {"strge", ASSEM_1BYTE, INST_STR_GE, 2, 1}, + {"strgt", ASSEM_1BYTE, INST_STR_GT, 2, 1}, {"strindex", ASSEM_1BYTE, INST_STR_INDEX, 2, 1}, + {"strle", ASSEM_1BYTE, INST_STR_LE, 2, 1}, {"strlen", ASSEM_1BYTE, INST_STR_LEN, 1, 1}, + {"strlt", ASSEM_1BYTE, INST_STR_LT, 2, 1}, {"strmap", ASSEM_1BYTE, INST_STR_MAP, 3, 1}, {"strmatch", ASSEM_BOOL, INST_STR_MATCH, 2, 1}, {"strneq", ASSEM_1BYTE, INST_STR_NEQ, 2, 1}, @@ -532,7 +536,8 @@ static const unsigned char NonThrowingByteCodes[] = { INST_STR_TRIM, INST_STR_TRIM_LEFT, INST_STR_TRIM_RIGHT, /* 166-168 */ INST_CONCAT_STK, /* 169 */ INST_STR_UPPER, INST_STR_LOWER, INST_STR_TITLE, /* 170-172 */ - INST_NUM_TYPE /* 180 */ + INST_NUM_TYPE, /* 180 */ + INST_STR_LT, INST_STR_GT, INST_STR_LE, INST_STR_GE /* 191-194 */ }; /* diff --git a/generic/tclBasic.c b/generic/tclBasic.c index 316a87d..a23bfc1 100644 --- a/generic/tclBasic.c +++ b/generic/tclBasic.c @@ -521,6 +521,14 @@ static const OpCmdInfo mathOpCmds[] = { /* unused */ {0}, NULL}, { "eq", TclSortingOpCmd, TclCompileStreqOpCmd, /* unused */ {0}, NULL}, + { "lt", TclSortingOpCmd, TclCompileStrLtOpCmd, + /* unused */ {0}, NULL}, + { "le", TclSortingOpCmd, TclCompileStrLeOpCmd, + /* unused */ {0}, NULL}, + { "gt", TclSortingOpCmd, TclCompileStrGtOpCmd, + /* unused */ {0}, NULL}, + { "ge", TclSortingOpCmd, TclCompileStrGeOpCmd, + /* unused */ {0}, NULL}, { NULL, NULL, NULL, {0}, NULL} }; @@ -617,8 +625,8 @@ Tcl_CreateInterp(void) /*NOTREACHED*/ Tcl_Panic("<time.h> is not compatible with MSVC"); } - if ((TclOffset(Tcl_StatBuf,st_atime) != 32) - || (TclOffset(Tcl_StatBuf,st_ctime) != 40)) { + if ((offsetof(Tcl_StatBuf,st_atime) != 32) + || (offsetof(Tcl_StatBuf,st_ctime) != 40)) { /*NOTREACHED*/ Tcl_Panic("<sys/stat.h> is not compatible with MSVC"); } diff --git a/generic/tclBinary.c b/generic/tclBinary.c index 831a427..d8b9ae9 100644 --- a/generic/tclBinary.c +++ b/generic/tclBinary.c @@ -277,7 +277,7 @@ typedef struct ByteArray { } ByteArray; #define BYTEARRAY_SIZE(len) \ - ((unsigned) (TclOffset(ByteArray, bytes) + (len))) + (offsetof(ByteArray, bytes) + (len)) #define GET_BYTEARRAY(irPtr) ((ByteArray *) (irPtr)->twoPtrValue.ptr1) #define SET_BYTEARRAY(irPtr, baPtr) \ (irPtr)->twoPtrValue.ptr1 = (void *) (baPtr) diff --git a/generic/tclCkalloc.c b/generic/tclCkalloc.c index 94327b5..d60633b 100644 --- a/generic/tclCkalloc.c +++ b/generic/tclCkalloc.c @@ -41,7 +41,7 @@ typedef struct MemTag { * last field in the structure. */ } MemTag; -#define TAG_SIZE(bytesInString) ((TclOffset(MemTag, string) + 1) + bytesInString) +#define TAG_SIZE(bytesInString) ((offsetof(MemTag, string) + 1) + bytesInString) static MemTag *curTagPtr = NULL;/* Tag to use in all future mem_headers (set * by "memory tag" command). */ diff --git a/generic/tclCompCmdsSZ.c b/generic/tclCompCmdsSZ.c index 83ade0b..da45cb3 