summaryrefslogtreecommitdiffstats
path: root/generic/tclStrToD.c
diff options
context:
space:
mode:
Diffstat (limited to 'generic/tclStrToD.c')
-rw-r--r--[-rwxr-xr-x]generic/tclStrToD.c3556
1 files changed, 2962 insertions, 594 deletions
diff --git a/generic/tclStrToD.c b/generic/tclStrToD.c
index 7122d33..883e2ea 100755..100644
--- a/generic/tclStrToD.c
+++ b/generic/tclStrToD.c
@@ -1,6 +1,4 @@
/*
- *----------------------------------------------------------------------
- *
* tclStrToD.c --
*
* This file contains a collection of procedures for managing conversions
@@ -9,39 +7,23 @@
* into strings of digits, and procedures for interconversion among
* 'double' and 'mp_int' types.
*
- * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved.
+ * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved.
*
* See the file "license.terms" for information on usage and redistribution of
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
- *
- * RCS: @(#) $Id: tclStrToD.c,v 1.19 2005/12/27 20:14:09 kennykb Exp $
- *
- *----------------------------------------------------------------------
*/
-#include <tclInt.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <float.h>
-#include <limits.h>
+#include "tclInt.h"
+#include "tommath.h"
#include <math.h>
-#include <ctype.h>
-#include <tommath.h>
/*
- * Define TIP_114_FORMATS to accept 0b and 0o for binary and octal strings.
- * Define KILL_OCTAL as well as TIP_114_FORMATS to suppress interpretation of
- * numbers with leading zero as octal. (Ceterum censeo: numeros octonarios
- * delendos esse.)
+ * Define KILL_OCTAL to suppress interpretation of numbers with leading zero
+ * as octal. (Ceterum censeo: numeros octonarios delendos esse.)
*/
-#define TIP_114_FORMATS
#undef KILL_OCTAL
-#ifndef TIP_114_FORMATS
-#undef KILL_OCTAL
-#endif
-
/*
* This code supports (at least hypothetically), IBM, Cray, VAX and IEEE-754
* floating point; of these, only IEEE-754 can represent NaN. IEEE-754 can be
@@ -53,6 +35,11 @@
#endif
/*
+ * Rounding controls. (Thanks a lot, Intel!)
+ */
+
+#ifdef __i386
+/*
* gcc on x86 needs access to rounding controls, because of a questionable
* feature where it retains intermediate results as IEEE 'long double' values
* somewhat unpredictably. It is tempting to include fpu_control.h, but that
@@ -60,12 +47,52 @@
* and ix86-isms are factored out here.
*/
-#if defined(__GNUC__) && defined(__i386)
-typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
-#define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw))
-#define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw))
+#if defined(__GNUC__)
+typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
+
+#define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw))
+#define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw))
# define FPU_IEEE_ROUNDING 0x027f
# define ADJUST_FPU_CONTROL_WORD
+#define TCL_IEEE_DOUBLE_ROUNDING \
+ fpu_control_t roundTo53Bits = FPU_IEEE_ROUNDING; \
+ fpu_control_t oldRoundingMode; \
+ _FPU_GETCW(oldRoundingMode); \
+ _FPU_SETCW(roundTo53Bits)
+#define TCL_DEFAULT_DOUBLE_ROUNDING \
+ _FPU_SETCW(oldRoundingMode)
+
+/*
+ * Sun ProC needs sunmath for rounding control on x86 like gcc above.
+ */
+#elif defined(__sun)
+#include <sunmath.h>
+#define TCL_IEEE_DOUBLE_ROUNDING \
+ ieee_flags("set","precision","double",NULL)
+#define TCL_DEFAULT_DOUBLE_ROUNDING \
+ ieee_flags("clear","precision",NULL,NULL)
+
+/*
+ * Other platforms are assumed to always operate in full IEEE mode, so we make
+ * the macros to go in and out of that mode do nothing.
+ */
+
+#else /* !__GNUC__ && !__sun */
+#define TCL_IEEE_DOUBLE_ROUNDING ((void) 0)
+#define TCL_DEFAULT_DOUBLE_ROUNDING ((void) 0)
+#endif
+#else /* !__i386 */
+#define TCL_IEEE_DOUBLE_ROUNDING ((void) 0)
+#define TCL_DEFAULT_DOUBLE_ROUNDING ((void) 0)
+#endif
+
+/*
+ * MIPS floating-point units need special settings in control registers to use
+ * gradual underflow as we expect. This fix is for the MIPSpro compiler.
+ */
+
+#if defined(__sgi) && defined(_COMPILER_VERSION)
+#include <sys/fpu.h>
#endif
/*
@@ -74,11 +101,11 @@ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
*/
#ifdef __hppa
-# define NAN_START 0x7ff4
-# define NAN_MASK (((Tcl_WideUInt) 1) << 50)
+# define NAN_START 0x7ff4
+# define NAN_MASK (((Tcl_WideUInt) 1) << 50)
#else
-# define NAN_START 0x7ff8
-# define NAN_MASK (((Tcl_WideUInt) 1) << 51)
+# define NAN_START 0x7ff8
+# define NAN_MASK (((Tcl_WideUInt) 1) << 51)
#endif
/*
@@ -86,11 +113,71 @@ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
* runtime).
*/
+/* Magic constants */
+
+#define LOG10_2 0.3010299956639812
+#define TWO_OVER_3LOG10 0.28952965460216784
+#define LOG10_3HALVES_PLUS_FUDGE 0.1760912590558
+
+/*
+ * Definitions of the parts of an IEEE754-format floating point number.
