diff options
Diffstat (limited to 'compat/zlib/trees.c')
| -rw-r--r-- | compat/zlib/trees.c | 1226 | 
1 files changed, 1226 insertions, 0 deletions
| diff --git a/compat/zlib/trees.c b/compat/zlib/trees.c new file mode 100644 index 0000000..1fd7759 --- /dev/null +++ b/compat/zlib/trees.c @@ -0,0 +1,1226 @@ +/* trees.c -- output deflated data using Huffman coding + * Copyright (C) 1995-2012 Jean-loup Gailly + * detect_data_type() function provided freely by Cosmin Truta, 2006 + * For conditions of distribution and use, see copyright notice in zlib.h + */ + +/* + *  ALGORITHM + * + *      The "deflation" process uses several Huffman trees. The more + *      common source values are represented by shorter bit sequences. + * + *      Each code tree is stored in a compressed form which is itself + * a Huffman encoding of the lengths of all the code strings (in + * ascending order by source values).  The actual code strings are + * reconstructed from the lengths in the inflate process, as described + * in the deflate specification. + * + *  REFERENCES + * + *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". + *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc + * + *      Storer, James A. + *          Data Compression:  Methods and Theory, pp. 49-50. + *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. + * + *      Sedgewick, R. + *          Algorithms, p290. + *          Addison-Wesley, 1983. ISBN 0-201-06672-6. + */ + +/* @(#) $Id$ */ + +/* #define GEN_TREES_H */ + +#include "deflate.h" + +#ifdef DEBUG +#  include <ctype.h> +#endif + +/* =========================================================================== + * Constants + */ + +#define MAX_BL_BITS 7 +/* Bit length codes must not exceed MAX_BL_BITS bits */ + +#define END_BLOCK 256 +/* end of block literal code */ + +#define REP_3_6      16 +/* repeat previous bit length 3-6 times (2 bits of repeat count) */ + +#define REPZ_3_10    17 +/* repeat a zero length 3-10 times  (3 bits of repeat count) */ + +#define REPZ_11_138  18 +/* repeat a zero length 11-138 times  (7 bits of repeat count) */ + +local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ +   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; + +local const int extra_dbits[D_CODES] /* extra bits for each distance code */ +   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; + +local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ +   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; + +local const uch bl_order[BL_CODES] +   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; +/* The lengths of the bit length codes are sent in order of decreasing + * probability, to avoid transmitting the lengths for unused bit length codes. + */ + +/* =========================================================================== + * Local data. These are initialized only once. + */ + +#define DIST_CODE_LEN  512 /* see definition of array dist_code below */ + +#if defined(GEN_TREES_H) || !defined(STDC) +/* non ANSI compilers may not accept trees.h */ + +local ct_data static_ltree[L_CODES+2]; +/* The static literal tree. Since the bit lengths are imposed, there is no + * need for the L_CODES extra codes used during heap construction. However + * The codes 286 and 287 are needed to build a canonical tree (see _tr_init + * below). + */ + +local ct_data static_dtree[D_CODES]; +/* The static distance tree. (Actually a trivial tree since all codes use + * 5 bits.) + */ + +uch _dist_code[DIST_CODE_LEN]; +/* Distance codes. The first 256 values correspond to the distances + * 3 .. 258, the last 256 values correspond to the top 8 bits of + * the 15 bit distances. + */ + +uch _length_code[MAX_MATCH-MIN_MATCH+1]; +/* length code for each normalized match length (0 == MIN_MATCH) */ + +local int base_length[LENGTH_CODES]; +/* First normalized length for each code (0 = MIN_MATCH) */ + +local int base_dist[D_CODES]; +/* First normalized distance for each code (0 = distance of 1) */ + +#else +#  include "trees.h" +#endif /* GEN_TREES_H */ + +struct static_tree_desc_s { +    const ct_data *static_tree;  /* static tree or NULL */ +    const intf *extra_bits;      /* extra bits for each code or NULL */ +    int     extra_base;          /* base index for extra_bits */ +    int     elems;               /* max number of elements in the tree */ +    int     max_length;          /* max bit length for the codes */ +}; + +local static_tree_desc  static_l_desc = +{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; + +local static_tree_desc  static_d_desc = +{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS}; + +local static_tree_desc  static_bl_desc = +{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS}; + +/* =========================================================================== + * Local (static) routines in this file. + */ + +local void tr_static_init OF((void)); +local void init_block     OF((deflate_state *s)); +local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k)); +local void gen_bitlen     OF((deflate_state *s, tree_desc *desc)); +local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count)); +local void build_tree     OF((deflate_state *s, tree_desc *desc)); +local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code)); +local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code)); +local int  build_bl_tree  OF((deflate_state *s)); +local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, +                              int blcodes)); +local void compress_block OF((deflate_state *s, const ct_data *ltree, +                              const ct_data *dtree)); +local int  