diff options
Diffstat (limited to 'generic/tclStrToD.c')
-rwxr-xr-x | generic/tclStrToD.c | 4991 |
1 files changed, 4991 insertions, 0 deletions
diff --git a/generic/tclStrToD.c b/generic/tclStrToD.c new file mode 100755 index 0000000..76adf75 --- /dev/null +++ b/generic/tclStrToD.c @@ -0,0 +1,4991 @@ +/* + *---------------------------------------------------------------------- + * + * tclStrToD.c -- + * + * This file contains a collection of procedures for managing conversions + * to/from floating-point in Tcl. They include TclParseNumber, which + * parses numbers from strings; TclDoubleDigits, which formats numbers + * into strings of digits, and procedures for interconversion among + * 'double' and 'mp_int' types. + * + * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved. + * + * See the file "license.terms" for information on usage and redistribution of + * this file, and for a DISCLAIMER OF ALL WARRANTIES. + *---------------------------------------------------------------------- + */ + +#include "tclInt.h" +#include "tommath.h" +#include <math.h> + +/* + * Define KILL_OCTAL to suppress interpretation of numbers with leading zero + * as octal. (Ceterum censeo: numeros octonarios delendos esse.) + */ + +#undef KILL_OCTAL + +/* + * This code supports (at least hypothetically), IBM, Cray, VAX and IEEE-754 + * floating point; of these, only IEEE-754 can represent NaN. IEEE-754 can be + * uniquely determined by radix and by the widths of significand and exponent. + */ + +#if (FLT_RADIX == 2) && (DBL_MANT_DIG == 53) && (DBL_MAX_EXP == 1024) +# define IEEE_FLOATING_POINT +#endif + +/* + * gcc on x86 needs access to rounding controls, because of a questionable + * feature where it retains intermediate results as IEEE 'long double' values + * somewhat unpredictably. It is tempting to include fpu_control.h, but that + * file exists only on Linux; it is missing on Cygwin and MinGW. Most gcc-isms + * and ix86-isms are factored out here. + */ + +#if defined(__GNUC__) && defined(__i386) +typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); +#define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw)) +#define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw)) +# define FPU_IEEE_ROUNDING 0x027f +# define ADJUST_FPU_CONTROL_WORD +#endif + +/* Sun ProC needs sunmath for rounding control on x86 like gcc above. + * + * + */ +#if defined(__sun) && defined(__i386) && !defined(__GNUC__) +#include <sunmath.h> +#endif + +/* + * MIPS floating-point units need special settings in control registers + * to use gradual underflow as we expect. This fix is for the MIPSpro + * compiler. + */ +#if defined(__sgi) && defined(_COMPILER_VERSION) +#include <sys/fpu.h> +#endif +/* + * HP's PA_RISC architecture uses 7ff4000000000000 to represent a quiet NaN. + * Everyone else uses 7ff8000000000000. (Why, HP, why?) + */ + +#ifdef __hppa +# define NAN_START 0x7ff4 +# define NAN_MASK (((Tcl_WideUInt) 1) << 50) +#else +# define NAN_START 0x7ff8 +# define NAN_MASK (((Tcl_WideUInt) 1) << 51) +#endif + +/* + * Constants used by this file (most of which are only ever calculated at + * runtime). + */ + +/* Magic constants */ + +#define LOG10_2 0.3010299956639812 +#define TWO_OVER_3LOG10 0.28952965460216784 +#define LOG10_3HALVES_PLUS_FUDGE 0.1760912590558 + +/* Definitions of the parts of an IEEE754-format floating point number */ + +#define SIGN_BIT 0x80000000 + /* Mask for the sign bit in the first + * word of a double */ +#define EXP_MASK 0x7ff00000 + /* Mask for the exponent field in the + * first word of a double */ +#define EXP_SHIFT 20 + /* Shift count to make the exponent an + * integer */ +#define HIDDEN_BIT (((Tcl_WideUInt) 0x00100000) << 32) + /* Hidden 1 bit for the significand */ +#define HI_ORDER_SIG_MASK 0x000fffff + /* Mask for the high-order part of the + * significand in the first word of a + * double */ +#define SIG_MASK (((Tcl_WideUInt) HI_ORDER_SIG_MASK << 32) \ + | 0xffffffff) + /* Mask for the 52-bit significand. */ +#define FP_PRECISION 53 + /* Number of bits of significand plus the + * hidden bit */ +#define EXPONENT_BIAS 0x3ff + /* Bias of the exponent 0 */ + +/* Derived quantities */ + +#define TEN_PMAX 22 + /* floor(FP_PRECISION*log(2)/log(5)) */ +#define QUICK_MAX 14 + /* floor((FP_PRECISION-1)*log(2)/log(10)) - 1 */ +#define BLETCH 0x10 + /* Highest power of two that is greater than + * DBL_MAX_10_EXP, divided by 16 */ +#define DIGIT_GROUP 8 + /* floor(DIGIT_BIT*log(2)/log(10)) */ + +/* Union used to dismantle floating point numbers. */ + +typedef union Double { + struct { +#ifdef WORDS_BIGENDIAN + int word0; + int word1; +#else + int word1; + int word0; +#endif + } w; + double d; + Tcl_WideUInt q; +} Double; + +static int maxpow10_wide; /* The powers of ten that can be represented + * exactly as wide integers. */ +static Tcl_WideUInt *pow10_wide; +#define MAXPOW 22 +static double pow10vals[MAXPOW+1]; + /* The powers of ten that can be represented + * exactly as IEEE754 doubles. */ +static int mmaxpow; /* Largest power of ten that can be + * represented exactly in a 'double'. */ +static int log10_DIGIT_MAX; /* The number of decimal digits that fit in an + * mp_digit. */ +static int log2FLT_RADIX; /* Logarithm of the floating point radix. */ +static int mantBits; /* Number of bits in a double's significand */ +static mp_int pow5[9]; /* Table of powers of 5**(2**n), up to + * 5**256 */ +static double tiny = 0.0; /* The smallest representable double */ +static int maxDigits; /* The maximum number of digits to the left of + * the decimal point of a double. */ +static int minDigits; /* The maximum number of digits to the right + * of the decimal point in a double. */ +static const double pow_10_2_n[] = { /* Inexact higher powers of ten. */ + 1.0, + 100.0, + 10000.0, + 1.0e+8, + 1.0e+16, + 1.0e+32, + 1.0e+64, + 1.0e+128, + 1.0e+256 +}; + +static int n770_fp; /* Flag is 1 on Nokia N770 floating point. + * Nokia's floating point has the words + * reversed: if big-endian is 7654 3210, + * and little-endian is 0123 4567, + * then Nokia's FP is 4567 0123; + * little-endian within the 32-bit words + * but big-endian between them. */ + +/* Table of powers of 5 that are small enough to fit in an mp_digit. */ + +static const mp_digit dpow5[13] = { + 1, 5, 25, 125, + 625, 3125, 15625, 78125, + 390625, 1953125, 9765625, 48828125, + 244140625 +}; + +/* Table of powers: pow5_13[n] = 5**(13*2**(n+1)) */ +static mp_int pow5_13[5]; /* Table of powers: 5**13, 5**26, 5**52, + * 5**104, 5**208 */ +static const double tens[] = { + 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +}; + +static const int itens [] = { + 1, + 10, + 100, + 1000, + 10000, + 100000, + 1000000, + 10000000, + 100000000 +}; + +static const double bigtens[] = { + 1e016, 1e032, 1e064, 1e128, 1e256 +}; +#define N_BIGTENS 5 + +static const int log2pow5[27] = { + 01, 3, 5, 7, 10, 12, 14, 17, 19, 21, + 24, 26, 28, 31, 33, 35, 38, 40, 42, 45, + 47, 49, 52, 54, 56, 59, 61 +}; +#define N_LOG2POW5 27 + +static const Tcl_WideUInt wuipow5[27] = { + (Tcl_WideUInt) 1, /* 5**0 */ + (Tcl_WideUInt) 5, + (Tcl_WideUInt) 25, + (Tcl_WideUInt) 125, + (Tcl_WideUInt) 625, + (Tcl_WideUInt) 3125, /* 5**5 */ + (Tcl_WideUInt) 3125*5, + (Tcl_WideUInt) 3125*25, + (Tcl_WideUInt) 3125*125, + (Tcl_WideUInt) 3125*625, + (Tcl_WideUInt) 3125*3125, /* 5**10 */ + (Tcl_WideUInt) 3125*3125*5, + (Tcl_WideUInt) 3125*3125*25, + (Tcl_WideUInt) 3125*3125*125, + (Tcl_WideUInt) 3125*3125*625, + (Tcl_WideUInt) 3125*3125*3125, /* 5**15 */ + (Tcl_WideUInt) 3125*3125*3125*5, + (Tcl_WideUInt) 3125*3125*3125*25, + (Tcl_WideUInt) 3125*3125*3125*125, + (Tcl_WideUInt) 3125*3125*3125*625, + (Tcl_WideUInt) 3125*3125*3125*3125, /* 5**20 */ + (Tcl_WideUInt) 3125*3125*3125*3125*5, + (Tcl_WideUInt) 3125*3125*3125*3125*25, + (Tcl_WideUInt) 3125*3125*3125*3125*125, + (Tcl_WideUInt) 3125*3125*3125*3125*625, + (Tcl_WideUInt) 3125*3125*3125*3125*3125, /* 5**25 */ + (Tcl_WideUInt) 3125*3125*3125*3125*3125*5 /* 5**26 */ +}; + +/* + * Static functions defined in this file. + */ + +static int AccumulateDecimalDigit(unsigned, int, + Tcl_WideUInt *, mp_int *, int); +static double MakeHighPrecisionDouble(int signum, + mp_int *significand, int nSigDigs, int exponent); +static double MakeLowPrecisionDouble(int signum, + Tcl_WideUInt significand, int nSigDigs, + int exponent); +static double MakeNaN(int signum, Tcl_WideUInt tag); +static double RefineApproximation(double approx, + mp_int *exactSignificand, int exponent); +static void MulPow5(mp_int*, unsigned, mp_int*); +static int NormalizeRightward(Tcl_WideUInt*); +static int RequiredPrecision(Tcl_WideUInt); +static void DoubleToExpAndSig(double, Tcl_WideUInt*, int*, int*); +static void TakeAbsoluteValue(Double*, int*); +static char* FormatInfAndNaN(Double*, int*, char**); +static char* FormatZero(int*, char**); +static int ApproximateLog10(Tcl_WideUInt, int, int); +static int BetterLog10(double, int, int*); +static void ComputeScale(int, int, int*, int*, int*, int*); +static void SetPrecisionLimits(int, int, int*, int*, int*, int*); +static char* BumpUp(char*, char*, int*); +static int AdjustRange(double*, int); +static char* ShorteningQuickFormat(double, int, int, double, + char*, int*); +static char* StrictQuickFormat(double, int, int, double, + char*, int*); +static char* QuickConversion(double, int, int, int, int, int, int, + int*, char**); +static void CastOutPowersOf2(int*, int*, int*); +static char* ShorteningInt64Conversion(Double*, int, Tcl_WideUInt, + int, int, int, int, int, int, int, int, int, + int, int, int*, char**); +static char* StrictInt64Conversion(Double*, int, Tcl_WideUInt, + int, int, int, int, int, int, + int, int, int*, char**); +static int ShouldBankerRoundUpPowD(mp_int*, int, int); +static int ShouldBankerRoundUpToNextPowD(mp_int*, mp_int*, + int, int, int, mp_int*); +static char* ShorteningBignumConversionPowD(Double* dPtr, + int convType, Tcl_WideUInt bw, int b2, int b5, + int m2plus, int m2minus, int m5, + int sd, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static char* StrictBignumConversionPowD(Double* dPtr, int convType, + Tcl_WideUInt bw, int b2, int b5, + int sd, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static int ShouldBankerRoundUp(mp_int*, mp_int*, int); +static int ShouldBankerRoundUpToNext(mp_int*, mp_int*, mp_int*, + int, int, mp_int*); +static char* ShorteningBignumConversion(Double* dPtr, int convType, + Tcl_WideUInt bw, int b2, + int m2plus, int m2minus, + int s2, int s5, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static char* StrictBignumConversion(Double* dPtr, int convType, + Tcl_WideUInt bw, int b2, + int s2, int s5, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static double BignumToBiasedFrExp(mp_int *big, int *machexp); +static double Pow10TimesFrExp(int exponent, double fraction, + int *machexp); +static double SafeLdExp(double fraction, int exponent); +static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w); + +/* + *---------------------------------------------------------------------- + * + * TclParseNumber -- + * + * Scans bytes, interpreted as characters in Tcl's internal encoding, and + * parses the longest prefix that is the string representation of a + * number in a format recognized by Tcl. + * + * The arguments bytes, numBytes, and objPtr are the inputs which + * determine the string to be parsed. If bytes is non-NULL, it points to + * the first byte to be scanned. If bytes is NULL, then objPtr must be + * non-NULL, and the string representation of objPtr will be scanned + * (generated first, if necessary). The numBytes argument determines the + * number of bytes to be scanned. If numBytes is negative, the first NUL + * byte encountered will terminate the scan. If numBytes is non-negative, + * then no more than numBytes bytes will be scanned. + * + * The argument flags is an input that controls the numeric formats + * recognized by the parser. The flag bits are: + * + * - TCL_PARSE_INTEGER_ONLY: accept only integer values; reject + * strings that denote floating point values (or accept only the + * leading portion of them that are integer values). + * - TCL_PARSE_SCAN_PREFIXES: ignore the prefixes 0b and 0o that are + * not part of the [scan] command's vocabulary. Use only in + * combination with TCL_PARSE_INTEGER_ONLY. + * - TCL_PARSE_OCTAL_ONLY: parse only in the octal format, whether + * or not a prefix is present that would lead to octal parsing. + * Use only in combination with TCL_PARSE_INTEGER_ONLY. + * - TCL_PARSE_HEXADECIMAL_ONLY: parse only in the hexadecimal format, + * whether or not a prefix is present that would lead to + * hexadecimal parsing. Use only in combination with + * TCL_PARSE_INTEGER_ONLY. + * - TCL_PARSE_DECIMAL_ONLY: parse only in the decimal format, no + * matter whether a 0 prefix would normally force a different + * base. + * - TCL_PARSE_NO_WHITESPACE: reject any leading/trailing whitespace + * + * The arguments interp and expected are inputs that control error + * message generation. If interp is NULL, no error message will be + * generated. If interp is non-NULL, then expected must also be non-NULL. + * When TCL_ERROR is returned, an error message will be left in the + * result of interp, and the expected argument will appear in the error + * message as the thing TclParseNumber expected, but failed to find in + * the string. + * + * The arguments objPtr and endPtrPtr as well as the return code are the + * outputs. + * + * When the parser cannot find any prefix of the string that matches a + * format it is looking for, TCL_ERROR is returned and an error message + * may be generated and returned as described above. The contents of + * objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to the + * character in the string that terminated the scan will be written to + * *endPtrPtr. + * + * When the parser determines that the entire string matches a format it + * is looking for, TCL_OK is returned, and if objPtr is non-NULL, then + * the internal rep and Tcl_ObjType of objPtr are set to the "canonical" + * numeric value that matches the scanned string. If endPtrPtr is not + * NULL, a pointer to the end of the string will be written to *endPtrPtr + * (that is, either bytes+numBytes or a pointer to a terminating NUL + * byte). + * + * When the parser determines that a partial string matches a format it + * is looking for, the value of endPtrPtr determines what happens: + * + * - If endPtrPtr is NULL, then TCL_ERROR is returned, with error message + * generation as above. + * + * - If endPtrPtr is non-NULL, then TCL_OK is returned and objPtr + * internals are set as above. Also, a pointer to the first + * character following the parsed numeric string is written to + * *endPtrPtr. + * + * In some cases where the string being scanned is the string rep of + * objPtr, this routine can leave objPtr in an inconsistent state where + * its string rep and its internal rep do not agree. In these cases the + * internal rep will be in agreement with only some substring of the + * string rep. This