+ */
+
+#define SIGN_BIT 0x80000000
+ /* Mask for the sign bit in the first word of
+ * a double. */
+#define EXP_MASK 0x7ff00000
+ /* Mask for the exponent field in the first
+ * word of a double. */
+#define EXP_SHIFT 20 /* Shift count to make the exponent an
+ * integer. */
+#define HIDDEN_BIT (((Tcl_WideUInt) 0x00100000) << 32)
+ /* Hidden 1 bit for the significand. */
+#define HI_ORDER_SIG_MASK 0x000fffff
+ /* Mask for the high-order part of the
+ * significand in the first word of a
+ * double. */
+#define SIG_MASK (((Tcl_WideUInt) HI_ORDER_SIG_MASK << 32) \
+ | 0xffffffff)
+ /* Mask for the 52-bit significand. */
+#define FP_PRECISION 53 /* Number of bits of significand plus the
+ * hidden bit. */
+#define EXPONENT_BIAS 0x3ff /* Bias of the exponent 0. */
+
+/*
+ * Derived quantities.
+ */
+
+#define TEN_PMAX 22 /* floor(FP_PRECISION*log(2)/log(5)) */
+#define QUICK_MAX 14 /* floor((FP_PRECISION-1)*log(2)/log(10))-1 */
+#define BLETCH 0x10 /* Highest power of two that is greater than
+ * DBL_MAX_10_EXP, divided by 16. */
+#define DIGIT_GROUP 8 /* floor(DIGIT_BIT*log(2)/log(10)) */
+
+/*
+ * Union used to dismantle floating point numbers.
+ */
+
+typedef union Double {
+ struct {
+#ifdef WORDS_BIGENDIAN
+ int word0;
+ int word1;
+#else
+ int word1;
+ int word0;
+#endif
+ } w;
+ double d;
+ Tcl_WideUInt q;
+} Double;
+
static int maxpow10_wide; /* The powers of ten that can be represented
* exactly as wide integers. */
static Tcl_WideUInt *pow10_wide;
#define MAXPOW 22
-static double pow10[MAXPOW+1]; /* The powers of ten that can be represented
+static double pow10vals[MAXPOW+1];
+ /* The powers of ten that can be represented
* exactly as IEEE754 doubles. */
static int mmaxpow; /* Largest power of ten that can be
* represented exactly in a 'double'. */
@@ -100,14 +187,12 @@ static int log2FLT_RADIX; /* Logarithm of the floating point radix. */
static int mantBits; /* Number of bits in a double's significand */
static mp_int pow5[9]; /* Table of powers of 5**(2**n), up to
* 5**256 */
-static double tiny; /* The smallest representable double */
+static double tiny = 0.0; /* The smallest representable double. */
static int maxDigits; /* The maximum number of digits to the left of
* the decimal point of a double. */
static int minDigits; /* The maximum number of digits to the right
* of the decimal point in a double. */
-static int mantDIGIT; /* Number of mp_digit's needed to hold the
- * significand of a double. */
-static CONST double pow_10_2_n[] = { /* Inexact higher powers of ten. */
+static const double pow_10_2_n[] = { /* Inexact higher powers of ten. */
1.0,
100.0,
10000.0,
@@ -119,48 +204,191 @@ static CONST double pow_10_2_n[] = { /* Inexact higher powers of ten. */
1.0e+256
};
+static int n770_fp; /* Flag is 1 on Nokia N770 floating point.
+ * Nokia's floating point has the words
+ * reversed: if big-endian is 7654 3210,
+ * and little-endian is 0123 4567,
+ * then Nokia's FP is 4567 0123;
+ * little-endian within the 32-bit words but
+ * big-endian between them. */
+
+/*
+ * Table of powers of 5 that are small enough to fit in an mp_digit.
+ */
+
+static const mp_digit dpow5[13] = {
+ 1, 5, 25, 125,
+ 625, 3125, 15625, 78125,
+ 390625, 1953125, 9765625, 48828125,
+ 244140625
+};
+
+/*
+ * Table of powers: pow5_13[n] = 5**(13*2**(n+1))
+ */
+
+static mp_int pow5_13[5]; /* Table of powers: 5**13, 5**26, 5**52,
+ * 5**104, 5**208 */
+static const double tens[] = {
+ 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+ 1e20, 1e21, 1e22
+};
+
+static const int itens [] = {
+ 1,
+ 10,
+ 100,
+ 1000,
+ 10000,
+ 100000,
+ 1000000,
+ 10000000,
+ 100000000
+};
+
+static const double bigtens[] = {
+ 1e016, 1e032, 1e064, 1e128, 1e256
+};
+#define N_BIGTENS 5
+
+static const int log2pow5[27] = {
+ 01, 3, 5, 7, 10, 12, 14, 17, 19, 21,
+ 24, 26, 28, 31, 33, 35, 38, 40, 42, 45,
+ 47, 49, 52, 54, 56, 59, 61
+};
+#define N_LOG2POW5 27
+
+static const Tcl_WideUInt wuipow5[27] = {
+ (Tcl_WideUInt) 1, /* 5**0 */
+ (Tcl_WideUInt) 5,
+ (Tcl_WideUInt) 25,
+ (Tcl_WideUInt) 125,
+ (Tcl_WideUInt) 625,
+ (Tcl_WideUInt) 3125, /* 5**5 */
+ (Tcl_WideUInt) 3125*5,
+ (Tcl_WideUInt) 3125*25,
+ (Tcl_WideUInt) 3125*125,
+ (Tcl_WideUInt) 3125*625,
+ (Tcl_WideUInt) 3125*3125, /* 5**10 */
+ (Tcl_WideUInt) 3125*3125*5,
+ (Tcl_WideUInt) 3125*3125*25,
+ (Tcl_WideUInt) 3125*3125*125,
+ (Tcl_WideUInt) 3125*3125*625,
+ (Tcl_WideUInt) 3125*3125*3125, /* 5**15 */
+ (Tcl_WideUInt) 3125*3125*3125*5,
+ (Tcl_WideUInt) 3125*3125*3125*25,
+ (Tcl_WideUInt) 3125*3125*3125*125,
+ (Tcl_WideUInt) 3125*3125*3125*625,
+ (Tcl_WideUInt) 3125*3125*3125*3125, /* 5**20 */
+ (Tcl_WideUInt) 3125*3125*3125*3125*5,
+ (Tcl_WideUInt) 3125*3125*3125*3125*25,
+ (Tcl_WideUInt) 3125*3125*3125*3125*125,
+ (Tcl_WideUInt) 3125*3125*3125*3125*625,
+ (Tcl_WideUInt) 3125*3125*3125*3125*3125, /* 5**25 */
+ (Tcl_WideUInt) 3125*3125*3125*3125*3125*5 /* 5**26 */
+};
+
/*
* Static functions defined in this file.