100644 --- a/generic/tclCompCmdsSZ.c +++ b/generic/tclCompCmdsSZ.c @@ -4493,6 +4493,50 @@ TclCompileStreqOpCmd( { return CompileComparisonOpCmd(interp, parsePtr, INST_STR_EQ, envPtr); } + +int +TclCompileStrLtOpCmd( + Tcl_Interp *interp, + Tcl_Parse *parsePtr, + Command *cmdPtr, /* Points to defintion of command being + * compiled. */ + CompileEnv *envPtr) +{ + return CompileComparisonOpCmd(interp, parsePtr, INST_STR_LT, envPtr); +} + +int +TclCompileStrLeOpCmd( + Tcl_Interp *interp, + Tcl_Parse *parsePtr, + Command *cmdPtr, /* Points to defintion of command being + * compiled. */ + CompileEnv *envPtr) +{ + return CompileComparisonOpCmd(interp, parsePtr, INST_STR_LE, envPtr); +} + +int +TclCompileStrGtOpCmd( + Tcl_Interp *interp, + Tcl_Parse *parsePtr, + Command *cmdPtr, /* Points to defintion of command being + * compiled. */ + CompileEnv *envPtr) +{ + return CompileComparisonOpCmd(interp, parsePtr, INST_STR_GT, envPtr); +} + +int +TclCompileStrGeOpCmd( + Tcl_Interp *interp, + Tcl_Parse *parsePtr, + Command *cmdPtr, /* Points to defintion of command being + * compiled. */ + CompileEnv *envPtr) +{ + return CompileComparisonOpCmd(interp, parsePtr, INST_STR_GE, envPtr); +} int TclCompileMinusOpCmd( diff --git a/generic/tclCompExpr.c b/generic/tclCompExpr.c index 56c8931..dec9600 100644 --- a/generic/tclCompExpr.c +++ b/generic/tclCompExpr.c @@ -281,7 +281,11 @@ enum Marks { * parse tree. The sub-expression between * parens becomes the single argument of the * matching OPEN_PAREN unary operator. */ -#define END (BINARY | 28) +#define STR_LT (BINARY | 28) +#define STR_GT (BINARY | 29) +#define STR_LEQ (BINARY | 30) +#define STR_GEQ (BINARY | 31) +#define END (BINARY | 32) /* This lexeme represents the end of the * string being parsed. Treating it as a * binary operator follows the same logic as @@ -360,12 +364,14 @@ static const unsigned char prec[] = { PREC_EQUAL, /* IN_LIST */ PREC_EQUAL, /* NOT_IN_LIST */ PREC_CLOSE_PAREN, /* CLOSE_PAREN */ + PREC_COMPARE, /* STR_LT */ + PREC_COMPARE, /* STR_GT */ + PREC_COMPARE, /* STR_LEQ */ + PREC_COMPARE, /* STR_GEQ */ PREC_END, /* END */ /* Expansion room for more binary operators */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, /* Unary operator lexemes */ PREC_UNARY, /* UNARY_PLUS */ PREC_UNARY, /* UNARY_MINUS */ @@ -415,12 +421,14 @@ static const unsigned char instruction[] = { INST_LIST_IN, /* IN_LIST */ INST_LIST_NOT_IN, /* NOT_IN_LIST */ 0, /* CLOSE_PAREN */ + INST_STR_LT, /* STR_LT */ + INST_STR_GT, /* STR_GT */ + INST_STR_LE, /* STR_LEQ */ + INST_STR_GE, /* STR_GEQ */ 0, /* END */ /* Expansion room for more binary operators */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, /* Unary operator lexemes */ INST_UPLUS, /* UNARY_PLUS */ INST_UMINUS, /* UNARY_MINUS */ @@ -2001,6 +2009,35 @@ ParseLexeme( return 