might happen if the caller passes in a non-NULL bytes + * value that points somewhere into the string rep. It might happen if + * the caller passes in a numBytes value that limits the scan to only a + * prefix of the string rep. Or it might happen if a non-NULL value of + * endPtrPtr permits a TCL_OK return from only a partial string match. It + * is the responsibility of the caller to detect and correct such + * inconsistencies when they can and do arise. + * + * Results: + * Returns a standard Tcl result. + * + * Side effects: + * The string representaton of objPtr may be generated. + * + * The internal representation and Tcl_ObjType of objPtr may be changed. + * This may involve allocation and/or freeing of memory. + * + *---------------------------------------------------------------------- + */ + +int +TclParseNumber( + Tcl_Interp *interp, /* Used for error reporting. May be NULL. */ + Tcl_Obj *objPtr, /* Object to receive the internal rep. */ + const char *expected, /* Description of the type of number the + * caller expects to be able to parse + * ("integer", "boolean value", etc.). */ + const char *bytes, /* Pointer to the start of the string to + * scan. */ + int numBytes, /* Maximum number of bytes to scan, see + * above. */ + const char **endPtrPtr, /* Place to store pointer to the character + * that terminated the scan. */ + int flags) /* Flags governing the parse. */ +{ + enum State { + INITIAL, SIGNUM, ZERO, ZERO_X, + ZERO_O, ZERO_B, BINARY, + HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL, + LEADING_RADIX_POINT, FRACTION, + EXPONENT_START, EXPONENT_SIGNUM, EXPONENT, + sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY +#ifdef IEEE_FLOATING_POINT + , sN, sNA, sNAN, sNANPAREN, sNANHEX, sNANFINISH +#endif + } state = INITIAL; + enum State acceptState = INITIAL; + + int signum = 0; /* Sign of the number being parsed */ + Tcl_WideUInt significandWide = 0; + /* Significand of the number being parsed (if + * no overflow) */ + mp_int significandBig; /* Significand of the number being parsed (if + * it overflows significandWide) */ + int significandOverflow = 0;/* Flag==1 iff significandBig is used */ + Tcl_WideUInt octalSignificandWide = 0; + /* Significand of an octal number; needed + * because we don't know whether a number with + * a leading zero is octal or decimal until + * we've scanned forward to a '.' or 'e' */ + mp_int octalSignificandBig; /* Significand of octal number once + * octalSignificandWide overflows */ + int octalSignificandOverflow = 0; + /* Flag==1 if octalSignificandBig is used */ + int numSigDigs = 0; /* Number of significant digits in the decimal + * significand */ + int numTrailZeros = 0; /* Number of trailing zeroes at the current + * point in the parse. */ + int numDigitsAfterDp = 0; /* Number of digits scanned after the decimal + * point */ + int exponentSignum = 0; /* Signum of the exponent of a floating point + * number */ + long exponent = 0; /* Exponent of a floating point number */ + const char *p; /* Pointer to next character to scan */ + size_t len; /* Number of characters remaining after p */ + const char *acceptPoint; /* Pointer to position after last character in + * an acceptable number */ + size_t acceptLen; /* Number of characters following that + * point. */ + int status = TCL_OK; /* Status to return to caller */ + char d = 0; /* Last hexadecimal digit scanned; initialized + * to avoid a compiler warning. */ + int shift = 0; /* Amount to shift when accumulating binary */ + int explicitOctal = 0; + +#define ALL_BITS (~(Tcl_WideUInt)0) +#define MOST_BITS (ALL_BITS >> 1) + + /* + * Initialize bytes to start of the object's string rep if the caller + * didn't pass anything else. + */ + + if (bytes == NULL) { + bytes = TclGetString(objPtr); + } + + p = bytes; + len = numBytes; + acceptPoint = p; + acceptLen = len; + while (1) { + char c = len ? *p : '\0'; + switch (state) { + + case INITIAL: + /* + * Initial state. Acceptable characters are +, -, digits, period, + * I, N, and whitespace. + */ + + if (TclIsSpaceProc(c)) { + if (flags & TCL_PARSE_NO_WHITESPACE) { + goto endgame; + } + break; + } else if (c == '+') { + state = SIGNUM; + break; + } else if (c == '-') { + signum = 1; + state = SIGNUM; + break; + } + /* FALLTHROUGH */ + + case SIGNUM: + /* + * Scanned a leading + or -. Acceptable characters are digits, + * period, I, and N. + */ + + if (c == '0') { + if (flags & TCL_PARSE_DECIMAL_ONLY) { + state = DECIMAL; + } else { + state = ZERO; + } + break; + } else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { + goto zerox; + } else if (flags & TCL_PARSE_OCTAL_ONLY) { + goto zeroo; + } else if (isdigit(UCHAR(c))) { + significandWide = c - '0'; + numSigDigs = 1; + state = DECIMAL; + break; + } else if (flags & TCL_PARSE_INTEGER_ONLY) { + goto endgame; + } else if (c == '.') { + state = LEADING_RADIX_POINT; + break; + } else if (c == 'I' || c == 'i') { + state = sI; + break; +#ifdef IEEE_FLOATING_POINT + } else if (c == 'N' || c == 'n') { + state = sN; + break; +#endif + } + goto endgame; + + case ZERO: + /* + * Scanned a leading zero (perhaps with a + or -). Acceptable + * inputs are digits, period, X, b, and E. If 8 or 9 is encountered, + * the number can't be octal. This state and the OCTAL state + * differ only in whether they recognize 'X' and 'b'. + */ + + acceptState = state; + acceptPoint = p; + acceptLen = len; + if (c == 'x' || c == 'X') { + state = ZERO_X; + break; + } + if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { + goto zerox; + } + if (flags & TCL_PARSE_SCAN_PREFIXES) { + goto zeroo; + } + if (c == 'b' || c == 'B') { + state = ZERO_B; + break; + } + if (c == 'o' || c == 'O') { + explicitOctal = 1; + state = ZERO_O; + break; + } +#ifdef KILL_OCTAL + goto decimal; +#endif + /* FALLTHROUGH */ + + case OCTAL: + /* + * Scanned an optional + or -, followed by a string of octal + * digits. Acceptable inputs are more digits, period, or E. If 8 + * or 9 is encountered, commit to floating point. + */ + + acceptState = state; + acceptPoint = p; + acceptLen = len; + /* FALLTHROUGH */ + case ZERO_O: + zeroo: + if (c == '0') { + numTrailZeros++; + state = OCTAL; + break; + } else if (c >= '1' && c <= '7') { + if (objPtr != NULL) { + shift = 3 * (numTrailZeros + 1); + significandOverflow = AccumulateDecimalDigit( + (unsigned)(c-'0'), numTrailZeros, + &significandWide, &significandBig, + significandOverflow); + + if (!octalSignificandOverflow) { + /* + * Shifting by more bits than are in the value being + * shifted is at least de facto nonportable. Check for + * too large shifts first. + */ + + if ((octalSignificandWide != 0) + && (((size_t)shift >= + CHAR_BIT*sizeof(Tcl_WideUInt)) + || (octalSignificandWide > + (~(Tcl_WideUInt)0 >> shift)))) { + octalSignificandOverflow = 1; + TclBNInitBignumFromWideUInt(&octalSignificandBig, + octalSignificandWide); + } + } + if (!octalSignificandOverflow) { + octalSignificandWide = + (octalSignificandWide << shift) + (c - '0'); + } else { + mp_mul_2d(&octalSignificandBig, shift, + &octalSignificandBig); + mp_add_d(&octalSignificandBig, (mp_digit)(c - '0'), + &octalSignificandBig); + } + } + if (numSigDigs != 0) { + numSigDigs += numTrailZeros+1; + } else { + numSigDigs = 1; + } + numTrailZeros = 0; + state = OCTAL; + break; + } + /* FALLTHROUGH */ + + case BAD_OCTAL: + if (explicitOctal) { + /* + * No forgiveness for bad digits in explicitly octal numbers. + */ + + goto endgame; + } + if (flags & TCL_PARSE_INTEGER_ONLY) { + /* + * No seeking floating point when parsing only integer. + */ + + goto endgame; + } +#ifndef KILL_OCTAL + + /* + * Scanned a number with a leading zero that contains an 8, 9, + * radix point or E. This is an invalid octal number, but might + * still be floating point. + */ + + if (c == '0') { + numTrailZeros++; + state = BAD_OCTAL; + break; + } else if (isdigit(UCHAR(c))) { + if (objPtr != NULL) { + significandOverflow = AccumulateDecimalDigit( + (unsigned)(c-'0'), numTrailZeros, + &significandWide, &significandBig, + significandOverflow); + } + if (numSigDigs != 0) { + numSigDigs += (numTrailZeros + 1); + } else { + numSigDigs = 1; + } + numTrailZeros = 0; + state = BAD_OCTAL; + break; + } else if (c == '.') { + state = FRACTION; + break; + } else if (c == 'E' || c == 'e') { + state = EXPONENT_START; + break; + } +#endif + goto endgame; + + /* + * Scanned 0x. If state is HEXADECIMAL, scanned at least one + * character following the 0x. The only acceptable inputs are + * hexadecimal digits. + */ + + case HEXADECIMAL: + acceptState = state; + acceptPoint = p; + acceptLen = len; + /* FALLTHROUGH */ + + case ZERO_X: + zerox: + if (c == '0') { + numTrailZeros++; + state = HEXADECIMAL; + break; + } else if (isdigit(UCHAR(c))) { + d = (c-'0'); + } else if (c >= 'A' && c <= 'F') { + d = (c-'A'+10); + } else if (c >= 'a' && c <= 'f') { + d = (c-'a'+10); + } else { + goto endgame; + } + if (objPtr != NULL) { + shift = 4 * (numTrailZeros + 1); + if (!significandOverflow) { + /* + * Shifting by more bits than are in the value being + * shifted is at least de facto nonportable. Check for too + * large shifts first. + */ + + if (significandWide != 0 && + ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || + significandWide > (~(Tcl_WideUInt)0 >> shift))) { + significandOverflow = 1; + TclBNInitBignumFromWideUInt(&significandBig, + significandWide); + } + } + if (!significandOverflow) { + significandWide = (significandWide << shift) + d; + } else { + mp_mul_2d(&significandBig, shift, &significandBig); + mp_add_d(&significandBig, (mp_digit) d, &significandBig); + } + } + numTrailZeros = 0; + state = HEXADECIMAL; + break; + + case BINARY: + acceptState = state; + acceptPoint = p; + acceptLen = len; + case ZERO_B: + if (c == '0') { + numTrailZeros++; + state = BINARY; + break; + } else if (c != '1') { + goto endgame; + } + if (objPtr != NULL) { + shift = numTrailZeros + 1; + if (!significandOverflow) { + /* + * Shifting by more bits than are in the value being + * shifted is at least de facto nonportable. Check for too + * large shifts first. + */ + + if (significandWide != 0 && + ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || + significandWide > (~(Tcl_WideUInt)0 >> shift))) { + significandOverflow = 1; + TclBNInitBignumFromWideUInt(&significandBig, + significandWide); + } + } + if (!significandOverflow) { + significandWide = (significandWide << shift) + 1; + } else { + mp_mul_2d(&significandBig, shift, &significandBig); + mp_add_d(&significandBig, (mp_digit) 1, &significandBig); + } + } + numTrailZeros = 0; + state = BINARY; + break; + + case DECIMAL: + /* + * Scanned an optional + or - followed by a string of decimal + * digits. + */ + +#ifdef KILL_OCTAL + decimal: +#endif + acceptState = state; + acceptPoint = p; + acceptLen = len; + if (c == '0') { + numTrailZeros++; + state = DECIMAL; + break; + } else if (isdigit(UCHAR(c))) { + if (objPtr != NULL) { + significandOverflow = AccumulateDecimalDigit( + (unsigned)(c - '0'), numTrailZeros, + &significandWide, &significandBig, + significandOverflow); + } + numSigDigs += numTrailZeros+1; + numTrailZeros = 0; + state = DECIMAL; + break; + } else if (flags & TCL_PARSE_INTEGER_ONLY) { + goto endgame; + } else if (c == '.') { + state = FRACTION; + break; + } else if (c == 'E' || c == 'e') { + state = EXPONENT_START; + break; + } + goto endgame; + + /* + * Found a decimal point. If no digits have yet been scanned, E is + * not allowed; otherwise, it introduces the exponent. If at least + * one digit has been found, we have a possible complete number. + */ + + case FRACTION: + acceptState = state; + acceptPoint = p; + acceptLen = len; + if (c == 'E' || c=='e') { + state = EXPONENT_START; + break; + } + /* FALLTHROUGH */ + + case LEADING_RADIX_POINT: + if (c == '0') { + numDigitsAfterDp++; + numTrailZeros++; + state = FRACTION; + break; + } else if (isdigit(UCHAR(c))) { + numDigitsAfterDp++; + if (objPtr != NULL) { + significandOverflow = AccumulateDecimalDigit( + (unsigned)(c-'0'), numTrailZeros, + &significandWide, &significandBig, + significandOverflow); + } + if (numSigDigs != 0) { + numSigDigs += numTrailZeros+1; + } else { + numSigDigs = 1; + } + numTrailZeros = 0; + state = FRACTION; + break; + } + goto endgame; + + case EXPONENT_START: + /* + * Scanned the E at the start of an exponent. Make sure a legal + * character follows before using the C library strtol routine, + * which allows whitespace. + */ + + if (c == '+') { + state = EXPONENT_SIGNUM; + break; + } else if (c == '-') { + exponentSignum = 1; + state = EXPONENT_SIGNUM; + break; + } + /* FALLTHROUGH */ + + case EXPONENT_SIGNUM: + /* + * Found the E at the start of the exponent, followed by a sign + * character. + */ + + if (isdigit(UCHAR(c))) { + exponent = c - '0'; + state = EXPONENT; + break; + } + goto endgame; + + case EXPONENT: + /* + * Found an exponent with at least one digit. Accumulate it, + * making sure to hard-pin it to LONG_MAX on overflow. + */ + + acceptState = state; + acceptPoint = p; + acceptLen = len; + if (isdigit(UCHAR(c))) { + if (exponent < (LONG_MAX - 9) / 10) { + exponent = 10 * exponent + (c - '0'); + } else { + exponent = LONG_MAX; + } + state = EXPONENT; + break; + } + goto endgame; + + /* + * Parse out INFINITY by simply spelling it out. INF is accepted + * as an abbreviation; other prefices are not. + */ + + case sI: + if (c == 'n' || c == 'N') { + state = sIN; + break; + } + goto endgame; + case sIN: + if (c == 'f' || c == 'F') { + state = sINF; + break; + } + goto endgame; + case sINF: + acceptState = state; + acceptPoint = p; + acceptLen = len; + if (c == 'i' || c == 'I') { + state = sINFI; + break; + } + goto endgame; + case sINFI: + if (c == 'n' || c == 'N') { + state = sINFIN; + break; + } + goto endgame; + case sINFIN: + if (c == 'i' || c == 'I') { + state = sINFINI; + break; + } + goto endgame; + case sINFINI: + if (c == 't' || c == 'T') { + state = sINFINIT; + break; + } + goto endgame; + case sINFINIT: + if (c == 'y' || c == 'Y') { + state = sINFINITY; + break; + } + goto endgame; + + /* + * Parse NaN's. + */ +#ifdef IEEE_FLOATING_POINT + case sN: + if (c == 'a' || c == 'A') { + state = sNA; + break; + } + goto endgame; + case sNA: + if (c == 'n' || c == 'N') { + state = sNAN; + break; + } + goto endgame; + case sNAN: + acceptState = state; + acceptPoint = p; + acceptLen = len; + if (c == '(') { + state = sNANPAREN; + break; + } + goto endgame; + + /* + * Parse NaN(hexdigits) + */ + case sNANHEX: + if (c == ')') { + state = sNANFINISH; + break; + } + /* FALLTHROUGH */ + case sNANPAREN: + if (TclIsSpaceProc(c)) { + break; + } + if (numSigDigs < 13) { + if (c >= '0' && c <= '9') { + d = c - '0'; + } else if (c >= 'a' && c <= 'f') { + d = 10 + c - 'a'; + } else if (c >= 'A' && c <= 'F') { + d = 10 + c - 'A'; + } else { + goto endgame; + } + numSigDigs++; + significandWide = (significandWide << 4) + d; + state = sNANHEX; + break; + } + goto endgame; + case sNANFINISH: +#endif + + case sINFINITY: + acceptState = state; + acceptPoint = p; + acceptLen = len; + goto endgame; + } + p++; + len--; + } + + endgame: + if (acceptState == INITIAL) { + /* + * No numeric string at all found. + */ + + status = TCL_ERROR; + if (endPtrPtr != NULL) { + *endPtrPtr = p; + } + } else { + /* + * Back up to the last accepting state in the lexer. + */ + + p = acceptPoint; + len = acceptLen; + if (!