detect_data_type OF((deflate_state *s)); +local unsigned bi_reverse OF((unsigned value, int length)); +local void bi_windup      OF((deflate_state *s)); +local void bi_flush       OF((deflate_state *s)); +local void copy_block     OF((deflate_state *s, charf *buf, unsigned len, +                              int header)); + +#ifdef GEN_TREES_H +local void gen_trees_header OF((void)); +#endif + +#ifndef DEBUG +#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) +   /* Send a code of the given tree. c and tree must not have side effects */ + +#else /* DEBUG */ +#  define send_code(s, c, tree) \ +     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ +       send_bits(s, tree[c].Code, tree[c].Len); } +#endif + +/* =========================================================================== + * Output a short LSB first on the stream. + * IN assertion: there is enough room in pendingBuf. + */ +#define put_short(s, w) { \ +    put_byte(s, (uch)((w) & 0xff)); \ +    put_byte(s, (uch)((ush)(w) >> 8)); \ +} + +/* =========================================================================== + * Send a value on a given number of bits. + * IN assertion: length <= 16 and value fits in length bits. + */ +#ifdef DEBUG +local void send_bits      OF((deflate_state *s, int value, int length)); + +local void send_bits(s, value, length) +    deflate_state *s; +    int value;  /* value to send */ +    int length; /* number of bits */ +{ +    Tracevv((stderr," l %2d v %4x ", length, value)); +    Assert(length > 0 && length <= 15, "invalid length"); +    s->bits_sent += (ulg)length; + +    /* If not enough room in bi_buf, use (valid) bits from bi_buf and +     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) +     * unused bits in value. +     */ +    if (s->bi_valid > (int)Buf_size - length) { +        s->bi_buf |= (ush)value << s->bi_valid; +        put_short(s, s->bi_buf); +        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); +        s->bi_valid += length - Buf_size; +    } else { +        s->bi_buf |= (ush)value << s->bi_valid; +        s->bi_valid += length; +    } +} +#else /* !DEBUG */ + +#define send_bits(s, value, length) \ +{ int len = length;\ +  if (s->bi_valid > (int)Buf_size - len) {\ +    int val = value;\ +    s->bi_buf |= (ush)val << s->bi_valid;\ +    put_short(s, s->bi_buf);\ +    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ +    s->bi_valid += len - Buf_size;\ +  } else {\ +    s->bi_buf |= (ush)(value) << s->bi_valid;\ +    s->bi_valid += len;\ +  }\ +} +#endif /* DEBUG */ + + +/* the arguments must not have side effects */ + +/* =========================================================================== + * Initialize the various 'constant' tables. + */ +local void tr_static_init() +{ +#if defined(GEN_TREES_H) || !defined(STDC) +    static int static_init_done = 0; +    int n;        /* iterates over tree elements */ +    int bits;     /* bit counter */ +    int length;   /* length value */ +    int code;     /* code value */ +    int dist;     /* distance index */ +    ush bl_count[MAX_BITS+1]; +    /* number of codes at each bit length for an optimal tree */ + +    if (static_init_done) return; + +    /* For some embedded targets, global variables are not initialized: */ +#ifdef NO_INIT_GLOBAL_POINTERS +    static_l_desc.static_tree = static_ltree; +    static_l_desc.extra_bits = extra_lbits; +    static_d_desc.static_tree = static_dtree; +    static_d_desc.extra_bits = extra_dbits; +    static_bl_desc.extra_bits = extra_blbits; +#endif + +    /* Initialize the mapping length (0..255) -> length code (0..28) */ +    length = 0; +    for (code = 0; code < LENGTH_CODES-1; code++) { +        base_length[code] = length; +        for (n = 0; n < (1<<extra_lbits[code]); n++) { +            _length_code[length++] = (uch)code; +        } +    } +    Assert (length == 256, "tr_static_init: length != 256"); +    /* Note that the length 255 (match length 258) can be represented +     * in two different ways: code 284 + 5 bits or code 285, so we +     * overwrite length_code[255] to use the best encoding: +     */ +    _length_code[length-1] = (uch)code; + +    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ +    dist = 0; +    for (code = 0 ; code < 16; code++) { +        base_dist[code] = dist; +        for (n = 0; n < (1<<extra_dbits[code]); n++) { +            _dist_code[dist++] = (uch)code; +        } +    } +    Assert (dist == 256, "tr_static_init: dist != 256"); +    dist >>= 7; /* from now on, all distances are divided by 128 */ +    for ( ; code < D_CODES; code++) { +        base_dist[code] = dist << 7; +        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { +            _dist_code[256 + dist++] = (uch)code; +        } +    } +    Assert (dist == 256, "tr_static_init: 256+dist != 512"); + +    /* Construct the codes of the static literal tree */ +    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; +    n = 0; +    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; +    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; +    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; +    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; +    /* Codes 286 and 287 do not exist, but we must include them in the +     * tree construction to get a canonical Huffman tree (longest code +     * all ones) +     */ +    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); + +    /* The static distance tree is trivial: */ +    for (n = 0; n < D_CODES; n++) { +        static_dtree[n].Len = 5; +        static_dtree[n].Code = bi_reverse((unsigned)n, 5); +    } +    static_init_done = 1; + +#  