summaryrefslogtreecommitdiffstats
path: root/generic/tcl.decls
diff options
context:
space:
mode:
Diffstat (limited to 'generic/tcl.decls')
-rw-r--r--generic/tcl.decls9
1 files changed, 5 insertions, 4 deletions
diff --git a/generic/tcl.decls b/generic/tcl.decls
index 04bd7e5..32dc15a 100644
--- a/generic/tcl.decls
+++ b/generic/tcl.decls
@@ -10,7 +10,7 @@
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
-# RCS: @(#) $Id: tcl.decls,v 1.21 1999/07/16 21:56:38 redman Exp $
+# RCS: @(#) $Id: tcl.decls,v 1.22 1999/07/22 01:08:04 redman Exp $
library tcl
@@ -1218,7 +1218,8 @@ declare 352 generic {
int Tcl_UniCharLen(Tcl_UniChar *str)
}
declare 353 generic {
- int Tcl_UniCharNcmp(CONST Tcl_UniChar *cs, CONST Tcl_UniChar *ct, size_t n)
+ int Tcl_UniCharNcmp(CONST Tcl_UniChar *cs, CONST Tcl_UniChar *ct,\
+ unsigned long n)
}
declare 354 generic {
char * Tcl_UniCharToUtfDString(CONST Tcl_UniChar *string, int numChars, \
@@ -1276,10 +1277,10 @@ declare 368 generic {
int Tcl_Stat(CONST char *path, struct stat *bufPtr)
}
declare 369 generic {
- int Tcl_UtfNcmp(CONST char *s1, CONST char *s2, size_t n)
+ int Tcl_UtfNcmp(CONST char *s1, CONST char *s2, unsigned long n)
}
declare 370 generic {
- int Tcl_UtfNcasecmp(CONST char *s1, CONST char *s2, size_t n)
+ int Tcl_UtfNcasecmp(CONST char *s1, CONST char *s2, unsigned long n)
}
declare 371 generic {
int Tcl_StringCaseMatch(CONST char *str, CONST char *pattern, int nocase)
a id='n150' href='#n150'>150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
'\"
'\" Copyright (c) 1998 Sun Microsystems, Inc.
'\" Copyright (c) 1999 Scriptics Corporation
'\"
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\"
.so man.macros
.TH re_syntax n "8.1" Tcl "Tcl Built-In Commands"
.BS
.SH NAME
re_syntax \- Syntax of Tcl regular expressions.
.BE

.SH DESCRIPTION
.PP
A \fIregular expression\fR describes strings of characters.
It's a pattern that matches certain strings and doesn't match others.

.SH "DIFFERENT FLAVORS OF REs"
Regular expressions (``RE''s), as defined by POSIX, come in two
flavors: \fIextended\fR REs (``EREs'') and \fIbasic\fR REs (``BREs'').
EREs are roughly those of the traditional \fIegrep\fR, while BREs are
roughly those of the traditional \fIed\fR.  This implementation adds
a third flavor, \fIadvanced\fR REs (``AREs''), basically EREs with
some significant extensions.
.PP
This manual page primarily describes AREs.  BREs mostly exist for
backward compatibility in some old programs; they will be discussed at
the end.  POSIX EREs are almost an exact subset of AREs.  Features of
AREs that are not present in EREs will be indicated.

.SH "REGULAR EXPRESSION SYNTAX"
.PP
Tcl regular expressions are implemented using the package written by
Henry Spencer, based on the 1003.2 spec and some (not quite all) of
the Perl5 extensions (thanks, Henry!).  Much of the description of
regular expressions below is copied verbatim from his manual entry.
.PP
An ARE is one or more \fIbranches\fR,
separated by `\fB|\fR',
matching anything that matches any of the branches.
.PP
A branch is zero or more \fIconstraints\fR or \fIquantified atoms\fR,
concatenated.
It matches a match for the first, followed by a match for the second, etc;
an empty branch matches the empty string.
.PP
A quantified atom is an \fIatom\fR possibly followed
by a single \fIquantifier\fR.
Without a quantifier, it matches a match for the atom.