(flags & TCL_PARSE_NO_WHITESPACE)) { + /* + * Accept trailing whitespace. + */ + + while (len != 0 && TclIsSpaceProc(*p)) { + p++; + len--; + } + } + if (endPtrPtr == NULL) { + if ((len != 0) && ((numBytes > 0) || (*p != '\0'))) { + status = TCL_ERROR; + } + } else { + *endPtrPtr = p; + } + } + + /* + * Generate and store the appropriate internal rep. + */ + + if (status == TCL_OK && objPtr != NULL) { + TclFreeIntRep(objPtr); + switch (acceptState) { + case SIGNUM: + case BAD_OCTAL: + case ZERO_X: + case ZERO_O: + case ZERO_B: + case LEADING_RADIX_POINT: + case EXPONENT_START: + case EXPONENT_SIGNUM: + case sI: + case sIN: + case sINFI: + case sINFIN: + case sINFINI: + case sINFINIT: +#ifdef IEEE_FLOATING_POINT + case sN: + case sNA: + case sNANPAREN: + case sNANHEX: + Tcl_Panic("TclParseNumber: bad acceptState %d parsing '%s'", + acceptState, bytes); +#endif + case BINARY: + shift = numTrailZeros; + if (!significandOverflow && significandWide != 0 && + ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || + significandWide > (MOST_BITS + signum) >> shift)) { + significandOverflow = 1; + TclBNInitBignumFromWideUInt(&significandBig, significandWide); + } + if (shift) { + if (!significandOverflow) { + significandWide <<= shift; + } else { + mp_mul_2d(&significandBig, shift, &significandBig); + } + } + goto returnInteger; + + case HEXADECIMAL: + /* + * Returning a hex integer. Final scaling step. + */ + + shift = 4 * numTrailZeros; + if (!significandOverflow && significandWide !=0 && + ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || + significandWide > (MOST_BITS + signum) >> shift)) { + significandOverflow = 1; + TclBNInitBignumFromWideUInt(&significandBig, significandWide); + } + if (shift) { + if (!significandOverflow) { + significandWide <<= shift; + } else { + mp_mul_2d(&significandBig, shift, &significandBig); + } + } + goto returnInteger; + + case OCTAL: + /* + * Returning an octal integer. Final scaling step + */ + + shift = 3 * numTrailZeros; + if (!octalSignificandOverflow && octalSignificandWide != 0 && + ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || + octalSignificandWide > (MOST_BITS + signum) >> shift)) { + octalSignificandOverflow = 1; + TclBNInitBignumFromWideUInt(&octalSignificandBig, + octalSignificandWide); + } + if (shift) { + if (!octalSignificandOverflow) { + octalSignificandWide <<= shift; + } else { + mp_mul_2d(&octalSignificandBig, shift, + &octalSignificandBig); + } + } + if (!octalSignificandOverflow) { + if (octalSignificandWide > + (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { +#ifndef NO_WIDE_TYPE + if (octalSignificandWide <= (MOST_BITS + signum)) { + objPtr->typePtr = &tclWideIntType; + if (signum) { + objPtr->internalRep.wideValue = + - (Tcl_WideInt) octalSignificandWide; + } else { + objPtr->internalRep.wideValue = + (Tcl_WideInt) octalSignificandWide; + } + break; + } +#endif + TclBNInitBignumFromWideUInt(&octalSignificandBig, + octalSignificandWide); + octalSignificandOverflow = 1; + } else { + objPtr->typePtr = &tclIntType; + if (signum) { + objPtr->internalRep.longValue = + - (long) octalSignificandWide; + } else { + objPtr->internalRep.longValue = + (long) octalSignificandWide; + } + } + } + if (octalSignificandOverflow) { + if (signum) { + mp_neg(&octalSignificandBig, &octalSignificandBig); + } + TclSetBignumIntRep(objPtr, &octalSignificandBig); + } + break; + + case ZERO: + case DECIMAL: + significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1, + &significandWide, &significandBig, significandOverflow); + if (!significandOverflow && (significandWide > MOST_BITS+signum)) { + significandOverflow = 1; + TclBNInitBignumFromWideUInt(&significandBig, significandWide); + } + returnInteger: + if (!significandOverflow) { + if (significandWide > + (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { +#ifndef NO_WIDE_TYPE + if (significandWide <= MOST_BITS+signum) { + objPtr->typePtr = &tclWideIntType; + if (signum) { + objPtr->internalRep.wideValue = + - (Tcl_WideInt) significandWide; + } else { + objPtr->internalRep.wideValue = + (Tcl_WideInt) significandWide; + } + break; + } +#endif + TclBNInitBignumFromWideUInt(&significandBig, + significandWide); + significandOverflow = 1; + } else { + objPtr->typePtr = &tclIntType; + if (signum) { + objPtr->internalRep.longValue = + - (long) significandWide; + } else { + objPtr->internalRep.longValue = + (long) significandWide; + } + } + } + if (significandOverflow) { + if (signum) { + mp_neg(&significandBig, &significandBig); + } + TclSetBignumIntRep(objPtr, &significandBig); + } + break; + + case FRACTION: + case EXPONENT: + + /* + * Here, we're parsing a floating-point number. 'significandWide' + * or 'significandBig' contains the exact significand, according + * to whether 'significandOverflow' is set. The desired floating + * point value is significand * 10**k, where + * k = numTrailZeros+exponent-numDigitsAfterDp. + */ + + objPtr->typePtr = &tclDoubleType; + if (exponentSignum) { + exponent = - exponent; + } + if (!significandOverflow) { + objPtr->internalRep.doubleValue = MakeLowPrecisionDouble( + signum, significandWide, numSigDigs, + (numTrailZeros + exponent - numDigitsAfterDp)); + } else { + objPtr->internalRep.doubleValue = MakeHighPrecisionDouble( + signum, &significandBig, numSigDigs, + (numTrailZeros + exponent - numDigitsAfterDp)); + } + break; + + case sINF: + case sINFINITY: + if (signum) { + objPtr->internalRep.doubleValue = -HUGE_VAL; + } else { + objPtr->internalRep.doubleValue = HUGE_VAL; + } + objPtr->typePtr = &tclDoubleType; + break; + +#ifdef IEEE_FLOATING_POINT + case sNAN: + case sNANFINISH: + objPtr->internalRep.doubleValue = MakeNaN(signum, significandWide); + objPtr->typePtr = &tclDoubleType; + break; +#endif + case INITIAL: + /* This case only to silence compiler warning */ + Tcl_Panic("TclParseNumber: state INITIAL can't happen here"); + } + } + + /* + * Format an error message when an invalid number is encountered. + */ + + if (status != TCL_OK) { + if (interp != NULL) { + Tcl_Obj *msg; + + TclNewLiteralStringObj(msg, "expected "); + Tcl_AppendToObj(msg, expected, -1); + Tcl_AppendToObj(msg, " but got \"", -1); + Tcl_AppendLimitedToObj(msg, bytes, numBytes, 50, ""); + Tcl_AppendToObj(msg, "\"", -1); + if (state == BAD_OCTAL) { + Tcl_AppendToObj(msg, " (looks like invalid octal number)", -1); + } + Tcl_SetObjResult(interp, msg); + Tcl_SetErrorCode(interp, "TCL", "VALUE", "NUMBER", NULL); + } + } + + /* + * Free memory. + */ + + if (octalSignificandOverflow) { + mp_clear(&octalSignificandBig); + } + if (significandOverflow) { + mp_clear(&significandBig); + } + return status; +} + +/* + *---------------------------------------------------------------------- + * + * AccumulateDecimalDigit -- + * + * Consume a decimal digit in a number being scanned. + * + * Results: + * Returns 1 if the number has overflowed to a bignum, 0 if it still fits + * in a wide integer. + * + * Side effects: + * Updates either the wide or bignum representation. + * + *---------------------------------------------------------------------- + */ + +static int +AccumulateDecimalDigit( + unsigned digit, /* Digit being scanned. */ + int numZeros, /* Count of zero digits preceding the digit + * being scanned. */ + Tcl_WideUInt *wideRepPtr, /* Representation of the partial number as a + * wide integer. */ + mp_int *bignumRepPtr, /* Representation of the partial number as a + * bignum. */ + int bignumFlag) /* Flag == 1 if the number overflowed previous + * to this digit. */ +{ + int i, n; + Tcl_WideUInt w; + + /* + * Try wide multiplication first + */ + + if (!bignumFlag) { + w = *wideRepPtr; + if (w == 0) { + /* + * There's no need to multiply if the multiplicand is zero. + */ + + *wideRepPtr = digit; + return 0; + } else if (numZeros >= maxpow10_wide + || w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) { + /* + * Wide multiplication will overflow. Expand the + * number to a bignum and fall through into the bignum case. + */ + + TclBNInitBignumFromWideUInt(bignumRepPtr, w); + } else { + /* + * Wide multiplication. + */ + *wideRepPtr = w * pow10_wide[numZeros+1] + digit; + return 0; + } + } + + /* + * Bignum multiplication. + */ + + if (numZeros < log10_DIGIT_MAX) { + /* + * Up to about 8 zeros - single digit multiplication. + */ + + mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[numZeros+1], + bignumRepPtr); + mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); + } else { + /* + * More than single digit multiplication. Multiply by the appropriate + * small powers of 5, and then shift. Large strings of zeroes are + * eaten 256 at a time; this is less efficient than it could be, but + * seems implausible. We presume that DIGIT_BIT is at least 27. The + * first multiplication, by up to 10**7, is done with a one-DIGIT + * multiply (this presumes that DIGIT_BIT >= 24). + */ + + n = numZeros + 1; + mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[n&0x7], bignumRepPtr); + for (i=3; i<=7; ++i) { + if (n & (1 << i)) { + mp_mul(bignumRepPtr, pow5+i, bignumRepPtr); + } + } + while (n >= 256) { + mp_mul(bignumRepPtr, pow5+8, bignumRepPtr); + n -= 256; + } + mp_mul_2d(bignumRepPtr, (int)(numZeros+1)&~0x7, bignumRepPtr); + mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr); + } + + return 1; +} + +/* + *---------------------------------------------------------------------- + * + * MakeLowPrecisionDouble -- + * + * Makes the double precision number, signum*significand*10**exponent. + * + * Results: + * Returns the constructed number. + * + * Common cases, where there are few enough digits that the number can be + * represented with at most roundoff, are handled specially here. If the + * number requires more than one rounded operation to compute, the code + * promotes the significand to a bignum and calls MakeHighPrecisionDouble + * to do it instead. + * + *---------------------------------------------------------------------- + */ + +static double +MakeLowPrecisionDouble( + int signum, /* 1 if the number is negative, 0 otherwise */ + Tcl_WideUInt significand, /* Significand of the number */ + int numSigDigs, /* Number of digits in the significand */ + int exponent) /* Power of ten */ +{ + double retval; /* Value of the number */ + mp_int significandBig; /* Significand expressed as a bignum */ + + /* + * With gcc on x86, the floating point rounding mode is double-extended. + * This causes the result of double-precision calculations to be rounded + * twice: once to the precision of double-extended and then again to the + * precision of double. Double-rounding introduces gratuitous errors of 1 + * ulp, so we need to change rounding mode to 53-bits. + */ + +#if defined(__GNUC__) && defined(__i386) + fpu_control_t roundTo53Bits = 0x027f; + fpu_control_t oldRoundingMode; + _FPU_GETCW(oldRoundingMode); + _FPU_SETCW(roundTo53Bits); +#endif +#if defined(__sun) && defined(__i386) && !defined(__GNUC__) + ieee_flags("set","precision","double",NULL); +#endif + + /* + * Test for the easy cases. + */ + + if (numSigDigs <= DBL_DIG) { + if (exponent >= 0) { + if (exponent <= mmaxpow) { + /* + * The significand is an exact integer, and so is + * 10**exponent. The product will be correct to within 1/2 ulp + * without special handling. + */ + + retval = (double)(Tcl_WideInt)significand * pow10vals[exponent]; + goto returnValue; + } else { + int diff = DBL_DIG - numSigDigs; + if (exponent-diff <= mmaxpow) { + /* + * 10**exponent is not an exact integer, but + * 10**(exponent-diff) is exact, and so is + * significand*10**diff, so we can still compute the value + * with only one roundoff. + */ + + volatile double factor = + (double)(Tcl_WideInt)significand * pow10vals[diff]; + retval = factor * pow10vals[exponent-diff]; + goto returnValue; + } + } + } else { + if (exponent >= -mmaxpow) { + /* + * 10**-exponent is an exact integer, and so is the + * significand. Compute the result by one division, again with + * only one rounding. + */ + + retval = (double)(Tcl_WideInt)significand / pow10vals[-exponent]; + goto returnValue; + } + } + } + + /* + * All the easy cases have failed. Promote ths significand to bignum and + * call MakeHighPrecisionDouble to do it the hard way. + */ + + TclBNInitBignumFromWideUInt(&significandBig, significand); + retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs, + exponent); + mp_clear(&significandBig); + + /* + * Come here to return the computed value. + */ + + returnValue: + if (signum) { + retval = -retval; + } + + /* + * On gcc on x86, restore the floating point mode word. + */ + +#if defined(__GNUC__) && defined(__i386) + _FPU_SETCW(oldRoundingMode); +#endif +#if defined(__sun) && defined(__i386) && !defined(__GNUC__) + ieee_flags("clear","precision",NULL,NULL); +#endif + + return retval; +} + +/* + *---------------------------------------------------------------------- + * + * MakeHighPrecisionDouble -- + * + * Makes the double precision number, signum*significand*10**exponent. + * + * Results: + * Returns the constructed number. + * + * MakeHighPrecisionDouble is used when arbitrary-precision arithmetic is + * needed to ensure correct rounding. It begins by calculating a + * low-precision approximation to the desired number, and then refines + * the answer in high precision. + * + *---------------------------------------------------------------------- + */ + +static double +MakeHighPrecisionDouble( + int signum, /* 1=negative, 0=nonnegative */ + mp_int *significand, /* Exact significand of the number */ + int numSigDigs, /* Number of significant digits */ + int exponent) /* Power of 10 by which to multiply */ +{ + double retval; + int machexp; /* Machine exponent of a power of 10 */ + + /* + * With gcc on x86, the floating point rounding mode is double-extended. + * This causes the result of double-precision calculations to be rounded + * twice: once to the precision of double-extended and then again to the + * precision of double. Double-rounding introduces gratuitous errors of 1 + * ulp, so we need to change rounding mode to 53-bits. + */ + +#if defined(__GNUC__) && defined(__i386) + fpu_control_t roundTo53Bits = 0x027f; + fpu_control_t oldRoundingMode; + _FPU_GETCW(oldRoundingMode); + _FPU_SETCW(roundTo53Bits); +#endif +#if defined(__sun) && defined(__i386) && !defined(__GNUC__) + ieee_flags("set","precision","double",NULL); +#endif + + /* + * Quick checks for over/underflow. + */ + + if (numSigDigs+exponent-1 > maxDigits) { + retval = HUGE_VAL; + goto returnValue; + } + if (numSigDigs+exponent-1 < minDigits) { + retval = 0; + goto returnValue; + } + + /* + * Develop a first approximation to the significand. It is tempting simply + * to force bignum to double, but that will overflow on input numbers like + * 1.