*/
-static double AbsoluteValue(double v, int *signum);
-static int AccumulateDecimalDigit(unsigned, int,
+static int AccumulateDecimalDigit(unsigned, int,
Tcl_WideUInt *, mp_int *, int);
-static double BignumToBiasedFrExp(mp_int *big, int* machexp);
-static int GetIntegerTimesPower(double v, mp_int *r, int *e);
static double MakeHighPrecisionDouble(int signum,
mp_int *significand, int nSigDigs, int exponent);
static double MakeLowPrecisionDouble(int signum,
Tcl_WideUInt significand, int nSigDigs,
int exponent);
+#ifdef IEEE_FLOATING_POINT
static double MakeNaN(int signum, Tcl_WideUInt tag);
-static double Pow10TimesFrExp(int exponent, double fraction,
- int *machexp);
+#endif
static double RefineApproximation(double approx,
mp_int *exactSignificand, int exponent);
+static void MulPow5(mp_int *, unsigned, mp_int *);
+static int NormalizeRightward(Tcl_WideUInt *);
+static int RequiredPrecision(Tcl_WideUInt);
+static void DoubleToExpAndSig(double, Tcl_WideUInt *, int *,
+ int *);
+static void TakeAbsoluteValue(Double *, int *);
+static char * FormatInfAndNaN(Double *, int *, char **);
+static char * FormatZero(int *, char **);
+static int ApproximateLog10(Tcl_WideUInt, int, int);
+static int BetterLog10(double, int, int *);
+static void ComputeScale(int, int, int *, int *, int *, int *);
+static void SetPrecisionLimits(int, int, int *, int *, int *,
+ int *);
+static char * BumpUp(char *, char *, int *);
+static int AdjustRange(double *, int);
+static char * ShorteningQuickFormat(double, int, int, double,
+ char *, int *);
+static char * StrictQuickFormat(double, int, int, double,
+ char *, int *);
+static char * QuickConversion(double, int, int, int, int, int, int,
+ int *, char **);
+static void CastOutPowersOf2(int *, int *, int *);
+static char * ShorteningInt64Conversion(Double *, int, Tcl_WideUInt,
+ int, int, int, int, int, int, int, int, int,
+ int, int, int *, char **);
+static char * StrictInt64Conversion(Double *, int, Tcl_WideUInt,
+ int, int, int, int, int, int,
+ int, int, int *, char **);
+static int ShouldBankerRoundUpPowD(mp_int *, int, int);
+static int ShouldBankerRoundUpToNextPowD(mp_int *, mp_int *,
+ int, int, int, mp_int *);
+static char * ShorteningBignumConversionPowD(Double *dPtr,
+ int convType, Tcl_WideUInt bw, int b2, int b5,
+ int m2plus, int m2minus, int m5,
+ int sd, int k, int len,
+ int ilim, int ilim1, int *decpt,
+ char **endPtr);
+static char * StrictBignumConversionPowD(Double *dPtr, int convType,
+ Tcl_WideUInt bw, int b2, int b5,
+ int sd, int k, int len,
+ int ilim, int ilim1, int *decpt,
+ char **endPtr);
+static int ShouldBankerRoundUp(mp_int *, mp_int *, int);
+static int ShouldBankerRoundUpToNext(mp_int *, mp_int *,
+ mp_int *, int, int, mp_int *);
+static char * ShorteningBignumConversion(Double *dPtr, int convType,
+ Tcl_WideUInt bw, int b2,
+ int m2plus, int m2minus,
+ int s2, int s5, int k, int len,
+ int ilim, int ilim1, int *decpt,
+ char **endPtr);
+static char * StrictBignumConversion(Double *dPtr, int convType,
+ Tcl_WideUInt bw, int b2,
+ int s2, int s5, int k, int len,
+ int ilim, int ilim1, int *decpt,
+ char **endPtr);
+static double BignumToBiasedFrExp(const mp_int *big, int *machexp);
+static double Pow10TimesFrExp(int exponent, double fraction,
+ int *machexp);
static double SafeLdExp(double fraction, int exponent);
+#ifdef IEEE_FLOATING_POINT
+static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w);
+#endif
/*
*----------------------------------------------------------------------
*
* TclParseNumber --
*
- * Scans bytes, interpreted as characters in Tcl's internal encoding,
- * and parses the longest prefix that is the string representation of
- * a number in a format recognized by Tcl.
+ * Scans bytes, interpreted as characters in Tcl's internal encoding, and
+ * parses the longest prefix that is the string representation of a
+ * number in a format recognized by Tcl.
*
* The arguments bytes, numBytes, and objPtr are the inputs which
- * determine the string to be parsed. If bytes is non-NULL, it
- * points to the first byte to be scanned. If bytes is NULL, then objPtr
- * must be non-NULL, and the string representation of objPtr will be
- * scanned (generated first, if necessary). The numBytes argument
- * determines the number of bytes to be scanned. If numBytes is
- * negative, the first NUL byte encountered will terminate the scan.
- * If numBytes is non-negative, then no more than numBytes bytes will
- * be scanned.