The quantifiers,
and what a so-quantified atom matches, are:
.RS 2
.TP 6
\fB*\fR
a sequence of 0 or more matches of the atom
.TP
\fB+\fR
a sequence of 1 or more matches of the atom
.TP
\fB?\fR
a sequence of 0 or 1 matches of the atom
.TP
\fB{\fIm\fB}\fR
a sequence of exactly \fIm\fR matches of the atom
.TP
\fB{\fIm\fB,}\fR
a sequence of \fIm\fR or more matches of the atom
.TP
\fB{\fIm\fB,\fIn\fB}\fR
a sequence of \fIm\fR through \fIn\fR (inclusive) matches of the atom;
\fIm\fR may not exceed \fIn\fR
.TP
\fB*?  +?  ??  {\fIm\fB}?  {\fIm\fB,}?  {\fIm\fB,\fIn\fB}?\fR
\fInon-greedy\fR quantifiers,
which match the same possibilities,
but prefer the smallest number rather than the largest number
of matches (see MATCHING)
.RE
.PP
The forms using
\fB{\fR and \fB}\fR
are known as \fIbound\fRs.
The numbers
\fIm\fR and \fIn\fR are unsigned decimal integers
with permissible values from 0 to 255 inclusive.
.PP
An atom is one of:
.RS 2
.TP 6
\fB(\fIre\fB)\fR
(where \fIre\fR is any regular expression)
matches a match for
\fIre\fR, with the match noted for possible reporting
.TP
\fB(?:\fIre\fB)\fR
as previous,
but does no reporting
(a ``non-capturing'' set of parentheses)
.TP
\fB()\fR
matches an empty string,
noted for possible reporting
.TP
\fB(?:)\fR
matches an empty string,
without reporting
.TP
\fB[\fIchars\fB]\fR
a \fIbracket expression\fR,
matching any one of the \fIchars\fR (see BRACKET EXPRESSIONS for more detail)
.TP
 \fB.\fR
matches any single character
.TP
\fB\e\fIk\fR
(where \fIk\fR is a non-alphanumeric character)
matches that character taken as an ordinary character,
e.g. \e\e matches a backslash character
.TP
\fB\e\fIc\fR
where \fIc\fR is alphanumeric
(possibly followed by other characters),
an \fIescape\fR (AREs only),
see ESCAPES below
.TP
\fB{\fR
when followed by a character other than a digit,
matches the left-brace character `\fB{\fR';
when followed by a digit, it is the beginning of a
\fIbound\fR (see above)
.TP
\fIx\fR
where \fIx\fR is
a single character with no other significance, matches that character.
.RE
.PP
A \fIconstraint\fR matches an empty string when specific conditions
are met.
A constraint may not be followed by a quantifier.
The simple constraints are as follows; some more constraints are
described later, under ESCAPES.
.RS 2
.TP 8
\fB^\fR
matches at the beginning of a line
.TP
\fB$\fR
matches at the end of a line
.TP
\fB(?=\fIre\fB)\fR
\fIpositive lookahead\fR (AREs only), matches at any point
where a substring matching \fIre\fR begins
.TP
\fB(?!\fIre\fB)\fR
\fInegative lookahead\fR (AREs only), matches at any point
where no substring matching \fIre\fR begins
.RE
.PP
The lookahead constraints may not contain back references (see later),
and all parentheses within them are considered non-capturing.
.PP
An RE may not end with `\fB\e\fR'.

.SH "BRACKET EXPRESSIONS"
A \fIbracket expression\fR is a list of characters enclosed in `\fB[\|]\fR'.
It normally matches any single character from the list (but see below).
If the list begins with `\fB^\fR',
it matches any single character
(but see below) \fInot\fR from the rest of the list.
.PP
If two characters in the list are separated by `\fB\-\fR',
this is shorthand
for the full \fIrange\fR of characters between those two (inclusive) in the
collating sequence,
e.g.
\fB[0\-9]\fR
in ASCII matches any decimal digit.
Two ranges may not share an
endpoint, so e.g.
\fBa\-c\-e\fR
is illegal.
Ranges are very collating-sequence-dependent,
and portable programs should avoid relying on them.
.PP
To include a literal
\fB]\fR
or
\fB\-\fR
in the list,
the simplest method is to
enclose it in
\fB[.\fR and \fB.]\fR
to make it a collating element (see below).
Alternatively,
make it the first character
(following a possible `\fB^\fR'),
or (AREs only) precede it with `\fB\e\fR'.
Alternatively, for `\fB\-\fR',
make it the last character,
or the second endpoint of a range.