[string repeat 0 1000]1; while this is a not terribly likely + * scenario, we still have to deal with it. Use fraction and exponent + * instead. Once we have the significand, multiply by 10**exponent. Test + * for overflow. Convert back to a double, and test for underflow. + */ + + retval = BignumToBiasedFrExp(significand, &machexp); + retval = Pow10TimesFrExp(exponent, retval, &machexp); + if (machexp > DBL_MAX_EXP*log2FLT_RADIX) { + retval = HUGE_VAL; + goto returnValue; + } + retval = SafeLdExp(retval, machexp); + if (tiny == 0.0) { + tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits); + } + if (retval < tiny) { + retval = tiny; + } + + /* + * Refine the result twice. (The second refinement should be necessary + * only if the best approximation is a power of 2 minus 1/2 ulp). + */ + + retval = RefineApproximation(retval, significand, exponent); + retval = RefineApproximation(retval, significand, exponent); + + /* + * Come here to return the computed value. + */ + + returnValue: + if (signum) { + retval = -retval; + } + + /* + * On gcc on x86, restore the floating point mode word. + */ + +#if defined(__GNUC__) && defined(__i386) + _FPU_SETCW(oldRoundingMode); +#endif +#if defined(__sun) && defined(__i386) && !defined(__GNUC__) + ieee_flags("clear","precision",NULL,NULL); +#endif + return retval; +} + +/* + *---------------------------------------------------------------------- + * + * MakeNaN -- + * + * Makes a "Not a Number" given a set of bits to put in the tag bits + * + * Note that a signalling NaN is never returned. + * + *---------------------------------------------------------------------- + */ + +#ifdef IEEE_FLOATING_POINT +static double +MakeNaN( + int signum, /* Sign bit (1=negative, 0=nonnegative */ + Tcl_WideUInt tags) /* Tag bits to put in the NaN */ +{ + union { + Tcl_WideUInt iv; + double dv; + } theNaN; + + theNaN.iv = tags; + theNaN.iv &= (((Tcl_WideUInt) 1) << 51) - 1; + if (signum) { + theNaN.iv |= ((Tcl_WideUInt) (0x8000 | NAN_START)) << 48; + } else { + theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48; + } + if (n770_fp) { + theNaN.iv = Nokia770Twiddle(theNaN.iv); + } + return theNaN.dv; +} +#endif + +/* + *---------------------------------------------------------------------- + * + * RefineApproximation -- + * + * Given a poor approximation to a floating point number, returns a + * better one. (The better approximation is correct to within 1 ulp, and + * is entirely correct if the poor approximation is correct to 1 ulp.) + * + * Results: + * Returns the improved result. + * + *---------------------------------------------------------------------- + */ + +static double +RefineApproximation( + double approxResult, /* Approximate result of conversion */ + mp_int *exactSignificand, /* Integer significand */ + int exponent) /* Power of 10 to multiply by significand */ +{ + int M2, M5; /* Powers of 2 and of 5 needed to put the + * decimal and binary numbers over a common + * denominator. */ + double significand; /* Sigificand of the binary number */ + int binExponent; /* Exponent of the binary number */ + int msb; /* Most significant bit position of an + * intermediate result */ + int nDigits; /* Number of mp_digit's in an intermediate + * result */ + mp_int twoMv; /* Approx binary value expressed as an exact + * integer scaled by the multiplier 2M */ + mp_int twoMd; /* Exact decimal value expressed as an exact + * integer scaled by the multiplier 2M */ + int scale; /* Scale factor for M */ + int multiplier; /* Power of two to scale M */ + double num, den; /* Numerator and denominator of the correction + * term */ + double quot; /* Correction term */ + double minincr; /* Lower bound on the absolute value of the + * correction term. */ + int i; + + /* + * The first approximation is always low. If we find that it's HUGE_VAL, + * we're done. + */ + + if (approxResult == HUGE_VAL) { + return approxResult; + } + + /* + * Find a common denominator for the decimal and binary fractions. The + * common denominator will be 2**M2 + 5**M5. + */ + + significand = frexp(approxResult, &binExponent); + i = mantBits - binExponent; + if (i < 0) { + M2 = 0; + } else { + M2 = i; + } + if (exponent > 0) { + M5 = 0; + } else { + M5 = -exponent; + if ((M5-1) > M2) { + M2 = M5-1; + } + } + + /* + * The floating point number is significand*2**binExponent. Compute the + * large integer significand*2**(binExponent+M2+1). The 2**-1 bit of the + * significand (the most significant) corresponds to the + * 2**(binExponent+M2 + 1) bit of 2*M2*v. Allocate enough digits to hold + * that quantity, then convert the significand to a large integer, scaled + * appropriately. Then multiply by the appropriate power of 5. + */ + + msb = binExponent + M2; /* 1008 */ + nDigits = msb / DIGIT_BIT + 1; + mp_init_size(&twoMv, nDigits); + i = (msb % DIGIT_BIT + 1); + twoMv.used = nDigits; + significand *= SafeLdExp(1.0, i); + while (--nDigits >= 0) { + twoMv.dp[nDigits] = (mp_digit) significand; + significand -= (mp_digit) significand; + significand = SafeLdExp(significand, DIGIT_BIT); + } + for (i = 0; i <= 8; ++i) { + if (M5 & (1 << i)) { + mp_mul(&twoMv, pow5+i, &twoMv); + } + } + + /* + * Collect the decimal significand as a high precision integer. The least + * significant bit corresponds to bit M2+exponent+1 so it will need to be + * shifted left by that many bits after being multiplied by + * 5**(M5+exponent). + */ + + mp_init_copy(&twoMd, exactSignificand); + for (i=0; i<=8; ++i) { + if ((M5+exponent) & (1 << i)) { + mp_mul(&twoMd, pow5+i, &twoMd); + } + } + mp_mul_2d(&twoMd, M2+exponent+1, &twoMd); + mp_sub(&twoMd, &twoMv, &twoMd); + + /* + * The result, 2Mv-2Md, needs to be divided by 2M to yield a correction + * term. Because 2M may well overflow a double, we need to scale the + * denominator by a factor of 2**binExponent-mantBits + */ + + scale = binExponent - mantBits - 1; + + mp_set(&twoMv, 1); + for (i=0; i<=8; ++i) { + if (M5 & (1 << i)) { + mp_mul(&twoMv, pow5+i, &twoMv); + } + } + multiplier = M2 + scale + 1; + if (multiplier > 0) { + mp_mul_2d(&twoMv, multiplier, &twoMv); + } else if (multiplier < 0) { + mp_div_2d(&twoMv, -multiplier, &twoMv, NULL); + } + + /* + * If the result is less than unity, the error is less than 1/2 unit in + * the last place, so there's no correction to make. + */ + + if (mp_cmp_mag(&twoMd, &twoMv) == MP_LT) { + mp_clear(&twoMd); + mp_clear(&twoMv); + return approxResult; + } + + /* + * Convert the numerator and denominator of the corrector term accurately + * to floating point numbers. + */ + + num = TclBignumToDouble(&twoMd); + den = TclBignumToDouble(&twoMv); + + quot = SafeLdExp(num/den, scale); + minincr = SafeLdExp(1.0, binExponent-mantBits); + + if (quot<0. && quot>-minincr) { + quot = -minincr; + } else if (quot>0. && quot<minincr) { + quot = minincr; + } + + mp_clear(&twoMd); + mp_clear(&twoMv); + + return approxResult + quot; +} + +/* + *----------------------------------------------------------------------------- + * + * MultPow5 -- + * + * Multiply a bignum by a power of 5. + * + * Side effects: + * Stores base*5**n in result + * + *----------------------------------------------------------------------------- + */ + +inline static void +MulPow5(mp_int* base, /* Number to multiply */ + unsigned n, /* Power of 5 to multiply by */ + mp_int* result) /* Place to store the result */ +{ + mp_int* p = base; + int n13 = n / 13; + int r = n % 13; + if (r != 0) { + mp_mul_d(p, dpow5[r], result); + p = result; + } + r = 0; + while (n13 != 0) { + if (n13 & 1) { + mp_mul(p, pow5_13+r, result); + p = result; + } + n13 >>= 1; + ++r; + } + if (p != result) { + mp_copy(p, result); + } +} + +/* + *----------------------------------------------------------------------------- + * + * NormalizeRightward -- + * + * Shifts a number rightward until it is odd (that is, until the + * least significant bit is nonzero. + * + * Results: + * Returns the number of bit positions by which the number was shifted. + * + * Side effects: + * Shifts the number in place; *wPtr is replaced by the shifted number. + * + *----------------------------------------------------------------------------- + */ + +inline static int +NormalizeRightward(Tcl_WideUInt* wPtr) + /* INOUT: Number to shift */ +{ + int rv = 0; + Tcl_WideUInt w = *wPtr; + if (!(w & (Tcl_WideUInt) 0xffffffff)) { + w >>= 32; rv += 32; + } + if (!(w & (Tcl_WideUInt) 0xffff)) { + w >>= 16; rv += 16; + } + if (!(w & (Tcl_WideUInt) 0xff)) { + w >>= 8; rv += 8; + } + if (!(w & (Tcl_WideUInt) 0xf)) { + w >>= 4; rv += 4; + } + if (!(w & 0x3)) { + w >>= 2; rv += 2; + } + if (!(w & 0x1)) { + w >>= 1; ++rv; + } + *wPtr = w; + return rv; +} + +/* + *-----------------------------------------------------------------------------0 + * + * RequiredPrecision -- + * + * Determines the number of bits needed to hold an intger. + * + * Results: + * Returns the position of the most significant bit (0 - 63). + * Returns 0 if the number is zero. + * + *---------------------------------------------------------------------------- + */ + +static int +RequiredPrecision(Tcl_WideUInt w) + /* Number to interrogate */ +{ + int rv; + unsigned long wi; + if (w & ((Tcl_WideUInt) 0xffffffff << 32)) { + wi = (unsigned long) (w >> 32); rv = 32; + } else { + wi = (unsigned long) w; rv = 0; + } + if (wi & 0xffff0000) { + wi >>= 16; rv += 16; + } + if (wi & 0xff00) { + wi >>= 8; rv += 8; + } + if (wi & 0xf0) { + wi >>= 4; rv += 4; + } + if (wi & 0xc) { + wi >>= 2; rv += 2; + } + if (wi & 0x2) { + wi >>= 1; ++rv; + } + if (wi & 0x1) { + ++rv; + } + return rv; +} + +/* + *----------------------------------------------------------------------------- + * + * DoubleToExpAndSig -- + * + * Separates a 'double' into exponent and significand. + * + * Side effects: + * Stores the significand in '*significand' and the exponent in + * '*expon' so that dv == significand * 2.0**expon, and significand + * is odd. Also stores the position of the leftmost 1-bit in 'significand' + * in 'bits'. + * + *----------------------------------------------------------------------------- + */ + +inline static void +DoubleToExpAndSig(double dv, /* Number to convert */ + Tcl_WideUInt* significand, + /* OUTPUT: Significand of the number */ + int* expon, /* OUTPUT: Exponent to multiply the number by */ + int* bits) /* OUTPUT: Number of significant bits */ +{ + Double d; /* Number being converted */ + Tcl_WideUInt z; /* Significand under construction */ + int de; /* Exponent of the number */ + int k; /* Bit count */ + + d.d = dv; + + /* Extract exponent and significand */ + + de = (d.w.word0 & EXP_MASK) >> EXP_SHIFT; + z = d.q & SIG_MASK; + if (de != 0) { + z |= HIDDEN_BIT; + k = NormalizeRightward(&z); + *bits = FP_PRECISION - k; + *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1); + } else { + k = NormalizeRightward(&z); + *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1) + 1; + *bits = RequiredPrecision(z); + } + *significand = z; +} + +/* + *----------------------------------------------------------------------------- + * + * TakeAbsoluteValue -- + * + * Takes the absolute value of a 'double' including 0, Inf and NaN + * + * Side effects: + * The 'double' in *d is replaced with its absolute value. The + * signum is stored in 'sign': 1 for negative, 0 for nonnegative. + * + *----------------------------------------------------------------------------- + */ + +inline static void +TakeAbsoluteValue(Double* d, /* Number to replace with absolute value */ + int* sign) /* Place to put the signum */ +{ + if (d->w.word0 & SIGN_BIT) { + *sign = 1; + d->w.word0 &= ~SIGN_BIT; + } else { + *sign = 0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * FormatInfAndNaN -- + * + * Bailout for formatting infinities and Not-A-Number. + * + * Results: + * Returns one of the strings 'Infinity' and 'NaN'. + * + * Side effects: + * Stores 9999 in *decpt, and sets '*endPtr' to designate the + * terminating NUL byte of the string if 'endPtr' is not NULL. + * + * The string returned must be freed by the caller using 'ckfree'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +FormatInfAndNaN(Double* d, /* Exceptional number to format */ + int* decpt, /* Decimal point to set to a bogus value */ + char** endPtr) /* Pointer to the end of the formatted data */ +{ + char* retval; + *decpt = 9999; + if (!(d->w.word1) && !(d->w.word0 & HI_ORDER_SIG_MASK)) { + retval = ckalloc(9); + strcpy(retval, "Infinity"); + if (endPtr) { + *endPtr = retval + 8; + } + } else { + retval = ckalloc(4); + strcpy(retval, "NaN"); + if (endPtr) { + *endPtr = retval + 3; + } + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * FormatZero -- + * + * Bailout to format a zero floating-point number. + * + * Results: + * Returns the constant string "0" + * + * Side effects: + * Stores 1 in '*decpt' and puts a pointer to the NUL byte terminating + * the string in '*endPtr' if 'endPtr' is not NULL. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +FormatZero(int* decpt, /* Location of the decimal point */ + char** endPtr) /* Pointer to the end of the formatted data */ +{ + char* retval = ckalloc(2); + strcpy(retval, "0"); + if (endPtr) { + *endPtr = retval+1; + } + *decpt = 0; + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * ApproximateLog10 -- + * + * Computes a two-term Taylor series approximation to the common + * log of a number, and computes the number's binary log. + * + * Results: + * Return an approximation to floor(log10(bw*2**be)) that is either + * exact or 1 too high. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ApproximateLog10(Tcl_WideUInt bw, + /* Integer significand of the number */ + int be, /* Power of two to scale bw */ + int bbits) /* Number of bits of precision in bw */ +{ + int i; /* Log base 2 of the number */ + int k; /* Floor(Log base 10 of the number) */ + double ds; /* Mantissa of the number */ + Double d2; + + /* + * Compute i and d2 such that d = d2*2**i, and 1 < d2 < 2. + * Compute an approximation to log10(d), + * log10(d) ~ log10(2) * i + log10(1.5) + * + (significand-1.5)/(1.5 * log(10)) + */ + + d2.q = bw << (FP_PRECISION - bbits) & SIG_MASK; + d2.w.word0 |= (EXPONENT_BIAS) << EXP_SHIFT; + i = be + bbits - 1; + ds = (d2.d - 1.5) * TWO_OVER_3LOG10 + + LOG10_3HALVES_PLUS_FUDGE + + LOG10_2 * i; + k = (int) ds; + if (k > ds) { + --k; + } + return k; +} + +/* + *----------------------------------------------------------------------------- + * + * BetterLog10 -- + * + * Improves the result of ApproximateLog10 for numbers in the range + * 1 .. 