ifdef GEN_TREES_H +    gen_trees_header(); +#  endif +#endif /* defined(GEN_TREES_H) || !defined(STDC) */ +} + +/* =========================================================================== + * Genererate the file trees.h describing the static trees. + */ +#ifdef GEN_TREES_H +#  ifndef DEBUG +#    include <stdio.h> +#  endif + +#  define SEPARATOR(i, last, width) \ +      ((i) == (last)? "\n};\n\n" :    \ +       ((i) % (width) == (width)-1 ? ",\n" : ", ")) + +void gen_trees_header() +{ +    FILE *header = fopen("trees.h", "w"); +    int i; + +    Assert (header != NULL, "Can't open trees.h"); +    fprintf(header, +            "/* header created automatically with -DGEN_TREES_H */\n\n"); + +    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); +    for (i = 0; i < L_CODES+2; i++) { +        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, +                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); +    } + +    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); +    for (i = 0; i < D_CODES; i++) { +        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, +                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); +    } + +    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); +    for (i = 0; i < DIST_CODE_LEN; i++) { +        fprintf(header, "%2u%s", _dist_code[i], +                SEPARATOR(i, DIST_CODE_LEN-1, 20)); +    } + +    fprintf(header, +        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); +    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { +        fprintf(header, "%2u%s", _length_code[i], +                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); +    } + +    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); +    for (i = 0; i < LENGTH_CODES; i++) { +        fprintf(header, "%1u%s", base_length[i], +                SEPARATOR(i, LENGTH_CODES-1, 20)); +    } + +    fprintf(header, "local const int base_dist[D_CODES] = {\n"); +    for (i = 0; i < D_CODES; i++) { +        fprintf(header, "%5u%s", base_dist[i], +                SEPARATOR(i, D_CODES-1, 10)); +    } + +    fclose(header); +} +#endif /* GEN_TREES_H */ + +/* =========================================================================== + * Initialize the tree data structures for a new zlib stream. + */ +void ZLIB_INTERNAL _tr_init(s) +    deflate_state *s; +{ +    tr_static_init(); + +    s->l_desc.dyn_tree = s->dyn_ltree; +    s->l_desc.stat_desc = &static_l_desc; + +    s->d_desc.dyn_tree = s->dyn_dtree; +    s->d_desc.stat_desc = &static_d_desc; + +    s->bl_desc.dyn_tree = s->bl_tree; +    s->bl_desc.stat_desc = &static_bl_desc; + +    s->bi_buf = 0; +    s->bi_valid = 0; +#ifdef DEBUG +    s->compressed_len = 0L; +    s->bits_sent = 0L; +#endif + +    /* Initialize the first block of the first file: */ +    init_block(s); +} + +/* =========================================================================== + * Initialize a new block. + */ +local void init_block(s) +    deflate_state *s; +{ +    int n; /* iterates over tree elements */ + +    /* Initialize the trees. */ +    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0; +    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0; +    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; + +    s->dyn_ltree[END_BLOCK].Freq = 1; +    s->opt_len = s->static_len = 0L; +    s->last_lit = s->matches = 0; +} + +#define SMALLEST 1 +/* Index within the heap array of least frequent node in the Huffman tree */ + + +/* =========================================================================== + * Remove the smallest element from the heap and recreate the heap with + * one less element. Updates heap and heap_len. + */ +#define pqremove(s, tree, top) \ +{\ +    top = s->heap[SMALLEST]; \ +    s->heap[SMALLEST] = s->heap[s->heap_len--]; \ +    pqdownheap(s, tree, SMALLEST); \ +} + +/* =========================================================================== + * Compares to subtrees, using the tree depth as tie breaker when + * the subtrees have equal frequency. This minimizes the worst case length. + */ +#define smaller(tree, n, m, depth) \ +   (tree[n].Freq < tree[m].Freq || \ +   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) + +/* =========================================================================== + * Restore the heap property by moving down the tree starting at node k, + * exchanging a node with the smallest of its two sons if necessary, stopping + * when the heap property is re-established (each father smaller than its + * two sons). + */ +local void pqdownheap(s, tree, k) +    deflate_state *s; +    ct_data *tree;  /* the tree to restore */ +    int k;               /* node to move down */ +{ +    int v = s->heap[k]; +    int j = k << 1;  /* left son of k */ +    while (j <= s->heap_len) { +        /* Set j to the smallest of the two sons: */ +        if (j < s->heap_len && +            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { +            j++; +        } +        /* Exit if v is smaller than both sons */ +        if (smaller(tree, v, s->heap[j], s->depth)) break; + +        /* Exchange v with the smallest son */ +        s->heap[k] = s->heap[j];  k = j; + +        /* And continue down the tree, setting j to the left son of k */ +        j <<= 1; +    } +    s->heap[k] = v; +} + +/* =========================================================================== + * Compute the optimal bit lengths for a tree and update the total bit length + * for the current block. + * IN assertion: the fields freq and dad are set, heap[heap_max] and + *    above are the tree nodes sorted by