To use a literal
\fB\-\fR
as the first endpoint of a range,
make it a collating element
or (AREs only) precede it with `\fB\e\fR'.
With the exception of these, some combinations using
\fB[\fR
(see next
paragraphs), and escapes,
all other special characters lose their
special significance within a bracket expression.
.PP
Within a bracket expression, a collating element (a character,
a multi-character sequence that collates as if it were a single character,
or a collating-sequence name for either)
enclosed in
\fB[.\fR and \fB.]\fR
stands for the
sequence of characters of that collating element.
The sequence is a single element of the bracket expression's list.
A bracket expression in a locale that has
multi-character collating elements
can thus match more than one character.
.VS 8.2
So (insidiously), a bracket expression that starts with \fB^\fR
can match multi-character collating elements even if none of them
appear in the bracket expression!
(\fINote:\fR Tcl currently has no multi-character collating elements.
This information is only for illustration.)
.PP
For example, assume the collating sequence includes a \fBch\fR
multi-character collating element.
Then the RE \fB[[.ch.]]*c\fR (zero or more \fBch\fP's followed by \fBc\fP)
matches the first five characters of `\fBchchcc\fR'.
Also, the RE \fB[^c]b\fR matches all of `\fBchb\fR'
(because \fB[^c]\fR matches the multi-character \fBch\fR).
.VE 8.2
.PP
Within a bracket expression, a collating element enclosed in
\fB[=\fR
and
\fB=]\fR
is an equivalence class, standing for the sequences of characters
of all collating elements equivalent to that one, including itself.
(If there are no other equivalent collating elements,
the treatment is as if the enclosing delimiters were `\fB[.\fR'\&
and `\fB.]\fR'.)
For example, if
\fBo\fR
and
\fB\o'o^'\fR
are the members of an equivalence class,
then `\fB[[=o=]]\fR', `\fB[[=\o'o^'=]]\fR',
and `\fB[o\o'o^']\fR'\&
are all synonymous.
An equivalence class may not be an endpoint
of a range.
.VS 8.2
(\fINote:\fR 
Tcl currently implements only the Unicode locale.
It doesn't define any equivalence classes.
The examples above are just illustrations.)
.VE 8.2
.PP
Within a bracket expression, the name of a \fIcharacter class\fR enclosed
in
\fB[:\fR
and
\fB:]\fR
stands for the list of all characters
(not all collating elements!)
belonging to that
class.
Standard character classes are:
.PP
.RS
.ne 5
.ta 3c
.nf
\fBalpha\fR	A letter. 
\fBupper\fR	An upper-case letter. 
\fBlower\fR	A lower-case letter. 
\fBdigit\fR	A decimal digit. 
\fBxdigit\fR	A hexadecimal digit. 
\fBalnum\fR	An alphanumeric (letter or digit). 
\fBprint\fR	A "printable" (same as graph, except also including space).
\fBblank\fR	A space or tab character.
\fBspace\fR	A character producing white space in displayed text. 
\fBpunct\fR	A punctuation character. 
\fBgraph\fR	A character with a visible representation. 
\fBcntrl\fR	A control character. 
.fi
.RE
.PP
A locale may provide others.
.VS 8.2
(Note that the current Tcl implementation has only one locale:
the Unicode locale.)
.VE 8.2
A character class may not be used as an endpoint of a range.
.PP
There are two special cases of bracket expressions:
the bracket expressions
\fB[[:<:]]\fR
and
\fB[[:>:]]\fR
are constraints, matching empty strings at
the beginning and end of a word respectively.
'\" note, discussion of escapes below references this definition of word
A word is defined as a sequence of
word characters
that is neither preceded nor followed by
word characters.
A word character is an
\fIalnum\fR
character
or an underscore
(\fB_\fR).
These special bracket expressions are deprecated;
users of AREs should use constraint escapes instead (see below).
.SH ESCAPES
Escapes (AREs only), which begin with a
\fB\e\fR
followed by an alphanumeric character,
come in several varieties:
character entry, class shorthands, constraint escapes, and back references.
A
\fB\e\fR
followed by an alphanumeric character but not constituting
a valid escape is illegal in AREs.
In EREs, there are no escapes:
outside a bracket expression,
a
\fB\e\fR
followed by an alphanumeric character merely stands for that
character as an ordinary character,
and inside a bracket expression,
\fB\e\fR
is an ordinary character.
