diff options
Diffstat (limited to 'generic/tclStrToD.c')
| -rw-r--r--[-rwxr-xr-x] | generic/tclStrToD.c | 3421 | 
1 files changed, 2860 insertions, 561 deletions
| diff --git a/generic/tclStrToD.c b/generic/tclStrToD.c index dc19855..883e2ea 100755..100644 --- a/generic/tclStrToD.c +++ b/generic/tclStrToD.c @@ -1,6 +1,4 @@  /* - *---------------------------------------------------------------------- - *   * tclStrToD.c --   *   *	This file contains a collection of procedures for managing conversions @@ -9,24 +7,15 @@   *	into strings of digits, and procedures for interconversion among   *	'double' and 'mp_int' types.   * - * Copyright (c) 2005 by Kevin B. Kenny.  All rights reserved. + * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved.   *   * See the file "license.terms" for information on usage and redistribution of   * this file, and for a DISCLAIMER OF ALL WARRANTIES. - * - * RCS: @(#) $Id: tclStrToD.c,v 1.30 2007/04/23 17:34:07 kennykb Exp $ - * - *----------------------------------------------------------------------   */ -#include <tclInt.h> -#include <stdio.h> -#include <stdlib.h> -#include <float.h> -#include <limits.h> +#include "tclInt.h" +#include "tommath.h"  #include <math.h> -#include <ctype.h> -#include <tommath.h>  /*   * Define KILL_OCTAL to suppress interpretation of numbers with leading zero @@ -46,6 +35,11 @@  #endif  /* + * Rounding controls. (Thanks a lot, Intel!) + */ + +#ifdef __i386 +/*   * gcc on x86 needs access to rounding controls, because of a questionable   * feature where it retains intermediate results as IEEE 'long double' values   * somewhat unpredictably. It is tempting to include fpu_control.h, but that @@ -53,12 +47,52 @@   * and ix86-isms are factored out here.   */ -#if defined(__GNUC__) && defined(__i386) -typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); -#define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw)) -#define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw)) +#if defined(__GNUC__) +typedef unsigned int	fpu_control_t __attribute__ ((__mode__ (__HI__))); + +#define _FPU_GETCW(cw)	__asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw)) +#define _FPU_SETCW(cw)	__asm__ __volatile__ ("fldcw %0" : : "m" (*&cw))  #   define FPU_IEEE_ROUNDING	0x027f  #   define ADJUST_FPU_CONTROL_WORD +#define TCL_IEEE_DOUBLE_ROUNDING \ +    fpu_control_t roundTo53Bits = FPU_IEEE_ROUNDING;	\ +    fpu_control_t oldRoundingMode;			\ +    _FPU_GETCW(oldRoundingMode);			\ +    _FPU_SETCW(roundTo53Bits) +#define TCL_DEFAULT_DOUBLE_ROUNDING \ +    _FPU_SETCW(oldRoundingMode) + +/* + * Sun ProC needs sunmath for rounding control on x86 like gcc above. + */ +#elif defined(__sun) +#include <sunmath.h> +#define TCL_IEEE_DOUBLE_ROUNDING \ +    ieee_flags("set","precision","double",NULL) +#define TCL_DEFAULT_DOUBLE_ROUNDING \ +    ieee_flags("clear","precision",NULL,NULL) + +/* + * Other platforms are assumed to always operate in full IEEE mode, so we make + * the macros to go in and out of that mode do nothing. + */ + +#else /* !__GNUC__ && !__sun */ +#define TCL_IEEE_DOUBLE_ROUNDING	((void) 0) +#define TCL_DEFAULT_DOUBLE_ROUNDING	((void) 0) +#endif +#else /* !__i386 */ +#define TCL_IEEE_DOUBLE_ROUNDING	((void) 0) +#define TCL_DEFAULT_DOUBLE_ROUNDING	((void) 0) +#endif + +/* + * MIPS floating-point units need special settings in control registers to use + * gradual underflow as we expect.  This fix is for the MIPSpro compiler. + */ + +#if defined(__sgi) && defined(_COMPILER_VERSION) +#include <sys/fpu.h>  #endif  /* @@ -67,11 +101,11 @@ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));   */  #ifdef __hppa -#   define NAN_START 0x7ff4 -#   define NAN_MASK (((Tcl_WideUInt) 1) << 50) +#   define NAN_START	0x7ff4 +#   define NAN_MASK	(((Tcl_WideUInt) 1) << 50)  #else -#   define NAN_START 0x7ff8 -#   define NAN_MASK (((Tcl_WideUInt) 1) << 51) +#   define NAN_START	0x7ff8 +#   define NAN_MASK	(((Tcl_WideUInt) 1) << 51)  #endif  /* @@ -79,11 +113,71 @@ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));   * runtime).   */ +/* Magic constants */ + +#define LOG10_2 0.3010299956639812 +#define TWO_OVER_3LOG10 0.28952965460216784 +#define LOG10_3HALVES_PLUS_FUDGE 0.1760912590558 + +/* + * Definitions of the parts of an IEEE754-format floating point number. + */ + +#define SIGN_BIT 	0x80000000 +				/* Mask for the sign bit in the first word of +				 * a double. */ +#define EXP_MASK	0x7ff00000 +				/* Mask for the exponent field in the first +				 * word of a double. */ +#define EXP_SHIFT	20	/* Shift count to make the exponent an +				 * integer. */ +#define HIDDEN_BIT	(((Tcl_WideUInt) 0x00100000) << 32) +				/* Hidden 1 bit for the significand. */ +#define HI_ORDER_SIG_MASK 0x000fffff +				/* Mask for the high-order part of the +				 * significand in the first word of a +				 * double. */ +#define SIG_MASK	(((Tcl_WideUInt) HI_ORDER_SIG_MASK << 32) \ +			| 0xffffffff) +				/* Mask for the 52-bit significand. */ +#define FP_PRECISION	53	/* Number of bits of significand plus the +				 * hidden bit. */ +#define EXPONENT_BIAS	0x3ff	/* Bias of the exponent 0. */ + +/* + * Derived quantities. + */ + +#define TEN_PMAX	22	/* floor(FP_PRECISION*log(2)/log(5)) */ +#define QUICK_MAX	14	/* floor((FP_PRECISION-1)*log(2)/log(10))-1 */ +#define BLETCH		0x10	/* Highest power of two that is greater than +				 * DBL_MAX_10_EXP, divided by 16. */ +#define DIGIT_GROUP	8	/* floor(DIGIT_BIT*log(2)/log(10)) */ + +/* + * Union used to dismantle floating point numbers. + */ + +typedef union Double { +    struct { +#ifdef WORDS_BIGENDIAN +	int word0; +	int word1; +#else +	int word1; +	int word0; +#endif +    } w; +    double d; +    Tcl_WideUInt q; +} Double; +  static int maxpow10_wide;	/* The powers of ten that can be represented  				 * exactly as wide integers. */  static Tcl_WideUInt *pow10_wide;  #define MAXPOW	22 -static double pow10[MAXPOW+1];	/* The powers of ten that can be represented +static double pow10vals[MAXPOW+1]; +				/* The powers of ten that can be represented  				 * exactly as IEEE754 doubles. */  static int mmaxpow;		/* Largest power of ten that can be  				 * represented exactly in a 'double'. */ @@ -93,13 +187,11 @@ static int log2FLT_RADIX;	/* Logarithm of the floating point radix. */  static int mantBits;		/* Number of bits in a double's significand */  static mp_int pow5[9];		/* Table of powers of 5**(2**n), up to  				 * 5**256 */ -static double tiny;		/* The smallest representable double */ +static double tiny = 0.0;	/* The smallest representable double. */  static int maxDigits;		/* The maximum number of digits to the left of  				 * the decimal point of a double. */  static int minDigits;		/* The maximum number of digits to the right  				 * of the decimal point in a double. */ -static int mantDIGIT;		/* Number of mp_digit's needed to hold the -				 * significand of a double. */  static const double pow_10_2_n[] = {	/* Inexact higher powers of ten. */      1.0,      100.0, @@ -111,57 +203,192 @@ static const double pow_10_2_n[] = {	/* Inexact higher powers of ten. */      1.0e+128,      1.0e+256  }; +  static int n770_fp;		/* Flag is 1 on Nokia N770 floating point.  				 * Nokia's floating point has the words  				 * reversed: if big-endian is 7654 3210,  				 * and little-endian is       0123 4567,  				 * then Nokia's FP is         4567 0123; -				 * little-endian within the 32-bit words -				 * but big-endian between them. */ +				 * little-endian within the 32-bit words but +				 * big-endian between them. */ + +/* + * Table of powers of 5 that are small enough to fit in an mp_digit. + */ + +static const mp_digit dpow5[13] = { +               1,              5,             25,            125, +             625,           3125,          15625,          78125, +          390625,        1953125,        9765625,       48828125, +       244140625 +}; + +/* + * Table of powers: pow5_13[n] = 5**(13*2**(n+1)) + */ + +static mp_int pow5_13[5];	/* Table of powers: 5**13, 5**26, 5**52, +				 * 5**104, 5**208 */ +static const double tens[] = { +    1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09, +    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, +    1e20, 1e21, 1e22 +}; + +static const int itens [] = { +    1, +    10, +    100, +    1000, +    10000, +    100000, +    1000000, +    10000000, +    100000000 +}; + +static const double bigtens[] = { +    1e016, 1e032, 1e064, 1e128, 1e256 +}; +#define N_BIGTENS 5 + +static const int log2pow5[27] = { +    01,  3,  5,  7, 10, 12, 14, 17, 19, 21, +    24, 26, 28, 31, 33, 35, 38, 40, 42, 45, +    47, 49, 52, 54, 56, 59, 61 +}; +#define N_LOG2POW5 27 + +static const Tcl_WideUInt wuipow5[27] = { +    (Tcl_WideUInt) 1,		/* 5**0 */ +    (Tcl_WideUInt) 5, +    (Tcl_WideUInt) 25, +    (Tcl_WideUInt) 125, +    (Tcl_WideUInt) 625, +    (Tcl_WideUInt) 3125,	/* 5**5 */ +    (Tcl_WideUInt) 3125*5, +    (Tcl_WideUInt) 3125*25, +    (Tcl_WideUInt) 3125*125, +    (Tcl_WideUInt) 3125*625, +    (Tcl_WideUInt) 3125*3125,	/* 5**10 */ +    (Tcl_WideUInt) 3125*3125*5, +    (Tcl_WideUInt) 3125*3125*25, +    (Tcl_WideUInt) 3125*3125*125, +    (Tcl_WideUInt) 3125*3125*625, +    (Tcl_WideUInt) 3125*3125*3125, /* 5**15 */ +    (Tcl_WideUInt) 3125*3125*3125*5, +    (Tcl_WideUInt) 3125*3125*3125*25, +    (Tcl_WideUInt) 3125*3125*3125*125, +    (Tcl_WideUInt) 3125*3125*3125*625, +    (Tcl_WideUInt) 3125*3125*3125*3125,	/* 5**20 */ +    (Tcl_WideUInt) 3125*3125*3125*3125*5, +    (Tcl_WideUInt) 3125*3125*3125*3125*25, +    (Tcl_WideUInt) 3125*3125*3125*3125*125, +    (Tcl_WideUInt) 3125*3125*3125*3125*625, +    (Tcl_WideUInt) 3125*3125*3125*3125*3125,  /* 5**25 */ +    (Tcl_WideUInt) 3125*3125*3125*3125*3125*5 /* 5**26 */ +};  /*   * Static functions defined in this file.   */ -static double		AbsoluteValue(double v, int *signum); -static int		AccumulateDecimalDigit(unsigned, int,  +static int		AccumulateDecimalDigit(unsigned, int,  			    Tcl_WideUInt *, mp_int *, int); -static double		BignumToBiasedFrExp(mp_int *big, int* machexp); -static int		GetIntegerTimesPower(double v, mp_int *r, int *e);  static double		MakeHighPrecisionDouble(int signum,  			    mp_int *significand, int nSigDigs, int exponent);  static double		MakeLowPrecisionDouble(int signum,  			    Tcl_WideUInt significand, int nSigDigs,  			    int exponent); +#ifdef IEEE_FLOATING_POINT  static double		MakeNaN(int signum, Tcl_WideUInt tag); -static Tcl_WideUInt	Nokia770Twiddle(Tcl_WideUInt w); -static double		Pow10TimesFrExp(int exponent, double fraction, -			    int *machexp); +#endif  static double		RefineApproximation(double approx,  			    mp_int *exactSignificand, int exponent); +static void		MulPow5(mp_int *, unsigned, mp_int *); +static int 		NormalizeRightward(Tcl_WideUInt *); +static int		RequiredPrecision(Tcl_WideUInt); +static void		DoubleToExpAndSig(double, Tcl_WideUInt *, int *, +			    int *); +static void		TakeAbsoluteValue(Double *, int *); +static char *		FormatInfAndNaN(Double *, int *, char **); +static char *		FormatZero(int *, char **); +static int		ApproximateLog10(Tcl_WideUInt, int, int); +static int		BetterLog10(double, int, int *); +static void		ComputeScale(int, int, int *, int *, int *, int *); +static void		SetPrecisionLimits(int, int, int *, int *, int *, +			    int *); +static char *		BumpUp(char *, char *, int *); +static int		AdjustRange(double *, int); +static char *		ShorteningQuickFormat(double, int, int, double, +			    char *, int *); +static char *		StrictQuickFormat(double, int, int, double, +			    char *, int *); +static char *		QuickConversion(double, int, int, int, int, int, int, +			    int *, char **); +static void		CastOutPowersOf2(int *, int *, int *); +static char *		ShorteningInt64Conversion(Double *, int, Tcl_WideUInt, +			    int, int, int, int, int, int, int, int, int, +			    int, int, int *, char **); +static char *		StrictInt64Conversion(Double *, int, Tcl_WideUInt, +			    int, int, int, int, int, int, +			    int, int, int *, char **); +static int		ShouldBankerRoundUpPowD(mp_int *, int, int); +static int		ShouldBankerRoundUpToNextPowD(mp_int *, mp_int *, +			    int, int, int, mp_int *); +static char *		ShorteningBignumConversionPowD(Double *dPtr, +			    int convType, Tcl_WideUInt bw, int b2, int b5, +			    int m2plus, int m2minus, int m5, +			    int sd, int k, int len, +			    int ilim, int ilim1, int *decpt, +			    char **endPtr); +static char *		StrictBignumConversionPowD(Double *dPtr, int convType, +			    Tcl_WideUInt bw, int b2, int b5, +			    int sd, int k, int len, +			    int ilim, int ilim1, int *decpt, +			    char **endPtr); +static int		ShouldBankerRoundUp(mp_int *, mp_int *, int); +static int		ShouldBankerRoundUpToNext(mp_int *, mp_int *, +			    mp_int *, int, int, mp_int *); +static char *		ShorteningBignumConversion(Double *dPtr, int convType, +			    Tcl_WideUInt bw, int b2, +			    int m2plus, int m2minus, +			    int s2, int s5, int k, int len, +			    int ilim, int ilim1, int *decpt, +			    char **endPtr); +static char *		StrictBignumConversion(Double *dPtr, int convType, +			    Tcl_WideUInt bw, int b2, +			    int s2, int s5, int k, int len, +			    int ilim, int ilim1, int *decpt, +			    char **endPtr); +static double		BignumToBiasedFrExp(const mp_int *big, int *machexp); +static double		Pow10TimesFrExp(int exponent, double fraction, +			    int *machexp);  static double		SafeLdExp(double fraction, int exponent); +#ifdef IEEE_FLOATING_POINT +static Tcl_WideUInt	Nokia770Twiddle(Tcl_WideUInt w); +#endif  /*   *----------------------------------------------------------------------   *   * TclParseNumber --   * - *	Scans bytes, interpreted as characters in Tcl's internal encoding, - *	and parses the longest prefix that is the string representation of - *	a number in a format recognized by Tcl. + *	Scans bytes, interpreted as characters in Tcl's internal encoding, and + *	parses the longest prefix that is the string representation of a + *	number in a format recognized by Tcl.   *   *	The arguments bytes, numBytes, and objPtr are the inputs which - *	determine the string to be parsed.  If bytes is non-NULL, it - *	points to the first byte to be scanned.  If bytes is NULL, then objPtr - *	must be non-NULL, and the string representation of objPtr will be - *	scanned (generated first, if necessary).  The numBytes argument - *	determines the number of bytes to be scanned.  If numBytes is - *	negative, the first NUL byte encountered will terminate the scan. - *	If numBytes is non-negative, then no more than numBytes bytes will - *	be scanned.   + *	determine the string to be parsed. If bytes is non-NULL, it points to + *	the first byte to be scanned. If bytes is NULL, then objPtr must be + *	non-NULL, and the string representation of objPtr will be scanned + *	(generated first, if necessary). The numBytes argument determines the + *	number of bytes to be scanned. If numBytes is negative, the first NUL + *	byte encountered will terminate the scan. If numBytes is non-negative, + *	then no more than numBytes bytes will be scanned.   *   *	The argument flags is an input that controls the numeric formats - *	recognized by the parser.  The flag bits are: + *	recognized by the parser. The flag bits are:   *   *	- TCL_PARSE_INTEGER_ONLY:	accept only integer values; reject   *		strings that denote floating point values (or accept only the @@ -169,71 +396,73 @@ static double		SafeLdExp(double fraction, int exponent);   *	- TCL_PARSE_SCAN_PREFIXES:	ignore the prefixes 0b and 0o that are   *		not part of the [scan] command's vocabulary. Use only in   *		combination with TCL_PARSE_INTEGER_ONLY. - * 	- TCL_PARSE_OCTAL_ONLY:		parse only in the octal format, whether - *		or not a prefix is present that would lead to octal parsing. Use - *		only in combination with TCL_PARSE_INTEGER_ONLY. - * 	- TCL_PARSE_HEXADECIMAL_ONLY:	parse only in the hexadecimal format, + *	- TCL_PARSE_OCTAL_ONLY:		parse only in the octal format, whether + *		or not a prefix is present that would lead to octal parsing. + *		Use only in combination with TCL_PARSE_INTEGER_ONLY. + *	- TCL_PARSE_HEXADECIMAL_ONLY:	parse only in the hexadecimal format,   *		whether or not a prefix is present that would lead to   *		hexadecimal parsing. Use only in combination with   *		TCL_PARSE_INTEGER_ONLY. - * 	- TCL_PARSE_DECIMAL_ONLY:	parse only in the decimal format, no - *		matter whether a 0 prefix would normally force a different base. + *	- TCL_PARSE_DECIMAL_ONLY:	parse only in the decimal format, no + *		matter whether a 0 prefix would normally force a different + *		base.   *	- TCL_PARSE_NO_WHITESPACE:	reject any leading/trailing whitespace   * - *	The arguments interp and expected are inputs that control error message - * 	generation.  If interp is NULL, no error message will be generated. - *	If interp is non-NULL, then expected must also be non-NULL.  When - *	TCL_ERROR is returned, an error message will be left in the result - *	of interp, and the expected argument will appear in the error message - *	as the thing TclParseNumber expected, but failed to find in the string. + *	The arguments interp and expected are inputs that control error + *	message generation. If interp is NULL, no error message will be + *	generated. If interp is non-NULL, then expected must also be non-NULL. + *	When TCL_ERROR is returned, an error message will be left in the + *	result of interp, and the expected argument will appear in the error + *	message as the thing TclParseNumber expected, but failed to find in + *	the string.   *   *	The arguments objPtr and endPtrPtr as well as the return code are the   *	outputs.   *   *	When the parser cannot find any prefix of the string that matches a   *	format it is looking for, TCL_ERROR is returned and an error message - *	may be generated and returned as described above.  The contents of - *	objPtr will not be changed.  If endPtrPtr is non-NULL, a pointer to - *	the character in the string that terminated the scan will be written - *	to *endPtrPtr. - * - *	When the parser determines that the entire string matches a format - *	it is looking for, TCL_OK is returned, and if objPtr is non-NULL, - *	then the internal rep and Tcl_ObjType of objPtr are set	to the - *	"canonical" numeric value that matches the scanned string.  If - *	endPtrPtr is non-NULL, a pointer to the end of the string will be - *	written to *endPtrPtr (that is, either bytes+numBytes or a pointer - *	to a terminating NUL byte). - * - *	When the parser determines that a partial string matches a format - *	it is looking for, the value of endPtrPtr determines what happens: + *	may be generated and returned as described above. The contents of + *	objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to the + *	character in the string that terminated the scan will be written to + *	*endPtrPtr. + * + *	When the parser determines that the entire string matches a format it + *	is looking for, TCL_OK is returned, and if objPtr is non-NULL, then + *	the internal rep and Tcl_ObjType of objPtr are set to the "canonical" + *	numeric value that matches the scanned string. If endPtrPtr is not + *	NULL, a pointer to the end of the string will be written to *endPtrPtr + *	(that is, either bytes+numBytes or a pointer to a terminating NUL + *	byte). + * + *	When the parser determines that a partial string matches a format it + *	is looking for, the value of endPtrPtr determines what happens:   *   *	- If endPtrPtr is NULL, then TCL_ERROR is returned, with error message   *		generation as above.   *   *	- If endPtrPtr is non-NULL, then TCL_OK is returned and objPtr - *		internals are set as above.  Also, a pointer to the first - *		character following the parsed numeric string is written - *		to *endPtrPtr. + *		internals are set as above. Also, a pointer to the first + *		character following the parsed numeric string is written to + *		*endPtrPtr.   *   *	In some cases where the string being scanned is the string rep of - *	objPtr, this routine can leave objPtr in an inconsistent state - *	where its string rep and its internal rep do not agree.  In these - *	cases the internal rep will be in agreement with only some substring - *	of the string rep.  This might happen if the caller passes in a - * 	non-NULL bytes value that points somewhere into the string rep.  It - *	might happen if the caller passes in a numBytes value that limits the  - * 	scan to only a prefix of the string rep.  Or it might happen if a - *	non-NULL value of endPtrPtr permits a TCL_OK return from only a partial - *	string match.  It is the responsibility of the caller to detect and - *	correct such inconsistencies when they can and do arise. + *	objPtr, this routine can leave objPtr in an inconsistent state where + *	its string rep and its internal rep do not agree. In these cases the + *	internal rep will be in agreement with only some substring of the + *	string rep. This might happen if the caller passes in a non-NULL bytes + *	value that points somewhere into the string rep. It might happen if + *	the caller passes in a numBytes value that limits the scan to only a + *	prefix of the string rep. Or it might happen if a non-NULL value of + *	endPtrPtr permits a TCL_OK return from only a partial string match. It + *	is the responsibility of the caller to detect and correct such + *	inconsistencies when they can and do arise.   *   * Results:   *	Returns a standard Tcl result.   *   * Side effects:   *	The string representaton of objPtr may be generated. - *	 + *   *	The internal representation and Tcl_ObjType of objPtr may be changed.   *	This may involve allocation and/or freeing of memory.   * @@ -242,21 +471,23 @@ static double		SafeLdExp(double fraction, int exponent);  int  TclParseNumber( -    Tcl_Interp *interp,		/* Used for error reporting. May be NULL */ -    Tcl_Obj *objPtr,		/* Object to receive the internal rep */ -    const char *expected,	/* Description of the type of number the caller -				 * expects to be able to parse ("integer",  -				 * "boolean value", etc.). */ -    const char *bytes,		/* Pointer to the start of the string to scan */ -    int numBytes,		/* Maximum number of bytes to scan, see above */ +    Tcl_Interp *interp,		/* Used for error reporting. May be NULL. */ +    Tcl_Obj *objPtr,		/* Object to receive the internal rep. */ +    const char *expected,	/* Description of the type of number the +				 * caller expects to be able to parse +				 * ("integer", "boolean value", etc.). */ +    const char *bytes,		/* Pointer to the start of the string to +				 * scan. */ +    int numBytes,		/* Maximum number of bytes to scan, see +				 * above. */      const char **endPtrPtr,	/* Place to store pointer to the character -				 * that terminated the scan */ -    int flags)			/* Flags governing the parse */ +				 * that terminated the scan. */ +    int flags)			/* Flags governing the parse. */  {      enum State { -	INITIAL, SIGNUM, ZERO, ZERO_X,  +	INITIAL, SIGNUM, ZERO, ZERO_X,  	ZERO_O, ZERO_B, BINARY, -	HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL,  +	HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL,  	LEADING_RADIX_POINT, FRACTION,  	EXPONENT_START, EXPONENT_SIGNUM, EXPONENT,  	sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY @@ -266,38 +497,38 @@ TclParseNumber(      } state = INITIAL;      enum State acceptState = INITIAL; -    int signum = 0;		/* Sign of the number being parsed */ +    int signum = 0;		/* Sign of the number being parsed. */      Tcl_WideUInt significandWide = 0;  				/* Significand of the number being parsed (if -				 * no overflow) */ +				 * no overflow). */      mp_int significandBig;	/* Significand of the number being parsed (if -				 * it overflows significandWide) */ -    int significandOverflow = 0;/* Flag==1 iff significandBig is used */ +				 * it overflows significandWide). */ +    int significandOverflow = 0;/* Flag==1 iff significandBig is used. */      Tcl_WideUInt octalSignificandWide = 0;  				/* Significand of an octal number; needed  				 * because we don't know whether a number with  				 * a leading zero is octal or decimal until -				 * we've scanned forward to a '.' or 'e' */ +				 * we've scanned forward to a '.' or 'e'. */      mp_int octalSignificandBig;	/* Significand of octal number once -				 * octalSignificandWide overflows */ +				 * octalSignificandWide overflows. */      int octalSignificandOverflow = 0; -				/* Flag==1 if octalSignificandBig is used */ +				/* Flag==1 if octalSignificandBig is used. */      int numSigDigs = 0;		/* Number of significant digits in the decimal -				 * significand */ +				 * significand. */      int numTrailZeros = 0;	/* Number of trailing zeroes at the current  				 * point in the parse. */      int numDigitsAfterDp = 0;	/* Number of digits scanned after the decimal -				 * point */ +				 * point. */      int exponentSignum = 0;	/* Signum of the exponent of a floating point -				 * number */ -    long exponent = 0;		/* Exponent of a floating point number */ -    const char *p;		/* Pointer to next character to scan */ -    size_t len;			/* Number of characters remaining after p */ +				 * number. */ +    long exponent = 0;		/* Exponent of a floating point number. */ +    const char *p;		/* Pointer to next character to scan. */ +    size_t len;			/* Number of characters remaining after p. */      const char *acceptPoint;	/* Pointer to position after last character in -				 * an acceptable number */ +				 * an acceptable number. */      size_t acceptLen;		/* Number of characters following that  				 * point. */ -    int status = TCL_OK;	/* Status to return to caller */ +    int status = TCL_OK;	/* Status to return to caller. */      char d = 0;			/* Last hexadecimal digit scanned; initialized  				 * to avoid a compiler warning. */      int shift = 0;		/* Amount to shift when accumulating binary */ @@ -306,7 +537,7 @@ TclParseNumber(  #define ALL_BITS	(~(Tcl_WideUInt)0)  #define MOST_BITS	(ALL_BITS >> 1) -    /*  +    /*       * Initialize bytes to start of the object's string rep if the caller       * didn't pass anything else.       */ @@ -329,7 +560,7 @@ TclParseNumber(  	     * I, N, and whitespace.  	     */ -	    if (isspace(UCHAR(c))) { +	    if (TclIsSpaceProc(c)) {  		if (flags & TCL_PARSE_NO_WHITESPACE) {  		    goto endgame;  		} @@ -341,9 +572,9 @@ TclParseNumber(  		signum = 1;  		state = SIGNUM;  		break; -	    }  +	    }  	    /* FALLTHROUGH */ -	     +  	case SIGNUM:  	    /*  	     * Scanned a leading + or -. Acceptable characters are digits, @@ -359,6 +590,8 @@ TclParseNumber(  		break;  	    } else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) {  		goto zerox; +	    } else if (flags & TCL_PARSE_BINARY_ONLY) { +		goto zerob;  	    } else if (flags & TCL_PARSE_OCTAL_ONLY) {  		goto zeroo;  	    } else if (isdigit(UCHAR(c))) { @@ -385,9 +618,9 @@ TclParseNumber(  	case ZERO:  	    /*  	     * Scanned a leading zero (perhaps with a + or -). Acceptable -	     * inputs are digits, period, X, and E. If 8 or 9 is encountered, -	     * the number can't be octal. This state and the OCTAL state -	     * differ only in whether they recognize 'X'. +	     * inputs are digits, period, X, b, and E. If 8 or 9 is +	     * encountered, the number can't be octal. This state and the +	     * OCTAL state differ only in whether they recognize 'X' and 'b'.  	     */  	    acceptState = state; @@ -407,6 +640,9 @@ TclParseNumber(  		state = ZERO_B;  		break;  	    } +	    if (flags & TCL_PARSE_BINARY_ONLY) { +		goto zerob; +	    }  	    if (c == 'o' || c == 'O') {  		explicitOctal = 1;  		state = ZERO_O; @@ -431,7 +667,7 @@ TclParseNumber(  	case ZERO_O:  	zeroo:  	    if (c == '0') { -		++numTrailZeros; +		numTrailZeros++;  		state = OCTAL;  		break;  	    } else if (c >= '1' && c <= '7') { @@ -449,10 +685,11 @@ TclParseNumber(  			 * too large shifts first.  			 */ -			if ((octalSignificandWide != 0)  -				&& (((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt))  -				|| (octalSignificandWide  -				> (~(Tcl_WideUInt)0 >> shift)))) { +			if ((octalSignificandWide != 0) +				&& (((size_t)shift >= +					CHAR_BIT*sizeof(Tcl_WideUInt)) +				|| (octalSignificandWide > +					(~(Tcl_WideUInt)0 >> shift)))) {  			    octalSignificandOverflow = 1;  			    TclBNInitBignumFromWideUInt(&octalSignificandBig,  				    octalSignificandWide); @@ -482,8 +719,7 @@ TclParseNumber(  	case BAD_OCTAL:  	    if (explicitOctal) {  		/* -		 * No forgiveness for bad digits in explicitly octal -		 * numbers. +		 * No forgiveness for bad digits in explicitly octal numbers.  		 */  		goto endgame; @@ -504,7 +740,7 @@ TclParseNumber(  	     */  	    if (c == '0') { -		++numTrailZeros; +		numTrailZeros++;  		state = BAD_OCTAL;  		break;  	    } else if (isdigit(UCHAR(c))) { @@ -528,7 +764,7 @@ TclParseNumber(  	    } else if (c == 'E' || c == 'e') {  		state = EXPONENT_START;  		break; -	    }  +	    }  #endif  	    goto endgame; @@ -547,7 +783,7 @@ TclParseNumber(  	case ZERO_X:  	zerox:  	    if (c == '0') { -		++numTrailZeros; +		numTrailZeros++;  		state = HEXADECIMAL;  		break;  	    } else if (isdigit(UCHAR(c))) { @@ -592,8 +828,9 @@ TclParseNumber(  	    acceptPoint = p;  	    acceptLen = len;  	case ZERO_B: +	zerob:  	    if (c == '0') { -		++numTrailZeros; +		numTrailZeros++;  		state = BINARY;  		break;  	    } else if (c != '1') { @@ -640,14 +877,14 @@ TclParseNumber(  	    acceptPoint = p;  	    acceptLen = len;  	    if (c == '0') { -		++numTrailZeros; +		numTrailZeros++;  		state = DECIMAL;  		break;  	    } else if (isdigit(UCHAR(c))) {  		if (objPtr != NULL) {  		    significandOverflow = AccumulateDecimalDigit( -			    (unsigned)(c - '0'), numTrailZeros,  -			    &significandWide, &significandBig,  +			    (unsigned)(c - '0'), numTrailZeros, +			    &significandWide, &significandBig,  			    significandOverflow);  		}  		numSigDigs += numTrailZeros+1; @@ -665,7 +902,7 @@ TclParseNumber(  	    }  	    goto endgame; -	    /*  +	    /*  	     * Found a decimal point. If no digits have yet been scanned, E is  	     * not allowed; otherwise, it introduces the exponent. If at least  	     * one digit has been found, we have a possible complete number. @@ -683,16 +920,16 @@ TclParseNumber(  	case LEADING_RADIX_POINT:  	    if (c == '0') { -		++numDigitsAfterDp; -		++numTrailZeros; +		numDigitsAfterDp++; +		numTrailZeros++;  		state = FRACTION;  		break;  	    } else if (isdigit(UCHAR(c))) { -		++numDigitsAfterDp; +		numDigitsAfterDp++;  		if (objPtr != NULL) {  		    significandOverflow = AccumulateDecimalDigit( -			    (unsigned)(c-'0'), numTrailZeros,  -			    &significandWide, &significandBig,  +			    (unsigned)(c-'0'), numTrailZeros, +			    &significandWide, &significandBig,  			    significandOverflow);  		}  		if (numSigDigs != 0) { @@ -707,7 +944,7 @@ TclParseNumber(  	    goto endgame;  	case EXPONENT_START: -	    /*  +	    /*  	     * Scanned the E at the start of an exponent. Make sure a legal  	     * character follows before using the C library strtol routine,  	     * which allows whitespace. @@ -737,7 +974,7 @@ TclParseNumber(  	    goto endgame;  	case EXPONENT: -	    /*  +	    /*  	     * Found an exponent with at least one digit. Accumulate it,  	     * making sure to hard-pin it to LONG_MAX on overflow.  	     */ @@ -765,13 +1002,13 @@ TclParseNumber(  	    if (c == 'n' || c == 'N') {  		state = sIN;  		break; -	    }  +	    }  	    goto endgame;  	case sIN:  	    if (c == 'f' || c == 'F') {  		state = sINF;  		break; -	    }  +	    }  	    goto endgame;  	case sINF:  	    acceptState = state; @@ -843,7 +1080,7 @@ TclParseNumber(  	    }  	    /* FALLTHROUGH */  	case sNANPAREN: -	    if (isspace(UCHAR(c))) { +	    if (TclIsSpaceProc(c)) {  		break;  	    }  	    if (numSigDigs < 13) { @@ -853,7 +1090,10 @@ TclParseNumber(  		    d = 10 + c - 'a';  		} else if (c >= 'A' && c <= 'F') {  		    d = 10 + c - 'A'; +		} else { +		    goto endgame;  		} +		numSigDigs++;  		significandWide = (significandWide << 4) + d;  		state = sNANHEX;  		break; @@ -868,26 +1108,35 @@ TclParseNumber(  	    acceptLen = len;  	    goto endgame;  	} -	++p;  -	--len; +	p++; +	len--;      }    endgame:      if (acceptState == INITIAL) { -	/* No numeric string at all found */ +	/* +	 * No numeric string at all found. +	 */ +  	status = TCL_ERROR;  	if (endPtrPtr != NULL) {  	    *endPtrPtr = p;  	}      } else { -	/* Back up to the last accepting state in the lexer. */ +	/* +	 * Back up to the last accepting state in the lexer. +	 */ +  	p = acceptPoint;  	len = acceptLen;  	if (!