2; } } + break; + + case 'l': + if ((numBytes > 1) + && ((numBytes == 2) || start[2] & 0x80 || !isalpha(UCHAR(start[2])))) { + switch (start[1]) { + case 't': + *lexemePtr = STR_LT; + return 2; + case 'e': + *lexemePtr = STR_LEQ; + return 2; + } + } + break; + + case 'g': + if ((numBytes > 1) + && ((numBytes == 2) || start[2] & 0x80 || !isalpha(UCHAR(start[2])))) { + switch (start[1]) { + case 't': + *lexemePtr = STR_GT; + return 2; + case 'e': + *lexemePtr = STR_GEQ; + return 2; + } + } + break; } literal = Tcl_NewObj(); @@ -2568,7 +2605,7 @@ TclSingleOpCmd( * * TclSortingOpCmd -- * Implements the commands: - * <, <=, >, >=, ==, eq + * <, <=, >, >=, ==, eq, lt, le, gt, ge * in the ::tcl::mathop namespace. These commands are defined for * arbitrary number of arguments by computing the AND of the base * operator applied to all neighbor argument pairs. diff --git a/generic/tclCompile.c b/generic/tclCompile.c index c53d3ad..c10e3ee 100644 --- a/generic/tclCompile.c +++ b/generic/tclCompile.c @@ -667,6 +667,15 @@ InstructionDesc const tclInstructionTable[] = { * default is pushed instead. * Stack: ... dict key1 ... keyN default => ... value */ + {"strlt", 1, -1, 0, {OPERAND_NONE}}, + /* String Less: push (stknext < stktop) */ + {"strgt", 1, -1, 0, {OPERAND_NONE}}, + /* String Greater: push (stknext > stktop) */ + {"strle", 1, -1, 0, {OPERAND_NONE}}, + /* String Less or equal: push (stknext <= stktop) */ + {"strge", 1, -1, 0, {OPERAND_NONE}}, + /* String Greater or equal: push (stknext >= stktop) */ + {NULL, 0, 0, 0, {OPERAND_NONE}} }; @@ -3030,7 +3039,7 @@ TclFindCompiledLocal( if (create || (name == NULL)) { localVar = procPtr->numCompiledLocals; - localPtr = ckalloc(TclOffset(CompiledLocal, name) + nameBytes + 1); + localPtr = ckalloc(offsetof(CompiledLocal, name) + nameBytes + 1); if (procPtr->firstLocalPtr == NULL) { procPtr->firstLocalPtr = procPtr->lastLocalPtr = localPtr; } else { diff --git a/generic/tclCompile.h b/generic/tclCompile.h index 117fa46..686b2dd 100644 --- a/generic/tclCompile.h +++ b/generic/tclCompile.h @@ -842,8 +842,14 @@ typedef struct ByteCode { #define INST_DICT_GET_DEF 190 +/* TIP 461 */ +#define INST_STR_LT 191 +#define INST_STR_GT 192 +#define INST_STR_LE 193 +#define INST_STR_GE 194 + /* The last opcode */ -#define LAST_INST_OPCODE 190 +#define LAST_INST_OPCODE 194 /* * Table describing the Tcl bytecode instructions: their name (for displaying diff --git a/generic/tclExecute.c b/generic/tclExecute.c index 6b69d97..91c6a42 100644 --- a/generic/tclExecute.c +++ b/generic/tclExecute.c @@ -211,7 +211,7 @@ typedef struct TEBCdata { */ #define VarHashGetValue(hPtr) \ - ((Var *) ((char *)hPtr - TclOffset(VarInHash, entry))) + ((Var *) ((char *)hPtr - offsetof(VarInHash, entry))) static inline Var * VarHashCreateVar( @@ -5084,6 +5084,10 @@ TEBCresume( case