(The latter is the one actual incompatibility between EREs and AREs.)
.PP
Character-entry escapes (AREs only) exist to make it easier to specify
non-printing and otherwise inconvenient characters in REs:
.RS 2
.TP 5
\fB\ea\fR
alert (bell) character, as in C
.TP
\fB\eb\fR
backspace, as in C
.TP
\fB\eB\fR
synonym for
\fB\e\fR
to help reduce backslash doubling in some
applications where there are multiple levels of backslash processing
.TP
\fB\ec\fIX\fR
(where X is any character) the character whose
low-order 5 bits are the same as those of
\fIX\fR,
and whose other bits are all zero
.TP
\fB\ee\fR
the character whose collating-sequence name
is `\fBESC\fR',
or failing that, the character with octal value 033
.TP
\fB\ef\fR
formfeed, as in C
.TP
\fB\en\fR
newline, as in C
.TP
\fB\er\fR
carriage return, as in C
.TP
\fB\et\fR
horizontal tab, as in C
.TP
\fB\eu\fIwxyz\fR
(where
\fIwxyz\fR
is exactly four hexadecimal digits)
the Unicode character
\fBU+\fIwxyz\fR
in the local byte ordering
.TP
\fB\eU\fIstuvwxyz\fR
(where
\fIstuvwxyz\fR
is exactly eight hexadecimal digits)
reserved for a somewhat-hypothetical Unicode extension to 32 bits
.TP
\fB\ev\fR
vertical tab, as in C
are all available.
.TP
\fB\ex\fIhhh\fR
(where
\fIhhh\fR
is any sequence of hexadecimal digits)
the character whose hexadecimal value is
\fB0x\fIhhh\fR
(a single character no matter how many hexadecimal digits are used).
.TP
\fB\e0\fR
the character whose value is
\fB0\fR
.TP
\fB\e\fIxy\fR
(where
\fIxy\fR
is exactly two octal digits,
and is not a
\fIback reference\fR (see below))
the character whose octal value is
\fB0\fIxy\fR
.TP
\fB\e\fIxyz\fR
(where
\fIxyz\fR
is exactly three octal digits,
and is not a
back reference (see below))
the character whose octal value is
\fB0\fIxyz\fR
.RE
.PP
Hexadecimal digits are `\fB0\fR'-`\fB9\fR', `\fBa\fR'-`\fBf\fR',
and `\fBA\fR'-`\fBF\fR'.
Octal digits are `\fB0\fR'-`\fB7\fR'.
.PP
The character-entry escapes are always taken as ordinary characters.
For example,
\fB\e135\fR
is
\fB]\fR
in ASCII,
but
\fB\e135\fR
does not terminate a bracket expression.
Beware, however, that some applications (e.g., C compilers) interpret 
such sequences themselves before the regular-expression package
gets to see them, which may require doubling (quadrupling, etc.) the `\fB\e\fR'.
.PP
Class-shorthand escapes (AREs only) provide shorthands for certain commonly-used
character classes:
.RS 2
.TP 10
\fB\ed\fR
\fB[[:digit:]]\fR
.TP
\fB\es\fR
\fB[[:space:]]\fR
.TP
\fB\ew\fR
\fB[[:alnum:]_]\fR
(note underscore)
.TP
\fB\eD\fR
\fB[^[:digit:]]\fR
.TP
\fB\eS\fR
\fB[^[:space:]]\fR
.TP
\fB\eW\fR
\fB[^[:alnum:]_]\fR
(note underscore)
.RE
.PP
Within bracket expressions, `\fB\ed\fR', `\fB\es\fR',
and `\fB\ew\fR'\&
lose their outer brackets,
and `\fB\eD\fR', `\fB\eS\fR',
and `\fB\eW\fR'\&
are illegal.
.VS 8.2
(So, for example, \fB[a-c\ed]\fR is equivalent to \fB[a-c[:digit:]]\fR.
Also, \fB[a-c\eD]\fR, which is equivalent to \fB[a-c^[:digit:]]\fR, is illegal.)