(flags & TCL_PARSE_NO_WHITESPACE)) { -	    /* Accept trailing whitespace */ -	    while (len != 0 && isspace(UCHAR(*p))) { -		++p; -		--len; +	    /* +	     * Accept trailing whitespace. +	     */ + +	    while (len != 0 && TclIsSpaceProc(*p)) { +		p++; +		len--;  	    }  	}  	if (endPtrPtr == NULL) { @@ -920,13 +1169,14 @@ TclParseNumber(  	case sINFIN:  	case sINFINI:  	case sINFINIT: +#ifdef IEEE_FLOATING_POINT  	case sN:  	case sNA:  	case sNANPAREN:  	case sNANHEX:  	    Tcl_Panic("TclParseNumber: bad acceptState %d parsing '%s'",  		    acceptState, bytes); - +#endif  	case BINARY:  	    shift = numTrailZeros;  	    if (!significandOverflow && significandWide != 0 && @@ -967,7 +1217,7 @@ TclParseNumber(  	case OCTAL:  	    /* -	     * Returning an octal integer. Final scaling step +	     * Returning an octal integer. Final scaling step.  	     */  	    shift = 3 * numTrailZeros; @@ -987,9 +1237,9 @@ TclParseNumber(  		}  	    }  	    if (!octalSignificandOverflow) { -		if (octalSignificandWide >  +		if (octalSignificandWide >  			(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { -#ifndef NO_WIDE_TYPE +#ifndef TCL_WIDE_INT_IS_LONG  		    if (octalSignificandWide <= (MOST_BITS + signum)) {  			objPtr->typePtr = &tclWideIntType;  			if (signum) { @@ -1021,22 +1271,22 @@ TclParseNumber(  		    mp_neg(&octalSignificandBig, &octalSignificandBig);  		}  		TclSetBignumIntRep(objPtr, &octalSignificandBig); -	    }		 +	    }  	    break;  	case ZERO:  	case DECIMAL:  	    significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1,  		    &significandWide, &significandBig, significandOverflow); -	    if (!significandOverflow && (significandWide > MOST_BITS+signum)) { +	    if (!significandOverflow && (significandWide > MOST_BITS+signum)){  		significandOverflow = 1;  		TclBNInitBignumFromWideUInt(&significandBig, significandWide);  	    }  	returnInteger:  	    if (!significandOverflow) { -		if (significandWide >  +		if (significandWide >  			(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { -#ifndef NO_WIDE_TYPE +#ifndef TCL_WIDE_INT_IS_LONG  		    if (significandWide <= MOST_BITS+signum) {  			objPtr->typePtr = &tclWideIntType;  			if (signum) { @@ -1084,16 +1334,16 @@ TclParseNumber(  	    objPtr->typePtr = &tclDoubleType;  	    if (exponentSignum) { -		exponent = - exponent; +		exponent = -exponent;  	    }  	    if (!significandOverflow) {  		objPtr->internalRep.doubleValue = MakeLowPrecisionDouble(  			signum, significandWide, numSigDigs, -			(numTrailZeros + exponent - numDigitsAfterDp)); +			numTrailZeros + exponent - numDigitsAfterDp);  	    } else {  		objPtr->internalRep.doubleValue = MakeHighPrecisionDouble(  			signum, &significandBig, numSigDigs, -			(numTrailZeros + exponent - numDigitsAfterDp)); +			numTrailZeros + exponent - numDigitsAfterDp);  	    }  	    break; @@ -1107,14 +1357,15 @@ TclParseNumber(  	    objPtr->typePtr = &tclDoubleType;  	    break; +#ifdef IEEE_FLOATING_POINT  	case sNAN:  	case sNANFINISH: -	    objPtr->internalRep.doubleValue = MakeNaN(signum, significandWide); +	    objPtr->internalRep.doubleValue = MakeNaN(signum,significandWide);  	    objPtr->typePtr = &tclDoubleType;  	    break; - +#endif  	case INITIAL: -	    /* This case only to silence compiler warning */ +	    /* This case only to silence compiler warning. */  	    Tcl_Panic("TclParseNumber: state INITIAL can't happen here");  	}      } @@ -1125,17 +1376,16 @@ TclParseNumber(      if (status != TCL_OK) {  	if (interp != NULL) { -	    Tcl_Obj *msg; +	    Tcl_Obj *msg = Tcl_ObjPrintf("expected %s but got \"", +		    expected); -	    TclNewLiteralStringObj(msg, "expected "); -	    Tcl_AppendToObj(msg, expected, -1); -	    Tcl_AppendToObj(msg, " but got \"", -1);  	    Tcl_AppendLimitedToObj(msg, bytes, numBytes, 50, "");  	    Tcl_AppendToObj(msg, "\"", -1);  	    if (state == BAD_OCTAL) {  		Tcl_AppendToObj(msg, " (looks like invalid octal number)", -1);  	    }  	    Tcl_SetObjResult(interp, msg); +	    Tcl_SetErrorCode(interp, "TCL", "VALUE", "NUMBER", NULL);  	}      } @@ -1185,7 +1435,7 @@ AccumulateDecimalDigit(      Tcl_WideUInt w;      /* -     * Try wide multiplication first +     * Try wide multiplication first.       */      if (!bignumFlag) { @@ -1194,20 +1444,22 @@ AccumulateDecimalDigit(  	    /*  	     * There's no need to multiply if the multiplicand is zero.  	     */ +  	    *wideRepPtr = digit;  	    return 0;  	} else if (numZeros >= maxpow10_wide -		  || w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) { +		|| w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) {  	    /* -	     * Wide multiplication will overflow.  Expand the -	     * number to a bignum and fall through into the bignum case. +	     * Wide multiplication will overflow.  Expand the number to a +	     * bignum and fall through into the bignum case.  	     */ -	     -	    TclBNInitBignumFromWideUInt (bignumRepPtr, w); + +	    TclBNInitBignumFromWideUInt(bignumRepPtr, w);  	} else {  	    /*  	     * Wide multiplication.  	     */ +  	    *wideRepPtr = w * pow10_wide[numZeros+1] + digit;  	    return 0;  	} @@ -1226,7 +1478,7 @@ AccumulateDecimalDigit(  		bignumRepPtr);  	mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr);      } else { -	/*  +	/*  	 * More than single digit multiplication. Multiply by the appropriate  	 * small powers of 5, and then shift. Large strings of zeroes are  	 * eaten 256 at a time; this is less efficient than it could be, but @@ -1275,12 +1527,12 @@ AccumulateDecimalDigit(  static double  MakeLowPrecisionDouble(      int signum,			/* 1 if the number is negative, 0 otherwise */ -    Tcl_WideUInt significand,	/* Significand of the number */ -    int numSigDigs,		/* Number of digits in the significand */ -    int exponent)		/* Power of ten */ +    Tcl_WideUInt significand,	/* Significand of the number. */ +    int numSigDigs,		/* Number of digits in the significand. */ +    int exponent)		/* Power of ten. */  { -    double retval;		/* Value of the number */ -    mp_int significandBig;	/* Significand expressed as a bignum */ +    double retval;		/* Value of the number. */ +    mp_int significandBig;	/* Significand expressed as a bignum. */      /*       * With gcc on x86, the floating point rounding mode is double-extended. @@ -1290,12 +1542,7 @@ MakeLowPrecisionDouble(       * ulp, so we need to change rounding mode to 53-bits.       */ -#if defined(__GNUC__) && defined(__i386) -    fpu_control_t roundTo53Bits = 0x027f; -    fpu_control_t oldRoundingMode; -    _FPU_GETCW(oldRoundingMode); -    _FPU_SETCW(roundTo53Bits); -#endif +    TCL_IEEE_DOUBLE_ROUNDING;      /*       * Test for the easy cases. @@ -1304,39 +1551,42 @@ MakeLowPrecisionDouble(      if (numSigDigs <= DBL_DIG) {  	if (exponent >= 0) {  	    if (exponent <= mmaxpow) { -		/*  +		/*  		 * The significand is an exact integer, and so is  		 * 10**exponent. The product will be correct to within 1/2 ulp  		 * without special handling.  		 */ -		retval = (double)(Tcl_WideInt)significand * pow10[ exponent ]; +		retval = (double) +			((Tcl_WideInt)significand * pow10vals[exponent]);  		goto returnValue;  	    } else {  		int diff = DBL_DIG - numSigDigs; +  		if (exponent-diff <= mmaxpow) { -		    /*  +		    /*  		     * 10**exponent is not an exact integer, but  		     * 10**(exponent-diff) is exact, and so is  		     * significand*10**diff, so we can still compute the value  		     * with only one roundoff.  		     */ -		    volatile double factor = -			    (double)(Tcl_WideInt)significand * pow10[diff]; -		    retval = factor * pow10[exponent-diff]; +		    volatile double factor = (double) +			    ((Tcl_WideInt)significand * pow10vals[diff]); +		    retval = factor * pow10vals[exponent-diff];  		    goto returnValue;  		}  	    }  	} else {  	    if (exponent >= -mmaxpow) { -		/*  +		/*  		 * 10**-exponent is an exact integer, and so is the  		 * significand. Compute the result by one division, again with  		 * only one rounding.  		 */ -		retval = (double)(Tcl_WideInt)significand / pow10[-exponent]; +		retval = (double) +			((Tcl_WideInt)significand / pow10vals[-exponent]);  		goto returnValue;  	    }  	} @@ -1351,7 +1601,7 @@ MakeLowPrecisionDouble(      retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs,  	    exponent);      mp_clear(&significandBig); -     +      /*       * Come here to return the computed value.       */ @@ -1365,9 +1615,7 @@ MakeLowPrecisionDouble(       * On gcc on x86, restore the floating point mode word.       */ -#if defined(__GNUC__) && defined(__i386) -    _FPU_SETCW(oldRoundingMode); -#endif +    TCL_DEFAULT_DOUBLE_ROUNDING;      return retval;  } @@ -1392,13 +1640,13 @@ MakeLowPrecisionDouble(  static double  MakeHighPrecisionDouble( -    int signum,			/* 1=negative, 0=nonnegative */ -    mp_int *significand,	/* Exact significand of the number */ -    int numSigDigs,		/* Number of significant digits */ -    int exponent)		/* Power of 10 by which to multiply */ +    int signum,			/* 1=negative, 0=nonnegative. */ +    mp_int *significand,	/* Exact significand of the number. */ +    int numSigDigs,		/* Number of significant digits. */ +    int exponent)		/* Power of 10 by which to multiply. */  {      double retval; -    int machexp;		/* Machine exponent of a power of 10 */ +    int machexp;		/* Machine exponent of a power of 10. */      /*       * With gcc on x86, the floating point rounding mode is double-extended. @@ -1408,12 +1656,7 @@ MakeHighPrecisionDouble(       * ulp, so we need to change rounding mode to 53-bits.       */ -#if defined(__GNUC__) && defined(__i386) -    fpu_control_t roundTo53Bits = 0x027f; -    fpu_control_t oldRoundingMode; -    _FPU_GETCW(oldRoundingMode); -    _FPU_SETCW(roundTo53Bits); -#endif +    TCL_IEEE_DOUBLE_ROUNDING;      /*       * Quick checks for over/underflow. @@ -1428,7 +1671,7 @@ MakeHighPrecisionDouble(  	goto returnValue;      } -    /*  +    /*       * Develop a first approximation to the significand. It is tempting simply       * to force bignum to double, but that will overflow on input numbers like       * 1.[string repeat 0 1000]1; while this is a not terribly likely @@ -1444,11 +1687,14 @@ MakeHighPrecisionDouble(  	goto returnValue;      }      retval = SafeLdExp(retval, machexp); +	if (tiny == 0.0) { +	    tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits); +	}      if (retval < tiny) {  	retval = tiny;      } -    /*  +    /*       * Refine the result twice. (The second refinement should be necessary       * only if the best approximation is a power of 2 minus 1/2 ulp).       */ @@ -1469,9 +1715,8 @@ MakeHighPrecisionDouble(       * On gcc on x86, restore the floating point mode word.       */ -#if defined(__GNUC__) && defined(__i386) -    _FPU_SETCW(oldRoundingMode); -#endif +    TCL_DEFAULT_DOUBLE_ROUNDING; +      return retval;  } @@ -1490,8 +1735,8 @@ MakeHighPrecisionDouble(  #ifdef IEEE_FLOATING_POINT  static double  MakeNaN( -    int signum,			/* Sign bit (1=negative, 0=nonnegative */ -    Tcl_WideUInt tags)	 	/* Tag bits to put in the NaN */ +    int signum,			/* Sign bit (1=negative, 0=nonnegative. */ +    Tcl_WideUInt tags)		/* Tag bits to put in the NaN. */  {      union {  	Tcl_WideUInt iv; @@ -1529,28 +1774,28 @@ MakeNaN(  static double  RefineApproximation( -    double approxResult,	/* Approximate result of conversion */ -    mp_int *exactSignificand,	/* Integer significand */ -    int exponent)		/* Power of 10 to multiply by significand */ +    double approxResult,	/* Approximate result of conversion. */ +    mp_int *exactSignificand,	/* Integer significand. */ +    int exponent)		/* Power of 10 to multiply by significand. */  {      int M2, M5;			/* Powers of 2 and of 5 needed to put the  				 * decimal and binary numbers over a common  				 * denominator. */ -    double significand;		/* Sigificand of the binary number */ -    int binExponent;		/* Exponent of the binary number */ +    double significand;		/* Sigificand of the binary number. */ +    int binExponent;		/* Exponent of the binary number. */      int msb;			/* Most significant bit position of an -				 * intermediate result */ +				 * intermediate result. */      int nDigits;		/* Number of mp_digit's in an intermediate -				 * result */ +				 * result. */      mp_int twoMv;		/* Approx binary value expressed as an exact -				 * integer scaled by the multiplier 2M */ +				 * integer scaled by the multiplier 2M. */      mp_int twoMd;		/* Exact decimal value expressed as an exact -				 * integer scaled by the multiplier 2M */ -    int scale;			/* Scale factor for M */ -    int multiplier;		/* Power of two to scale M */ +				 * integer scaled by the multiplier 2M. */ +    int scale;			/* Scale factor for M. */ +    int multiplier;		/* Power of two to scale M. */      double num, den;		/* Numerator and denominator of the correction -				 * term */ -    double quot;		/* Correction term */ +				 * term. */ +    double quot;		/* Correction term. */      double minincr;		/* Lower bound on the absolute value of the  				 * correction term. */      int i; @@ -1580,12 +1825,12 @@ RefineApproximation(  	M5 = 0;      } else {  	M5 = -exponent; -	if ((M5-1) > M2) { -	    M2 = M5-1; +	if (M5 - 1 > M2) { +	    M2 = M5 - 1;  	}      } -    /*  +    /*       * The floating point number is significand*2**binExponent. Compute the       * large integer significand*2**(binExponent+M2+1). The 2**-1 bit of the       * significand (the most significant) corresponds to the @@ -1610,8 +1855,8 @@ RefineApproximation(  	    mp_mul(&twoMv, pow5+i, &twoMv);  	}      } -     -    /*  + +    /*       * Collect the decimal significand as a high precision integer. The least       * significant bit corresponds to bit M2+exponent+1 so it will need to be       * shifted left by that many bits after being multiplied by @@ -1620,7 +1865,7 @@ RefineApproximation(      mp_init_copy(&twoMd, exactSignificand);      for (i=0; i<=8; ++i) { -	if ((M5+exponent) & (1 << i)) { +	if ((M5 + exponent) & (1 << i)) {  	    mp_mul(&twoMd, pow5+i, &twoMd);  	}      } @@ -1630,7 +1875,7 @@ RefineApproximation(      /*       * The result, 2Mv-2Md, needs to be divided by 2M to yield a correction       * term. Because 2M may well overflow a double, we need to scale the -     * denominator by a factor of 2**binExponent-mantBits +     * denominator by a factor of 2**binExponent-mantBits.       */      scale = binExponent - mantBits - 1; @@ -1654,12 +1899,12 @@ RefineApproximation(       */      if (mp_cmp_mag(&twoMd, &twoMv) == MP_LT) { -        mp_clear(&twoMd); -        mp_clear(&twoMv); +	mp_clear(&twoMd); +	mp_clear(&twoMv);  	return approxResult;      } -    /*  +    /*       * Convert the numerator and denominator of the corrector term accurately       * to floating point numbers.       */ @@ -1685,411 +1930,2387 @@ RefineApproximation(  /*   *----------------------------------------------------------------------   * - * TclDoubleDigits -- + * MultPow5 -- + * + *	Multiply a bignum by a power of 5. + * + * Side effects: + *	Stores base*5**n in result. + * + *---------------------------------------------------------------------- + */ + +inline static void +MulPow5( +    mp_int *base, 		/* Number to multiply. */ +    unsigned n,			/* Power of 5 to multiply by. */ +    mp_int *result)		/* Place to store the result. */ +{ +    mp_int *p = base; +    int n13 = n / 13; +    int r = n % 13; + +    if (r != 0) { +	mp_mul_d(p, dpow5[r], result); +	p = result; +    } +    r = 0; +    while (n13 != 0) { +	if (n13 & 1) { +	    mp_mul(p, pow5_13+r, result); +	    p = result; +	} +	n13 >>= 1; +	++r; +    } +    if (p != result) { +	mp_copy(p, result); +    } +} + +/* + *---------------------------------------------------------------------- + * + * NormalizeRightward --   * - *	Converts a double to a string of digits. + *	Shifts a number rightward until it is odd (that is, until the least + *	significant bit is nonzero.   *   * Results: - *	Returns the position of the character in the string after which the - *	decimal point should appear. Since the string contains only - *	significant digits, the position may be less than zero or greater than - *	the length of the string. + *	Returns the number of bit positions by which the number was shifted.   *   * Side effects: - *	Stores the digits in the given buffer and sets 'signum' according to - *	the sign of the number. + *	Shifts the number in place; *wPtr is replaced by the shifted number.   *   *---------------------------------------------------------------------- + */ + +inline static int +NormalizeRightward( +    Tcl_WideUInt *wPtr)		/* INOUT: Number to shift. */ +{ +    int rv = 0; +    Tcl_WideUInt w = *wPtr; +    if (!(w & (Tcl_WideUInt) 0xffffffff)) { +	w >>= 32; rv += 32; +    } +    if (!(w & (Tcl_WideUInt) 0xffff)) { +	w >>= 16; rv += 16; +    } +    if (!(w & (Tcl_WideUInt) 0xff)) { +	w >>= 8; rv += 8; +    } +    if (!(w & (Tcl_WideUInt) 0xf)) { +	w >>= 4; rv += 4; +    } +    if (!(w & 0x3)) { +	w >>= 2; rv += 2; +    } +    if (!(w & 0x1)) { +	w >>= 1; ++rv; +    } +    *wPtr = w; +    return rv; +} + +/* + *---------------------------------------------------------------------- + * + * RequiredPrecision -- + * + *	Determines the number of bits needed to hold an intger. + * + * Results: + *	Returns the position of the most significant bit (0 - 63).  Returns 0 + *	if the number is zero. + * + *----------------------------------------------------------------------   */ -int -TclDoubleDigits( -    char *buffer,		/* Buffer in which to store the result, must -				 * have at least 18 chars */ -    double v,			/* Number to convert. Must be finite, and not -				 * NaN */ -    int *signum)		/* Output: 1 if the number is negative. -				 * Should handle -0 correctly on the IEEE -				 * architecture. */ +static int +RequiredPrecision( +    Tcl_WideUInt w)		/* Number to interrogate. */  { -    int e;			/* Power of FLT_RADIX that satisfies -				 * v = f * FLT_RADIX**e */ -    int lowOK, highOK; -    mp_int r;			/* Scaled significand. */ -    mp_int s;			/* Divisor such that v = r / s */ -    int smallestSig;		/* Flag == 1 iff v's significand is the -				 * smallest that can be represented. */ -    mp_int mplus;		/* Scaled epsilon: (r + 2* mplus) == v(+) -				 * where v(+) is the floating point successor -				 * of v. */ -    mp_int mminus;		/* Scaled epsilon: (r - 2*mminus) == v(-) -				 * where v(-) is the floating point -				 * predecessor of v. */ -    mp_int temp; -    int rfac2 = 0;		/* Powers of 2 and 5 by which large */ -    int rfac5 = 0;		/* integers should be scaled.	    */ -    int sfac2 = 0; -    int sfac5 = 0; -    int mplusfac2 = 0; -    int mminusfac2 = 0; -    char c; -    int i, k, n; +    int rv; +    unsigned long wi; + +    if (w & ((Tcl_WideUInt) 0xffffffff << 32)) { +	wi = (unsigned long) (w >> 32); rv = 32; +    } else { +	wi = (unsigned long) w; rv = 0; +    } +    if (wi & 0xffff0000) { +	wi >>= 16; rv += 16; +    } +    if (wi & 0xff00) { +	wi >>= 8; rv += 8; +    } +    if (wi & 0xf0) { +	wi >>= 4; rv += 4; +    } +    if (wi & 0xc) { +	wi >>= 2; rv += 2; +    } +    if (wi & 0x2) { +	wi >>= 1; ++rv; +    } +    if (wi & 0x1) { +	++rv; +    } +    return rv; +} + +/* + *---------------------------------------------------------------------- + * + * DoubleToExpAndSig -- + * + *	Separates a 'double' into exponent and significand. + * + * Side effects: + *	Stores the significand in '*significand' and the exponent in '*expon' + *	so that dv == significand * 2.0**expon, and significand is odd.  Also + *	stores the position of the leftmost 1-bit in 'significand' in 'bits'. + * + *---------------------------------------------------------------------- + */ + +inline static void +DoubleToExpAndSig( +    double dv,			/* Number to convert. */ +    Tcl_WideUInt *significand,	/* OUTPUT: Significand of the number. */ +    int *expon,			/* OUTPUT: Exponent to multiply the number +				 * by. */ +    int *bits)			/* OUTPUT: Number of significant bits. */ +{ +    Double d;			/* Number being converted. */ +    Tcl_WideUInt z;		/* Significand under construction. */ +    int de;			/* Exponent of the number. */ +    int k;			/* Bit count. */ + +    d.d = dv;      /* -     * Split the number into absolute value and signum. +     * Extract exponent and significand.       */ -    v = AbsoluteValue(v, signum); +    de = (d.w.word0 & EXP_MASK) >> EXP_SHIFT; +    z = d.q & SIG_MASK; +    if (de != 0) { +	z |= HIDDEN_BIT; +	k = NormalizeRightward(&z); +	*bits = FP_PRECISION - k; +	*expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1); +    } else { +	k = NormalizeRightward(&z); +	*expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1) + 1; +	*bits = RequiredPrecision(z); +    } +    *significand = z; +} + +/* + *---------------------------------------------------------------------- + * + * TakeAbsoluteValue -- + * + *	Takes the absolute value of a 'double' including 0, Inf and NaN + * + * Side effects: + *	The 'double' in *d is replaced with its absolute value. The signum is + *	stored in 'sign': 1 for negative, 0 for nonnegative. + * + *---------------------------------------------------------------------- + */ + +inline static void +TakeAbsoluteValue( +    Double *d,			/* Number to replace with absolute value. */ +    int *sign)			/* Place to put the signum. */ +{ +    if (d->w.word0 & SIGN_BIT) { +	*sign = 1; +	d->w.word0 &= ~SIGN_BIT; +    } else { +	*sign = 0; +    } +} + +/* + *---------------------------------------------------------------------- + * + * FormatInfAndNaN -- + * + *	Bailout for formatting infinities and Not-A-Number. + * + * Results: + *	Returns one of the strings 'Infinity' and 'NaN'.  The string returned + *	must be freed by the caller using 'ckfree'. + * + * Side effects: + *	Stores 9999 in *decpt, and sets '*endPtr' to designate the terminating + *	NUL byte of the string if 'endPtr' is not NULL. + * + *---------------------------------------------------------------------- + */ + +inline static char * +FormatInfAndNaN( +    Double *d,			/* Exceptional number to format. */ +    int *decpt,			/* Decimal point to set to a bogus value. */ +    char **endPtr)		/* Pointer to the end of the formatted data */ +{ +    char *retval; + +    *decpt = 9999; +    if (!(d->w.word1) && !(d->w.word0 & HI_ORDER_SIG_MASK)) { +	retval = ckalloc(9); +	strcpy(retval, "Infinity"); +	if (endPtr) { +	    *endPtr = retval + 8; +	} +    } else { +	retval = ckalloc(4); +	strcpy(retval, "NaN"); +	if (endPtr) { +	    *endPtr = retval + 3; +	} +    } +    return retval; +} + +/* + *---------------------------------------------------------------------- + * + * FormatZero -- + * + *	Bailout to format a zero floating-point number. + * + * Results: + *	Returns the constant string "0" + * + * Side effects: + *	Stores 1 in '*decpt' and puts a pointer to the NUL byte terminating + *	the string in '*endPtr' if 'endPtr' is not NULL. + * + *---------------------------------------------------------------------- + */ + +inline static char * +FormatZero( +    int *decpt,			/* Location of the decimal point. */ +    char **endPtr)		/* Pointer to the end of the formatted data */ +{ +    char *retval = ckalloc(2); + +    strcpy(retval, "0"); +    if (endPtr) { +	*endPtr = retval+1; +    } +    *decpt = 0; +    return retval; +} + +/* + *---------------------------------------------------------------------- + * + * ApproximateLog10 -- + * + *	Computes a two-term Taylor series approximation to the common log of a + *	number, and computes the number's binary log. + * + * Results: + *	Return an approximation to floor(log10(bw*2**be)) that is either exact + *	or 1 too high. + * + *---------------------------------------------------------------------- + */ + +inline static int +ApproximateLog10( +    Tcl_WideUInt bw,		/* Integer significand of the number. */ +    int be,			/* Power of two to scale bw. */ +    int bbits)			/* Number of bits of precision in bw. */ +{ +    int i;			/* Log base 2 of the number. */ +    int k;			/* Floor(Log base 10 of the number) */ +    double ds;			/* Mantissa of the number. */ +    Double d2;      /* -     * Handle zero specially. +     * Compute i and d2 such that d = d2*2**i, and 1 < d2 < 2. +     * Compute an approximation to log10(d), +     *   log10(d) ~ log10(2) * i + log10(1.5) +     *            + (significand-1.5)/(1.5 * log(10))       */ -    if (v == 0.0) { -	*buffer++ = '0'; -	*buffer++ = '\0'; -	return 1; +    d2.q = bw << (FP_PRECISION - bbits) & SIG_MASK; +    d2.w.word0 |= (EXPONENT_BIAS) << EXP_SHIFT; +    i = be + bbits - 1; +    ds = (d2.d - 1.5) * TWO_OVER_3LOG10 +	    + LOG10_3HALVES_PLUS_FUDGE + LOG10_2 * i; +    k = (int) ds; +    if (k > ds) { +	--k;      } +    return k; +} + +/* + *---------------------------------------------------------------------- + * + * BetterLog10 -- + * + *	Improves the result of ApproximateLog10 for numbers in the range + *	1 .. 10**(TEN_PMAX)-1 + * + * Side effects: + *	Sets k_check to 0 if the new result is known to be exact, and to 1 if + *	it may still be one too high. + * + * Results: + *	Returns the improved approximation to log10(d). + * + *---------------------------------------------------------------------- + */ -    /*  -     * Find a large integer r, and integer e, such that  -     *         v = r * FLT_RADIX**e -     * and r is as small as possible. Also determine whether the significand -     * is the smallest possible. +inline static int +BetterLog10( +    double d,			/* Original number to format. */ +    int k,			/* Characteristic(Log base 10) of the +				 * number. */ +    int *k_check)		/* Flag == 1 if k is inexact. */ +{ +    /* +     * Performance hack. If k is in the range 0..TEN_PMAX, then we can use a +     * powers-of-ten table to check it.       */ -    smallestSig = GetIntegerTimesPower(v, &r, &e); +    if (k >= 0 && k <= TEN_PMAX) { +	if (d < tens[k]) { +	    k--; +	} +	*k_check = 0; +    } else { +	*k_check = 1; +    } +    return k; +} + +/* + *---------------------------------------------------------------------- + * + * ComputeScale -- + * + *	Prepares to format a floating-point number as decimal. + * + * Parameters: + *	floor(log10*x) is k (or possibly k-1).  floor(log2(x) is i.  The + *	significand of x requires bbits bits to represent. + * + * Results: + *	Determines integers b2, b5, s2, s5 so that sig*2**b2*5**b5/2**s2*2**s5 + *	exactly represents the value of the x/10**k. This value will lie in + *	the range [1 .. 10), and allows for computing successive digits by + *	multiplying sig%10 by 10. + * + *---------------------------------------------------------------------- + */ + +inline static void +ComputeScale( +    int be,			/* Exponent part of number: d = bw * 2**be. */ +    int k,			/* Characteristic of log10(number). */ +    int *b2,			/* OUTPUT: Power of 2 in the numerator. */ +    int *b5,			/* OUTPUT: Power of 5 in the numerator. */ +    int *s2,			/* OUTPUT: Power of 2 in the denominator. */ +    int *s5)			/* OUTPUT: Power of 5 in the denominator. */ +{ +    /* +     * Scale numerator and denominator powers of 2 so that the input binary +     * number is the ratio of integers. +     */ -    lowOK = highOK = (mp_iseven(&r)); +    if (be <= 0) { +	*b2 = 0; +	*s2 = -be; +    } else { +	*b2 = be; +	*s2 = 0; +    }      /* -     * We are going to want to develop integers r, s, mplus, and mminus such -     * that v = r / s, v(+)-v / 2 = mplus / s; v-v(-) / 2 = mminus / s and -     * then scale either s or r, mplus, mminus by an appropriate power of ten. -     * -     * We actually do this by keeping track of the powers of 2 and 5 by which -     * f is multiplied to yield v and by which 1 is multiplied to yield s, -     * mplus, and mminus. +     * Scale numerator and denominator so that the output decimal number is +     * the ratio of integers.       */ -    if (e >= 0) { -	int bits = e * log2FLT_RADIX; +    if (k >= 0) { +	*b5 = 0; +	*s5 = k; +	*s2 += k; +    } else { +	*b2 -= k; +	*b5 = -k; +	*s5 = 0; +    } +} + +/* + *---------------------------------------------------------------------- + * + * SetPrecisionLimits -- + * + *	Determines how many digits of significance should be computed (and, + *	hence, how much memory need be allocated) for formatting a floating + *	point number. + * + * Given that 'k' is floor(log10(x)): + * if 'shortest' format is used, there will be at most 18 digits in the + * result. + * if 'F' format is used, there will be at most 'ndigits' + k + 1 digits + * if 'E' format is used, there will be exactly 'ndigits' digits. + * + * Side effects: + *	Adjusts '*ndigitsPtr' to have a valid value. Stores the maximum memory + *	allocation needed in *iPtr.  Sets '*iLimPtr' to the limiting number of + *	digits to convert if k has been guessed correctly, and '*iLim1Ptr' to + *	the limiting number of digits to convert if k has been guessed to be + *	one too high. + * + *---------------------------------------------------------------------- + */ -	if (!smallestSig) { -	    /* -	     * Normal case, m+ and m- are both FLT_RADIX**e -	     */ +inline static void +SetPrecisionLimits( +    int convType,		/* Type of conversion: TCL_DD_SHORTEST, +				 * TCL_DD_STEELE0, TCL_DD_E_FMT, +				 * TCL_DD_F_FMT. */ +    int k,			/* Floor(log10(number to convert)) */ +    int *ndigitsPtr,		/* IN/OUT: Number of digits requested (will be +				 *         adjusted if needed). */ +    int *iPtr,			/* OUT: Maximum number of digits to return. */ +    int *iLimPtr,		/* OUT: Number of digits of significance if +				 *      the bignum method is used.*/ +    int *iLim1Ptr)		/* OUT: Number of digits of significance if +				 *      the quick method is used. */ +{ +    switch (convType) { +    case TCL_DD_SHORTEST0: +    case TCL_DD_STEELE0: +	*iLimPtr = *iLim1Ptr = -1; +	*iPtr = 18; +	*ndigitsPtr = 0; +	break; +    case TCL_DD_E_FORMAT: +	if (*ndigitsPtr <= 0) { +	    *ndigitsPtr = 1; +	} +	*iLimPtr = *iLim1Ptr = *iPtr = *ndigitsPtr; +	break; +    case TCL_DD_F_FORMAT: +	*iPtr = *ndigitsPtr + k + 1; +	*iLimPtr = *iPtr; +	*iLim1Ptr = *iPtr - 1; +	if (*iPtr <= 0) { +	    *iPtr = 1; +	} +	break; +    default: +	*iPtr = -1; +	*iLimPtr = -1; +	*iLim1Ptr = -1; +	Tcl_Panic("impossible conversion type in TclDoubleDigits"); +    } +} + +/* + *---------------------------------------------------------------------- + * + * BumpUp -- + * + *	Increases a string of digits ending in a series of nines to designate + *	the next higher number.  xxxxb9999... -> xxxx(b+1)0000... + * + * Results: + *	Returns a pointer to the end of the adjusted string. + * + * Side effects: + *	In the case that the string consists solely of '999999', sets it to + *	"1" and moves the decimal point (*kPtr) one place to the right. + * + *---------------------------------------------------------------------- + */ -	    rfac2 = bits + 1; -	    sfac2 = 1; -	    mplusfac2 = bits; -	    mminusfac2 = bits; -	} else { -	    /* -	     * If f is equal to the smallest significand, then we need another -	     * factor of FLT_RADIX in s to cope with stepping to the next -	     * smaller exponent when going to e's predecessor. -	     */ +inline static char * +BumpUp( +    char *s,		    	/* Cursor pointing one past the end of the +				 * string. */ +    char *retval,		/* Start of the string of digits. */ +    int *kPtr)			/* Position of the decimal point. */ +{ +    while (*--s == '9') { +	if (s == retval) { +	    ++(*kPtr); +	    *s = '1'; +	    return s+1; +	} +    } +    ++*s; +    ++s; +    return s; +} + +/* + *---------------------------------------------------------------------- + * + * AdjustRange -- + * + *	Rescales a 'double' in preparation for formatting it using the 'quick' + *	double-to-string method. + * + * Results: + *	Returns the precision that has been lost in the prescaling as a count + *	of units in the least significant place. + * + *---------------------------------------------------------------------- + */ + +inline static int +AdjustRange( +    double *dPtr,		/* INOUT: Number to adjust. */ +    int k)			/* IN: floor(log10(d)) */ +{ +    int ieps;			/* Number of roundoff errors that have +				 * accumulated. */ +    double d = *dPtr;		/* Number to adjust. */ +    double ds; +    int i, j, j1; -	    rfac2 = bits + log2FLT_RADIX + 1; -	    sfac2 = 1 + log2FLT_RADIX; -	    mplusfac2 = bits + log2FLT_RADIX; -	    mminusfac2 = bits; +    ieps = 2; + +    if (k > 0) { +	/* +	 * The number must be reduced to bring it into range. +	 */ + +	ds = tens[k & 0xf]; +	j = k >> 4; +	if (j & BLETCH) { +	    j &= (BLETCH-1); +	    d /= bigtens[N_BIGTENS - 1]; +	    ieps++;  	} +	i = 0; +	for (; j != 0; j>>=1) { +	    if (j & 1) { +		ds *= bigtens[i]; +		++ieps; +	    } +	    ++i; +	} +	d /= ds; +    } else if ((j1 = -k) != 0) { +	/* +	 * The number must be increased to bring it into range. +	 */ + +	d *= tens[j1 & 0xf]; +	i = 0; +	for (j = j1>>4; j; j>>=1) { +	    if (j & 1) { +		ieps++; +		d *= bigtens[i]; +	    } +	    ++i; +	} +    } + +    *dPtr = d; +    return ieps; +} + +/* + *---------------------------------------------------------------------- + * + * ShorteningQuickFormat -- + * + *	Returns a 'quick' format of a double precision number to a string of + *	digits, preferring a shorter string of digits if the shorter string is + *	still within 1/2 ulp of the number. + * + * Results: + *	Returns the string of digits. Returns NULL if the 'quick' method fails + *	and the bignum method must be used. + * + * Side effects: + *	Stores the position of the decimal point at '*kPtr'. + * + *---------------------------------------------------------------------- + */ + +inline static char * +ShorteningQuickFormat( +    double d,			/* Number to convert. */ +    int k,			/* floor(log10(d)) */ +    int ilim,			/* Number of significant digits to return. */ +    double eps,			/* Estimated roundoff error. */ +    char *retval,		/* Buffer to receive the digit string. */ +    int *kPtr)			/* Pointer to stash the position of the +				 * decimal point. */ +{ +    char *s = retval;		/* Cursor in the return value. */ +    int digit;			/* Current digit. */ +    int i; + +    eps = 0.5 / tens[ilim-1] - eps; +    i = 0; +    for (;;) { +	/* +	 * Convert a digit. +	 */ + +	digit = (int) d; +	d -= digit; +	*s++ = '0' + digit; + +	/* +	 * Truncate the conversion if the string of digits is within 1/2 ulp +	 * of the actual value. +	 */ + +	if (d < eps) { +	    *kPtr = k; +	    return s; +	} +	if ((1. - d) < eps) { +	    *kPtr = k; +	    return BumpUp(s, retval, kPtr); +	} + +	/* +	 * Bail out if the conversion fails to converge to a sufficiently +	 * precise value. +	 */ + +	if (++i >= ilim) { +	    return NULL; +	} + +	/* +	 * Bring the next digit to the integer part. +	 */ + +	eps *= 10; +	d *= 10.0; +    } +} + +/* + *---------------------------------------------------------------------- + * + * StrictQuickFormat -- + * + *	Convert a double precision number of a string of a precise number of + *	digits, using the 'quick' double precision method. + * + * Results: + *	Returns the digit string, or NULL if the bignum method must be used to + *	do the formatting. + * + * Side effects: + *	Stores the position of the decimal point in '*kPtr'. + * + *---------------------------------------------------------------------- + */ + +inline static char * +StrictQuickFormat( +    double d,			/* Number to convert. */ +    int k,			/* floor(log10(d)) */ +    int ilim,			/* Number of significant digits to return. */ +    double eps,			/* Estimated roundoff error. */ +    char *retval,		/* Start of the digit string. */ +    int *kPtr)			/* Pointer to stash the position of the +				 * decimal point. */ +{ +    char *s = retval;		/* Cursor in the return value. */ +    int digit;			/* Current digit of the answer. */ +    int i; + +    eps *= tens[ilim-1]; +    i = 1; +    for (;;) { +	/* +	 * Extract a digit. +	 */ + +	digit = (int) d; +	d -= digit; +	if (d == 0.0) { +	    ilim = i; +	} +	*s++ = '0' + digit; + +	/* +	 * When the given digit count is reached, handle trailing strings of 0 +	 * and 9. +	 */ + +	if (i == ilim) { +	    if (d > 0.5 + eps) { +		*kPtr = k; +		return BumpUp(s, retval, kPtr); +	    } else if (d < 0.5 - eps) { +		while (*--s == '0') { +		    /* do nothing */ +		} +		s++; +		*kPtr = k; +		return s; +	    } else { +		return NULL; +	    } +	} + +	/* +	 * Advance to the next digit. +	 */ + +	++i; +	d *= 10.0; +    } +} + +/* + *---------------------------------------------------------------------- + * + * QuickConversion -- + * + *	Converts a floating point number the 'quick' way, when only a limited + *	number of digits is required and floating point arithmetic can + *	therefore be used for the intermediate results. + * + * Results: + *	Returns the converted string, or NULL if the bignum method must be + *	used. + * + *---------------------------------------------------------------------- + */ + +inline static char * +QuickConversion( +    double e,			/* Number to format. */ +    int k,			/* floor(log10(d)), approximately. */ +    int k_check,		/* 0 if k is exact, 1 if it may be too high */ +    int flags,			/* Flags passed to dtoa: +				 *    TCL_DD_SHORTEN_FLAG */ +    int len,			/* Length of the return value. */ +    int ilim,			/* Number of digits to store. */ +    int ilim1,			/* Number of digits to store if we misguessed +				 * k. */ +    int *decpt,			/* OUTPUT: Location of the decimal point. */ +    char **endPtr)		/* OUTPUT: Pointer to the terminal null +				 * byte. */ +{ +    int ieps;			/* Number of 1-ulp roundoff errors that have +				 * accumulated in the calculation. */ +    Double eps;			/* Estimated roundoff error. */ +    char *retval;		/* Returned string. */ +    char *end;			/* Pointer to the terminal null byte in the +				 * returned string. */ +    volatile double d;		/* Workaround for a bug in mingw gcc 3.4.5 */ + +    /* +     * Bring d into the range [1 .. 10). +     */ + +    ieps = AdjustRange(&e, k); +    d = e; + +    /* +     * If the guessed value of k didn't get d into range, adjust it by one. If +     * that leaves us outside the range in which quick format is accurate, +     * bail out. +     */ + +    if (k_check && d < 1. && ilim > 0) { +	if (ilim1 < 0) { +	    return NULL; +	} +	ilim = ilim1; +	--k; +	d *= 10.0; +	++ieps; +    } + +    /* +     * Compute estimated roundoff error. +     */ + +    eps.d = ieps * d + 7.; +    eps.w.word0 -= (FP_PRECISION-1) << EXP_SHIFT; + +    /* +     * Handle the peculiar case where the result has no significant digits. +     */ + +    retval = ckalloc(len + 1); +    if (ilim == 0) { +	d -= 5.; +	if (d > eps.d) { +	    *retval = '1'; +	    *decpt = k; +	    return retval; +	} else if (d < -eps.d) { +	    *decpt = k; +	    return retval; +	} else { +	    ckfree(retval); +	    return NULL; +	} +    } + +    /* +     * Format the digit string. +     */ + +    if (flags & TCL_DD_SHORTEN_FLAG) { +	end = ShorteningQuickFormat(d, k, ilim, eps.d, retval, decpt);      } else { +	end = StrictQuickFormat(d, k, ilim, eps.d, retval, decpt); +    } +    if (end == NULL) { +	ckfree(retval); +	return NULL; +    } +    *end = '\0'; +    if (endPtr != NULL) { +	*endPtr = end; +    } +    return retval; +} + +/* + *---------------------------------------------------------------------- + * + * CastOutPowersOf2 -- + * + *	Adjust the factors 'b2', 'm2', and 's2' to cast out common powers of 2 + *	from numerator and denominator in preparation for the 'bignum' method + *	of floating point conversion. + * + *---------------------------------------------------------------------- + */ + +inline static void +CastOutPowersOf2( +    int *b2,			/* Power of 2 to multiply the significand. */ +    int *m2,			/* Power of 2 to multiply 1/2 ulp. */ +    int *s2)			/* Power of 2 to multiply the common +				 * denominator. */ +{ +    int i; + +    if (*m2 > 0 && *s2 > 0) {	/* Find the smallest power of 2 in the +				 * numerator. */ +	if (*m2 < *s2) {	/* Find the lowest common denominator. */ +	    i = *m2; +	} else { +	    i = *s2; +	} +	*b2 -= i;		/* Reduce to lowest terms. */ +	*m2 -= i; +	*s2 -= i; +    } +} + +/* + *---------------------------------------------------------------------- + * + * ShorteningInt64Conversion -- + * + *	Converts a double-precision number to the shortest string of digits + *	that reconverts exactly to the given number, or to 'ilim' digits if + *	that will yield a shorter result. The numerator and denominator in + *	David Gay's conversion algorithm are known to fit in Tcl_WideUInt, + *	giving considerably faster arithmetic than mp_int's. + * + * Results: + *	Returns the string of significant decimal digits, in newly allocated + *	memory + * + * Side effects: + *	Stores the location of the decimal point in '*decpt' and the location + *	of the terminal null byte in '*endPtr'. + * + *---------------------------------------------------------------------- + */ + +inline static char * +ShorteningInt64Conversion( +    Double *dPtr,		/* Original number to convert. */ +    int convType,		/* Type of conversion (shortest, Steele, +				 * E format, F format). */ +    Tcl_WideUInt bw,		/* Integer significand. */ +    int b2, int b5,		/* Scale factor for the significand in the +				 * numerator. */ +    int m2plus, int m2minus, int m5, +				/* Scale factors for 1/2 ulp in the numerator +				 * (will be different if bw == 1. */ +    int s2, int s5,		/* Scale factors for the denominator. */ +    int k,			/* Number of output digits before the decimal +				 * point. */ +    int len,			/* Number of digits to allocate. */ +    int ilim,			/* Number of digits to convert if b >= s */ +    int ilim1,			/* Number of digits to convert if b < s */ +    int *decpt,			/* OUTPUT: Position of the decimal point. */ +    char **endPtr)		/* OUTPUT: Position of the terminal '\0' at +				 *	   the end of the returned string. */ +{ +    char *retval = ckalloc(len + 1); +				/* Output buffer. */ +    Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; +				/* Numerator of the fraction being +				 * converted. */ +    Tcl_WideUInt S = wuipow5[s5] << s2; +				/* Denominator of the fraction being +				 * converted. */ +    Tcl_WideUInt mplus, mminus;	/* Ranges for testing whether the result is +				 * within roundoff of being exact. */ +    int digit;			/* Current output digit. */ +    char *s = retval;		/* Cursor in the output buffer. */ +    int i;			/* Current position in the output buffer. */ + +    /* +     * Adjust if the logarithm was guessed wrong. +     */ + +    if (b < S) { +	b = 10 * b; +	++m2plus; ++m2minus; ++m5; +	ilim = ilim1; +	--k; +    } + +    /* +     * Compute roundoff ranges. +     */ + +    mplus = wuipow5[m5] << m2plus; +    mminus = wuipow5[m5] << m2minus; + +    /* +     * Loop through the digits. +     */ + +    i = 1; +    for (;;) { +	digit = (int)(b / S); +	if (digit > 10) { +	    Tcl_Panic("wrong digit!"); +	} +	b = b % S; +  	/* -	 * v has digits after the binary point +	 * Does the current digit put us on the low side of the exact value +	 * but within within roundoff of being exact?  	 */ -	if (e <= DBL_MIN_EXP-DBL_MANT_DIG || !smallestSig) { +	if (b < mplus || (b == mplus +		&& convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {  	    /* -	     * Either f isn't the smallest significand or e is the smallest -	     * exponent. mplus and mminus will both be 1. +	     * Make sure we shouldn't be rounding *up* instead, in case the +	     * next number above is closer.  	     */ -	    rfac2 = 1; -	    sfac2 = 1 - e * log2FLT_RADIX; -	    mplusfac2 = 0; -	    mminusfac2 = 0; -	} else { +	    if (2 * b > S || (2 * b == S && (digit & 1) != 0)) { +		++digit; +		if (digit == 10) { +		    *s++ = '9'; +		    s = BumpUp(s, retval, &k); +		    break; +		} +	    } +  	    /* -	     * f is the smallest significand, but e is not the smallest -	     * exponent. We need to scale by FLT_RADIX again to cope with the -	     * fact that v's predecessor has a smaller exponent. +	     * Stash the current digit.  	     */ -	    rfac2 = 1 + log2FLT_RADIX; -	    sfac2 = 1 + log2FLT_RADIX * (1 - e); -	    mplusfac2 = FLT_RADIX; -	    mminusfac2 = 0; +	    *s++ = '0' + digit; +	    break;  	} + +	/* +	 * Does one plus the current digit put us within roundoff of the +	 * number? +	 */ + +	if (b > S - mminus || (b == S - mminus +		&& convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) { +	    if (digit == 9) { +		*s++ = '9'; +		s = BumpUp(s, retval, &k); +		break; +	    } +	    ++digit; +	    *s++ = '0' + digit; +	    break; +	} + +	/* +	 * Have we converted all the requested digits? +	 */ + +	*s++ = '0' + digit; +	if (i == ilim) { +	    if (2*b > S || (2*b == S && (digit & 1) != 0)) { +		s = BumpUp(s, retval, &k); +	    } +	    break; +	} + +	/* +	 * Advance to the next digit. +	 */ + +	b = 10 * b; +	mplus = 10 * mplus; +	mminus = 10 * mminus; +	++i;      }      /* -     * Estimate the highest power of ten that will be needed to hold the -     * result. +     * Endgame - store the location of the decimal point and the end of the +     * string.       */ -    k = (int) ceil(log(v) / log(10.)); -    if (k >= 0) { -	sfac2 += k; -	sfac5 = k; -    } else { -	rfac2 -= k; -	mplusfac2 -= k; -	mminusfac2 -= k; -	rfac5 = -k; +    *s = '\0'; +    *decpt = k; +    if (endPtr) { +	*endPtr = s; +    } +    return retval; +} + +/* + *---------------------------------------------------------------------- + * + * StrictInt64Conversion -- + * + *	Converts a double-precision number to a fixed-length string of 'ilim' + *	digits that reconverts exactly to the given number.  ('ilim' should be + *	replaced with 'ilim1' in the case where log10(d) has been + *	overestimated).  The numerator and denominator in David Gay's + *	conversion algorithm are known to fit in Tcl_WideUInt, giving + *	considerably faster arithmetic than mp_int's. + * + * Results: + *	Returns the string of significant decimal digits, in newly allocated + *	memory + * + * Side effects: + *	Stores the location of the decimal point in '*decpt' and the location + *	of the terminal null byte in '*endPtr'. + * + *---------------------------------------------------------------------- + */ + +inline static char * +StrictInt64Conversion( +    Double *dPtr,		/* Original number to convert. */ +    int convType,		/* Type of conversion (shortest, Steele, +				 * E format, F format). */ +    Tcl_WideUInt bw,		/* Integer significand. */ +    int b2, int b5,		/* Scale factor for the significand in the +				 * numerator. */ +    int s2, int s5,		/* Scale factors for the denominator. */ +    int k,			/* Number of output digits before the decimal +				 * point. */ +    int len,			/* Number of digits to allocate. */ +    int ilim,			/* Number of digits to convert if b >= s */ +    int ilim1,			/* Number of digits to convert if b < s */ +    int *decpt,			/* OUTPUT: Position of the decimal point. */ +    char **endPtr)		/* OUTPUT: Position of the terminal '\0' at +				 *	   the end of the returned string. */ +{ +    char *retval = ckalloc(len + 1); +				/* Output buffer. */ +    Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; +				/* Numerator of the fraction being +				 * converted. */ +    Tcl_WideUInt S = wuipow5[s5] << s2; +				/* Denominator of the fraction being +				 * converted. */ +    int digit;			/* Current output digit. */ +    char *s = retval;		/* Cursor in the output buffer. */ +    int i;			/* Current position in the output buffer. */ + +    /* +     * Adjust if the logarithm was guessed wrong. +     */ + +    if (b < S) { +	b = 10 * b; +	ilim = ilim1; +	--k;      }      /* -     * Scale r, s, mplus, mminus by the appropriate powers of 2 and 5. +     * Loop through the digits.       */ -    mp_init_set(&mplus, 1); -    for (i=0 ; i<=8 ; ++i) { -	if (rfac5 & (1 << i)) { -	    mp_mul(&mplus, pow5+i, &mplus); +    i = 1; +    for (;;) { +	digit = (int)(b / S); +	if (digit > 10) { +	    Tcl_Panic("wrong digit!"); +	} +	b = b % S; + +	/* +	 * Have we converted all the requested digits? +	 */ + +	*s++ = '0' + digit; +	if (i == ilim) { +	    if (2*b > S || (2*b == S && (digit & 1) != 0)) { +		s = BumpUp(s, retval, &k); +	    } else { +		while (*--s == '0') { +		    /* do nothing */ +		} +		++s; +	    } +	    break;  	} + +	/* +	 * Advance to the next digit. +	 */ + +	b = 10 * b; +	++i;      } -    mp_mul(&r, &mplus, &r); -    mp_mul_2d(&r, rfac2, &r); -    mp_init_copy(&mminus, &mplus); -    mp_mul_2d(&mplus, mplusfac2, &mplus); -    mp_mul_2d(&mminus, mminusfac2, &mminus); -    mp_init_set(&s, 1); -    for (i=0 ; i<=8 ; ++i) { -	if (sfac5 & (1 << i)) { -	    mp_mul(&s, pow5+i, &s); + +    /* +     * Endgame - store the location of the decimal point and the end of the +     * string. +     */ + +    *s = '\0'; +    *decpt = k; +    if (endPtr) { +	*endPtr = s; +    } +    return retval; +} + +/* + *---------------------------------------------------------------------- + * + * ShouldBankerRoundUpPowD -- + * + *	Test whether bankers' rounding should round a digit up. Assumption is + *	made that the denominator of the fraction being tested is a power of + *	2**DIGIT_BIT. + * + * Results: + *	Returns 1 iff the fraction is more than 1/2, or if the fraction is + *	exactly 1/2 and the digit is odd. + * + *---------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpPowD( +    mp_int *b,			/* Numerator of the fraction. */ +    int sd,			/* Denominator is 2**(sd*DIGIT_BIT). */ +    int isodd)			/* 1 if the digit is odd, 0 if even. */ +{ +    int i; +    static const mp_digit topbit = 1 << (DIGIT_BIT - 1); + +    if (b->used < sd || (b->dp[sd-1] & topbit) == 0) { +	return 0; +    } +    if (b->dp[sd-1] != topbit) { +	return 1; +    } +    for (i = sd-2; i >= 0; --i) { +	if (b->dp[i] != 0) { +	    return 1;  	}      } -    mp_mul_2d(&s, sfac2, &s); +    return isodd; +} + +/* + *---------------------------------------------------------------------- + * + * ShouldBankerRoundUpToNextPowD -- + * + *	Tests whether bankers' rounding will round down in the "denominator is + *	a power of 2**MP_DIGIT" case. + * + * Results: + *	Returns 1 if the rounding will be performed - which increases the + *	digit by one - and 0 otherwise. + * + *---------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpToNextPowD( +    mp_int *b,			/* Numerator of the fraction. */ +    mp_int *m,			/* Numerator of the rounding tolerance. */ +    int sd,			/* Common denominator is 2**(sd*DIGIT_BIT). */ +    int convType,		/* Conversion type: STEELE defeats +				 * round-to-even (not sure why one wants to do +				 * this; I copied it from Gay). FIXME */ +    int isodd,			/* 1 if the integer significand is odd. */ +    mp_int *temp)		/* Work area for the calculation. */ +{ +    int i;      /* -     * It is possible for k to be off by one because we used an inexact -     * logarithm. +     * Compare B and S-m - which is the same as comparing B+m and S - which we +     * do by computing b+m and doing a bitwhack compare against +     * 2**(DIGIT_BIT*sd)       */ -    mp_init(&temp); -    mp_add(&r, &mplus, &temp); -    i = mp_cmp_mag(&temp, &s); -    if (i>0 || (highOK && i==0)) { -	mp_mul_d(&s, 10, &s); -	++k; -    } else { -	mp_mul_d(&temp, 10, &temp); -	i = mp_cmp_mag(&temp, &s); -	if (i<0 || (highOK && i==0)) { -	    mp_mul_d(&r, 10, &r); -	    mp_mul_d(&mplus, 10, &mplus); -	    mp_mul_d(&mminus, 10, &mminus); -	    --k; +    mp_add(b, m, temp); +    if (temp->used <= sd) {	/* Too few digits to be > s */ +	return 0; +    } +    if (temp->used > sd+1 || temp->dp[sd] > 1) { +				/* >= 2s */ +	return 1; +    } +    for (i = sd-1; i >= 0; --i) { +				/* Check for ==s */ +	if (temp->dp[i] != 0) {	/* > s */ +	    return 1;  	}      } +    if (convType == TCL_DD_STEELE0) { +				/* Biased rounding. */ +	return 0; +    } +    return isodd; +} + +/* + *---------------------------------------------------------------------- + * + * ShorteningBignumConversionPowD -- + * + *	Converts a double-precision number to the shortest string of digits + *	that reconverts exactly to the given number, or to 'ilim' digits if + *	that will yield a shorter result. The denominator in David Gay's + *	conversion algorithm is known to be a power of 2**DIGIT_BIT, and hence + *	the division in the main loop may be replaced by a digit shift and + *	mask. + * + * Results: + *	Returns the string of significant decimal digits, in newly allocated + *	memory + * + * Side effects: + *	Stores the location of the decimal point in '*decpt' and the location + *	of the terminal null byte in '*endPtr'. + * + *---------------------------------------------------------------------- + */ + +inline static char * +ShorteningBignumConversionPowD( +    Double *dPtr,		/* Original number to convert. */ +    int convType,		/* Type of conversion (shortest, Steele, +				 * E format, F format). */ +    Tcl_WideUInt bw,		/* Integer significand. */ +    int b2, int b5,		/* Scale factor for the significand in the +				 * numerator. */ +    int m2plus, int m2minus, int m5, +				/* Scale factors for 1/2 ulp in the numerator +				 * (will be different if bw == 1). */ +    int sd,			/* Scale factor for the denominator. */ +    int k,			/* Number of output digits before the decimal +				 * point. */ +    int len,			/* Number of digits to allocate. */ +    int ilim,			/* Number of digits to convert if b >= s */ +    int ilim1,			/* Number of digits to convert if b < s */ +    int *decpt,			/* OUTPUT: Position of the decimal point. */ +    char **endPtr)		/* OUTPUT: Position of the terminal '\0' at +				 *	   the end of the returned string. */ +{ +    char *retval = ckalloc(len + 1); +				/* Output buffer. */ +    mp_int b;			/* Numerator of the fraction being +				 * converted. */ +    mp_int mplus, mminus;	/* Bounds for roundoff. */ +    mp_digit digit;		/* Current output digit. */ +    char *s = retval;		/* Cursor in the output buffer. */ +    int i;			/* Index in the output buffer. */ +    mp_int temp; +    int r1;      /* -     * At this point, k contains the power of ten by which we're scaling the -     * result. r/s is at least 1/10 and strictly less than ten, and v = r/s * -     * 10**k. mplus and mminus give the rounding limits. +     * b = bw * 2**b2 * 5**b5 +     * mminus = 5**m5       */ +    TclBNInitBignumFromWideUInt(&b, bw); +    mp_init_set_int(&mminus, 1); +    MulPow5(&b, b5, &b); +    mp_mul_2d(&b, b2, &b); + +    /* +     * Adjust if the logarithm was guessed wrong. +     */ + +    if (b.used <= sd) { +	mp_mul_d(&b, 10, &b); +	++m2plus; ++m2minus; ++m5; +	ilim = ilim1; +	--k; +    } + +    /* +     * mminus = 5**m5 * 2**m2minus +     * mplus = 5**m5 * 2**m2plus +     */ + +    mp_mul_2d(&mminus, m2minus, &mminus); +    MulPow5(&mminus, m5, &mminus); +    if (m2plus > m2minus) { +	mp_init_copy(&mplus, &mminus); +	mp_mul_2d(&mplus, m2plus-m2minus, &mplus); +    } +    mp_init(&temp); + +    /* +     * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT) +     * by mp_digit extraction. +     */ + +    i = 0;      for (;;) { -	int tc1, tc2; +	if (b.used <= sd) { +	    digit = 0; +	} else { +	    digit = b.dp[sd]; +	    if (b.used > sd+1 || digit >= 10) { +		Tcl_Panic("wrong digit!"); +	    } +	    --b.used; mp_clamp(&b); +	} + +	/* +	 * Does the current digit put us on the low side of the exact value +	 * but within within roundoff of being exact? +	 */ + +	r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus); +	if (r1 == MP_LT || (r1 == MP_EQ +		&& convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) { +	    /* +	     * Make sure we shouldn't be rounding *up* instead, in case the +	     * next number above is closer. +	     */ + +	    if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { +		++digit; +		if (digit == 10) { +		    *s++ = '9'; +		    s = BumpUp(s, retval, &k); +		    break; +		} +	    } + +	    /* +	     * Stash the last digit. +	     */ + +	    *s++ = '0' + digit; +	    break; +	} -	mp_mul_d(&r, 10, &r); -	mp_div(&r, &s, &temp, &r);	/* temp = 10r / s; r = 10r mod s */ -	i = temp.dp[0]; -	mp_mul_d(&mplus, 10, &mplus); +	/* +	 * Does one plus the current digit put us within roundoff of the +	 * number? +	 */ + +	if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd, convType, +		dPtr->w.word1 & 1, &temp)) { +	    if (digit == 9) { +		*s++ = '9'; +		s = BumpUp(s, retval, &k); +		break; +	    } +	    ++digit; +	    *s++ = '0' + digit; +	    break; +	} + +	/* +	 * Have we converted all the requested digits? +	 */ + +	*s++ = '0' + digit; +	if (i == ilim) { +	    if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { +		s = BumpUp(s, retval, &k); +	    } +	    break; +	} + +	/* +	 * Advance to the next digit. +	 */ + +	mp_mul_d(&b, 10, &b);  	mp_mul_d(&mminus, 10, &mminus); -	tc1 = mp_cmp_mag(&r, &mminus); -	if (lowOK) { -	    tc1 = (tc1 <= 0); -	} else { -	    tc1 = (tc1 < 0); +	if (m2plus > m2minus) { +	    mp_mul_2d(&mminus, m2plus-m2minus, &mplus);  	} -	mp_add(&r, &mplus, &temp); -	tc2 = mp_cmp_mag(&temp, &s); -	if (highOK) { -	    tc2 = (tc2 >= 0); +	++i; +    } + +    /* +     * Endgame - store the location of the decimal point and the end of the +     * string. +     */ + +    if (m2plus > m2minus) { +	mp_clear(&mplus); +    } +    mp_clear_multi(&b, &mminus, &temp, NULL); +    *s = '\0'; +    *decpt = k; +    if (endPtr) { +	*endPtr = s; +    } +    return retval; +} + +/* + *---------------------------------------------------------------------- + * + * StrictBignumConversionPowD -- + * + *	Converts a double-precision number to a fixed-lengt string of 'ilim' + *	digits (or 'ilim1' if log10(d) has been overestimated).  The + *	denominator in David Gay's conversion algorithm is known to be a power + *	of 2**DIGIT_BIT, and hence the division in the main loop may be + *	replaced by a digit shift and mask. + * + * Results: + *	Returns the string of significant decimal digits, in newly allocated + *	memory. + * + * Side effects: + *	Stores the location of the decimal point in '*decpt' and the location + *	of the terminal null byte in '*endPtr'. + * + *---------------------------------------------------------------------- + */ + +inline static char * +StrictBignumConversionPowD( +    Double *dPtr,		/* Original number to convert. */ +    int convType,		/* Type of conversion (shortest, Steele, +				 * E format, F format). */ +    Tcl_WideUInt bw,		/* Integer significand. */ +    int b2, int b5,		/* Scale factor for the significand in the +				 * numerator. */ +    int sd,			/* Scale factor for the denominator. */ +    int k,			/* Number of output digits before the decimal +				 * point. */ +    int len,			/* Number of digits to allocate. */ +    int ilim,			/* Number of digits to convert if b >= s */ +    int ilim1,			/* Number of digits to convert if b < s */ +    int *decpt,			/* OUTPUT: Position of the decimal point. */ +    char **endPtr)		/* OUTPUT: Position of the terminal '\0' at +				 *	   the end of the returned string. */ +{ +    char *retval = ckalloc(len + 1); +				/* Output buffer. */ +    mp_int b;			/* Numerator of the fraction being +				 * converted. */ +    mp_digit digit;		/* Current output digit. */ +    char *s = retval;		/* Cursor in the output buffer. */ +    int i;			/* Index in the output buffer. */ +    mp_int temp; + +    /* +     * b = bw * 2**b2 * 5**b5 +     */ + +    TclBNInitBignumFromWideUInt(&b, bw); +    MulPow5(&b, b5, &b); +    mp_mul_2d(&b, b2, &b); + +    /* +     * Adjust if the logarithm was guessed wrong. +     */ + +    if (b.used <= sd) { +	mp_mul_d(&b, 10, &b); +	ilim = ilim1; +	--k; +    } +    mp_init(&temp); + +    /* +     * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT) +     * by mp_digit extraction. +     */ + +    i = 1; +    for (;;) { +	if (b.used <= sd) { +	    digit = 0;  	} else { -	    tc2= (tc2 > 0); +	    digit = b.dp[sd]; +	    if (b.used > sd+1 || digit >= 10) { +		Tcl_Panic("wrong digit!"); +	    } +	    --b.used; +	    mp_clamp(&b);  	} -	if (!tc1) { -	    if (!tc2) { -		*buffer++ = '0' + i; -	    } else { -		c = (char) (i + '1'); -		break; + +	/* +	 * Have we converted all the requested digits? +	 */ + +	*s++ = '0' + digit; +	if (i == ilim) { +	    if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { +		s = BumpUp(s, retval, &k); +	    } +	    while (*--s == '0') { +		/* do nothing */  	    } +	    ++s; +	    break; +	} + +	/* +	 * Advance to the next digit. +	 */ + +	mp_mul_d(&b, 10, &b); +	++i; +    } + +    /* +     * Endgame - store the location of the decimal point and the end of the +     * string. +     */ + +    mp_clear_multi(&b, &temp, NULL); +    *s = '\0'; +    *decpt = k; +    if (endPtr) { +	*endPtr = s; +    } +    return retval; +} + +/* + *---------------------------------------------------------------------- + * + * ShouldBankerRoundUp -- + * + *	Tests whether a digit should be rounded up or down when finishing + *	bignum-based floating point conversion. + * + * Results: + *	Returns 1 if the number needs to be rounded up, 0 otherwise. + * + *---------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUp( +    mp_int *twor,		/* 2x the remainder from thd division that +				 * produced the last digit. */ +    mp_int *S,			/* Denominator. */ +    int isodd)			/* Flag == 1 if the last digit is odd. */ +{ +    int r = mp_cmp_mag(twor, S); + +    switch (r) { +    case MP_LT: +	return 0; +    case MP_EQ: +	return isodd; +    case MP_GT: +	return 1; +    } +    Tcl_Panic("in ShouldBankerRoundUp, trichotomy fails!"); +    return 0; +} + +/* + *---------------------------------------------------------------------- + * + * ShouldBankerRoundUpToNext -- + * + *	Tests whether the remainder is great enough to force rounding to the + *	next higher digit. + * + * Results: + *	Returns 1 if the number should be rounded up, 0 otherwise. + * + *---------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpToNext( +    mp_int *b,			/* Remainder from the division that produced +				 * the last digit. */ +    mp_int *m,			/* Numerator of the rounding tolerance. */ +    mp_int *S,			/* Denominator. */ +    int convType,		/* Conversion type: STEELE0 defeats +				 * round-to-even. (Not sure why one would want +				 * this; I coped it from Gay). FIXME */ +    int isodd,			/* 1 if the integer significand is odd. */ +    mp_int *temp)		/* Work area needed for the calculation. */ +{ +    int r; + +    /* +     * Compare b and S-m: this is the same as comparing B+m and S. +     */ + +    mp_add(b, m, temp); +    r = mp_cmp_mag(temp, S); +    switch(r) { +    case MP_LT: +	return 0; +    case MP_EQ: +	if (convType == TCL_DD_STEELE0) { +	    return 0;  	} else { -	    if (!tc2) { -		c = (char) (i + '0'); -	    } else { -		mp_mul_2d(&r, 1, &r); -		n = mp_cmp_mag(&r, &s); -		if (n < 0) { -		    c = (char) (i + '0'); -		} else { -		    c = (char) (i + '1'); +	    return isodd; +	} +    case MP_GT: +	return 1; +    } +    Tcl_Panic("in ShouldBankerRoundUpToNext, trichotomy fails!"); +    return 0; +} + +/* + *---------------------------------------------------------------------- + * + * ShorteningBignumConversion -- + * + *	Convert a floating point number to a variable-length digit string + *	using the multiprecision method. + * + * Results: + *	Returns the string of digits. + * + * Side effects: + *	Stores the position of the decimal point in *decpt.  Stores a pointer + *	to the end of the number in *endPtr. + * + *---------------------------------------------------------------------- + */ + +inline static char * +ShorteningBignumConversion( +    Double *dPtr,		/* Original number being converted. */ +    int convType,		/* Conversion type. */ +    Tcl_WideUInt bw,		/* Integer significand and exponent. */ +    int b2,			/* Scale factor for the significand. */ +    int m2plus, int m2minus,	/* Scale factors for 1/2 ulp in numerator. */ +    int s2, int s5,		/* Scale factors for denominator. */ +    int k,			/* Guessed position of the decimal point. */ +    int len,			/* Size of the digit buffer to allocate. */ +    int ilim,			/* Number of digits to convert if b >= s */ +    int ilim1,			/* Number of digits to convert if b < s */ +    int *decpt,			/* OUTPUT: Position of the decimal point. */ +    char **endPtr)		/* OUTPUT: Pointer to the end of the number */ +{ +    char *retval = ckalloc(len+1); +				/* Buffer of digits to return. */ +    char *s = retval;		/* Cursor in the return value. */ +    mp_int b;			/* Numerator of the result. */ +    mp_int mminus;		/* 1/2 ulp below the result. */ +    mp_int mplus;		/* 1/2 ulp above the result. */ +    mp_int S;			/* Denominator of the result. */ +    mp_int dig;			/* Current digit of the result. */ +    int digit;			/* Current digit of the result. */ +    mp_int temp;		/* Work area. */ +    int minit = 1;		/* Fudge factor for when we misguess k. */ +    int i; +    int r1; + +    /* +     * b = bw * 2**b2 * 5**b5 +     * S = 2**s2 * 5*s5 +     */ + +    TclBNInitBignumFromWideUInt(&b, bw); +    mp_mul_2d(&b, b2, &b); +    mp_init_set_int(&S, 1); +    MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); + +    /* +     * Handle the case where we guess the position of the decimal point wrong. +     */ + +    if (mp_cmp_mag(&b, &S) == MP_LT) { +	mp_mul_d(&b, 10, &b); +	minit = 10; +	ilim =ilim1; +	--k; +    } + +    /* +     * mminus = 2**m2minus * 5**m5 +     */ + +    mp_init_set_int(&mminus, minit); +    mp_mul_2d(&mminus, m2minus, &mminus); +    if (m2plus > m2minus) { +	mp_init_copy(&mplus, &mminus); +	mp_mul_2d(&mplus, m2plus-m2minus, &mplus); +    } +    mp_init(&temp); + +    /* +     * Loop through the digits. +     */ + +    mp_init(&dig); +    i = 1; +    for (;;) { +	mp_div(&b, &S, &dig, &b); +	if (dig.used > 1 || dig.dp[0] >= 10) { +	    Tcl_Panic("wrong digit!"); +	} +	digit = dig.dp[0]; + +	/* +	 * Does the current digit leave us with a remainder small enough to +	 * round to it? +	 */ + +	r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus); +	if (r1 == MP_LT || (r1 == MP_EQ +		&& convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) { +	    mp_mul_2d(&b, 1, &b); +	    if (ShouldBankerRoundUp(&b, &S, digit&1)) { +		++digit; +		if (digit == 10) { +		    *s++ = '9'; +		    s = BumpUp(s, retval, &k); +		    break;  		}  	    } +	    *s++ = '0' + digit; +	    break; +	} + +	/* +	 * Does the current digit leave us with a remainder large enough to +	 * commit to rounding up to the next higher digit? +	 */ + +	if (ShouldBankerRoundUpToNext(&b, &mminus, &S, convType, +		dPtr->w.word1 & 1, &temp)) { +	    ++digit; +	    if (digit == 10) { +		*s++ = '9'; +		s = BumpUp(s, retval, &k); +		break; +	    } +	    *s++ = '0' + digit; +	    break; +	} + +	/* +	 * Have we converted all the requested digits? +	 */ + +	*s++ = '0' + digit; +	if (i == ilim) { +	    mp_mul_2d(&b, 1, &b); +	    if (ShouldBankerRoundUp(&b, &S, digit&1)) { +		s = BumpUp(s, retval, &k); +	    }  	    break;  	} -    }; -    *buffer++ = c; -    *buffer++ = '\0'; + +	/* +	 * Advance to the next digit. +	 */ + +	if (s5 > 0) { +	    /* +	     * Can possibly shorten the denominator. +	     */ + +	    mp_mul_2d(&b, 1, &b); +	    mp_mul_2d(&mminus, 1, &mminus); +	    if (m2plus > m2minus) { +		mp_mul_2d(&mplus, 1, &mplus); +	    } +	    mp_div_d(&S, 5, &S, NULL); +	    --s5; + +	    /* +	     * IDEA: It might possibly be a win to fall back to int64 +	     *       arithmetic here if S < 2**64/10. But it's a win only for +	     *       a fairly narrow range of magnitudes so perhaps not worth +	     *       bothering.  