+ * determine the string to be parsed. If bytes is non-NULL, it points to
+ * the first byte to be scanned. If bytes is NULL, then objPtr must be
+ * non-NULL, and the string representation of objPtr will be scanned
+ * (generated first, if necessary). The numBytes argument determines the
+ * number of bytes to be scanned. If numBytes is negative, the first NUL
+ * byte encountered will terminate the scan. If numBytes is non-negative,
+ * then no more than numBytes bytes will be scanned.
*
* The argument flags is an input that controls the numeric formats
- * recognized by the parser. The flag bits are:
+ * recognized by the parser. The flag bits are:
*
* - TCL_PARSE_INTEGER_ONLY: accept only integer values; reject
* strings that denote floating point values (or accept only the
@@ -168,71 +396,73 @@ static double SafeLdExp(double fraction, int exponent);
* - TCL_PARSE_SCAN_PREFIXES: ignore the prefixes 0b and 0o that are
* not part of the [scan] command's vocabulary. Use only in
* combination with TCL_PARSE_INTEGER_ONLY.
- * - TCL_PARSE_OCTAL_ONLY: parse only in the octal format, whether
- * or not a prefix is present that would lead to octal parsing. Use
- * only in combination with TCL_PARSE_INTEGER_ONLY.
- * - TCL_PARSE_HEXADECIMAL_ONLY: parse only in the hexadecimal format,
+ * - TCL_PARSE_OCTAL_ONLY: parse only in the octal format, whether
+ * or not a prefix is present that would lead to octal parsing.
+ * Use only in combination with TCL_PARSE_INTEGER_ONLY.
+ * - TCL_PARSE_HEXADECIMAL_ONLY: parse only in the hexadecimal format,
* whether or not a prefix is present that would lead to
* hexadecimal parsing. Use only in combination with
* TCL_PARSE_INTEGER_ONLY.
- * - TCL_PARSE_DECIMAL_ONLY: parse only in the decimal format, no
- * matter whether a 0 prefix would normally force a different base.
+ * - TCL_PARSE_DECIMAL_ONLY: parse only in the decimal format, no
+ * matter whether a 0 prefix would normally force a different
+ * base.
* - TCL_PARSE_NO_WHITESPACE: reject any leading/trailing whitespace
*
- * The arguments interp and expected are inputs that control error message
- * generation. If interp is NULL, no error message will be generated.
- * If interp is non-NULL, then expected must also be non-NULL. When
- * TCL_ERROR is returned, an error message will be left in the result
- * of interp, and the expected argument will appear in the error message
- * as the thing TclParseNumber expected, but failed to find in the string.
+ * The arguments interp and expected are inputs that control error
+ * message generation. If interp is NULL, no error message will be
+ * generated. If interp is non-NULL, then expected must also be non-NULL.
+ * When TCL_ERROR is returned, an error message will be left in the
+ * result of interp, and the expected argument will appear in the error
+ * message as the thing TclParseNumber expected, but failed to find in
+ * the string.
*
* The arguments objPtr and endPtrPtr as well as the return code are the
* outputs.
*
* When the parser cannot find any prefix of the string that matches a
* format it is looking for, TCL_ERROR is returned and an error message
- * may be generated and returned as described above. The contents of
- * objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to
- * the character in the string that terminated the scan will be written
- * to *endPtrPtr.
- *
- * When the parser determines that the entire string matches a format
- * it is looking for, TCL_OK is returned, and if objPtr is non-NULL,
- * then the internal rep and Tcl_ObjType of objPtr are set to the
- * "canonical" numeric value that matches the scanned string. If
- * endPtrPtr is non-NULL, a pointer to the end of the string will be
- * written to *endPtrPtr (that is, either bytes+numBytes or a pointer
- * to a terminating NUL byte).
- *
- * When the parser determines that a partial string matches a format
- * it is looking for, the value of endPtrPtr determines what happens:
+ * may be generated and returned as described above. The contents of
+ * objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to the
+ * character in the string that terminated the scan will be written to
+ * *endPtrPtr.
+ *
+ * When the parser determines that the entire string matches a format it
+ * is looking for, TCL_OK is returned, and if objPtr is non-NULL, then
+ * the internal rep and Tcl_ObjType of objPtr are set to the "canonical"
+ * numeric value that matches the scanned string. If endPtrPtr is not
+ * NULL, a pointer to the end of the string will be written to *endPtrPtr
+ * (that is, either bytes+numBytes or a pointer to a terminating NUL
+ * byte).
+ *
+ * When the parser determines that a partial string matches a format it
+ * is looking for, the value of endPtrPtr determines what happens:
*
* - If endPtrPtr is NULL, then TCL_ERROR is returned, with error message
* generation as above.
*
* - If endPtrPtr is non-NULL, then TCL_OK is returned and objPtr
- * internals are set as above. Also, a pointer to the first
- * character following the parsed numeric string is written
- * to *endPtrPtr.
+ * internals are set as above. Also, a pointer to the first
+ * character following the parsed numeric string is written to
+ * *endPtrPtr.
*
* In some cases where the string being scanned is the string rep of
- * objPtr, this routine can leave objPtr in an inconsistent state
- * where its string rep and its internal rep do not agree. In these
- * cases the internal rep will be in agreement with only some substring
- * of the string rep. This might happen if the caller passes in a
- * non-NULL bytes value that points somewhere into the string rep. It
- * might happen if the caller passes in a numBytes value that limits the
- * scan to only a prefix of the string rep. Or it might happen if a
- * non-NULL value of endPtrPtr permits a TCL_OK return from only a partial
- * string match. It is the responsibility of the caller to detect and
- * correct such inconsistencies when they can and do arise.
+ * objPtr, this routine can leave objPtr in an inconsistent state where
+ * its string rep and its internal rep do not agree. In these cases the
+ * internal rep will be in agreement with only some substring of the
+ * string rep. This might happen if the caller passes in a non-NULL bytes
+ * value that points somewhere into the string rep. It might happen if
+ * the caller passes in a numBytes value that limits the scan to only a
+ * prefix of the string rep. Or it might happen if a non-NULL value of
+ * endPtrPtr permits a TCL_OK return from only a partial string match. It
+ * is the responsibility of the caller to detect and correct such
+ * inconsistencies when they can and do arise.