.VE 8.2
.PP
A constraint escape (AREs only) is a constraint,
matching the empty string if specific conditions are met,
written as an escape:
.RS 2
.TP 6
\fB\eA\fR
matches only at the beginning of the string
(see MATCHING, below, for how this differs from `\fB^\fR')
.TP
\fB\em\fR
matches only at the beginning of a word
.TP
\fB\eM\fR
matches only at the end of a word
.TP
\fB\ey\fR
matches only at the beginning or end of a word
.TP
\fB\eY\fR
matches only at a point that is not the beginning or end of a word
.TP
\fB\eZ\fR
matches only at the end of the string
(see MATCHING, below, for how this differs from `\fB$\fR')
.TP
\fB\e\fIm\fR
(where
\fIm\fR
is a nonzero digit) a \fIback reference\fR, see below
.TP
\fB\e\fImnn\fR
(where
\fIm\fR
is a nonzero digit, and
\fInn\fR
is some more digits,
and the decimal value
\fImnn\fR
is not greater than the number of closing capturing parentheses seen so far)
a \fIback reference\fR, see below
.RE
.PP
A word is defined as in the specification of
\fB[[:<:]]\fR
and
\fB[[:>:]]\fR
above.
Constraint escapes are illegal within bracket expressions.
.PP
A back reference (AREs only) matches the same string matched by the parenthesized
subexpression specified by the number,
so that (e.g.)
\fB([bc])\e1\fR
matches
\fBbb\fR
or
\fBcc\fR
but not `\fBbc\fR'.
The subexpression must entirely precede the back reference in the RE.
Subexpressions are numbered in the order of their leading parentheses.
Non-capturing parentheses do not define subexpressions.
.PP
There is an inherent historical ambiguity between octal character-entry 
escapes and back references, which is resolved by heuristics,
as hinted at above.
A leading zero always indicates an octal escape.
A single non-zero digit, not followed by another digit,
is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back 
reference if it comes after a suitable subexpression
(i.e. the number is in the legal range for a back reference),
and otherwise is taken as octal.
.SH "METASYNTAX"
In addition to the main syntax described above, there are some special
forms and miscellaneous syntactic facilities available.
.PP
Normally the flavor of RE being used is specified by
application-dependent means.
However, this can be overridden by a \fIdirector\fR.
If an RE of any flavor begins with `\fB***:\fR',
the rest of the RE is an ARE.
If an RE of any flavor begins with `\fB***=\fR',
the rest of the RE is taken to be a literal string,
with all characters considered ordinary characters.
.PP
An ARE may begin with \fIembedded options\fR:
a sequence
\fB(?\fIxyz\fB)\fR
(where
\fIxyz\fR
is one or more alphabetic characters)
specifies options affecting the rest of the RE.
These supplement, and can override,
any options specified by the application.
The available option letters are:
.RS 2
.TP 3
\fBb\fR
rest of RE is a BRE
.TP 3
\fBc\fR
case-sensitive matching (usual default)
.TP 3
\fBe\fR
rest of RE is an ERE
.TP 3
\fBi\fR
case-insensitive matching (see MATCHING, below)
.TP 3
\fBm\fR
historical synonym for
\fBn\fR
.TP 3
\fBn\fR
newline-sensitive matching (see MATCHING, below)
.TP 3
\fBp\fR
partial newline-sensitive matching (see MATCHING, below)
.TP 3
\fBq\fR
rest of RE is a literal (``quoted'') string, all ordinary characters
.TP 3
\fBs\fR
non-newline-sensitive matching (usual default)
.TP 3
\fBt\fR
tight syntax (usual default; see below)
.TP 3
\fBw\fR
inverse partial newline-sensitive (``weird'') matching (see MATCHING, below)
.TP 3
\fBx\fR
expanded syntax (see below)
.RE
.PP
Embedded options take effect at the
\fB)\fR
terminating the sequence.
They are available only at the start of an ARE,
and may not be used later within it.
.PP
In addition to the usual (\fItight\fR) RE syntax, in which all characters are
significant, there is an \fIexpanded\fR syntax,
available in all flavors of RE
with the \fB-expanded\fR switch, or in AREs with the embedded x option.
In the expanded syntax,
white-space characters are ignored
and all characters between a
\fB#\fR
and the following newline (or the end of the RE) are ignored,
permitting paragraphing and commenting a complex RE.