We already know that we shorten the +	     *       denominator by at least 1 mp_digit, perhaps 2, as we do +	     *       the conversion for 17 digits of significance. +	     * Possible savings: +	     * 10**26   1 trip through loop before fallback possible +	     * 10**27   1 trip +	     * 10**28   2 trips +	     * 10**29   3 trips +	     * 10**30   4 trips +	     * 10**31   5 trips +	     * 10**32   6 trips +	     * 10**33   7 trips +	     * 10**34   8 trips +	     * 10**35   9 trips +	     * 10**36  10 trips +	     * 10**37  11 trips +	     * 10**38  12 trips +	     * 10**39  13 trips +	     * 10**40  14 trips +	     * 10**41  15 trips +	     * 10**42  16 trips +	     * thereafter no gain. +	     */ +	} else { +	    mp_mul_d(&b, 10, &b); +	    mp_mul_d(&mminus, 10, &mminus); +	    if (m2plus > m2minus) { +		mp_mul_2d(&mplus, 10, &mplus); +	    } +	} + +	++i; +    }      /* -     * Free memory, and return. +     * Endgame - store the location of the decimal point and the end of the +     * string.       */ -    mp_clear_multi(&r, &s, &mplus, &mminus, &temp, NULL); -    return k; +    if (m2plus > m2minus) { +	mp_clear(&mplus); +    } +    mp_clear_multi(&b, &mminus, &temp, &dig, &S, NULL); +    *s = '\0'; +    *decpt = k; +    if (endPtr) { +	*endPtr = s; +    } +    return retval;  }  /*   *----------------------------------------------------------------------   * - * AbsoluteValue -- + * StrictBignumConversion --   * - *	Splits a 'double' into its absolute value and sign. + *	Convert a floating point number to a fixed-length digit string using + *	the multiprecision method.   *   * Results: - *	Returns the absolute value. + *	Returns the string of digits.   *   * Side effects: - *	Stores the signum in '*signum'. + *	Stores the position of the decimal point in *decpt.  Stores a pointer + *	to the end of the number in *endPtr.   *   *----------------------------------------------------------------------   */ -static double -AbsoluteValue( -    double v,			/* Number to split */ -    int *signum)		/* (Output) Sign of the number 1=-, 0=+ */ +inline static char * +StrictBignumConversion( +    Double *dPtr,		/* Original number being converted. */ +    int convType,		/* Conversion type. */ +    Tcl_WideUInt bw,		/* Integer significand and exponent. */ +    int b2,			/* Scale factor for the significand. */ +    int s2, int s5,		/* Scale factors for denominator. */ +    int k,			/* Guessed position of the decimal point. */ +    int len,			/* Size of the digit buffer to allocate. */ +    int ilim,			/* Number of digits to convert if b >= s */ +    int ilim1,			/* Number of digits to convert if b < s */ +    int *decpt,			/* OUTPUT: Position of the decimal point. */ +    char **endPtr)		/* OUTPUT: Pointer to the end of the number */  { +    char *retval = ckalloc(len+1); +				/* Buffer of digits to return. */ +    char *s = retval;		/* Cursor in the return value. */ +    mp_int b;			/* Numerator of the result. */ +    mp_int S;			/* Denominator of the result. */ +    mp_int dig;			/* Current digit of the result. */ +    int digit;			/* Current digit of the result. */ +    mp_int temp;		/* Work area. */ +    int g;			/* Size of the current digit ground. */ +    int i, j; +      /* -     * Take the absolute value of the number, and report the number's sign. -     * Take special steps to preserve signed zeroes in IEEE floating point. -     * (We can't use fpclassify, because that's a C9x feature and we still -     * have to build on C89 compilers.) +     * b = bw * 2**b2 * 5**b5 +     * S = 2**s2 * 5*s5       */ -#ifndef IEEE_FLOATING_POINT -    if (v >= 0.0) { -	*signum = 0; -    } else { -	*signum = 1; -	v = -v; +    mp_init_multi(&temp, &dig, NULL); +    TclBNInitBignumFromWideUInt(&b, bw); +    mp_mul_2d(&b, b2, &b); +    mp_init_set_int(&S, 1); +    MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); + +    /* +     * Handle the case where we guess the position of the decimal point wrong. +     */ + +    if (mp_cmp_mag(&b, &S) == MP_LT) { +	mp_mul_d(&b, 10, &b); +	ilim =ilim1; +	--k;      } -#else -    union { -	Tcl_WideUInt iv; -	double dv; -    } bitwhack; -    bitwhack.dv = v; -    if (n770_fp) { -	bitwhack.iv = Nokia770Twiddle(bitwhack.iv); + +    /* +     * Convert the leading digit. +     */ + +    i = 0; +    mp_div(&b, &S, &dig, &b); +    if (dig.used > 1 || dig.dp[0] >= 10) { +	Tcl_Panic("wrong digit!");      } -    if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { -	*signum = 1; -	bitwhack.iv &= ~((Tcl_WideUInt) 1 << 63); -	if (n770_fp) { -	    bitwhack.iv = Nokia770Twiddle(bitwhack.iv); +    digit = dig.dp[0]; + +    /* +     * Is a single digit all that was requested? +     */ + +    *s++ = '0' + digit; +    if (++i >= ilim) { +	mp_mul_2d(&b, 1, &b); +	if (ShouldBankerRoundUp(&b, &S, digit&1)) { +	    s = BumpUp(s, retval, &k);  	} -	v = bitwhack.dv;      } else { -	*signum = 0; +	for (;;) { +	    /* +	     * Shift by a group of digits. +	     */ + +	    g = ilim - i; +	    if (g > DIGIT_GROUP) { +		g = DIGIT_GROUP; +	    } +	    if (s5 >= g) { +		mp_div_d(&S, dpow5[g], &S, NULL); +		s5 -= g; +	    } else if (s5 > 0) { +		mp_div_d(&S, dpow5[s5], &S, NULL); +		mp_mul_d(&b, dpow5[g - s5], &b); +		s5 = 0; +	    } else { +		mp_mul_d(&b, dpow5[g], &b); +	    } +	    mp_mul_2d(&b, g, &b); + +	    /* +	     * As with the shortening bignum conversion, it's possible at this +	     * point that we will have reduced the denominator to less than +	     * 2**64/10, at which point it would be possible to fall back to +	     * to int64 arithmetic. But the potential payoff is tremendously +	     * less - unless we're working in F format - because we know that +	     * three groups of digits will always suffice for %#.17e, the +	     * longest format that doesn't introduce empty precision. +	     * +	     * Extract the next group of digits. +	     */ + +	    mp_div(&b, &S, &dig, &b); +	    if (dig.used > 1) { +		Tcl_Panic("wrong digit!"); +	    } +	    digit = dig.dp[0]; +	    for (j = g-1; j >= 0; --j) { +		int t = itens[j]; + +		*s++ = digit / t + '0'; +		digit %= t; +	    } +	    i += g; + +	    /* +	     * Have we converted all the requested digits? +	     */ + +	    if (i == ilim) { +		mp_mul_2d(&b, 1, &b); +		if (ShouldBankerRoundUp(&b, &S, digit&1)) { +		    s = BumpUp(s, retval, &k); +		} +		break; +	    } +	}      } -#endif -    return v; +    while (*--s == '0') { +	/* do nothing */ +    } +    ++s; + +    /* +     * Endgame - store the location of the decimal point and the end of the +     * string. +     */ + +    mp_clear_multi(&b, &S, &temp, &dig, NULL); +    *s = '\0'; +    *decpt = k; +    if (endPtr) { +	*endPtr = s; +    } +    return retval;  }  /*   *----------------------------------------------------------------------   * - * GetIntegerTimesPower -- + * TclDoubleDigits --   * - *	Converts a floating point number to an exact integer times a power of - *	the floating point radix. + *	Core of Tcl's conversion of double-precision floating point numbers to + *	decimal.   *   * Results: - *	Returns 1 if it converted the smallest significand, 0 otherwise. + *	Returns a newly-allocated string of digits.   *   * Side effects: - *	Initializes the integer value (does not just assign it), and stores - *	the exponent. + *	Sets *decpt to the index of the character in the string before the + *	place that the decimal point should go. If 'endPtr' is not NULL, sets + *	endPtr to point to the terminating '\0' byte of the string. Sets *sign + *	to 1 if a minus sign should be printed with the number, or 0 if a plus + *	sign (or no sign) should appear. + * + * This function is a service routine that produces the string of digits for + * floating-point-to-decimal conversion. It can do a number of things + * according to the 'flags' argument. Valid values for 'flags' include: + *	TCL_DD_SHORTEST - This is the default for floating point conversion if + *		::tcl_precision is 0. It constructs the shortest string of + *		digits that will reconvert to the given number when scanned. + *		For floating point numbers that are exactly between two + *		decimal numbers, it resolves using the 'round to even' rule. + *		With this value, the 'ndigits' parameter is ignored. + *	TCL_DD_STEELE - This value is not recommended and may be removed in + *		the future. It follows the conversion algorithm outlined in + *		"How to Print Floating-Point Numbers Accurately" by Guy + *		L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, + *		pp. 112-126]. This rule has the effect of rendering 1e23 as + *		9.9999999999999999e22 - which is a 'better' approximation in + *		the sense that it will reconvert correctly even if a + *		subsequent input conversion is 'round up' or 'round down' + *		rather than 'round to nearest', but is surprising otherwise. + *	TCL_DD_E_FORMAT - This value is used to prepare numbers for %e format + *		conversion (or for default floating->string if tcl_precision + *		is not 0). It constructs a string of at most 'ndigits' digits, + *		choosing the one that is closest to the given number (and + *		resolving ties with 'round to even').  It is allowed to return + *		fewer than 'ndigits' if the number converts exactly; if the + *		TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG is supplied instead, it  + *		also returns fewer digits if the shorter string will still + *		reconvert without loss to the given input number. In any case, + *		strings of trailing zeroes are suppressed. + *	TCL_DD_F_FORMAT - This value is used to prepare numbers for %f format + *		conversion. It requests that conversion proceed until + *		'ndigits' digits after the decimal point have been converted. + *		It is possible for this format to result in a zero-length + *		string if the number is sufficiently small. Again, it is + *		permissible for TCL_DD_F_FORMAT to return fewer digits for a + *		number that converts exactly, and changing the argument to + *		TCL_DD_F_FORMAT|TCL_DD_SHORTEN_FLAG will allow the routine + *		also to return fewer digits if the shorter string will still + *		reconvert without loss to the given input number. Strings of + *		trailing zeroes are suppressed. + * + *	To any of these flags may be OR'ed TCL_DD_NO_QUICK; this flag requires + *	all calculations to be done in exact arithmetic. Normally, E and F + *	format with fewer than about 14 digits will be done with a quick + *	floating point approximation and fall back on the exact arithmetic + *	only if the input number is close enough to the midpoint between two + *	decimal strings that more precision is needed to resolve which string + *	is correct. + * + * The value stored in the 'decpt' argument on return may be negative + * (indicating that the decimal point falls to the left of the string) or + * greater than the length of the string. In addition, the value -9999 is used + * as a sentinel to indicate that the string is one of the special values + * "Infinity" and "NaN", and that no decimal point should be inserted.   *   *----------------------------------------------------------------------   */ -static int -GetIntegerTimesPower( -    double v,			/* Value to convert */ -    mp_int *rPtr,		/* (Output) Integer value */ -    int *ePtr)			/* (Output) Power of FLT_RADIX by which r must -				 * be multiplied to yield v*/ +char * +TclDoubleDigits( +    double dv,			/* Number to convert. */ +    int ndigits,		/* Number of digits requested. */ +    int flags,			/* Conversion flags. */ +    int *decpt,			/* OUTPUT: Position of the decimal point. */ +    int *sign,			/* OUTPUT: 1 if the result is negative. */ +    char **endPtr)		/* OUTPUT: If not NULL, receives a pointer to +				 *	   one character beyond the end of the +				 *	   returned string. */  { -    double a, f; -    int e, i, n; +    int convType = (flags & TCL_DD_CONVERSION_TYPE_MASK); +				/* Type of conversion being performed: +				 * TCL_DD_SHORTEST0, TCL_DD_STEELE0, +				 * TCL_DD_E_FORMAT, or TCL_DD_F_FORMAT. */ +    Double d;			/* Union for deconstructing doubles. */ +    Tcl_WideUInt bw;		/* Integer significand. */ +    int be;			/* Power of 2 by which b must be multiplied */ +    int bbits;			/* Number of bits needed to represent b. */ +    int denorm;			/* Flag == 1 iff the input number was +				 * denormalized. */ +    int k;			/* Estimate of floor(log10(d)). */ +    int k_check;		/* Flag == 1 if d is near enough to a power of +				 * ten that k must be checked. */ +    int b2, b5, s2, s5;		/* Powers of 2 and 5 in the numerator and +				 * denominator of intermediate results. */ +    int ilim = -1, ilim1 = -1;	/* Number of digits to convert, and number to +				 * convert if log10(d) has been +				 * overestimated. */ +    char *retval;		/* Return value from this function. */ +    int i = -1;      /* -     * Develop f and e such that v = f * FLT_RADIX**e, with -     * 1.0/FLT_RADIX <= f < 1. +     * Put the input number into a union for bit-whacking.       */ -    f = frexp(v, &e); -#if FLT_RADIX > 2 -    n = e % log2FLT_RADIX; -    if (n > 0) { -	n -= log2FLT_RADIX; -	e += 1; -	f *= ldexp(1.0, n); +    d.d = dv; + +    /* +     * Handle the cases of negative numbers (by taking the absolute value: +     * this includes -Inf and -NaN!), infinity, Not a Number, and zero. +     */ + +    TakeAbsoluteValue(&d, sign); +    if ((d.w.word0 & EXP_MASK) == EXP_MASK) { +	return FormatInfAndNaN(&d, decpt, endPtr);      } -    e = (e - n) / log2FLT_RADIX; -#endif -    if (f == 1.0) { -	f = 1.0 / FLT_RADIX; -	e += 1; +    if (d.d == 0.0) { +	return FormatZero(decpt, endPtr);      }      /* -     * If the original number was denormalized, adjust e and f to be denormal -     * as well. +     * Unpack the floating point into a wide integer and an exponent. +     * Determine the number of bits that the big integer requires, and compute +     * a quick approximation (which may be one too high) of ceil(log10(d.d)).       */ -    if (e < DBL_MIN_EXP) { -	n = mantBits + (e - DBL_MIN_EXP)*log2FLT_RADIX; -	f = ldexp(f, (e - DBL_MIN_EXP)*log2FLT_RADIX); -	e = DBL_MIN_EXP; -	n = (n + DIGIT_BIT - 1) / DIGIT_BIT; -    } else { -	n = mantDIGIT; -    } +    denorm = ((d.w.word0 & EXP_MASK) == 0); +    DoubleToExpAndSig(d.d, &bw, &be, &bbits); +    k = ApproximateLog10(bw, be, bbits); +    k = BetterLog10(d.d, k, &k_check); + +    /* At this point, we have: +     *	  d is the number to convert. +     *    bw are significand and exponent: d == bw*2**be, +     *    bbits is the length of bw: 2**bbits-1 <= bw < 2**bbits +     *	  k is either ceil(log10(d)) or ceil(log10(d))+1. k_check is 0 if we +     *      know that k is exactly ceil(log10(d)) and 1 if we need to check. +     *    We want a rational number +     *      r = b * 10**(1-k) = bw * 2**b2 * 5**b5 / (2**s2 / 5**s5), +     *    with b2, b5, s2, s5 >= 0.  