INST_STR_EQ: case INST_STR_NEQ: /* String (in)equality check */ case INST_STR_CMP: /* String compare. */ + case INST_STR_LT: + case INST_STR_GT: + case INST_STR_LE: + case INST_STR_GE: stringCompare: value2Ptr = OBJ_AT_TOS; valuePtr = OBJ_UNDER_TOS; @@ -5114,15 +5118,19 @@ TEBCresume( match = (match != 0); break; case INST_LT: + case INST_STR_LT: match = (match < 0); break; case INST_GT: + case INST_STR_GT: match = (match > 0); break; case INST_LE: + case INST_STR_LE: match = (match <= 0); break; case INST_GE: + case INST_STR_GE: match = (match >= 0); break; } diff --git a/generic/tclHash.c b/generic/tclHash.c index 6c21c59..9b462d9 100644 --- a/generic/tclHash.c +++ b/generic/tclHash.c @@ -809,7 +809,7 @@ AllocStringEntry( if (size < sizeof(hPtr->key)) { allocsize = sizeof(hPtr->key); } - hPtr = ckalloc(TclOffset(Tcl_HashEntry, key) + allocsize); + hPtr = ckalloc(offsetof(Tcl_HashEntry, key) + allocsize); memcpy(hPtr->key.string, string, size); hPtr->clientData = 0; return hPtr; diff --git a/generic/tclIO.h b/generic/tclIO.h index 15f0f78..d10f268 100644 --- a/generic/tclIO.h +++ b/generic/tclIO.h @@ -50,7 +50,7 @@ typedef struct ChannelBuffer { * structure. */ } ChannelBuffer; -#define CHANNELBUFFER_HEADER_SIZE TclOffset(ChannelBuffer, buf) +#define CHANNELBUFFER_HEADER_SIZE offsetof(ChannelBuffer, buf) /* * How much extra space to allocate in buffer to hold bytes from previous diff --git a/generic/tclInt.h b/generic/tclInt.h index dbddb91..80b4493 100644 --- a/generic/tclInt.h +++ b/generic/tclInt.h @@ -79,7 +79,7 @@ #include <string.h> #endif #if defined(STDC_HEADERS) || defined(__STDC__) || defined(__C99__FUNC__) \ - || defined(__cplusplus) || defined(_MSC_VER) + || defined(__cplusplus) || defined(_MSC_VER) || defined(__ICC) #include <stddef.h> #else typedef int ptrdiff_t; @@ -4047,6 +4047,18 @@ MODULE_SCOPE int TclCompileEqOpCmd(Tcl_Interp *interp, MODULE_SCOPE int TclCompileStreqOpCmd(Tcl_Interp *interp, Tcl_Parse *parsePtr, Command *cmdPtr, struct CompileEnv *envPtr); +MODULE_SCOPE int TclCompileStrLtOpCmd(Tcl_Interp *interp, + Tcl_Parse *parsePtr, Command *cmdPtr, + struct CompileEnv *envPtr); +MODULE_SCOPE int TclCompileStrLeOpCmd(Tcl_Interp *interp, + Tcl_Parse *parsePtr, Command *cmdPtr, + struct CompileEnv *envPtr); +MODULE_SCOPE int TclCompileStrGtOpCmd(Tcl_Interp *interp, + Tcl_Parse *parsePtr, Command *cmdPtr, + struct CompileEnv *envPtr); +MODULE_SCOPE int TclCompileStrGeOpCmd(Tcl_Interp *interp, + Tcl_Parse *parsePtr, Command *cmdPtr, + struct CompileEnv *envPtr); MODULE_SCOPE int TclCompileAssembleCmd(Tcl_Interp *interp, Tcl_Parse *parsePtr, Command *cmdPtr, @@ -4868,15 +4880,16 @@ MODULE_SCOPE Tcl_PackageInitProc Procbodytest_SafeInit; #endif /* - * ---------------------------------------------------------------------- - * Macro to use to