There are three exceptions to that basic rule:
.RS 2
.PP
a white-space character or `\fB#\fR' preceded by `\fB\e\fR' is retained
.PP
white space or `\fB#\fR' within a bracket expression is retained
.PP
white space and comments are illegal within multi-character symbols
like the ARE `\fB(?:\fR' or the BRE `\fB\e(\fR'
.RE
.PP
Expanded-syntax white-space characters are blank, tab, newline, and
.VS 8.2
any character that belongs to the \fIspace\fR character class.
.VE 8.2
.PP
Finally, in an ARE,
outside bracket expressions, the sequence `\fB(?#\fIttt\fB)\fR'
(where
\fIttt\fR
is any text not containing a `\fB)\fR')
is a comment,
completely ignored.
Again, this is not allowed between the characters of
multi-character symbols like `\fB(?:\fR'.
Such comments are more a historical artifact than a useful facility,
and their use is deprecated;
use the expanded syntax instead.
.PP
\fINone\fR of these metasyntax extensions is available if the application
(or an initial
\fB***=\fR
director)
has specified that the user's input be treated as a literal string
rather than as an RE.
.SH MATCHING
In the event that an RE could match more than one substring of a given
string,
the RE matches the one starting earliest in the string.
If the RE could match more than one substring starting at that point,
its choice is determined by its \fIpreference\fR:
either the longest substring, or the shortest.
.PP
Most atoms, and all constraints, have no preference.
A parenthesized RE has the same preference (possibly none) as the RE.
A quantified atom with quantifier
\fB{\fIm\fB}\fR
or
\fB{\fIm\fB}?\fR
has the same preference (possibly none) as the atom itself.
A quantified atom with other normal quantifiers (including
\fB{\fIm\fB,\fIn\fB}\fR
with
\fIm\fR
equal to
\fIn\fR)
prefers longest match.
A quantified atom with other non-greedy quantifiers (including
\fB{\fIm\fB,\fIn\fB}?\fR
with
\fIm\fR
equal to
\fIn\fR)
prefers shortest match.
A branch has the same preference as the first quantified atom in it
which has a preference.
An RE consisting of two or more branches connected by the
\fB|\fR
operator prefers longest match.
.PP
Subject to the constraints imposed by the rules for matching the whole RE,
subexpressions also match the longest or shortest possible substrings,
based on their preferences,
with subexpressions starting earlier in the RE taking priority over
ones starting later.
Note that outer subexpressions thus take priority over
their component subexpressions.
.PP
Note that the quantifiers
\fB{1,1}\fR
and
\fB{1,1}?\fR
can be used to force longest and shortest preference, respectively,
on a subexpression or a whole RE.
.PP
Match lengths are measured in characters, not collating elements.
An empty string is considered longer than no match at all.
For example,
\fBbb*\fR
matches the three middle characters of `\fBabbbc\fR',
\fB(week|wee)(night|knights)\fR
matches all ten characters of `\fBweeknights\fR',
when
\fB(.*).*\fR
is matched against
\fBabc\fR
the parenthesized subexpression
matches all three characters, and
when
\fB(a*)*\fR
is matched against
\fBbc\fR
both the whole RE and the parenthesized
subexpression match an empty string.
.PP
If case-independent matching is specified,
the effect is much as if all case distinctions had vanished from the
alphabet.
When an alphabetic that exists in multiple cases appears as an
ordinary character outside a bracket expression, it is effectively
transformed into a bracket expression containing both cases,
so that
\fBx\fR
becomes `\fB[xX]\fR'.
When it appears inside a bracket expression, all case counterparts
of it are added to the bracket expression, so that
\fB[x]\fR
becomes
\fB[xX]\fR
and
\fB[^x]\fR
becomes `\fB[^xX]\fR'.
.PP
If newline-sensitive matching is specified, \fB.\fR
and bracket expressions using
\fB^\fR
will never match the newline character
(so that matches will never cross newlines unless the RE
explicitly arranges it)
and
\fB^\fR
and
\fB$\fR
will match the empty string after and before a newline
respectively, in addition to matching at beginning and end of string
respectively.
ARE
\fB\eA\fR
and
\fB\eZ\fR
continue to match beginning or end of string \fIonly\fR.
.PP
If partial newline-sensitive matching is specified,
this affects \fB.\fR
and bracket expressions
as with newline-sensitive matching, but not
\fB^\fR
and `\fB$\fR'.