*
* Results:
* Returns a standard Tcl result.
*
* Side effects:
* The string representaton of objPtr may be generated.
- *
+ *
* The internal representation and Tcl_ObjType of objPtr may be changed.
* This may involve allocation and/or freeing of memory.
*
@@ -241,23 +471,23 @@ static double SafeLdExp(double fraction, int exponent);
int
TclParseNumber(
- Tcl_Interp *interp, /* Used for error reporting. May be NULL */
- Tcl_Obj *objPtr, /* Object to receive the internal rep */
- CONST char *expected, /* Description of the type of number the caller
- * expects to be able to parse ("integer",
- * "boolean value", etc.). */
- CONST char *bytes, /* Pointer to the start of the string to scan */
- int numBytes, /* Maximum number of bytes to scan, see above */
- CONST char **endPtrPtr, /* Place to store pointer to the character
- * that terminated the scan */
- int flags) /* Flags governing the parse */
+ Tcl_Interp *interp, /* Used for error reporting. May be NULL. */
+ Tcl_Obj *objPtr, /* Object to receive the internal rep. */
+ const char *expected, /* Description of the type of number the
+ * caller expects to be able to parse
+ * ("integer", "boolean value", etc.). */
+ const char *bytes, /* Pointer to the start of the string to
+ * scan. */
+ int numBytes, /* Maximum number of bytes to scan, see
+ * above. */
+ const char **endPtrPtr, /* Place to store pointer to the character
+ * that terminated the scan. */
+ int flags) /* Flags governing the parse. */
{
enum State {
- INITIAL, SIGNUM, ZERO, ZERO_X,
-#ifdef TIP_114_FORMATS
+ INITIAL, SIGNUM, ZERO, ZERO_X,
ZERO_O, ZERO_B, BINARY,
-#endif
- HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL,
+ HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL,
LEADING_RADIX_POINT, FRACTION,
EXPONENT_START, EXPONENT_SIGNUM, EXPONENT,
sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY
@@ -267,49 +497,47 @@ TclParseNumber(
} state = INITIAL;
enum State acceptState = INITIAL;
- int signum = 0; /* Sign of the number being parsed */
+ int signum = 0; /* Sign of the number being parsed. */
Tcl_WideUInt significandWide = 0;
/* Significand of the number being parsed (if
- * no overflow) */
+ * no overflow). */
mp_int significandBig; /* Significand of the number being parsed (if
- * it overflows significandWide) */
- int significandOverflow = 0;/* Flag==1 iff significandBig is used */
+ * it overflows significandWide). */
+ int significandOverflow = 0;/* Flag==1 iff significandBig is used. */
Tcl_WideUInt octalSignificandWide = 0;
/* Significand of an octal number; needed
* because we don't know whether a number with
* a leading zero is octal or decimal until
- * we've scanned forward to a '.' or 'e' */
+ * we've scanned forward to a '.' or 'e'. */
mp_int octalSignificandBig; /* Significand of octal number once
- * octalSignificandWide overflows */
+ * octalSignificandWide overflows. */
int octalSignificandOverflow = 0;
- /* Flag==1 if octalSignificandBig is used */
+ /* Flag==1 if octalSignificandBig is used. */
int numSigDigs = 0; /* Number of significant digits in the decimal
- * significand */
+ * significand. */
int numTrailZeros = 0; /* Number of trailing zeroes at the current
* point in the parse. */
int numDigitsAfterDp = 0; /* Number of digits scanned after the decimal
- * point */
+ * point. */
int exponentSignum = 0; /* Signum of the exponent of a floating point
- * number */
- long exponent = 0; /* Exponent of a floating point number */
- CONST char *p; /* Pointer to next character to scan */
- size_t len; /* Number of characters remaining after p */
- CONST char *acceptPoint; /* Pointer to position after last character in
- * an acceptable number */
+ * number. */
+ long exponent = 0; /* Exponent of a floating point number. */
+ const char *p; /* Pointer to next character to scan. */
+ size_t len; /* Number of characters remaining after p. */
+ const char *acceptPoint; /* Pointer to position after last character in
+ * an acceptable number. */
size_t acceptLen; /* Number of characters following that
* point. */
- int status = TCL_OK; /* Status to return to caller */
+ int status = TCL_OK; /* Status to return to caller. */
char d = 0; /* Last hexadecimal digit scanned; initialized
* to avoid a compiler warning. */
int shift = 0; /* Amount to shift when accumulating binary */
-#ifdef TIP_114_FORMATS
int explicitOctal = 0;
-#endif
#define ALL_BITS (~(Tcl_WideUInt)0)
#define MOST_BITS (ALL_BITS >> 1)
- /*
+ /*
* Initialize bytes to start of the object's string rep if the caller
* didn't pass anything else.
*/
@@ -332,7 +560,7 @@ TclParseNumber(
* I, N, and whitespace.
*/
- if (isspace(UCHAR(c))) {
+ if (TclIsSpaceProc(c)) {
if (flags & TCL_PARSE_NO_WHITESPACE) {
goto endgame;
}
@@ -344,9 +572,9 @@ TclParseNumber(
signum = 1;
state = SIGNUM;
break;
- }
+ }
/* FALLTHROUGH */
-
+
case SIGNUM:
/*
* Scanned a leading + or -. Acceptable characters are digits,
@@ -362,6 +590,8 @@ TclParseNumber(
break;
} else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) {
goto zerox;
+ } else if (flags & TCL_PARSE_BINARY_ONLY) {
+ goto zerob;
} else if (flags & TCL_PARSE_OCTAL_ONLY) {
goto zeroo;
} else if (isdigit(UCHAR(c))) {
@@ -388,9 +618,9 @@ TclParseNumber(
case ZERO:
/*
* Scanned a leading zero (perhaps with a + or -). Acceptable
- * inputs are digits, period, X, and E. If 8 or 9 is encountered,
- * the number can't be octal. This state and the OCTAL state
- * differ only in whether they recognize 'X'.