10**(TEN_PMAX)-1 + * + * Side effects: + * Sets k_check to 0 if the new result is known to be exact, and to + * 1 if it may still be one too high. + * + * Results: + * Returns the improved approximation to log10(d) + * + *----------------------------------------------------------------------------- + */ + +inline static int +BetterLog10(double d, /* Original number to format */ + int k, /* Characteristic(Log base 10) of the number */ + int* k_check) /* Flag == 1 if k is inexact */ +{ + /* + * Performance hack. If k is in the range 0..TEN_PMAX, then we can + * use a powers-of-ten table to check it. + */ + if (k >= 0 && k <= TEN_PMAX) { + if (d < tens[k]) { + k--; + } + *k_check = 0; + } else { + *k_check = 1; + } + return k; +} + +/* + *----------------------------------------------------------------------------- + * + * ComputeScale -- + * + * Prepares to format a floating-point number as decimal. + * + * Parameters: + * floor(log10*x) is k (or possibly k-1). floor(log2(x) is i. + * The significand of x requires bbits bits to represent. + * + * Results: + * Determines integers b2, b5, s2, s5 so that sig*2**b2*5**b5/2**s2*2**s5 + * exactly represents the value of the x/10**k. This value will lie + * in the range [1 .. 10), and allows for computing successive digits + * by multiplying sig%10 by 10. + * + *----------------------------------------------------------------------------- + */ + +inline static void +ComputeScale(int be, /* Exponent part of number: d = bw * 2**be */ + int k, /* Characteristic of log10(number) */ + int* b2, /* OUTPUT: Power of 2 in the numerator */ + int* b5, /* OUTPUT: Power of 5 in the numerator */ + int* s2, /* OUTPUT: Power of 2 in the denominator */ + int* s5) /* OUTPUT: Power of 5 in the denominator */ +{ + + /* + * Scale numerator and denominator powers of 2 so that the + * input binary number is the ratio of integers + */ + if (be <= 0) { + *b2 = 0; + *s2 = -be; + } else { + *b2 = be; + *s2 = 0; + } + + /* + * Scale numerator and denominator so that the output decimal number + * is the ratio of integers + */ + if (k >= 0) { + *b5 = 0; + *s5 = k; + *s2 += k; + } else { + *b2 -= k; + *b5 = -k; + *s5 = 0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * SetPrecisionLimits -- + * + * Determines how many digits of significance should be computed + * (and, hence, how much memory need be allocated) for formatting a + * floating point number. + * + * Given that 'k' is floor(log10(x)): + * if 'shortest' format is used, there will be at most 18 digits in the result. + * if 'F' format is used, there will be at most 'ndigits' + k + 1 digits + * if 'E' format is used, there will be exactly 'ndigits' digits. + * + * Side effects: + * Adjusts '*ndigitsPtr' to have a valid value. + * Stores the maximum memory allocation needed in *iPtr. + * Sets '*iLimPtr' to the limiting number of digits to convert if k + * has been guessed correctly, and '*iLim1Ptr' to the limiting number + * of digits to convert if k has been guessed to be one too high. + * + *----------------------------------------------------------------------------- + */ + +inline static void +SetPrecisionLimits(int convType, + /* Type of conversion: + * TCL_DD_SHORTEST + * TCL_DD_STEELE0 + * TCL_DD_E_FMT + * TCL_DD_F_FMT */ + int k, /* Floor(log10(number to convert)) */ + int* ndigitsPtr, + /* IN/OUT: Number of digits requested + * (Will be adjusted if needed) */ + int* iPtr, /* OUT: Maximum number of digits + * to return */ + int *iLimPtr,/* OUT: Number of digits of significance + * if the bignum method is used.*/ + int *iLim1Ptr) + /* OUT: Number of digits of significance + * if the quick method is used. */ +{ + switch(convType) { + case TCL_DD_SHORTEST0: + case TCL_DD_STEELE0: + *iLimPtr = *iLim1Ptr = -1; + *iPtr = 18; + *ndigitsPtr = 0; + break; + case TCL_DD_E_FORMAT: + if (*ndigitsPtr <= 0) { + *ndigitsPtr = 1; + } + *iLimPtr = *iLim1Ptr = *iPtr = *ndigitsPtr; + break; + case TCL_DD_F_FORMAT: + *iPtr = *ndigitsPtr + k + 1; + *iLimPtr = *iPtr; + *iLim1Ptr = *iPtr - 1; + if (*iPtr <= 0) { + *iPtr = 1; + } + break; + default: + *iPtr = -1; + *iLimPtr = -1; + *iLim1Ptr = -1; + Tcl_Panic("impossible conversion type in TclDoubleDigits"); + } +} + +/* + *----------------------------------------------------------------------------- + * + * BumpUp -- + * + * Increases a string of digits ending in a series of nines to + * designate the next higher number. xxxxb9999... -> xxxx(b+1)0000... + * + * Results: + * Returns a pointer to the end of the adjusted string. + * + * Side effects: + * In the case that the string consists solely of '999999', sets it + * to "1" and moves the decimal point (*kPtr) one place to the right. + * + *----------------------------------------------------------------------------- + */ + + +inline static char* +BumpUp(char* s, /* Cursor pointing one past the end of the + * string */ + char* retval, /* Start of the string of digits */ + int* kPtr) /* Position of the decimal point */ +{ + while (*--s == '9') { + if (s == retval) { + ++(*kPtr); + *s = '1'; + return s+1; + } + } + ++*s; + ++s; + return s; +} + +/* + *----------------------------------------------------------------------------- + * + * AdjustRange -- + * + * Rescales a 'double' in preparation for formatting it using the + * 'quick' double-to-string method. + * + * Results: + * Returns the precision that has been lost in the prescaling as + * a count of units in the least significant place. + * + *----------------------------------------------------------------------------- + */ + +inline static int +AdjustRange(double* dPtr, /* INOUT: Number to adjust */ + int k) /* IN: floor(log10(d)) */ +{ + int ieps; /* Number of roundoff errors that have + * accumulated */ + double d = *dPtr; /* Number to adjust */ + double ds; + int i, j, j1; + + ieps = 2; + + if (k > 0) { + /* + * The number must be reduced to bring it into range. + */ + ds = tens[k & 0xf]; + j = k >> 4; + if (j & BLETCH) { + j &= (BLETCH-1); + d /= bigtens[N_BIGTENS - 1]; + ieps++; + } + i = 0; + for (; j != 0; j>>=1) { + if (j & 1) { + ds *= bigtens[i]; + ++ieps; + } + ++i; + } + d /= ds; + } else if ((j1 = -k) != 0) { + /* + * The number must be increased to bring it into range + */ + d *= tens[j1 & 0xf]; + i = 0; + for (j = j1>>4; j; j>>=1) { + if (j & 1) { + ieps++; + d *= bigtens[i]; + } + ++i; + } + } + + *dPtr = d; + return ieps; +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningQuickFormat -- + * + * Returns a 'quick' format of a double precision number to a string + * of digits, preferring a shorter string of digits if the shorter + * string is still within 1/2 ulp of the number. + * + * Results: + * Returns the string of digits. Returns NULL if the 'quick' method + * fails and the bignum method must be used. + * + * Side effects: + * Stores the position of the decimal point at '*kPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningQuickFormat(double d, /* Number to convert */ + int k, /* floor(log10(d)) */ + int ilim, /* Number of significant digits to return */ + double eps, + /* Estimated roundoff error */ + char* retval, + /* Buffer to receive the digit string */ + int* kPtr) + /* Pointer to stash the position of + * the decimal point */ +{ + char* s = retval; /* Cursor in the return value */ + int digit; /* Current digit */ + int i; + + eps = 0.5 / tens[ilim-1] - eps; + i = 0; + for (;;) { + /* Convert a digit */ + + digit = (int) d; + d -= digit; + *s++ = '0' + digit; + + /* + * Truncate the conversion if the string of digits is within + * 1/2 ulp of the actual value. + */ + + if (d < eps) { + *kPtr = k; + return s; + } + if ((1. - d) < eps) { + *kPtr = k; + return BumpUp(s, retval, kPtr); + } + + /* + * Bail out if the conversion fails to converge to a sufficiently + * precise value + */ + + if (++i >= ilim) { + return NULL; + } + + /* + * Bring the next digit to the integer part. + */ + + eps *= 10; + d *= 10.0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * StrictQuickFormat -- + * + * Convert a double precision number of a string of a precise number + * of digits, using the 'quick' double precision method. + * + * Results: + * Returns the digit string, or NULL if the bignum method must be + * used to do the formatting. + * + * Side effects: + * Stores the position of the decimal point in '*kPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +StrictQuickFormat(double d, /* Number to convert */ + int k, /* floor(log10(d)) */ + int ilim, /* Number of significant digits to return */ + double eps, /* Estimated roundoff error */ + char* retval, /* Start of the digit string */ + int* kPtr) /* Pointer to stash the position of + * the decimal point */ +{ + char* s = retval; /* Cursor in the return value */ + int digit; /* Current digit of the answer */ + int i; + + eps *= tens[ilim-1]; + i = 1; + for (;;) { + /* Extract a digit */ + digit = (int) d; + d -= digit; + if (d == 0.0) { + ilim = i; + } + *s++ = '0' + digit; + + /* + * When the given digit count is reached, handle trailing strings + * of 0 and 9. + */ + if (i == ilim) { + if (d > 0.5 + eps) { + *kPtr = k; + return BumpUp(s, retval, kPtr); + } else if (d < 0.5 - eps) { + while (*--s == '0') { + /* do nothing */ + } + s++; + *kPtr = k; + return s; + } else { + return NULL; + } + } + + /* Advance to the next digit */ + ++i; + d *= 10.0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * QuickConversion -- + * + * Converts a floating point number the 'quick' way, when only a limited + * number of digits is required and floating point arithmetic can + * therefore be used for the intermediate results. + * + * Results: + * Returns the converted string, or NULL if the bignum method must + * be used. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +QuickConversion(double e, /* Number to format */ + int k, /* floor(log10(d)), approximately */ + int k_check, /* 0 if k is exact, 1 if it may be too high */ + int flags, /* Flags passed to dtoa: + * TCL_DD_SHORTEN_FLAG */ + int len, /* Length of the return value */ + int ilim, /* Number of digits to store */ + int ilim1, /* Number of digits to store if we + * musguessed k */ + int* decpt, /* OUTPUT: Location of the decimal point */ + char** endPtr) /* OUTPUT: Pointer to the terminal null byte */ +{ + int ieps; /* Number of 1-ulp roundoff errors that have + * accumulated in the calculation*/ + Double eps; /* Estimated roundoff error */ + char* retval; /* Returned string */ + char* end; /* Pointer to the terminal null byte in the + * returned string */ + volatile double d; /* Workaround for a bug in mingw gcc 3.4.5 */ + + /* + * Bring d into the range [1 .. 10) + */ + ieps = AdjustRange(&e, k); + d = e; + + /* + * If the guessed value of k didn't get d into range, adjust it + * by one. If that leaves us outside the range in which quick format + * is accurate, bail out. + */ + if (k_check && d < 1. && ilim > 0) { + if (ilim1 < 0) { + return NULL; + } + ilim = ilim1; + --k; + d *= 10.0; + ++ieps; + } + + /* + * Compute estimated roundoff error + */ + eps.d = ieps * d + 7.; + eps.w.word0 -= (FP_PRECISION-1) << EXP_SHIFT; + + /* + * Handle the peculiar case where the result has no significant + * digits. + */ + retval = ckalloc(len + 1); + if (ilim == 0) { + d -= 5.; + if (d > eps.d) { + *retval = '1'; + *decpt = k; + return retval; + } else if (d < -eps.d) { + *decpt = k; + return retval; + } else { + ckfree(retval); + return NULL; + } + } + + /* Format the digit string */ + + if (flags & TCL_DD_SHORTEN_FLAG) { + end = ShorteningQuickFormat(d, k, ilim, eps.d, retval, decpt); + } else { + end = StrictQuickFormat(d, k, ilim, eps.d, retval, decpt); + } + if (end == NULL) { + ckfree(retval); + return NULL; + } + *end = '\0'; + if (endPtr != NULL) { + *endPtr = end; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * CastOutPowersOf2 -- + * + * Adjust the factors 'b2', 'm2', and 's2' to cast out common powers + * of 2 from numerator and denominator in preparation for the 'bignum' + * method of floating point conversion. + * + *----------------------------------------------------------------------------- + */ + +inline static void +CastOutPowersOf2(int* b2, /* Power of 2 to multiply the significand */ + int* m2, /* Power of 2 to multiply 1/2 ulp */ + int* s2) /* Power of 2 to multiply the common + * denominator */ +{ + int i; + if (*m2 > 0 && *s2 > 0) { /* Find the smallest power of 2 in the + * numerator */ + if (*m2 < *s2) { /* Find the lowest common denominatorr */ + i = *m2; + } else { + i = *s2; + } + *b2 -= i; /* Reduce to lowest terms */ + *m2 -= i; + *s2 -= i; + } +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningInt64Conversion -- + * + * Converts a double-precision number to the shortest string of + * digits that reconverts exactly to the given number, or to + * 'ilim' digits if that will yield a shorter result. The numerator and + * denominator in David Gay's conversion algorithm are known to fit + * in Tcl_WideUInt, giving considerably faster arithmetic than mp_int's. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningInt64Conversion(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int m2plus, int m2minus, int m5, + /* Scale factors for 1/2 ulp in + * the numerator (will be different if + * bw == 1 */ + int s2, int s5, + /* Scale factors for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; + /* Numerator of the fraction being converted */ + Tcl_WideUInt S = wuipow5[s5] << s2; + /* Denominator of the fraction being + * converted */ + Tcl_WideUInt mplus, mminus; /* Ranges for testing whether the result + * is within roundoff of being exact */ + int digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Current position in the output buffer */ + + /* Adjust if the logarithm was guessed wrong */ + + if (b < S) { + b = 10 * b; + ++m2plus; ++m2minus; ++m5; + ilim = ilim1; + --k; + } + + /* Compute roundoff ranges */ + + mplus = wuipow5[m5] << m2plus; + mminus = wuipow5[m5] << m2minus; + + /* Loop through the digits */ + + i = 1; + for (;;) { + digit = (int)(b / S); + if (digit > 10) { + Tcl_Panic("wrong digit!"); + } + b = b % S; + + /* + * Does the current digit put us on the low side of the exact value + * but within within roundoff of being exact? + */ + if (b < mplus + || (b == mplus + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { + /* + * Make sure we shouldn't be rounding *up* instead, + * in case the next number above is closer + */ + if (2 * b > S + || (2 * b == S + && (digit & 1) != 0)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + } + + /* Stash the current digit */ + + *s++ = '0' + digit; + break; + } + + /* + * Does one plus the current digit put us within roundoff of the + * number? + */ + if (b > S - mminus + || (b == S - mminus + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { + if (digit == 9) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + ++digit; + *s++ = '0' + digit; + break; + } + + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (2*b > S + || (2*b == S && (digit & 1) != 0)) { + s = BumpUp(s, retval, &k); + } + break; + } + + /* Advance to the next digit */ + + b = 10 * b; + mplus = 10 * mplus; + mminus = 10 * mminus; + ++i; + } + + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * StrictInt64Conversion -- + * + * Converts a double-precision number to a fixed-length string of + * 'ilim' digits that reconverts exactly to the given number. + * ('ilim' should be replaced with 'ilim1' in the case where + * log10(d) has been overestimated). The numerator and + * denominator in David Gay's conversion algorithm are known to fit + * in Tcl_WideUInt, giving considerably faster arithmetic than mp_int's. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +StrictInt64Conversion(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int s2, int s5, + /* Scale factors for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; + /* Numerator of the fraction being converted */ + Tcl_WideUInt S = wuipow5[s5] << s2; + /* Denominator of the fraction being + * converted */ + int digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Current position in the output buffer */ + + /* Adjust if the logarithm was guessed wrong */ + + if (b < S) { + b = 10 * b; + ilim = ilim1; + --k; + } + + /* Loop through the digits */ + + i = 1; + for (;;) { + digit = (int)(b / S); + if (digit > 10) { + Tcl_Panic("wrong digit!"); + } + b = b % S; + + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (2*b > S + || (2*b == S && (digit & 1) != 0)) { + s = BumpUp(s, retval, &k); + } else { + while (*--s == '0') { + /* do nothing */ + } + ++s; + } + break; + } + + /* Advance to the next digit */ + + b = 10 * b; + ++i; + } + + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUpPowD -- + * + * Test whether bankers' rounding should round a digit up. Assumption + * is made that the denominator of the fraction being tested is + * a power of 2**DIGIT_BIT. + * + * Results: + * Returns 1 iff the fraction is more than 1/2, or if the fraction + * is exactly 1/2 and the digit is odd. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpPowD(mp_int* b, + /* Numerator of the fraction */ + int sd, /* Denominator is 2**(sd*DIGIT_BIT) */ + int isodd) + /* 1 if the digit is odd, 0 if even */ +{ + int i; + static const mp_digit topbit = (1<<(DIGIT_BIT-1)); + if (b->used < sd || (b->dp[sd-1] & topbit) == 0) { + return 0; + } + if (b->dp[sd-1] != topbit) { + return 1; + } + for (i = sd-2; i >= 0; --i) { + if (b->dp[i] != 0) { + return 1; + } + } + return isodd; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUpToNextPowD -- + * + * Tests whether bankers' rounding will round down in the + * "denominator is a power of 2**MP_DIGIT" case. + * + * Results: + * Returns 1 if the rounding will be performed - which increases the + * digit by one - and 0 otherwise. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpToNextPowD(mp_int* b, + /* Numerator of the fraction */ + mp_int* m, + /* Numerator of the rounding tolerance */ + int sd, + /* Common denominator is 2**(sd*DIGIT_BIT) */ + int convType, + /* Conversion type: STEELE defeats + * round-to-even (Not sure why one wants to + * do this; I copied it from Gay) FIXME */ + int isodd, + /* 1 if the integer significand is odd */ + mp_int* temp) + /* Work area for the calculation */ +{ + int i; + + /* + * Compare B and S-m -- which is the same as comparing B+m and S -- + * which we do by computing b+m and doing a bitwhack compare against + * 2**(DIGIT_BIT*sd) + */ + mp_add(b, m, temp); + if (temp->used <= sd) { /* too few digits to be > S */ + return 0; + } + if (temp->used > sd+1 || temp->dp[sd] > 1) { + /* >= 2s */ + return 1; + } + for (i = sd-1; i >= 0; --i) { + /* check for ==s */ + if (temp->dp[i] != 0) { /* > s */ + return 1; + } + } + if (convType == TCL_DD_STEELE0) { + /* biased rounding */ + return 0; + } + return isodd; +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningBignumConversionPowD -- + * + * Converts a double-precision number to the shortest string of + * digits that reconverts exactly to the given number, or to + * 'ilim' digits if that will yield a shorter result. The denominator + * in David Gay's conversion algorithm is known to be a power of + * 2**DIGIT_BIT, and hence the division in the main loop may be replaced + * by a digit shift and mask. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningBignumConversionPowD(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int m2plus, int m2minus, int m5, + /* Scale factors for 1/2 ulp in + * the numerator (will be different if + * bw == 1 */ + int sd, + /* Scale factor for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + mp_int b; /* Numerator of the fraction being converted */ + mp_int mplus, mminus; /* Bounds for roundoff */ + mp_digit digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Index in the output buffer */ + mp_int temp; + int r1; + + /* + * b = bw * 2**b2 * 5**b5 + * mminus = 5**m5 + */ + + TclBNInitBignumFromWideUInt(&b, bw); + mp_init_set_int(&mminus, 1); + MulPow5(&b, b5, &b); + mp_mul_2d(&b, b2, &b); + + /* Adjust if the logarithm was guessed wrong */ + + if (b.used <= sd) { + mp_mul_d(&b, 10, &b); + ++m2plus; ++m2minus; ++m5; + ilim = ilim1; + --k; + } + + /* + * mminus = 5**m5 * 2**m2minus + * mplus = 5**m5 * 2**m2plus + */ + + mp_mul_2d(&mminus, m2minus, &mminus); + MulPow5(&mminus, m5, &mminus); + if (m2plus > m2minus) { + mp_init_copy(&mplus, &mminus); + mp_mul_2d(&mplus, m2plus-m2minus, &mplus); + } + mp_init(&temp); + + /* Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT) + * by mp_digit extraction */ + + i = 0; + for (;;) { + if (b.used <= sd) { + digit = 0; + } else { + digit = b.dp[sd]; + if (b.used > sd+1 || digit >= 10) { + Tcl_Panic("wrong digit!"); + } + --b.used; mp_clamp(&b); + } + + /* + * Does the current digit put us on the low side of the exact value + * but within within roundoff of being exact? + */ + + r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus); + if (r1 == MP_LT + || (r1 == MP_EQ + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { + /* + * Make sure we shouldn't be rounding *up* instead, + * in case the next number above is closer + */ + if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + } + + /* Stash the last digit */ + + *s++ = '0' + digit; + break; + } + + /* + * Does one plus the current digit put us within roundoff of the + * number? + */ + + if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd, + convType, dPtr->w.word1 & 1, + &temp)) { + if (digit == 9) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + ++digit; + *s++ = '0' + digit; + break; + } + + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { + s = BumpUp(s, retval, &k); + } + break; + } + + /* Advance to the next digit */ + + mp_mul_d(&b, 10, &b); + mp_mul_d(&mminus, 10, &mminus); + if (m2plus > m2minus) { + mp_mul_2d(&mminus, m2plus-m2minus, &mplus); + } + ++i; + } + + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + if (m2plus > m2minus) { + mp_clear(&mplus); + } + mp_clear_multi(&b, &mminus, &temp, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * StrictBignumConversionPowD -- + * + * Converts a double-precision number to a fixed-lengt string of + * 'ilim' digits (or 'ilim1' if log10(d) has been overestimated.) + * The denominator in David Gay's conversion algorithm is known to + * be a power of 2**DIGIT_BIT, and hence the division in the main + * loop may be replaced by a digit shift and mask. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory. + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +StrictBignumConversionPowD(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int sd, + /* Scale factor for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + mp_int b; /* Numerator of the fraction being converted */ + mp_digit digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Index in the output buffer */ + mp_int temp; + + /* + * b = bw * 2**b2 * 5**b5 + */ + + TclBNInitBignumFromWideUInt(&b, bw); + MulPow5(&b, b5, &b); + mp_mul_2d(&b, b2, &b); + + /* Adjust if the logarithm was guessed wrong */ + + if (b.used <= sd) { + mp_mul_d(&b, 10, &b); + ilim = ilim1; + --k; + } + mp_init(&temp); + + /* + * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT) + * by mp_digit extraction + */ + + i = 1; + for (;;) { + if (b.used <= sd) { + digit = 0; + } else { + digit = b.dp[sd]; + if (b.used > sd+1 || digit >= 10) { + Tcl_Panic("wrong digit!"); + } + --b.used; mp_clamp(&b); + } + + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { + s = BumpUp(s, retval, &k); + } else { + while (*--s == '0') { + /* do nothing */ + } + ++s; + } + break; + } + + /* Advance to the next digit */ + + mp_mul_d(&b, 10, &b); + ++i; + } + + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + mp_clear_multi(&b, &temp, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUp -- + * + * Tests whether a digit should be rounded up or down when finishing + * bignum-based floating point conversion. + * + * Results: + * Returns 1 if the number needs to be rounded up, 0 otherwise. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUp(mp_int* twor, + /* 2x the remainder from thd division that + * produced the last digit */ + mp_int* S, /* Denominator */ + int isodd) /* Flag == 1 if the last digit is odd */ +{ + int r = mp_cmp_mag(twor, S); + switch (r) { + case MP_LT: + return 0; + case MP_EQ: + return isodd; + case MP_GT: + return 1; + } + Tcl_Panic("in ShouldBankerRoundUp, trichotomy fails!"); + return 0; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUpToNext -- + * + * Tests whether the remainder is great enough to force rounding + * to the next higher digit. + * + * Results: + * Returns 1 if the number should be rounded up, 0 otherwise. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpToNext(mp_int* b, + /* Remainder from the division that produced + * the last digit. */ + mp_int* m, + /* Numerator of the rounding tolerance */ + mp_int* S, + /* Denominator */ + int convType, + /* Conversion type: STEELE0 defeats + * round-to-even. (Not sure why one would + * want this; I coped it from Gay. FIXME */ + int isodd, + /* 1 if the integer significand is odd */ + mp_int* temp) + /* Work area needed for the calculation */ +{ + int r; + /* Compare b and S-m: this is the same as comparing B+m and S. */ + mp_add(b, m, temp); + r = mp_cmp_mag(temp, S); + switch(r) { + case MP_LT: + return 0; + case MP_EQ: + if (convType == TCL_DD_STEELE0) { + return 0; + } else { + return isodd; + } + case MP_GT: + return 1; + } + Tcl_Panic("in ShouldBankerRoundUpToNext, trichotomy fails!"); + return 0; +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningBignumConversion -- + * + * Convert a floating point number to a variable-length digit string + * using the multiprecision method. + * + * Results: + * Returns the string of digits. + * + * Side effects: + * Stores the position of the decimal point in *decpt. + * Stores a pointer to the end of the number in *endPtr. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningBignumConversion(Double* dPtr, + /* Original number being converted */ + int convType, + /* Conversion type */ + Tcl_WideUInt bw, + /* Integer significand and exponent */ + int b2, + /* Scale factor for the significand */ + int m2plus, int m2minus, + /* Scale factors for 1/2 ulp in numerator */ + int s2, int s5, + /* Scale factors for denominator */ + int k, + /* Guessed position of the decimal point */ + int len, + /* Size of the digit buffer to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Pointer to the end of the number */ +{ + char* retval = ckalloc(len+1); + /* Buffer of digits to return */ + char* s = retval; /* Cursor in the return value */ + mp_int b; /* Numerator of the result */ + mp_int mminus; /* 1/2 ulp below the result */ + mp_int mplus; /* 1/2 ulp above the result */ + mp_int S; /* Denominator of the result */ + mp_int dig; /* Current digit of the result */ + int digit; /* Current digit of the result */ + mp_int temp; /* Work area */ + int minit = 1; /* Fudge factor for when we misguess k */ + int i; + int r1; + + /* + * b = bw * 2**b2 * 5**b5 + * S = 2**s2 * 5*s5 + */ + + TclBNInitBignumFromWideUInt(&b, bw); + mp_mul_2d(&b, b2, &b); + mp_init_set_int(&S, 1); + MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); + + /* + * Handle the case where we guess the position of the decimal point + * wrong. + */ + + if (mp_cmp_mag(&b, &S) == MP_LT) { + mp_mul_d(&b, 10, &b); + minit = 10; + ilim =ilim1; + --k; + } + + /* mminus = 2**m2minus * 5**m5 */ + + mp_init_set_int(&mminus, minit); + mp_mul_2d(&mminus, m2minus, &mminus); + if (m2plus > m2minus) { + mp_init_copy(&mplus, &mminus); + mp_mul_2d(&mplus, m2plus-m2minus, &mplus); + } + mp_init(&temp); + + /* Loop through the digits */ + + mp_init(&dig); + i = 1; + for (;;) { + mp_div(&b, &S, &dig, &b); + if (dig.used > 1 || dig.dp[0] >= 10) { + Tcl_Panic("wrong digit!"); + } + digit = dig.dp[0]; + + /* + * Does the current digit leave us with a remainder small enough to + * round to it? + */ + + r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus); + if (r1 == MP_LT + || (r1 == MP_EQ + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + } + *s++ = '0' + digit; + break; + } + + /* + * Does the current digit leave us with a remainder large enough + * to commit to rounding up to the next higher digit? + */ + + if (ShouldBankerRoundUpToNext(&b, &mminus, &S, convType, + dPtr->w.word1 & 1, &temp)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + *s++ = '0' + digit; + break; + } + + /* Have we converted all the requested digits? */ + + *s++ = '0' + digit; + if (i == ilim) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + s = BumpUp(s, retval, &k); + } + break; + } + + /* Advance to the next digit */ + + if (s5 > 0) { + + /* Can possibly shorten the denominator */ + mp_mul_2d(&b, 1, &b); + mp_mul_2d(&mminus, 1, &mminus); + if (m2plus > m2minus) { + mp_mul_2d(&mplus, 1, &mplus); + } + mp_div_d(&S, 5, &S, NULL); + --s5; + /* + * IDEA: It might possibly be a win to fall back to + * int64 arithmetic here if S < 2**64/10. But it's + * a win only for a fairly narrow range of magnitudes + * so perhaps not worth bothering. We already know that + * we shorten the denominator by at least 1 mp_digit, perhaps + * 2. as we do the conversion for 17 digits of significance. + * Possible savings: + * 10**26 1 trip through loop before fallback possible + * 10**27 1 trip + * 10**28 2 trips + * 10**29 3 trips + * 10**30 4 trips + * 10**31 5 trips + * 10**32 6 trips + * 10**33 7 trips + * 10**34 8 trips + * 10**35 9 trips + * 10**36 10 trips + * 10**37 11 trips + * 10**38 12 trips + * 10**39 13 trips + * 10**40 14 trips + * 10**41 15 trips + * 10**42 16 trips + * thereafter no gain. + */ + } else { + mp_mul_d(&b, 10, &b); + mp_mul_d(&mminus, 10, &mminus); + if (m2plus > m2minus) { + mp_mul_2d(&mplus, 10, &mplus); + } + } + + ++i; + } + + + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + if (m2plus > m2minus) { + mp_clear(&mplus); + } + mp_clear_multi(&b, &mminus, &temp, &dig, &S, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; + +} + +/* + *----------------------------------------------------------------------------- + * + * StrictBignumConversion -- + * + * Convert a floating point number to a fixed-length digit string + * using the multiprecision method. + * + * Results: + * Returns the string of digits. + * + * Side effects: + * Stores the position of the decimal point in *decpt. + * Stores a pointer to the end of the number in *endPtr. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +StrictBignumConversion(Double* dPtr, + /* Original number being converted */ + int convType, + /* Conversion type */ + Tcl_WideUInt bw, + /* Integer significand and exponent */ + int b2, /* Scale factor for the significand */ + int s2, int s5, + /* Scale factors for denominator */ + int k, /* Guessed position of the decimal point */ + int len, /* Size of the digit buffer to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Pointer to the end of the number */ +{ + char* retval = ckalloc(len+1); + /* Buffer of digits to return */ + char* s = retval; /* Cursor in the return value */ + mp_int b; /* Numerator of the result */ + mp_int S; /* Denominator of the result */ + mp_int dig; /* Current digit of the result */ + int digit; /* Current digit of the result */ + mp_int temp; /* Work area */ + int g; /* Size of the current digit groun */ + int i, j; + + /* + * b = bw * 2**b2 * 5**b5 + * S = 2**s2 * 5*s5 + */ + + mp_init_multi(&temp, &dig, NULL); + TclBNInitBignumFromWideUInt(&b, bw); + mp_mul_2d(&b, b2, &b); + mp_init_set_int(&S, 1); + MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); + + /* + * Handle the case where we guess the position of the decimal point + * wrong. + */ + + if (mp_cmp_mag(&b, &S) == MP_LT) { + mp_mul_d(&b, 10, &b); + ilim =ilim1; + --k; + } + + /* Convert the leading digit */ + + i = 0; + mp_div(&b, &S, &dig, &b); + if (dig.used > 1 || dig.dp[0] >= 10) { + Tcl_Panic("wrong digit!"); + } + digit = dig.dp[0]; + + /* Is a single digit all that was requested? */ + + *s++ = '0' + digit; + if (++i >= ilim) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + s = BumpUp(s, retval, &k); + } + } else { + + for (;;) { + + /* Shift by a group of digits. */ + + g = ilim - i; + if (g > DIGIT_GROUP) { + g = DIGIT_GROUP; + } + if (s5 >= g) { + mp_div_d(&S, dpow5[g], &S, NULL); + s5 -= g; + } else if (s5 > 0) { + mp_div_d(&S, dpow5[s5], &S, NULL); + mp_mul_d(&b, dpow5[g - s5], &b); + s5 = 0; + } else { + mp_mul_d(&b, dpow5[g], &b); + } + mp_mul_2d(&b, g, &b); + + /* + * As with the shortening bignum conversion, it's possible at + * this point that we will have reduced the denominator to + * less than 2**64/10, at which point it would be possible to + * fall back to to int64 arithmetic. But the potential payoff + * is tremendously less - unless we're working in F format - + * because we know that three groups of digits will always + * suffice for %#.17e, the longest format that doesn't introduce + * empty precision. + */ + + /* Extract the next group of digits */ + + mp_div(&b, &S, &dig, &b); + if (dig.used > 1) { + Tcl_Panic("wrong digit!"); + } + digit = dig.dp[0]; + for (j = g-1; j >= 0; --j) { + int t = itens[j]; + *s++ = digit / t + '0'; + digit %= t; + } + i += g; + + /* Have we converted all the requested digits? */ + + if (i == ilim) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + s = BumpUp(s, retval, &k); + } else { + while (*--s == '0') { + /* do nothing */ + } + ++s; + } + break; + } + } + } + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + mp_clear_multi(&b, &S, &temp, &dig, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; + +} + +/* + *----------------------------------------------------------------------------- + * + * TclDoubleDigits -- + * + * Core of Tcl's conversion of double-precision floating point numbers + * to decimal. + * + * Results: + * Returns a newly-allocated string of digits. + * + * Side effects: + * Sets *decpt to the index of the character in the string before the + * place that the decimal point should go. If 'endPtr' is not NULL, + * sets endPtr to point to the terminating '\0' byte of the string. + * Sets *sign to 1 if a minus sign should be printed with the number, + * or 0 if a plus sign (or no sign) should appear. + * + * This function is a service routine that produces the string of digits + * for floating-point-to-decimal conversion. It can do a number of things + * according to the 'flags' argument. Valid values for 'flags' include: + * TCL_DD_SHORTEST - This is the default for floating point conversion + * if ::tcl_precision is 0. It constructs the shortest string + * of digits that will reconvert to the given number when scanned. + * For floating point numbers that are exactly between two + * decimal numbers, it resolves using the 'round to even' rule. + * With this value, the 'ndigits' parameter is ignored. + * TCL_DD_STEELE - This value is not recommended and may be removed + * in the future. It follows the conversion algorithm outlined + * in "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, + * pp. 112-126]. This rule has the effect of rendering 1e23 + * as 9.9999999999999999e22 - which is a 'better' approximation + * in the sense that it will reconvert correctly even if + * a subsequent input conversion is 'round up' or 'round down' + * rather than 'round to nearest', but is surprising otherwise. + * TCL_DD_E_FORMAT - This value is used to prepare numbers for %e + * format conversion (or for default floating->string if + * tcl_precision is not 0). It constructs a string of at most + * 'ndigits' digits, choosing the one that is closest to the + * given number (and resolving ties with 'round to even'). + * It is allowed to return fewer than 'ndigits' if the number + * converts exactly; if the TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG + * is supplied instead, it also returns fewer digits if the + * shorter string will still reconvert to the given input number. + * In any case, strings of trailing zeroes are suppressed. + * TCL_DD_F_FORMAT - This value is used to prepare numbers for %f + * format conversion. It requests that conversion proceed until + * 'ndigits' digits after the decimal point have been converted. + * It is possible for this format to result in a zero-length + * string if the number is sufficiently small. Again, it + * is permissible for TCL_DD_F_FORMAT to return fewer digits + * for a number that converts exactly, and changing the + * argument to TCL_DD_F_FORMAT|TCL_DD_SHORTEN_FLAG will allow + * the routine also to return fewer digits if the shorter string + * will still reconvert without loss to the given input number. + * Strings of trailing zeroes are suppressed. + * + * To any of these flags may be OR'ed TCL_DD_NO_QUICK; this flag + * requires all calculations to be done in exact arithmetic. Normally, + * E and F format with fewer than about 14 digits will be done with + * a quick floating point approximation and fall back on the exact + * arithmetic only if the input number is close enough to the + * midpoint between two decimal strings that more precision is needed + * to resolve which string is correct. + * + * The value stored in the 'decpt' argument on return may be negative + * (indicating that the decimal point falls to the left of the string) + * or greater than the length of the string. In addition, the value -9999 + * is used as a sentinel to indicate that the string is one of the special + * values "Infinity" and "NaN", and that no decimal point should be inserted. + * + *----------------------------------------------------------------------------- + */ +char* +TclDoubleDigits(double dv, /* Number to convert */ + int ndigits, /* Number of digits requested */ + int flags, /* Conversion flags */ + int* decpt, /* OUTPUT: Position of the decimal point */ + int* sign, /* OUTPUT: 1 if the result is negative */ + char** endPtr) /* OUTPUT: If not NULL, receives a pointer + * to one character beyond the end + * of the returned string */ +{ + int convType = (flags & TCL_DD_CONVERSION_TYPE_MASK); + /* Type of conversion being performed + * TCL_DD_SHORTEST0 + * TCL_DD_STEELE0 + * TCL_DD_E_FORMAT + * TCL_DD_F_FORMAT */ + Double d; /* Union for deconstructing doubles */ + Tcl_WideUInt bw; /* Integer significand */ + int be; /* Power of 2 by which b must be multiplied */ + int bbits; /* Number of bits needed to represent b */ + int denorm; /* Flag == 1 iff the input number was + * denormalized */ + int k; /* Estimate of floor(log10(d)) */ + int k_check; /* Flag == 1 if d is near enough to a + * power of ten that k must be checked */ + int b2, b5, s2, s5; /* Powers of 2 and 5 in the numerator and + * denominator of intermediate results */ + int ilim = -1, ilim1 = -1; /* Number of digits to convert, and number + * to convert if log10(d) has been + * overestimated */ + char* retval; /* Return value from this function */ + int i = -1; + + /* Put the input number into a union for bit-whacking */ + + d.d = dv; + + /* + * Handle the cases of negative numbers (by taking the absolute value: + * this includes -Inf and -NaN!), infinity, Not a Number, and zero. + */ + + TakeAbsoluteValue(&d, sign); + if ((d.w.word0 & EXP_MASK) == EXP_MASK) { + return FormatInfAndNaN(&d, decpt, endPtr); + } + if (d.d == 0.0) { + return FormatZero(decpt, endPtr); + } + + /* + * Unpack the floating point into a wide integer and an exponent. + * Determine the number of bits that the big integer requires, and + * compute a quick approximation (which may be one too high) of + * ceil(log10(d.d)). + */ + denorm = ((d.w.word0 & EXP_MASK) == 0); + DoubleToExpAndSig(d.d, &bw, &be, &bbits); + k = ApproximateLog10(bw, be, bbits); + k = BetterLog10(d.d, k, &k_check); + + /* At this point, we have: + * d is the number to convert. + * bw are significand and exponent: d == bw*2**be, + * bbits is the length of bw: 2**bbits-1 <= bw < 2**bbits + * k is either ceil(log10(d)) or ceil(log10(d))+1. k_check is 0 + * if we know that k is exactly ceil(log10(d)) and 1 if we need to + * check. + * We want a rational number + * r = b * 10**(1-k) = bw * 2**b2 * 5**b5 / (2**s2 / 5**s5), + * with b2, b5, s2, s5 >= 0. Note that the most significant decimal + * digit is floor(r) and that successive digits can be obtained + * by setting r <- 10*floor(r) (or b <= 10 * (b % S)). + * Find appropriate b2, b5, s2, s5. + */ + + ComputeScale(be, k, &b2, &b5, &s2, &s5); + + /* + * Correct an incorrect caller-supplied 'ndigits'. + * Also determine: + * i = The maximum number of decimal digits that will be returned in the + * formatted string. This is k + 1 + ndigits for F format, 18 for + * shortest and Steele, and ndigits for E format. + * ilim = The number of significant digits to convert if + * k has been guessed correctly. This is -1 for shortest and Steele + * (which stop when all significance has been lost), 'ndigits' + * for E format, and 'k + 1 + ndigits' for F format. + * ilim1 = The minimum number of significant digits to convert if + * k has been guessed 1 too high. This, too, is -1 for shortest + * and Steele, and 'ndigits' for E format, but it's 'ndigits-1' + * for F format. + */ + + SetPrecisionLimits(convType, k, &ndigits, &i, &ilim, &ilim1); + + /* + * Try to do low-precision conversion in floating point rather + * than resorting to expensive multiprecision arithmetic + */ + if (ilim >= 0 && ilim <= QUICK_MAX && !(flags & TCL_DD_NO_QUICK)) { + if ((retval = QuickConversion(d.d, k, k_check, flags, + i, ilim, ilim1, + decpt, endPtr)) != NULL) { + return retval; + } + } + + /* + * For shortening conversions, determine the upper and lower bounds + * for the remainder at which we can stop. + * m+ = (2**m2plus * 5**m5) / (2**s2 * 5**s5) is the limit on the + * high side, and + * m- = (2**m2minus * 5**m5) / (2**s2 * 5**s5) is the limit on the + * low side. + * We may need to increase s2 to put m2plus, m2minus, b2 over a + * common denominator. + */ + + if (flags & TCL_DD_SHORTEN_FLAG) { + int m2minus = b2; + int m2plus; + int m5 = b5; + int len = i; + + /* + * Find the quantity i so that (2**i*5**b5)/(2**s2*5**s5) + * is 1/2 unit in the least significant place of the floating + * point number. + */ + if (denorm) { + i = be + EXPONENT_BIAS + (FP_PRECISION-1); + } else { + i = 1 + FP_PRECISION - bbits; + } + b2 += i; + s2 += i; + + /* + * Reduce the fractions to lowest terms, since the above calculation + * may have left excess powers of 2 in numerator and denominator + */ + CastOutPowersOf2(&b2, &m2minus, &s2); + + /* + * In the special case where bw==1, the nearest floating point number + * to it on the low side is 1/4 ulp below it. Adjust accordingly. + */ + m2plus = m2minus; + if (!denorm && bw == 1) { + ++b2; + ++s2; + ++m2plus; + } + + if (s5+1 < N_LOG2POW5 + && s2+1 + log2pow5[s5+1] <= 64) { + /* + * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit + * word, then all our intermediate calculations can be done + * using exact 64-bit arithmetic with no need for expensive + * multiprecision operations. (This will be true for all numbers + * in the range [1.0e-3 .. 1.0e+24]). + */ + + return ShorteningInt64Conversion(&d, convType, bw, b2, b5, + m2plus, m2minus, m5, + s2, s5, k, len, ilim, ilim1, + decpt, endPtr); + } else if (s5 == 0) { + /* + * The denominator is a power of 2, so we can replace division + * by digit shifts. First we round up s2 to a multiple of + * DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch + * into a version of the comparison that's specialized for + * the 'power of mp_digit in the denominator' case. + */ + if (s2 % DIGIT_BIT != 0) { + int delta = DIGIT_BIT - (s2 % DIGIT_BIT); + b2 += delta; + m2plus += delta; + m2minus += delta; + s2 += delta; + } + return ShorteningBignumConversionPowD(&d, convType, bw, b2, b5, + m2plus, m2minus, m5, + s2/DIGIT_BIT, k, len, + ilim, ilim1, decpt, endPtr); + } else { + + /* + * Alas, there's no helpful special case; use full-up + * bignum arithmetic for the conversion + */ + + return ShorteningBignumConversion(&d, convType, bw, + b2, m2plus, m2minus, + s2, s5, k, len, + ilim, ilim1, decpt, endPtr); + + } + + } else { + + /* Non-shortening conversion */ + + int len = i; + + /* Reduce numerator and denominator to lowest terms */ + + if (b2 >= s2 && s2 > 0) { + b2 -= s2; s2 = 0; + } else if (s2 >= b2 && b2 > 0) { + s2 -= b2; b2 = 0; + } + + if (s5+1 < N_LOG2POW5 + && s2+1 + log2pow5[s5+1] <= 64) { + /* + * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit + * word, then all our intermediate calculations can be done + * using exact 64-bit arithmetic with no need for expensive + * multiprecision operations. + */ + + return StrictInt64Conversion(&d, convType, bw, b2, b5, + s2, s5, k, len, ilim, ilim1, + decpt, endPtr); + + } else if (s5 == 0) { + /* + * The denominator is a power of 2, so we can replace division + * by digit shifts. First we round up s2 to a multiple of + * DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch + * into a version of the comparison that's specialized for + * the 'power of mp_digit in the denominator' case. + */ + if (s2 % DIGIT_BIT != 0) { + int delta = DIGIT_BIT - (s2 % DIGIT_BIT); + b2 += delta; + s2 += delta; + } + return StrictBignumConversionPowD(&d, convType, bw, b2, b5, + s2/DIGIT_BIT, k, len, + ilim, ilim1, decpt, endPtr); + } else { + /* + * There are no helpful special cases, but at least we know + * in advance how many digits we will convert. We can run the + * conversion in steps of DIGIT_GROUP digits, so as to + * have many fewer mp_int divisions. + */ + return StrictBignumConversion(&d, convType, bw, b2, s2, s5, + k, len, ilim, ilim1, decpt, endPtr); + } + } +} + + +/* + *---------------------------------------------------------------------- + * + * TclInitDoubleConversion -- + * + * Initializes constants that are needed for conversions to and from + * 'double' + * + * Results: + * None. + * + * Side effects: + * The log base 2 of the floating point radix, the number of bits in a + * double mantissa, and a table of the powers of five and ten are + * computed and stored. + * + *---------------------------------------------------------------------- + */ + +void +TclInitDoubleConversion(void) +{ + int i; + int x; + Tcl_WideUInt u; + double d; + +#ifdef IEEE_FLOATING_POINT + union { + double dv; + Tcl_WideUInt iv; + } bitwhack; +#endif + +#if defined(__sgi) && defined(_COMPILER_VERSION) + union fpc_csr mipsCR; + + mipsCR.fc_word = get_fpc_csr(); + mipsCR.fc_struct.flush = 0; + set_fpc_csr(mipsCR.fc_word); +#endif + + /* + * Initialize table of powers of 10 expressed as wide integers. + */ + + maxpow10_wide = (int) + floor(sizeof(Tcl_WideUInt) * CHAR_BIT * log(2.) / log(10.)); + pow10_wide = (Tcl_WideUInt *) + ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt)); + u = 1; + for (i = 0; i < maxpow10_wide; ++i) { + pow10_wide[i] = u; + u *= 10; + } + pow10_wide[i] = u; + + /* + * Determine how many bits of precision a double has, and how many + * decimal digits that represents. + */ + + if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) { + Tcl_Panic("This code doesn't work on a decimal machine!"); + } + log2FLT_RADIX--; + mantBits = DBL_MANT_DIG * log2FLT_RADIX; + d = 1.0; + + /* + * Initialize a table of powers of ten that can be exactly represented + * in a double. + */ + + x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0)); + if (x < MAXPOW) { + mmaxpow = x; + } else { + mmaxpow = MAXPOW; + } + for (i=0 ; i<=mmaxpow ; ++i) { + pow10vals[i] = d; + d *= 10.0; + } + + /* + * Initialize a table of large powers of five. + */ + + for (i=0; i<9; ++i) { + mp_init(pow5 + i); + } + mp_set(pow5, 5); + for (i=0; i<8; ++i) { + mp_sqr(pow5+i, pow5+i+1); + } + mp_init_set_int(pow5_13, 1220703125); + for (i = 1; i < 5; ++i) { + mp_init(pow5_13 + i); + mp_sqr(pow5_13 + i - 1, pow5_13 + i); + } + + /* + * Determine the number of decimal digits to the left and right of the + * decimal point in the largest and smallest double, the smallest double + * that differs from zero, and the number of mp_digits needed to represent + * the significand of a double. + */ + + maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX) + + 0.5 * log(10.)) / log(10.)); + minDigits = (int) floor((DBL_MIN_EXP - DBL_MANT_DIG) + * log((double) FLT_RADIX) / log(10.)); + log10_DIGIT_MAX = (int) floor(DIGIT_BIT * log(2.) / log(10.)); + + /* + * Nokia 770's software-emulated floating point is "middle endian": the + * bytes within a 32-bit word are little-endian (like the native + * integers), but the two words of a 'double' are presented most + * significant word first. + */ + +#ifdef IEEE_FLOATING_POINT + bitwhack.dv = 1.000000238418579; + /* 3ff0 0000 4000 0000 */ + if ((bitwhack.iv >> 32) == 0x3ff00000) { + n770_fp = 0; + } else if ((bitwhack.iv & 0xffffffff) == 0x3ff00000) { + n770_fp = 1; + } else { + Tcl_Panic("unknown floating point word order on this machine"); + } +#endif +} + +/* + *---------------------------------------------------------------------- + * + * TclFinalizeDoubleConversion -- + * + * Cleans up this file on exit. + * + * Results: + * None + * + * Side effects: + * Memory allocated by TclInitDoubleConversion is freed. + * + *---------------------------------------------------------------------- + */ + +void +TclFinalizeDoubleConversion(void) +{ + int i; + + ckfree((char *) pow10_wide); + for (i=0; i<9; ++i) { + mp_clear(pow5 + i); + } +} + +/* + *---------------------------------------------------------------------- + * + * Tcl_InitBignumFromDouble -- + * + * Extracts the integer part of a double and converts it to an arbitrary + * precision integer. + * + * Results: + * None. + * + * Side effects: + * Initializes the bignum supplied, and stores the converted number in + * it. + * + *---------------------------------------------------------------------- + */ + +int +Tcl_InitBignumFromDouble( + Tcl_Interp *interp, /* For error message */ + double d, /* Number to convert */ + mp_int *b) /* Place to store the result */ +{ + double fract; + int expt; + + /* + * Infinite values can't convert to bignum. + */ + + if (TclIsInfinite(d)) { + if (interp != NULL) { + const char *s = "integer value too large to represent"; + + Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1)); + Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", s, NULL); + } + return TCL_ERROR; + } + + fract = frexp(d,&expt); + if (expt <= 0) { + mp_init(b); + mp_zero(b); + } else { + Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits); + int shift = expt - mantBits; + + TclBNInitBignumFromWideInt(b, w); + if (shift < 0) { + mp_div_2d(b, -shift, b, NULL); + } else if (shift > 0) { + mp_mul_2d(b, shift, b); + } + } + return TCL_OK; +} + +/* + *---------------------------------------------------------------------- + * + * TclBignumToDouble -- + * + * Convert an arbitrary-precision integer to a native floating point + * number. + * + * Results: + * Returns the converted number. Sets errno to ERANGE if the number is + * too large to convert. + * + *---------------------------------------------------------------------- + */ + +double +TclBignumToDouble( + mp_int *a) /* Integer to convert. */ +{ + mp_int b; + int bits, shift, i, lsb; + double r; + + + /* + * We need a 'mantBits'-bit significand. Determine what shift will + * give us that. + */ + + bits = mp_count_bits(a); + if (bits > DBL_MAX_EXP*log2FLT_RADIX) { + errno = ERANGE; + if (a->sign == MP_ZPOS) { + return HUGE_VAL; + } else { + return -HUGE_VAL; + } + } + shift = mantBits - bits; + + /* + * If shift > 0, shift the significand left by the requisite number of + * bits. If shift == 0, the significand is already exactly 'mantBits' + * in length. If shift < 0, we will need to shift the significand right + * by the requisite number of bits, and round it. If the '1-shift' + * least significant bits are 0, but the 'shift'th bit is nonzero, + * then the significand lies exactly between two values and must be + * 'rounded to even'. + */ + + mp_init(&b); + if (shift == 0) { + mp_copy(a, &b); + } else if (shift > 0) { + mp_mul_2d(a, shift, &b); + } else if (shift < 0) { + lsb = mp_cnt_lsb(a); + if (lsb == -1-shift) { + + /* + * Round to even + */ + + mp_div_2d(a, -shift, &b, NULL); + if (mp_isodd(&b)) { + if (b.sign == MP_ZPOS) { + mp_add_d(&b, 1, &b); + } else { + mp_sub_d(&b, 1, &b); + } + } + } else { + + /* + * Ordinary rounding + */ + + mp_div_2d(a, -1-shift, &b, NULL); + if (b.sign == MP_ZPOS) { + mp_add_d(&b, 1, &b); + } else { + mp_sub_d(&b, 1, &b); + } + mp_div_2d(&b, 1, &b, NULL); + } + } + + /* + * Accumulate the result, one mp_digit at a time. + */ + + r = 0.0; + for (i=b.used-1 ; i>=0 ; --i) { + r = ldexp(r, DIGIT_BIT) + b.dp[i]; + } + mp_clear(&b); + + /* + * Scale the result to the correct number of bits. + */ + + r = ldexp(r, bits - mantBits); + + /* + * Return the result with the appropriate sign. + */ + + if (a->sign == MP_ZPOS) { + return r; + } else { + return -r; + } +} + +/* + *----------------------------------------------------------------------------- + * + * TclCeil -- + * + * Computes the smallest floating point number that is at least the + * mp_int argument. + * + * Results: + * Returns the floating point number. + * + *----------------------------------------------------------------------------- + */ + +double +TclCeil( + mp_int *a) /* Integer to convert. */ +{ + double r = 0.0; + mp_int b; + + mp_init(&b); + if (mp_cmp_d(a, 0) == MP_LT) { + mp_neg(a, &b); + r = -TclFloor(&b); + } else { + int bits = mp_count_bits(a); + + if (bits > DBL_MAX_EXP*log2FLT_RADIX) { + r = HUGE_VAL; + } else { + int i, exact = 1, shift = mantBits - bits; + + if (shift > 0) { + mp_mul_2d(a, shift, &b); + } else if (shift < 0) { + mp_int d; + mp_init(&d); + mp_div_2d(a, -shift, &b, &d); + exact = mp_iszero(&d); + mp_clear(&d); + } else { + mp_copy(a, &b); + } + if (!exact) { + mp_add_d(&b, 1, &b); + } + for (i=b.used-1 ; i>=0 ; --i) { + r = ldexp(r, DIGIT_BIT) + b.dp[i]; + } + r = ldexp(r, bits - mantBits); + } + } + mp_clear(&b); + return r; +} + +/* + *----------------------------------------------------------------------------- + * + * TclFloor -- + * + * Computes the largest floating point number less than or equal to + * the mp_int argument. + * + * Results: + * Returns the floating point value. + * + *----------------------------------------------------------------------------- + */ + +double +TclFloor( + mp_int *a) /* Integer to convert. */ +{ + double r = 0.0; + mp_int b; + + mp_init(&b); + if (mp_cmp_d(a, 0) == MP_LT) { + mp_neg(a, &b); + r = -TclCeil(&b); + } else { + int bits = mp_count_bits(a); + + if (bits > DBL_MAX_EXP*log2FLT_RADIX) { + r = DBL_MAX; + } else { + int i, shift = mantBits - bits; + + if (shift > 0) { + mp_mul_2d(a, shift, &b); + } else if (shift < 0) { + mp_div_2d(a, -shift, &b, NULL); + } else { + mp_copy(a, &b); + } + for (i=b.used-1 ; i>=0 ; --i) { + r = ldexp(r, DIGIT_BIT) + b.dp[i]; + } + r = ldexp(r, bits - mantBits); + } + } + mp_clear(&b); + return r; +} + +/* + *---------------------------------------------------------------------- + * + * BignumToBiasedFrExp -- + * + * Convert an arbitrary-precision integer to a native floating point + * number in the range [0.5,1) times a power of two. NOTE: Intentionally + * converts to a number that's a few ulp too small, so that + * RefineApproximation will not overflow near the high end of the + * machine's arithmetic range. + * + * Results: + * Returns the converted number. + * + * Side effects: + * Stores the exponent of two in 'machexp'. + * + *---------------------------------------------------------------------- + */ + +static double +BignumToBiasedFrExp( + mp_int *a, /* Integer to convert */ + int *machexp) /* Power of two */ +{ + mp_int b; + int bits; + int shift; + int i; + double r; + + /* + * Determine how many bits we need, and extract that many from the input. + * Round to nearest unit in the last place. + */ + + bits = mp_count_bits(a); + shift = mantBits - 2 - bits; + mp_init(&b); + if (shift > 0) { + mp_mul_2d(a, shift, &b); + } else if (shift < 0) { + mp_div_2d(a, -shift, &b, NULL); + } else { + mp_copy(a, &b); + } + + /* + * Accumulate the result, one mp_digit at a time. + */ + + r = 0.0; + for (i=b.used-1; i>=0; --i) { + r = ldexp(r, DIGIT_BIT) + b.dp[i]; + } + mp_clear(&b); + + /* + * Return the result with the appropriate sign. + */ + + *machexp = bits - mantBits + 2; + return ((a->sign == MP_ZPOS) ? r : -r); +} + +/* + *---------------------------------------------------------------------- + * + * Pow10TimesFrExp -- + * + * Multiply a power of ten by a number expressed as fraction and + * exponent. + * + * Results: + * Returns the significand of the result. + * + * Side effects: + * Overwrites the 'machexp' parameter with the exponent of the result. + * + * Assumes that 'exponent' is such that 10**exponent would be a double, even + * though 'fraction*10**(machexp+exponent)' might overflow. + * + *---------------------------------------------------------------------- + */ + +static double +Pow10TimesFrExp( + int exponent, /* Power of 10 to multiply by */ + double fraction, /* Significand of multiplicand */ + int *machexp) /* On input, exponent of multiplicand. On + * output, exponent of result. */ +{ + int i, j; + int expt = *machexp; + double retval = fraction; + + if (exponent > 0) { + /* + * Multiply by 10**exponent + */ + + retval = frexp(retval * pow10vals[exponent&0xf], &j); + expt += j; + for (i=4; i<9; ++i) { + if (exponent & (1<<i)) { + retval = frexp(retval * pow_10_2_n[i], &j); + expt += j; + } + } + } else if (exponent < 0) { + /* + * Divide by 10**-exponent + */ + + retval = frexp(retval / pow10vals[(-exponent) & 0xf], &j); + expt += j; + for (i=4; i<9; ++i) { + if ((-exponent) & (1<<i)) { + retval = frexp(retval / pow_10_2_n[i], &j); + expt += j; + } + } + } + + *machexp = expt; + return retval; +} + +/* + *---------------------------------------------------------------------- + * + * SafeLdExp -- + * + * Do an 'ldexp' operation, but handle denormals gracefully. + * + * Results: + * Returns the appropriately scaled value. + * + * On some platforms, 'ldexp' fails when presented with a number too + * small to represent as a normalized double. This routine does 'ldexp' + * in two steps for those numbers, to return correctly denormalized + * values. + * + *---------------------------------------------------------------------- + */ + +static double +SafeLdExp( + double fract, + int expt) +{ + int minexpt = DBL_MIN_EXP * log2FLT_RADIX; + volatile double a, b, retval; + + if (expt < minexpt) { + a = ldexp(fract, expt - mantBits - minexpt); + b = ldexp(1.0, mantBits + minexpt); + retval = a * b; + } else { + retval = ldexp(fract, expt); + } + return retval; +} + +/* + *---------------------------------------------------------------------- + * + * TclFormatNaN -- + * + * Makes the string representation of a "Not a Number" + * + * Results: + * None. + * + * Side effects: + * Stores the string representation in the supplied buffer, which must be + * at least TCL_DOUBLE_SPACE characters. + * + *---------------------------------------------------------------------- + */ + +void +TclFormatNaN( + double value, /* The Not-a-Number to format. */ + char *buffer) /* String representation. */ +{ +#ifndef IEEE_FLOATING_POINT + strcpy(buffer, "NaN"); + return; +#else + union { + double dv; + Tcl_WideUInt iv; + } bitwhack; + + bitwhack.dv = value; + if (n770_fp) { + bitwhack.iv = Nokia770Twiddle(bitwhack.iv); + } + if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { + bitwhack.iv &= ~ ((Tcl_WideUInt) 1 << 63); + *buffer++ = '-'; + } + *buffer++ = 'N'; + *buffer++ = 'a'; + *buffer++ = 'N'; + bitwhack.iv &= (((Tcl_WideUInt) 1) << 51) - 1; + if (bitwhack.iv != 0) { + sprintf(buffer, "(%" TCL_LL_MODIFIER "x)", bitwhack.iv); + } else { + *buffer = '\0'; + } +#endif /* IEEE_FLOATING_POINT */ +} + +/* + *---------------------------------------------------------------------- + * + * Nokia770Twiddle -- + * + * Transpose the two words of a number for Nokia 770 floating + * point handling. + * + *---------------------------------------------------------------------- + */ + +static Tcl_WideUInt +Nokia770Twiddle( + Tcl_WideUInt w) /* Number to transpose */ +{ + return (((w >> 32) & 0xffffffff) | (w << 32)); +} + +/* + *---------------------------------------------------------------------- + * + * TclNokia770Doubles -- + * + * Transpose the two words of a number for Nokia 770 floating + * point handling. + * + *---------------------------------------------------------------------- + */ + +int +TclNokia770Doubles(void) +{ + return n770_fp; +} + +/* + * Local Variables: + * mode: c + * c-basic-offset: 4 + * fill-column: 78 + * End: + */ |