.PP
If inverse partial newline-sensitive matching is specified,
this affects
\fB^\fR
and
\fB$\fR
as with
newline-sensitive matching,
but not \fB.\fR
and bracket expressions.
This isn't very useful but is provided for symmetry.
.SH "LIMITS AND COMPATIBILITY"
No particular limit is imposed on the length of REs.
Programs intended to be highly portable should not employ REs longer
than 256 bytes,
as a POSIX-compliant implementation can refuse to accept such REs.
.PP
The only feature of AREs that is actually incompatible with
POSIX EREs is that
\fB\e\fR
does not lose its special
significance inside bracket expressions.
All other ARE features use syntax which is illegal or has
undefined or unspecified effects in POSIX EREs;
the
\fB***\fR
syntax of directors likewise is outside the POSIX
syntax for both BREs and EREs.
.PP
Many of the ARE extensions are borrowed from Perl, but some have
been changed to clean them up, and a few Perl extensions are not present.
Incompatibilities of note include `\fB\eb\fR', `\fB\eB\fR',
the lack of special treatment for a trailing newline,
the addition of complemented bracket expressions to the things
affected by newline-sensitive matching,
the restrictions on parentheses and back references in lookahead constraints,
and the longest/shortest-match (rather than first-match) matching semantics.
.PP
The matching rules for REs containing both normal and non-greedy quantifiers
have changed since early beta-test versions of this package.
(The new rules are much simpler and cleaner,
but don't work as hard at guessing the user's real intentions.)
.PP
Henry Spencer's original 1986 \fIregexp\fR package,
still in widespread use (e.g., in pre-8.1 releases of Tcl),
implemented an early version of today's EREs.
There are four incompatibilities between \fIregexp\fR's near-EREs
(`RREs' for short) and AREs.
In roughly increasing order of significance:
.PP
.RS
In AREs,
\fB\e\fR
followed by an alphanumeric character is either an
escape or an error,
while in RREs, it was just another way of writing the 
alphanumeric.
This should not be a problem because there was no reason to write
such a sequence in RREs.
.PP
\fB{\fR
followed by a digit in an ARE is the beginning of a bound,
while in RREs,
\fB{\fR
was always an ordinary character.
Such sequences should be rare,
and will often result in an error because following characters
will not look like a valid bound.
.PP
In AREs,
\fB\e\fR
remains a special character within `\fB[\|]\fR',
so a literal
\fB\e\fR
within
\fB[\|]\fR
must be written `\fB\e\e\fR'.
\fB\e\e\fR
also gives a literal
\fB\e\fR
within
\fB[\|]\fR
in RREs,
but only truly paranoid programmers routinely doubled the backslash.
.PP
AREs report the longest/shortest match for the RE,
rather than the first found in a specified search order.
This may affect some RREs which were written in the expectation that
the first match would be reported.
(The careful crafting of RREs to optimize the search order for fast
matching is obsolete (AREs examine all possible matches
in parallel, and their performance is largely insensitive to their
complexity) but cases where the search order was exploited to deliberately 
find a match which was \fInot\fR the longest/shortest will need rewriting.)
.RE

.SH "BASIC REGULAR EXPRESSIONS"
BREs differ from EREs in several respects.  `\fB|\fR', `\fB+\fR',
and
\fB?\fR
are ordinary characters and there is no equivalent
for their functionality.
The delimiters for bounds are
\fB\e{\fR
and `\fB\e}\fR',
with
\fB{\fR
and
\fB}\fR
by themselves ordinary characters.
The parentheses for nested subexpressions are
\fB\e(\fR
and `\fB\e)\fR',
with
\fB(\fR
and
\fB)\fR
by themselves ordinary characters.
\fB^\fR
is an ordinary character except at the beginning of the
RE or the beginning of a parenthesized subexpression,
\fB$\fR
is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression,
and
\fB*\fR
is an ordinary character if it appears at the beginning of the
RE or the beginning of a parenthesized subexpression
(after a possible leading `\fB^\fR').
Finally,
single-digit back references are available,
and
\fB\e<\fR
and
\fB\e>\fR
are synonyms for
\fB[[:<:]]\fR
and
\fB[[:>:]]\fR
respectively;
no other escapes are available.

.SH "SEE ALSO"
RegExp(3), regexp(n), regsub(n), lsearch(n), switch(n), text(n)

.SH KEYWORDS
match, regular expression, string