+ * inputs are digits, period, X, b, and E. If 8 or 9 is
+ * encountered, the number can't be octal. This state and the
+ * OCTAL state differ only in whether they recognize 'X' and 'b'.
*/
acceptState = state;
@@ -403,7 +633,6 @@ TclParseNumber(
if (flags & TCL_PARSE_HEXADECIMAL_ONLY) {
goto zerox;
}
-#ifdef TIP_114_FORMATS
if (flags & TCL_PARSE_SCAN_PREFIXES) {
goto zeroo;
}
@@ -411,6 +640,9 @@ TclParseNumber(
state = ZERO_B;
break;
}
+ if (flags & TCL_PARSE_BINARY_ONLY) {
+ goto zerob;
+ }
if (c == 'o' || c == 'O') {
explicitOctal = 1;
state = ZERO_O;
@@ -419,7 +651,6 @@ TclParseNumber(
#ifdef KILL_OCTAL
goto decimal;
#endif
-#endif
/* FALLTHROUGH */
case OCTAL:
@@ -432,13 +663,11 @@ TclParseNumber(
acceptState = state;
acceptPoint = p;
acceptLen = len;
-#ifdef TIP_114_FORMATS
/* FALLTHROUGH */
case ZERO_O:
-#endif
zeroo:
if (c == '0') {
- ++numTrailZeros;
+ numTrailZeros++;
state = OCTAL;
break;
} else if (c >= '1' && c <= '7') {
@@ -456,10 +685,11 @@ TclParseNumber(
* too large shifts first.
*/
- if ((octalSignificandWide != 0)
- && ((shift >= CHAR_BIT*sizeof(Tcl_WideUInt))
- || (octalSignificandWide
- > (~(Tcl_WideUInt)0 >> shift)))) {
+ if ((octalSignificandWide != 0)
+ && (((size_t)shift >=
+ CHAR_BIT*sizeof(Tcl_WideUInt))
+ || (octalSignificandWide >
+ (~(Tcl_WideUInt)0 >> shift)))) {
octalSignificandOverflow = 1;
TclBNInitBignumFromWideUInt(&octalSignificandBig,
octalSignificandWide);
@@ -487,16 +717,13 @@ TclParseNumber(
/* FALLTHROUGH */
case BAD_OCTAL:
-#ifdef TIP_114_FORMATS
if (explicitOctal) {
/*
- * No forgiveness for bad digits in explicitly octal
- * numbers.
+ * No forgiveness for bad digits in explicitly octal numbers.
*/
goto endgame;
}
-#endif
if (flags & TCL_PARSE_INTEGER_ONLY) {
/*
* No seeking floating point when parsing only integer.
@@ -513,7 +740,7 @@ TclParseNumber(
*/
if (c == '0') {
- ++numTrailZeros;
+ numTrailZeros++;
state = BAD_OCTAL;
break;
} else if (isdigit(UCHAR(c))) {
@@ -537,7 +764,7 @@ TclParseNumber(
} else if (c == 'E' || c == 'e') {
state = EXPONENT_START;
break;
- }
+ }
#endif
goto endgame;
@@ -556,7 +783,7 @@ TclParseNumber(
case ZERO_X:
zerox:
if (c == '0') {
- ++numTrailZeros;
+ numTrailZeros++;
state = HEXADECIMAL;
break;
} else if (isdigit(UCHAR(c))) {
@@ -578,7 +805,7 @@ TclParseNumber(
*/
if (significandWide != 0 &&
- (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
+ ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (~(Tcl_WideUInt)0 >> shift))) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig,
@@ -596,14 +823,14 @@ TclParseNumber(
state = HEXADECIMAL;
break;
-#ifdef TIP_114_FORMATS
case BINARY:
acceptState = state;
acceptPoint = p;
acceptLen = len;
case ZERO_B:
+ zerob:
if (c == '0') {
- ++numTrailZeros;
+ numTrailZeros++;
state = BINARY;
break;
} else if (c != '1') {
@@ -619,7 +846,7 @@ TclParseNumber(
*/
if (significandWide != 0 &&
- (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
+ ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (~(Tcl_WideUInt)0 >> shift))) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig,
@@ -636,7 +863,6 @@ TclParseNumber(
numTrailZeros = 0;
state = BINARY;
break;
-#endif
case DECIMAL:
/*
@@ -651,14 +877,14 @@ TclParseNumber(
acceptPoint = p;
acceptLen = len;
if (c == '0') {
- ++numTrailZeros;
+ numTrailZeros++;
state = DECIMAL;
break;
} else if (isdigit(UCHAR(c))) {
if (objPtr != NULL) {
significandOverflow = AccumulateDecimalDigit(
- (unsigned)(c - '0'), numTrailZeros,
- &significandWide, &significandBig,
+ (unsigned)(c - '0'), numTrailZeros,
+ &significandWide, &significandBig,
significandOverflow);
}
numSigDigs += numTrailZeros+1;
@@ -676,7 +902,7 @@ TclParseNumber(
}
goto endgame;
- /*
+ /*
* Found a decimal point. If no digits have yet been scanned, E is
* not allowed; otherwise, it introduces the exponent. If at least
* one digit has been found, we have a possible complete number.