Note that the most significant decimal +     *    digit is floor(r) and that successive digits can be obtained by +     *    setting r <- 10*floor(r) (or b <= 10 * (b % S)).  Find appropriate +     *    b2, b5, s2, s5. +     */ + +    ComputeScale(be, k, &b2, &b5, &s2, &s5); + +    /* +     * Correct an incorrect caller-supplied 'ndigits'.  Also determine: +     *	i = The maximum number of decimal digits that will be returned in the +     *      formatted string.  This is k + 1 + ndigits for F format, 18 for +     *      shortest and Steele, and ndigits for E format. +     *  ilim = The number of significant digits to convert if k has been +     *         guessed correctly. This is -1 for shortest and Steele (which +     *         stop when all significance has been lost), 'ndigits' for E +     *         format, and 'k + 1 + ndigits' for F format. +     *  ilim1 = The minimum number of significant digits to convert if k has +     *	        been guessed 1 too high. This, too, is -1 for shortest and +     *	        Steele, and 'ndigits' for E format, but it's 'ndigits-1' for F +     *	        format. +     */ + +    SetPrecisionLimits(convType, k, &ndigits, &i, &ilim, &ilim1);      /* -     * Now extract the base-2**DIGIT_BIT digits of f into a multi-precision -     * integer r. Preserve the invariant v = r * 2**rfac2 * FLT_RADIX**e by -     * adjusting e. +     * Try to do low-precision conversion in floating point rather than +     * resorting to expensive multiprecision arithmetic.       */ -    a = f; -    n = mantDIGIT; -    mp_init_size(rPtr, n); -    rPtr->used = n; -    rPtr->sign = MP_ZPOS; -    i = (mantBits % DIGIT_BIT); -    if (i == 0) { -	i = DIGIT_BIT; +    if (ilim >= 0 && ilim <= QUICK_MAX && !(flags & TCL_DD_NO_QUICK)) { +	retval = QuickConversion(d.d, k, k_check, flags, i, ilim, ilim1, +		decpt, endPtr); +	if (retval != NULL) { +	    return retval; +	}      } -    while (n > 0) { -	a *= ldexp(1.0, i); -	i = DIGIT_BIT; -	rPtr->dp[--n] = (mp_digit) a; -	a -= (mp_digit) a; + +    /* +     * For shortening conversions, determine the upper and lower bounds for +     * the remainder at which we can stop. +     *   m+ = (2**m2plus * 5**m5) / (2**s2 * 5**s5) is the limit on the high +     *        side, and +     *   m- = (2**m2minus * 5**m5) / (2**s2 * 5**s5) is the limit on the low +     *        side. +     * We may need to increase s2 to put m2plus, m2minus, b2 over a common +     * denominator. +     */ + +    if (flags & TCL_DD_SHORTEN_FLAG) { +	int m2minus = b2; +	int m2plus; +	int m5 = b5; +	int len = i; + +	/* +	 * Find the quantity i so that (2**i*5**b5)/(2**s2*5**s5) is 1/2 unit +	 * in the least significant place of the floating point number. +	 */ + +	if (denorm) { +	    i = be + EXPONENT_BIAS + (FP_PRECISION-1); +	} else { +	    i = 1 + FP_PRECISION - bbits; +	} +	b2 += i; +	s2 += i; + +	/* +	 * Reduce the fractions to lowest terms, since the above calculation +	 * may have left excess powers of 2 in numerator and denominator. +	 */ + +	CastOutPowersOf2(&b2, &m2minus, &s2); + +	/* +	 * In the special case where bw==1, the nearest floating point number +	 * to it on the low side is 1/4 ulp below it. Adjust accordingly. +	 */ + +	m2plus = m2minus; +	if (!denorm && bw == 1) { +	    ++b2; +	    ++s2; +	    ++m2plus; +	} + +	if (s5+1 < N_LOG2POW5 && s2+1 + log2pow5[s5+1] <= 64) { +	    /* +	     * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit word, +	     * then all our intermediate calculations can be done using exact +	     * 64-bit arithmetic with no need for expensive multiprecision +	     * operations. (This will be true for all numbers in the range +	     * [1.0e-3 .. 1.0e+24]). +	     */ + +	    return ShorteningInt64Conversion(&d, convType, bw, b2, b5, m2plus, +		    m2minus, m5, s2, s5, k, len, ilim, ilim1, decpt, endPtr); +	} else if (s5 == 0) { +	    /* +	     * The denominator is a power of 2, so we can replace division by +	     * digit shifts. First we round up s2 to a multiple of DIGIT_BIT, +	     * and adjust m2 and b2 accordingly. Then we launch into a version +	     * of the comparison that's specialized for the 'power of mp_digit +	     * in the denominator' case. +	     */ + +	    if (s2 % DIGIT_BIT != 0) { +		int delta = DIGIT_BIT - (s2 % DIGIT_BIT); + +		b2 += delta; +		m2plus += delta; +		m2minus += delta; +		s2 += delta; +	    } +	    return ShorteningBignumConversionPowD(&d, convType, bw, b2, b5, +		    m2plus, m2minus, m5, s2/DIGIT_BIT, k, len, ilim, ilim1, +		    decpt, endPtr); +	} else { +	    /* +	     * Alas, there's no helpful special case; use full-up bignum +	     * arithmetic for the conversion. +	     */ + +	    return ShorteningBignumConversion(&d, convType, bw, b2, m2plus, +		    m2minus, s2, s5, k, len, ilim, ilim1, decpt, endPtr); +	} +    } else { +	/* +	 * Non-shortening conversion. +	 */ + +	int len = i; + +	/* +	 * Reduce numerator and denominator to lowest terms. +	 */ + +	if (b2 >= s2 && s2 > 0) { +	    b2 -= s2; s2 = 0; +	} else if (s2 >= b2 && b2 > 0) { +	    s2 -= b2; b2 = 0; +	} + +	if (s5+1 < N_LOG2POW5 && s2+1 + log2pow5[s5+1] <= 64) { +	    /* +	     * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit word, +	     * then all our intermediate calculations can be done using exact +	     * 64-bit arithmetic with no need for expensive multiprecision +	     * operations. +	     */ + +	    return StrictInt64Conversion(&d, convType, bw, b2, b5, s2, s5, k, +		    len, ilim, ilim1, decpt, endPtr); +	} else if (s5 == 0) { +	    /* +	     * The denominator is a power of 2, so we can replace division by +	     * digit shifts. First we round up s2 to a multiple of DIGIT_BIT, +	     * and adjust m2 and b2 accordingly. Then we launch into a version +	     * of the comparison that's specialized for the 'power of mp_digit +	     * in the denominator' case. +	     */ + +	    if (s2 % DIGIT_BIT != 0) { +		int delta = DIGIT_BIT - (s2 % DIGIT_BIT); + +		b2 += delta; +		s2 += delta; +	    } +	    return StrictBignumConversionPowD(&d, convType, bw, b2, b5, +		    s2/DIGIT_BIT, k, len, ilim, ilim1, decpt, endPtr); +	} else { +	    /* +	     * There are no helpful special cases, but at least we know in +	     * advance how many digits we will convert. We can run the +	     * conversion in steps of DIGIT_GROUP digits, so as to have many +	     * fewer mp_int divisions. +	     */ + +	    return StrictBignumConversion(&d, convType, bw, b2, s2, s5, k, +		    len, ilim, ilim1, decpt, endPtr); +	}      } -    *ePtr = e - DBL_MANT_DIG; -    return (f == 1.0 / FLT_RADIX);  }  /* @@ -2118,13 +4339,19 @@ TclInitDoubleConversion(void)      int x;      Tcl_WideUInt u;      double d; -  #ifdef IEEE_FLOATING_POINT      union {  	double dv;  	Tcl_WideUInt iv;      } bitwhack;  #endif +#if defined(__sgi) && defined(_COMPILER_VERSION) +    union fpc_csr mipsCR; + +    mipsCR.fc_word = get_fpc_csr(); +    mipsCR.fc_struct.flush = 0; +    set_fpc_csr(mipsCR.fc_word); +#endif      /*       * Initialize table of powers of 10 expressed as wide integers. @@ -2132,8 +4359,7 @@ TclInitDoubleConversion(void)      maxpow10_wide = (int)  	    floor(sizeof(Tcl_WideUInt) * CHAR_BIT * log(2.) / log(10.)); -    pow10_wide = (Tcl_WideUInt *) -	    ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt)); +    pow10_wide = ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt));      u = 1;      for (i = 0; i < maxpow10_wide; ++i) {  	pow10_wide[i] = u; @@ -2142,20 +4368,20 @@ TclInitDoubleConversion(void)      pow10_wide[i] = u;      /* -     * Determine how many bits of precision a double has, and how many -     * decimal digits that represents. +     * Determine how many bits of precision a double has, and how many decimal +     * digits that represents.       */      if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) {  	Tcl_Panic("This code doesn't work on a decimal machine!");      } -    --log2FLT_RADIX; +    log2FLT_RADIX--;      mantBits = DBL_MANT_DIG * log2FLT_RADIX;      d = 1.0; -    /*  -     * Initialize a table of powers of ten that can be exactly represented -     * in a double. +    /* +     * Initialize a table of powers of ten that can be exactly represented in +     * a double.       */      x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0)); @@ -2165,7 +4391,7 @@ TclInitDoubleConversion(void)  	mmaxpow = MAXPOW;      }      for (i=0 ; i<=mmaxpow ; ++i) { -	pow10[i] = d; +	pow10vals[i] = d;  	d *= 10.0;      } @@ -2180,25 +4406,28 @@ TclInitDoubleConversion(void)      for (i=0; i<8; ++i) {  	mp_sqr(pow5+i, pow5+i+1);      } +    mp_init_set_int(pow5_13, 1220703125); +    for (i = 1; i < 5; ++i) { +	mp_init(pow5_13 + i); +	mp_sqr(pow5_13 + i - 1, pow5_13 + i); +    } -    /*  +    /*       * Determine the number of decimal digits to the left and right of the       * decimal point in the largest and smallest double, the smallest double -     * that differs from zero, and the number of mp_digits needed to represent  +     * that differs from zero, and the number of mp_digits needed to represent       * the significand of a double.       */ -    tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits);      maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX)  	    + 0.5 * log(10.)) / log(10.));      minDigits = (int) floor((DBL_MIN_EXP - DBL_MANT_DIG)  	    * log((double) FLT_RADIX) / log(10.)); -    mantDIGIT = (mantBits + DIGIT_BIT-1) / DIGIT_BIT;      log10_DIGIT_MAX = (int) floor(DIGIT_BIT * log(2.) / log(10.));      /* -     * Nokia 770's software-emulated floating point is "middle endian": -     * the bytes within a 32-bit word are little-endian (like the native +     * Nokia 770's software-emulated floating point is "middle endian": the +     * bytes within a 32-bit word are little-endian (like the native       * integers), but the two words of a 'double' are presented most       * significant word first.       */ @@ -2237,10 +4466,13 @@ TclFinalizeDoubleConversion(void)  {      int i; -    Tcl_Free((char *) pow10_wide); +    ckfree(pow10_wide);      for (i=0; i<9; ++i) {  	mp_clear(pow5 + i);      } +    for (i=0; i < 5; ++i) { +	mp_clear(pow5_13 + i); +    }  }  /* @@ -2255,17 +4487,17 @@ TclFinalizeDoubleConversion(void)   *	None.   *   * Side effects: - *	Initializes the bignum supplied, and stores the converted number  - *      in it. + *	Initializes the bignum supplied, and stores the converted number in + *	it.   *   *----------------------------------------------------------------------   */  int  Tcl_InitBignumFromDouble( -    Tcl_Interp *interp,		/* For error message */ -    double d,			/* Number to convert */ -    mp_int *b)			/* Place to store the result */ +    Tcl_Interp *interp,		/* For error message. */ +    double d,			/* Number to convert. */ +    mp_int *b)			/* Place to store the result. */  {      double fract;      int expt; @@ -2319,15 +4551,16 @@ Tcl_InitBignumFromDouble(  double  TclBignumToDouble( -    mp_int *a)			/* Integer to convert. */ +    const mp_int *a)			/* Integer to convert. */  {      mp_int b; -    int bits, shift, i; +    int bits, shift, i, lsb;      double r; +      /* -     * Determine how many bits we need, and extract that many from the input. -     * Round to nearest unit in the last place. +     * We need a 'mantBits'-bit significand.  Determine what shift will  +     * give us that.       */      bits = mp_count_bits(a); @@ -2339,17 +4572,54 @@ TclBignumToDouble(  	    return -HUGE_VAL;  	}      } -    shift = mantBits + 1 - bits; +    shift = mantBits - bits; + +    /*  +     * If shift > 0, shift the significand left by the requisite number of +     * bits.  If shift == 0, the significand is already exactly 'mantBits' +     * in length.  If shift < 0, we will need to shift the significand right +     * by the requisite number of bits, and round it. If the '1-shift' +     * least significant bits are 0, but the 'shift'th bit is nonzero, +     * then the significand lies exactly between two values and must be +     * 'rounded to even'. +     */ +      mp_init(&b); -    if (shift > 0) { +    if (shift == 0) { +	mp_copy(a, &b); +    } else if (shift > 0) {  	mp_mul_2d(a, shift, &b);      } else if (shift < 0) { -	mp_div_2d(a, -shift, &b, NULL); -    } else { -	mp_copy(a, &b); +	lsb = mp_cnt_lsb(a); +	if (lsb == -1-shift) { + +	    /* +	     * Round to even +	     */ + +	    mp_div_2d(a, -shift, &b, NULL); +	    if (mp_isodd(&b)) { +		if (b.sign == MP_ZPOS) { +		    mp_add_d(&b, 1, &b); +		} else { +		    mp_sub_d(&b, 1, &b); +		} +	    } +	} else { + +	    /* +	     * Ordinary rounding +	     */ + +	    mp_div_2d(a, -1-shift, &b, NULL); +	    if (b.sign == MP_ZPOS) { +		mp_add_d(&b, 1, &b); +	    } else { +		mp_sub_d(&b, 1, &b); +	    } +	    mp_div_2d(&b, 1, &b, NULL); +	}      } -    mp_add_d(&b, 1, &b); -    mp_div_2d(&b, 1, &b, NULL);      /*       * Accumulate the result, one mp_digit at a time. @@ -2377,10 +4647,24 @@ TclBignumToDouble(  	return -r;      }  } + +/* + *---------------------------------------------------------------------- + * + * TclCeil -- + * + *	Computes the smallest floating point number that is at least the + *	mp_int argument. + * + * Results: + *	Returns the floating point number. + * + *---------------------------------------------------------------------- + */  double  TclCeil( -    mp_int *a)			/* Integer to convert. */ +    const mp_int *a)			/* Integer to convert. */  {      double r = 0.0;      mp_int b; @@ -2420,10 +4704,24 @@ TclCeil(      mp_clear(&b);      return r;  } + +/* + *---------------------------------------------------------------------- + * + * TclFloor -- + * + *	Computes the largest floating point number less than or equal to the + *	mp_int argument. + * + * Results: + *	Returns the floating point value. + * + *---------------------------------------------------------------------- + */  double  TclFloor( -    mp_int *a)			/* Integer to convert. */ +    const mp_int *a)			/* Integer to convert. */  {      double r = 0.0;      mp_int b; @@ -2479,8 +4777,8 @@ TclFloor(  static double  BignumToBiasedFrExp( -    mp_int *a,			/* Integer to convert */ -    int *machexp)		/* Power of two */ +    const mp_int *a,		/* Integer to convert. */ +    int *machexp)		/* Power of two. */  {      mp_int b;      int bits; @@ -2544,8 +4842,8 @@ BignumToBiasedFrExp(  static double  Pow10TimesFrExp( -    int exponent,	 	/* Power of 10 to multiply by */ -    double fraction,		/* Significand of multiplicand */ +    int exponent,		/* Power of 10 to multiply by. */ +    double fraction,		/* Significand of multiplicand. */      int *machexp)		/* On input, exponent of multiplicand. On  				 * output, exponent of result. */  { @@ -2555,10 +4853,10 @@ Pow10TimesFrExp(      if (exponent > 0) {  	/* -	 * Multiply by 10**exponent +	 * Multiply by 10**exponent.  	 */ -	 -	retval = frexp(retval * pow10[exponent&0xf], &j); + +	retval = frexp(retval * pow10vals[exponent&0xf], &j);  	expt += j;  	for (i=4; i<9; ++i) {  	    if (exponent & (1<<i)) { @@ -2568,10 +4866,10 @@ Pow10TimesFrExp(  	}      } else if (exponent < 0) {  	/* -	 * Divide by 10**-exponent +	 * Divide by 10**-exponent.  	 */ -	retval = frexp(retval / pow10[(-exponent) & 0xf], &j); +	retval = frexp(retval / pow10vals[(-exponent) & 0xf], &j);  	expt += j;  	for (i=4; i<9; ++i) {  	    if ((-exponent) & (1<<i)) { @@ -2677,26 +4975,27 @@ TclFormatNaN(   *   * Nokia770Twiddle --   * - * 	Transpose the two words of a number for Nokia 770 floating - *	point handling. + *	Transpose the two words of a number for Nokia 770 floating point + *	handling.   *   *----------------------------------------------------------------------   */ - +#ifdef IEEE_FLOATING_POINT  static Tcl_WideUInt  Nokia770Twiddle( -    Tcl_WideUInt w)		/* Number to transpose */ +    Tcl_WideUInt w)		/* Number to transpose. */  {      return (((w >> 32) & 0xffffffff) | (w << 32));  } +#endif  /*   *----------------------------------------------------------------------   *   * TclNokia770Doubles --   * - * 	Transpose the two words of a number for Nokia 770 floating - *	point handling. + *	Transpose the two words of a number for Nokia 770 floating point + *	handling.   *   *----------------------------------------------------------------------   */ | 