find the offset of a field in a structure. Computes number - * of bytes from beginning of structure to a given field. + * Macro to use to find the offset of a field in astructure. + * Computes number of bytes from beginning of structure to a given field. */ -#ifdef offsetof -#define TclOffset(type, field) ((int) offsetof(type, field)) -#else -#define TclOffset(type, field) ((int) ((char *) &((type *) 0)->field)) +#ifndef TCL_NO_DEPRECATED +# define TclOffset(type, field) ((int) offsetof(type, field)) +#endif +/* Workaround for platforms missing offsetof(), e.g. VC++ 6.0 */ +#ifndef offsetof +# define offsetof(type, field) ((size_t) ((char *) &((type *) 0)->field)) #endif /* diff --git a/generic/tclOOMethod.c b/generic/tclOOMethod.c index db31795..32dd3c7 100644 --- a/generic/tclOOMethod.c +++ b/generic/tclOOMethod.c @@ -121,7 +121,7 @@ static const Tcl_MethodType fwdMethodType = { #define TclVarTable(contextNs) \ ((Tcl_HashTable *) (&((Namespace *) (contextNs))->varTable)) #define TclVarHashGetValue(hPtr) \ - ((Tcl_Var) ((char *)hPtr - TclOffset(VarInHash, entry))) + ((Tcl_Var) ((char *)hPtr - offsetof(VarInHash, entry))) /* * ---------------------------------------------------------------------- diff --git a/generic/tclProc.c b/generic/tclProc.c index f24dae8..afa00ee 100644 --- a/generic/tclProc.c +++ b/generic/tclProc.c @@ -634,7 +634,7 @@ TclCreateProc( * local variables for the argument. */ - localPtr = ckalloc(TclOffset(CompiledLocal, name) + fieldValues[0]->length +1); + localPtr = ckalloc(offsetof(CompiledLocal, name) + fieldValues[0]->length +1); if (procPtr->firstLocalPtr == NULL) { procPtr->firstLocalPtr = procPtr->lastLocalPtr = localPtr; } else { diff --git a/generic/tclStrToD.c b/generic/tclStrToD.c index b160d9e..fd87446 100644 --- a/generic/tclStrToD.c +++ b/generic/tclStrToD.c @@ -3268,7 +3268,7 @@ ShorteningBignumConversionPowD( */ TclInitBignumFromWideUInt(&b, bw); - mp_init_set_int(&mminus, 1); + mp_init_set(&mminus, 1); MulPow5(&b, b5, &b); mp_mul_2d(&b, b2, &b); @@ -3653,7 +3653,7 @@ ShorteningBignumConversion( TclInitBignumFromWideUInt(&b, bw); mp_mul_2d(&b, b2, &b); - mp_init_set_int(&S, 1); + mp_init_set(&S, 1); MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); /* @@ -3671,7 +3671,7 @@ ShorteningBignumConversion( * mminus = 2**m2minus * 5**m5 */ - mp_init_set_int(&mminus, minit); + mp_init_set(&mminus, minit); mp_mul_2d(&mminus, m2minus, &mminus); if (m2plus > m2minus) { mp_init_copy(&mplus, &mminus); @@ -3862,7 +3862,7 @@ StrictBignumConversion( mp_init_multi(&dig, NULL); TclInitBignumFromWideUInt(&b, bw); mp_mul_2d(&b, b2, &b); - mp_init_set_int(&S, 1); + mp_init_set(&S, 1); MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); /* diff --git a/generic/tclTest.c b/generic/tclTest.c index 8474a91..4eb8519 100644 --- a/generic/tclTest.c +++ b/generic/tclTest.c @@ -7710,7 +7710,7 @@ MyCompiledVarFree( } #define TclVarHashGetValue(hPtr) \ - ((Var *) ((char *)hPtr - TclOffset(VarInHash, entry))) + ((Var *) ((char *)hPtr - offsetof(VarInHash, entry))) static Tcl_Var MyCompiledVarFetch( diff --git a/generic/tclTrace.c b/generic/tclTrace.c index 20fa7e7..1a6d459 100644 --- a/generic/tclTrace.c +++ b/generic/tclTrace.c @@ -470,7 +470,7 @@ TraceExecutionObjCmd( length = (size_t) commandLength; if ((enum traceOptions) optionIndex == TRACE_ADD) { TraceCommandInfo *tcmdPtr = ckalloc( - TclOffset(TraceCommandInfo, command) + 1 + length); + offsetof(TraceCommandInfo, command) + 1 + length); tcmdPtr->flags = flags; tcmdPtr->stepTrace = NULL; @@ -707,7 +707,7 @@ TraceCommandObjCmd( length = (size_t) commandLength; if ((enum traceOptions) optionIndex == TRACE_ADD) { TraceCommandInfo *tcmdPtr = ckalloc( - TclOffset(TraceCommandInfo, command) + 1 + length); + offsetof(TraceCommandInfo, command) + 1 + length); tcmdPtr->flags = flags; tcmdPtr->stepTrace = NULL; @@ -910,7 +910,7 @@ TraceVariableObjCmd( length = (size_t) commandLength; if ((enum traceOptions) optionIndex == TRACE_ADD) { CombinedTraceVarInfo *ctvarPtr = ckalloc( - TclOffset(CombinedTraceVarInfo, traceCmdInfo.command) + offsetof(CombinedTraceVarInfo, traceCmdInfo.command) + 1 + length); ctvarPtr->traceCmdInfo.flags = flags; diff --git a/generic/tclVar.c b/generic/tclVar.c index e400369..e8ebd3c 100644 --- a/generic/tclVar.c +++ b/generic/tclVar.c @@ -45,7 +45,7 @@ static inline Var * VarHashNextVar(Tcl_HashSearch *searchPtr); static inline void CleanupVar(Var *varPtr, Var *arrayPtr); #define VarHashGetValue(hPtr) \ - ((Var *) ((char *)hPtr - TclOffset(VarInHash, entry))) + ((Var *) ((char *)hPtr - offsetof(VarInHash, entry))) /* * NOTE: VarHashCreateVar increments the recount of its key argument. diff --git a/tests/expr.test b/tests/expr.test index cbfc29c..59d96a1 100644 --- a/tests/expr.test +++ b/tests/expr.test @@ -411,6 +411,26 @@ test expr-8.34 {expr edge cases} -body { test expr-8.35 {expr edge cases} -body { expr {1ea} } -returnCodes error -match glob -result * +test expr-8.36 {CompileEqualtyExpr: string comparison ops} { + set x 012 + set y 0x0 + list [expr {$x < $y}] [expr {$x lt $y}] [expr {$x lt $x}] +} {0 1 0} +test expr-8.37 {CompileEqualtyExpr: string comparison ops} { + set x 012 + set y 0x0 + list [expr {$x <= $y}] [expr {$x le $y}] [expr {$x le $x}] +} {0 1 1} +test expr-8.38 {CompileEqualtyExpr: string comparison ops} { + set x 012 + set y 0x0 + list [expr {$x > $y}] [expr {$x gt $y}] [expr {$x gt $x}] +} {1 0 0} +test expr-8.39 {CompileEqualtyExpr: string comparison ops} { + set x 012 + set y 0x0 + list [expr {$x >= $y}] [expr {$x ge $y}] [expr {$x ge $x}] +} {1 0 1} test expr-9.1 {CompileRelationalExpr: just shift expr} {expr 3<<2} 12 test