@@ -694,16 +920,16 @@ TclParseNumber(
case LEADING_RADIX_POINT:
if (c == '0') {
- ++numDigitsAfterDp;
- ++numTrailZeros;
+ numDigitsAfterDp++;
+ numTrailZeros++;
state = FRACTION;
break;
} else if (isdigit(UCHAR(c))) {
- ++numDigitsAfterDp;
+ numDigitsAfterDp++;
if (objPtr != NULL) {
significandOverflow = AccumulateDecimalDigit(
- (unsigned)(c-'0'), numTrailZeros,
- &significandWide, &significandBig,
+ (unsigned)(c-'0'), numTrailZeros,
+ &significandWide, &significandBig,
significandOverflow);
}
if (numSigDigs != 0) {
@@ -718,7 +944,7 @@ TclParseNumber(
goto endgame;
case EXPONENT_START:
- /*
+ /*
* Scanned the E at the start of an exponent. Make sure a legal
* character follows before using the C library strtol routine,
* which allows whitespace.
@@ -748,7 +974,7 @@ TclParseNumber(
goto endgame;
case EXPONENT:
- /*
+ /*
* Found an exponent with at least one digit. Accumulate it,
* making sure to hard-pin it to LONG_MAX on overflow.
*/
@@ -776,13 +1002,13 @@ TclParseNumber(
if (c == 'n' || c == 'N') {
state = sIN;
break;
- }
+ }
goto endgame;
case sIN:
if (c == 'f' || c == 'F') {
state = sINF;
break;
- }
+ }
goto endgame;
case sINF:
acceptState = state;
@@ -854,7 +1080,7 @@ TclParseNumber(
}
/* FALLTHROUGH */
case sNANPAREN:
- if (isspace(UCHAR(c))) {
+ if (TclIsSpaceProc(c)) {
break;
}
if (numSigDigs < 13) {
@@ -864,7 +1090,10 @@ TclParseNumber(
d = 10 + c - 'a';
} else if (c >= 'A' && c <= 'F') {
d = 10 + c - 'A';
+ } else {
+ goto endgame;
}
+ numSigDigs++;
significandWide = (significandWide << 4) + d;
state = sNANHEX;
break;
@@ -879,26 +1108,35 @@ TclParseNumber(
acceptLen = len;
goto endgame;
}
- ++p;
- --len;
+ p++;
+ len--;
}
endgame:
if (acceptState == INITIAL) {
- /* No numeric string at all found */
+ /*
+ * No numeric string at all found.
+ */
+
status = TCL_ERROR;
if (endPtrPtr != NULL) {
*endPtrPtr = p;
}
} else {
- /* Back up to the last accepting state in the lexer. */
+ /*
+ * Back up to the last accepting state in the lexer.
+ */
+
p = acceptPoint;
len = acceptLen;
if (!(flags & TCL_PARSE_NO_WHITESPACE)) {
- /* Accept trailing whitespace */
- while (len != 0 && isspace(UCHAR(*p))) {
- ++p;
- --len;
+ /*
+ * Accept trailing whitespace.
+ */
+
+ while (len != 0 && TclIsSpaceProc(*p)) {
+ p++;
+ len--;
}
}
if (endPtrPtr == NULL) {
@@ -920,10 +1158,8 @@ TclParseNumber(
case SIGNUM:
case BAD_OCTAL:
case ZERO_X:
-#ifdef TIP_114_FORMATS
case ZERO_O:
case ZERO_B:
-#endif
case LEADING_RADIX_POINT:
case EXPONENT_START:
case EXPONENT_SIGNUM:
@@ -933,18 +1169,18 @@ TclParseNumber(
case sINFIN:
case sINFINI:
case sINFINIT:
+#ifdef IEEE_FLOATING_POINT
case sN:
case sNA:
case sNANPAREN:
case sNANHEX:
Tcl_Panic("TclParseNumber: bad acceptState %d parsing '%s'",
acceptState, bytes);
-
-#ifdef TIP_114_FORMATS
+#endif
case BINARY:
shift = numTrailZeros;
if (!significandOverflow && significandWide != 0 &&
- (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
+ ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (MOST_BITS + signum) >> shift)) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig, significandWide);
@@ -957,7 +1193,6 @@ TclParseNumber(
}
}
goto returnInteger;
-#endif
case HEXADECIMAL:
/*
@@ -966,7 +1201,7 @@ TclParseNumber(
shift = 4 * numTrailZeros;
if (!significandOverflow && significandWide !=0 &&
- (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
+ ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (MOST_BITS + signum) >> shift)) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig, significandWide);
@@ -982,12 +1217,12 @@ TclParseNumber(
case OCTAL:
/*
- * Returning an octal integer. Final scaling step
+ * Returning an octal integer. Final scaling step.