increasing frequency. + * OUT assertions: the field len is set to the optimal bit length, the + *     array bl_count contains the frequencies for each bit length. + *     The length opt_len is updated; static_len is also updated if stree is + *     not null. + */ +local void gen_bitlen(s, desc) +    deflate_state *s; +    tree_desc *desc;    /* the tree descriptor */ +{ +    ct_data *tree        = desc->dyn_tree; +    int max_code         = desc->max_code; +    const ct_data *stree = desc->stat_desc->static_tree; +    const intf *extra    = desc->stat_desc->extra_bits; +    int base             = desc->stat_desc->extra_base; +    int max_length       = desc->stat_desc->max_length; +    int h;              /* heap index */ +    int n, m;           /* iterate over the tree elements */ +    int bits;           /* bit length */ +    int xbits;          /* extra bits */ +    ush f;              /* frequency */ +    int overflow = 0;   /* number of elements with bit length too large */ + +    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; + +    /* In a first pass, compute the optimal bit lengths (which may +     * overflow in the case of the bit length tree). +     */ +    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ + +    for (h = s->heap_max+1; h < HEAP_SIZE; h++) { +        n = s->heap[h]; +        bits = tree[tree[n].Dad].Len + 1; +        if (bits > max_length) bits = max_length, overflow++; +        tree[n].Len = (ush)bits; +        /* We overwrite tree[n].Dad which is no longer needed */ + +        if (n > max_code) continue; /* not a leaf node */ + +        s->bl_count[bits]++; +        xbits = 0; +        if (n >= base) xbits = extra[n-base]; +        f = tree[n].Freq; +        s->opt_len += (ulg)f * (bits + xbits); +        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); +    } +    if (overflow == 0) return; + +    Trace((stderr,"\nbit length overflow\n")); +    /* This happens for example on obj2 and pic of the Calgary corpus */ + +    /* Find the first bit length which could increase: */ +    do { +        bits = max_length-1; +        while (s->bl_count[bits] == 0) bits--; +        s->bl_count[bits]--;      /* move one leaf down the tree */ +        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ +        s->bl_count[max_length]--; +        /* The brother of the overflow item also moves one step up, +         * but this does not affect bl_count[max_length] +         */ +        overflow -= 2; +    } while (overflow > 0); + +    /* Now recompute all bit lengths, scanning in increasing frequency. +     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all +     * lengths instead of fixing only the wrong ones. This idea is taken +     * from 'ar' written by Haruhiko Okumura.) +     */ +    for (bits = max_length; bits != 0; bits--) { +        n = s->bl_count[bits]; +        while (n != 0) { +            m = s->heap[--h]; +            if (m > max_code) continue; +            if ((unsigned) tree[m].Len != (unsigned) bits) { +                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); +                s->opt_len += ((long)bits - (long)tree[m].Len) +                              *(long)tree[m].Freq; +                tree[m].Len = (ush)bits; +            } +            n--; +        } +    } +} + +/* =========================================================================== + * Generate the codes for a given tree and bit counts (which need not be + * optimal). + * IN assertion: the array bl_count contains the bit length statistics for + * the given tree and the field len is set for all tree elements. + * OUT assertion: the field code is set for all tree elements of non + *     zero code length. + */ +local void gen_codes (tree, max_code, bl_count) +    ct_data *tree;             /* the tree to decorate */ +    int max_code;              /* largest code with non zero frequency */ +    ushf *bl_count;            /* number of codes at each bit length */ +{ +    ush next_code[MAX_BITS+1]; /* next code value for each bit length */ +    ush code = 0;              /* running code value */ +    int bits;                  /* bit index */ +    int n;                     /* code index */ + +    /* The distribution counts are first used to generate the code values +     * without bit reversal. +     */ +    for (bits = 1; bits <= MAX_BITS; bits++) { +        next_code[bits] = code = (code + bl_count[bits-1]) << 1; +    } +    /* Check that the bit counts in bl_count are consistent. The last code +     * must be all ones. +     */ +    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, +            "inconsistent bit counts"); +    Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); + +    for (n = 0;  n <= max_code; n++) { +        int len = tree[n].Len; +        if (len == 0) continue; +        /* Now reverse the bits */ +        tree[n].Code = bi_reverse(next_code[len]++, len); + +        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", +             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); +    } +} + +/* =========================================================================== + * Construct one Huffman tree and assigns the code bit strings and lengths. + * Update the total bit length for the current block. + * IN assertion: the field freq is set for all tree elements. + * OUT assertions: the fields len and code are set to the optimal bit length + *     and corresponding code. The length opt_len is updated; static_len is + *     also updated if stree is not null. The field max_code is set. + */ +local void build_tree(s, desc) +    deflate_state *s; +    tree_desc *desc; /* the tree descriptor */ +{ +    ct_data *tree         = desc->dyn_tree; +    const ct_data *stree  = desc->stat_desc->static_tree; +    int elems             = desc->stat_desc->elems; +    int n, m;          /* iterate over heap elements */ +    int max_code = -1; /* largest code with non zero frequency */ +    int node;          /* new node being created */ + +    /* Construct the initial heap, with least frequent element in +     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. +     * heap[0] is not used. +     */ +    s->heap_len = 0, s->heap_max = HEAP_SIZE; + +    for (n = 0; n < elems; n++) { +        if (tree[n].Freq != 0) { +            s->heap[++(s->heap_len)] = max_code = n; +            s->depth[n] = 0; +        } else { +            tree[n].Len = 0; +        } +    } + +    /* The pkzip format requires that at least one distance code exists, +     * and that at least one bit should be sent even if there is only one +     * possible code. So to avoid special checks later on we force at least +     * two codes of non zero frequency. +     */ +    while (s->heap_len < 2) { +        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); +        tree[node].Freq = 1; +        s->depth[node] = 0; +        s->opt_len--; if (stree) s->static_len -= stree[node].Len; +        /* node is 0 or 1 so it does not have extra bits */ +    } +    desc->max_code = max_code; + +    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, +     * establish sub-heaps of increasing lengths: +     */ +    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); + +    /* Construct the Huffman tree by repeatedly combining the least two +     * frequent nodes. +     */ +    node = elems;              /* next internal node of the tree */ +    do { +        pqremove(s, tree, n);  /* n = node of least frequency */ +        m = s->heap[SMALLEST]; /* m = node of next least frequency */ + +        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ +        s->heap[--(s->heap_max)] = m; + +        /* Create a new node father of n and m */ +        tree[node].Freq = tree[n].Freq + tree[m].Freq; +        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? +                                s->depth[n] : s->depth[m]) + 1); +        tree[n].Dad = tree[m].Dad = (ush)node; +#ifdef DUMP_BL_TREE +        if (tree == s->bl_tree) { +            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", +                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); +        } +#endif +        /* and insert the new node in the heap */ +        s->heap[SMALLEST] = node++; +        pqdownheap(s, tree, SMALLEST); + +    } while (s->heap_len >= 2); + +    s->heap[--(s->heap_max)] = s->heap[SMALLEST]; + +    /* At this point, the fields freq and dad are set. We can now +     * generate the bit lengths. +     */ +    gen_bitlen(s, (tree_desc *)desc); + +    /* The field len is now set, we can generate the bit codes */ +    gen_codes ((ct_data *)tree, max_code, s->bl_count); +} + +/* =========================================================================== + * Scan a literal or distance tree to determine the frequencies of the codes + * in the bit length tree. + */ +local void scan_tree (s, tree, max_code) +    deflate_state *s; +    ct_data *tree;   /* the tree to be scanned */ +    int max_code;    /* and its largest code of non zero frequency */ +{ +    int n;                     /* iterates over all tree elements */ +    int prevlen = -1;          /* last emitted length */ +    int curlen;                /* length of current code */ +    int nextlen = tree[0].Len; /* length of next code */ +    int count = 0;             /* repeat count of the current code */ +    int max_count = 7;         /* max repeat count */ +    int min_count = 4;         /* min repeat count */ + +    if (nextlen == 0) max_count = 138, min_count = 3; +    tree[max_code+1].Len = (ush)0xffff; /* guard */ + +    for (n = 0; n <= max_code; n++) { +        curlen = nextlen; nextlen = tree[n+1].Len; +        if (++count < max_count && curlen == nextlen) { +            continue; +        } else if (count < min_count) { +            s->bl_tree[curlen].Freq += count; +        } else if (curlen != 0) { +            if (curlen != prevlen) s->bl_tree[curlen].Freq++; +            s->bl_tree[REP_3_6].Freq++; +        } else if (count <= 10) { +            s->bl_tree[REPZ_3_10].Freq++; +        } else { +            s->bl_tree[REPZ_11_138].Freq++; +        } +        count = 0; prevlen = curlen; +        if (nextlen == 0) { +            max_count = 138, min_count = 3; +        } else if (curlen == nextlen) { +            max_count = 6, min_count = 3; +        } else { +            max_count = 7, min_count = 4; +        } +    } +} + +/* =========================================================================== + * Send a literal or distance tree in compressed form, using the codes in + * bl_tree. + */ +local void send_tree (s, tree, max_code) +    deflate_state *s; +    ct_data *tree; /* the tree to be scanned */ +    int max_code;       /* and its largest code of non zero frequency */ +{ +    int n;                     /* iterates over all tree elements */ +    int prevlen = -1;          /* last emitted length */ +    int curlen;                /* length of current code */ +    int nextlen = tree[0].Len; /* length of next code */ +    int count = 0;             /* repeat count of the current code */ +    int max_count = 7;         /* max repeat count */ +    int min_count = 4;         /* min repeat count */ + +    /* tree[max_code+1].Len = -1; */  /* guard already set */ +    if (nextlen == 0) max_count = 138, min_count = 3; + +    for (n = 0; n <= max_code; n++) { +        curlen = nextlen; nextlen = tree[n+1].Len; +        if (++count < max_count && curlen == nextlen) { +            continue; +        } else if (count < min_count) { +            do { send_code(s, curlen, s->bl_tree); } while (--count != 0); + +        } else if (curlen != 0) { +            if (curlen != prevlen) { +                send_code(s, curlen, s->bl_tree); count--; +            } +            Assert(count >= 3 && count <= 6, " 3_6?"); +            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); + +        } else if (count <= 10) { +            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); + +        } else { +            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); +        } +        count = 0; prevlen = curlen; +        if (nextlen == 0) { +            max_count = 138, min_count = 3; +        } else if (curlen == nextlen) { +            max_count = 6, min_count = 3; +        } else { +            max_count = 7, min_count = 4; +        } +    } +} + +/* =========================================================================== + * Construct the Huffman tree for the bit lengths and return the index in + * bl_order of the last bit length code to send. + */ +local int build_bl_tree(s) +    deflate_state *s; +{ +    int max_blindex;  /* index of last bit length code of non zero freq */ + +    /* Determine the bit length frequencies for literal and distance trees */ +    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); +    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); + +    /* Build the bit length tree: */ +    build_tree(s, (tree_desc *)(&(s->bl_desc))); +    /* opt_len now includes the length of the tree representations, except +     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. +     */ + +    /* Determine the number of bit length codes to send. The pkzip format +     * requires that at least 4 bit length codes be sent. (appnote.txt says +     * 3 but the actual value used is 4.) +     */ +    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { +        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; +    } +    /* Update opt_len to include the bit length tree and counts */ +    s->opt_len += 3*(max_blindex+1) + 5+5+4; +    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", +            s->opt_len, s->static_len)); + +    return max_blindex; +} + +/* =========================================================================== + * Send the header for a block using dynamic Huffman trees: the counts, the + * lengths of the bit length codes, the literal tree and the distance tree. + * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. + */ +local void send_all_trees(s, lcodes, dcodes, blcodes) +    deflate_state *s; +    int lcodes, dcodes, blcodes; /* number of codes for each tree */ +{ +    int rank;                    /* index in bl_order */ + +    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); +    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, +            "too many codes"); +    Tracev((stderr, "\nbl counts: ")); +    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ +    send_bits(s, dcodes-1,   5); +    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */ +    for (rank = 0; rank < blcodes; rank++) { +        Tracev((stderr, "\nbl code %2d ", bl_order[rank])); +        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); +    } +    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); + +    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ +    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); + +    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ +    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); +} + +/* =========================================================================== + * Send a stored block + */ +void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) +    deflate_state *s; +    charf *buf;       /* input block */ +    ulg stored_len;   /* length of input block */ +    int last;         /* one if this is the last block for a file */ +{ +    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */ +#ifdef DEBUG +    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; +    s->compressed_len += (stored_len + 4) << 3; +#endif +    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ +} + +/* =========================================================================== + * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) + */ +void ZLIB_INTERNAL _tr_flush_bits(s) +    deflate_state *s; +{ +    bi_flush(s); +} + +/* =========================================================================== + * Send one empty static block to give enough lookahead for inflate. + * This takes 10 bits, of which 7 may remain in the bit buffer. + */ +void ZLIB_INTERNAL _tr_align(s) +    deflate_state *s; +{ +    send_bits(s, STATIC_TREES<<1, 3); +    send_code(s, END_BLOCK, static_ltree); +#ifdef DEBUG +    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ +#endif +    bi_flush(s); +} + +/* =========================================================================== + * Determine the best encoding for the current block: dynamic trees, static + * trees or store, and output the encoded block to the zip file. + */ +void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) +    deflate_state *s; +    charf *buf;       /* input block, or NULL if too old */ +    ulg stored_len;   /* length of input block */ +    int last;         /* one if this is the last block for a file */ +{ +    