expr-9.2 {CompileRelationalExpr: just shift expr} {expr 0xff>>2} 63 diff --git a/tests/mathop.test b/tests/mathop.test index a1a3f80..958a56f 100644 --- a/tests/mathop.test +++ b/tests/mathop.test @@ -95,7 +95,7 @@ proc TestOp {op args} { } return [lindex $results 0] } - + # start of tests namespace eval ::testmathop { @@ -1342,6 +1342,46 @@ test mathop-26.2 { misc ops, corner cases } { set res } [list 2147483648 9223372036854775808 9223372036854775808 4294967296 18446744073709551616] +test mathop-27.1 {lt operator} {::tcl::mathop::lt} 1 +test mathop-27.2 {lt operator} {::tcl::mathop::lt a} 1 +test mathop-27.3 {lt operator} {::tcl::mathop::lt a b} 1 +test mathop-27.4 {lt operator} {::tcl::mathop::lt b a} 0 +test mathop-27.5 {lt operator} {::tcl::mathop::lt a a} 0 +test mathop-27.6 {lt operator} {::tcl::mathop::lt a b c} 1 +test mathop-27.7 {lt operator} {::tcl::mathop::lt b a c} 0 +test mathop-27.8 {lt operator} {::tcl::mathop::lt a c b} 0 +test mathop-27.9 {lt operator} {::tcl::mathop::lt 012 0x0} 1 + +test mathop-28.1 {le operator} {::tcl::mathop::le} 1 +test mathop-28.2 {le operator} {::tcl::mathop::le a} 1 +test mathop-28.3 {le operator} {::tcl::mathop::le a b} 1 +test mathop-28.4 {le operator} {::tcl::mathop::le b a} 0 +test mathop-28.5 {le operator} {::tcl::mathop::le a a} 1 +test mathop-28.6 {le operator} {::tcl::mathop::le a b c} 1 +test mathop-28.7 {le operator} {::tcl::mathop::le b a c} 0 +test mathop-28.8 {le operator} {::tcl::mathop::le a c b} 0 +test mathop-28.9 {le operator} {::tcl::mathop::le 012 0x0} 1 + +test mathop-29.1 {gt operator} {::tcl::mathop::gt} 1 +test mathop-29.2 {gt operator} {::tcl::mathop::gt a} 1 +test mathop-29.3 {gt operator} {::tcl::mathop::gt a b} 0 +test mathop-29.4 {gt operator} {::tcl::mathop::gt b a} 1 +test mathop-29.5 {gt operator} {::tcl::mathop::gt a a} 0 +test mathop-29.6 {gt operator} {::tcl::mathop::gt c b a} 1 +test mathop-29.7 {gt operator} {::tcl::mathop::gt b a c} 0 +test mathop-29.8 {gt operator} {::tcl::mathop::gt a c b} 0 +test mathop-29.9 {gt operator} {::tcl::mathop::gt 0x0 012} 1 + +test mathop-30.1 {ge operator} {::tcl::mathop::ge} 1 +test mathop-30.2 {ge operator} {::tcl::mathop::ge a} 1 +test mathop-30.3 {ge operator} {::tcl::mathop::ge a b} 0 +test mathop-30.4 {ge operator} {::tcl::mathop::ge b a} 1 +test mathop-30.5 {ge operator} {::tcl::mathop::ge a a} 1 +test mathop-30.6 {ge operator} {::tcl::mathop::ge c b a} 1 +test mathop-30.7 {ge operator} {::tcl::mathop::ge b a c} 0 +test mathop-30.8 {ge operator} {::tcl::mathop::ge a c b} 0 +test mathop-30.9 {ge operator} {::tcl::mathop::ge 0x0 012} 1 + if 0 { # Compare ops to expr bytecodes namespace import ::tcl::mathop::* @@ -1354,7 +1394,7 @@ if 0 { _X 3 4 5 set ::tcl_traceCompile 0 } - + # cleanup namespace delete ::testmathop namespace delete ::testmathop2 |