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ +    int max_blindex = 0;  /* index of last bit length code of non zero freq */ + +    /* Build the Huffman trees unless a stored block is forced */ +    if (s->level > 0) { + +        /* Check if the file is binary or text */ +        if (s->strm->data_type == Z_UNKNOWN) +            s->strm->data_type = detect_data_type(s); + +        /* Construct the literal and distance trees */ +        build_tree(s, (tree_desc *)(&(s->l_desc))); +        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, +                s->static_len)); + +        build_tree(s, (tree_desc *)(&(s->d_desc))); +        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, +                s->static_len)); +        /* At this point, opt_len and static_len are the total bit lengths of +         * the compressed block data, excluding the tree representations. +         */ + +        /* Build the bit length tree for the above two trees, and get the index +         * in bl_order of the last bit length code to send. +         */ +        max_blindex = build_bl_tree(s); + +        /* Determine the best encoding. Compute the block lengths in bytes. */ +        opt_lenb = (s->opt_len+3+7)>>3; +        static_lenb = (s->static_len+3+7)>>3; + +        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", +                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, +                s->last_lit)); + +        if (static_lenb <= opt_lenb) opt_lenb = static_lenb; + +    } else { +        Assert(buf != (char*)0, "lost buf"); +        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ +    } + +#ifdef FORCE_STORED +    if (buf != (char*)0) { /* force stored block */ +#else +    if (stored_len+4 <= opt_lenb && buf != (char*)0) { +                       /* 4: two words for the lengths */ +#endif +        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. +         * Otherwise we can't have processed more than WSIZE input bytes since +         * the last block flush, because compression would have been +         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to +         * transform a block into a stored block. +         */ +        _tr_stored_block(s, buf, stored_len, last); + +#ifdef FORCE_STATIC +    } else if (static_lenb >= 0) { /* force static trees */ +#else +    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { +#endif +        send_bits(s, (STATIC_TREES<<1)+last, 3); +        compress_block(s, (const ct_data *)static_ltree, +                       (const ct_data *)static_dtree); +#ifdef DEBUG +        s->compressed_len += 3 + s->static_len; +#endif +    } else { +        send_bits(s, (DYN_TREES<<1)+last, 3); +        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, +                       max_blindex+1); +        compress_block(s, (const ct_data *)s->dyn_ltree, +                       (const ct_data *)s->dyn_dtree); +#ifdef DEBUG +        s->compressed_len += 3 + s->opt_len; +#endif +    } +    Assert (s->compressed_len == s->bits_sent, "bad compressed size"); +    /* The above check is made mod 2^32, for files larger than 512 MB +     * and uLong implemented on 32 bits. +     */ +    init_block(s); + +    if (last) { +        bi_windup(s); +#ifdef DEBUG +        s->compressed_len += 7;  /* align on byte boundary */ +#endif +    } +    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, +           s->compressed_len-7*last)); +} + +/* =========================================================================== + * Save the match info and tally the frequency counts. Return true if + * the current block must be flushed. + */ +int ZLIB_INTERNAL _tr_tally (s, dist, lc) +    deflate_state *s; +    unsigned dist;  /* distance of matched string */ +    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */ +{ +    s->d_buf[s->last_lit] = (ush)dist; +    s->l_buf[s->last_lit++] = (uch)lc; +    if (dist == 0) { +        /* lc is the unmatched char */ +        s->dyn_ltree[lc].Freq++; +    } else { +        s->matches++; +        /* Here, lc is the match length - MIN_MATCH */ +        dist--;             /* dist = match distance - 1 */ +        Assert((ush)dist < (ush)MAX_DIST(s) && +               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && +               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match"); + +        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; +        s->dyn_dtree[d_code(dist)].Freq++; +    } + +#ifdef TRUNCATE_BLOCK +    /* Try to guess if it is profitable to stop the current block here */ +    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { +        /* Compute an upper bound for the compressed length */ +        ulg out_length = (ulg)s->last_lit*8L; +        ulg in_length = (ulg)((long)s->strstart - s->block_start); +        int dcode; +        for (dcode = 0; dcode < D_CODES; dcode++) { +            out_length += (ulg)s->dyn_dtree[dcode].Freq * +                (5L+extra_dbits[dcode]); +        } +        out_length >>= 3; +        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", +               s->last_lit, in_length, out_length, +               100L - out_length*100L/in_length)); +        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; +    } +#endif +    return (s->last_lit == s->lit_bufsize-1); +    /* We avoid equality with lit_bufsize because of wraparound at 64K +     * on 16 bit machines and because stored blocks are restricted to +     * 64K-1 bytes. +     */ +} + +/* =========================================================================== + * Send the block data compressed using the given Huffman trees + */ +local void compress_block(s, ltree, dtree) +    deflate_state *s; +    const ct_data *ltree; /* literal tree */ +    const ct_data *dtree; /* distance tree */ +{ +    unsigned dist;      /* distance of matched string */ +    int lc;             /* match length or unmatched char (if dist == 0) */ +    unsigned lx = 0;    /* running index in l_buf */ +    unsigned code;      /* the code to send */ +    int extra;          /* number of extra bits to send */ + +    if (s->last_lit != 0) do { +        dist = s->d_buf[lx]; +        lc = s->l_buf[lx++]; +        if (dist == 0) { +            send_code(s, lc, ltree); /* send a literal byte */ +            Tracecv(isgraph(lc), (stderr," '%c' ", lc)); +        } else { +            /* Here, lc is the match length - MIN_MATCH */ +            code = _length_code[lc]; +            send_code(s, code+LITERALS+1, ltree); /* send the length code */ +            extra = extra_lbits[code]; +            if (extra != 0) { +                lc -= base_length[code]; +                send_bits(s, lc, extra);       /* send the extra length bits */ +            } +            dist--; /* dist is now the match distance - 1 */ +            code = d_code(dist); +            Assert (code < D_CODES, "bad d_code"); + +            send_code(s, code, dtree);       /* send the distance code */ +            extra = extra_dbits[code]; +            if (extra != 0) { +                dist -= base_dist[code]; +                send_bits(s, dist, extra);   /* send the extra distance bits */ +            } +        } /* literal or match pair ? */ + +        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ +        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, +               "pendingBuf overflow"); + +    } while (lx < s->last_lit); + +    send_code(s, END_BLOCK, ltree); +} + +/* =========================================================================== + * Check if the data type is TEXT or BINARY, using the following algorithm: + * - TEXT if the two conditions below are satisfied: + *    a) There are no non-portable control characters belonging to the + *       "black list" (0..6, 14..25, 28..31). + *    b) There is at least one printable character belonging to the + *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). + * - BINARY otherwise. + * - The following partially-portable control characters form a + *   "gray list" that is ignored in this detection algorithm: + *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). + * IN assertion: the fields Freq of dyn_ltree are set. + */ +local int detect_data_type(s) +    deflate_state *s; +{ +    /* black_mask is the bit mask of black-listed bytes +     * set bits 0..6, 14..25, and 28..31 +     * 0xf3ffc07f = binary 11110011111111111100000001111111 +     */ +    unsigned long black_mask = 0xf3ffc07fUL; +    int n; + +    /* Check for non-textual ("black-listed") bytes. */ +    for (n = 0; n <= 31; n++, black_mask >>= 1) +        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) +            return Z_BINARY; + +    /* Check for textual ("white-listed") bytes. */ +    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 +            || s->dyn_ltree[13].Freq != 0) +        return Z_TEXT; +    for (n = 32; n < LITERALS; n++) +        if (s->dyn_ltree[n].Freq != 0) +            return Z_TEXT; + +    /* There are no "black-listed" or "white-listed" bytes: +     * this stream either is empty or has tolerated ("gray-listed") bytes only. +     */ +    return Z_BINARY; +} + +/* =========================================================================== + * Reverse the first len bits of a code, using straightforward code (a faster + * method would use a table) + * IN assertion: 1 <= len <= 15 + */ +local unsigned bi_reverse(code, len) +    unsigned code; /* the value to invert */ +    int len;       /* its bit length */ +{ +    register unsigned res = 0; +    do { +        res |= code & 1; +        code >>= 1, res <<= 1; +    } while (--len > 0); +    return res >> 1; +} + +/* =========================================================================== + * Flush the bit buffer, keeping at most 7 bits in it. + */ +local void bi_flush(s) +    deflate_state *s; +{ +    if (s->bi_valid == 16) { +        put_short(s, s->bi_buf); +        s->bi_buf = 0; +        s->bi_valid = 0; +    } else if (s->bi_valid >= 8) { +        put_byte(s, (Byte)s->bi_buf); +        s->bi_buf >>= 8; +        s->bi_valid -= 8; +    } +} + +/* =========================================================================== + * Flush the bit buffer and align the output on a byte boundary + */ +local void bi_windup(s) +    deflate_state *s; +{ +    if (s->bi_valid > 8) { +        put_short(s, s->bi_buf); +    } else if (s->bi_valid > 0) { +        put_byte(s, (Byte)s->bi_buf); +    } +    s->bi_buf = 0; +    s->bi_valid = 0; +#ifdef DEBUG +    s->bits_sent = (s->bits_sent+7) & ~7; +#endif +} + +/* =========================================================================== + * Copy a stored block, storing first the length and its + * one's complement if requested. + */ +local void copy_block(s, buf, len, header) +    deflate_state *s; +    charf    *buf;    /* the input data */ +    unsigned len;     /* its length */ +    int      header;  /* true if block header must be written */ +{ +    bi_windup(s);        /* align on byte boundary */ + +    if (header) { +        put_short(s, (ush)len); +        put_short(s, (ush)~len); +#ifdef DEBUG +        s->bits_sent += 2*16; +#endif +    } +#ifdef DEBUG +    s->bits_sent += (ulg)len<<3; +#endif +    while (len--) { +        put_byte(s, *buf++); +    } +} | 