*/
shift = 3 * numTrailZeros;
if (!octalSignificandOverflow && octalSignificandWide != 0 &&
- (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
+ ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
octalSignificandWide > (MOST_BITS + signum) >> shift)) {
octalSignificandOverflow = 1;
TclBNInitBignumFromWideUInt(&octalSignificandBig,
@@ -1002,9 +1237,9 @@ TclParseNumber(
}
}
if (!octalSignificandOverflow) {
- if (octalSignificandWide >
+ if (octalSignificandWide >
(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
-#ifndef NO_WIDE_TYPE
+#ifndef TCL_WIDE_INT_IS_LONG
if (octalSignificandWide <= (MOST_BITS + signum)) {
objPtr->typePtr = &tclWideIntType;
if (signum) {
@@ -1036,22 +1271,22 @@ TclParseNumber(
mp_neg(&octalSignificandBig, &octalSignificandBig);
}
TclSetBignumIntRep(objPtr, &octalSignificandBig);
- }
+ }
break;
case ZERO:
case DECIMAL:
significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1,
&significandWide, &significandBig, significandOverflow);
- if (!significandOverflow && (significandWide > MOST_BITS+signum)) {
+ if (!significandOverflow && (significandWide > MOST_BITS+signum)){
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig, significandWide);
}
returnInteger:
if (!significandOverflow) {
- if (significandWide >
+ if (significandWide >
(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
-#ifndef NO_WIDE_TYPE
+#ifndef TCL_WIDE_INT_IS_LONG
if (significandWide <= MOST_BITS+signum) {
objPtr->typePtr = &tclWideIntType;
if (signum) {
@@ -1099,16 +1334,16 @@ TclParseNumber(
objPtr->typePtr = &tclDoubleType;
if (exponentSignum) {
- exponent = - exponent;
+ exponent = -exponent;
}
if (!significandOverflow) {
objPtr->internalRep.doubleValue = MakeLowPrecisionDouble(
signum, significandWide, numSigDigs,
- (numTrailZeros + exponent - numDigitsAfterDp));
+ numTrailZeros + exponent - numDigitsAfterDp);
} else {
objPtr->internalRep.doubleValue = MakeHighPrecisionDouble(
signum, &significandBig, numSigDigs,
- (numTrailZeros + exponent - numDigitsAfterDp));
+ numTrailZeros + exponent - numDigitsAfterDp);
}
break;
@@ -1122,14 +1357,15 @@ TclParseNumber(
objPtr->typePtr = &tclDoubleType;
break;
+#ifdef IEEE_FLOATING_POINT
case sNAN:
case sNANFINISH:
- objPtr->internalRep.doubleValue = MakeNaN(signum, significandWide);
+ objPtr->internalRep.doubleValue = MakeNaN(signum,significandWide);
objPtr->typePtr = &tclDoubleType;
break;
-
+#endif
case INITIAL:
- /* This case only to silence compiler warning */
+ /* This case only to silence compiler warning. */
Tcl_Panic("TclParseNumber: state INITIAL can't happen here");
}
}
@@ -1140,15 +1376,16 @@ TclParseNumber(
if (status != TCL_OK) {
if (interp != NULL) {
- Tcl_Obj *msg = Tcl_NewStringObj("expected ", -1);
- Tcl_AppendToObj(msg, expected, -1);
- Tcl_AppendToObj(msg, " but got \"", -1);
- TclAppendLimitedToObj(msg, bytes, numBytes, 50, "");
+ Tcl_Obj *msg = Tcl_ObjPrintf("expected %s but got \"",
+ expected);
+
+ Tcl_AppendLimitedToObj(msg, bytes, numBytes, 50, "");
Tcl_AppendToObj(msg, "\"", -1);
if (state == BAD_OCTAL) {
Tcl_AppendToObj(msg, " (looks like invalid octal number)", -1);
}
Tcl_SetObjResult(interp, msg);
+ Tcl_SetErrorCode(interp, "TCL", "VALUE", "NUMBER", NULL);
}
}
@@ -1195,32 +1432,44 @@ AccumulateDecimalDigit(
* to this digit. */
{
int i, n;
+ Tcl_WideUInt w;
/*
- * Check if the number still fits in a wide.
+ * Try wide multiplication first.
*/
- if (!bignumFlag && *wideRepPtr!=0 && ((numZeros >= maxpow10_wide) ||
- *wideRepPtr > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1])) {
- /*
- * Oops, it's overflowed, have to allocate a bignum.
- */
+ if (!bignumFlag) {
+ w = *wideRepPtr;
+ if (w == 0) {
+ /*
+ * There's no need to multiply if the multiplicand is zero.
+ */
- TclBNInitBignumFromWideUInt (bignumRepPtr, *wideRepPtr);
- bignumFlag = 1;
+ *wideRepPtr = digit;
+ return 0;
+ } else if (numZeros >= maxpow10_wide
+ || w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) {
+ /*
+ * Wide multiplication will overflow. Expand the number to a
+ * bignum and fall through into the bignum case.
+ */
+
+ TclBNInitBignumFromWideUInt(bignumRepPtr, w);
+ } else {
+ /*
+ * Wide multiplication.
+ */
+
+ *wideRepPtr = w * pow10_wide[numZeros+1] + digit;
+ return 0;
+ }
}
/*
- * Multiply the number by 10**numZeros+1 and add in the new digit.
+ * Bignum multiplication.
*/
- if (!bignumFlag) {
- /*
- * Wide multiplication.
- */
-
- *wideRepPtr = *wideRepPtr * pow10_wide[numZeros+1] + digit;
- } else if (numZeros < log10_DIGIT_MAX) {
+ if (numZeros < log10_DIGIT_MAX) {
/*
* Up to about 8 zeros - single digit multiplication.
*/
@@ -1229,7 +1478,7 @@ AccumulateDecimalDigit(
bignumRepPtr);
mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr);
} else {
- /*
+ /*
* More than single digit multiplication. Multiply by the appropriate
* small powers of 5, and then shift. Large strings of zeroes are
* eaten 256 at a time; this is less efficient than it could be, but
@@ -1250,9 +1499,10 @@ AccumulateDecimalDigit(
n -= 256;
}
mp_mul_2d(bignumRepPtr, (int)(numZeros+1)&~0x7, bignumRepPtr);
+ mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr);
}
- return bignumFlag;
+ return 1;
}
/*
@@ -1277,12 +1527,12 @@ AccumulateDecimalDigit(
static double
MakeLowPrecisionDouble(
int signum, /* 1 if the number is negative, 0 otherwise */
- Tcl_WideUInt significand, /* Significand of the number */
- int numSigDigs, /* Number of digits in the significand */
- int exponent) /* Power of ten */
+ Tcl_WideUInt significand, /* Significand of the number. */
+ int numSigDigs, /* Number of digits in the significand. */
+ int exponent) /* Power of ten. */
{
- double retval; /* Value of the number */
- mp_int significandBig; /* Significand expressed as a bignum */
+ double retval; /* Value of the number. */
+ mp_int significandBig; /* Significand expressed as a bignum. */
/*
* With gcc on x86, the floating point rounding mode is double-extended.
@@ -1292,12 +1542,7 @@ MakeLowPrecisionDouble(
* ulp, so we need to change rounding mode to 53-bits.
*/
-#if defined(__GNUC__) && defined(__i386)
- fpu_control_t roundTo53Bits = 0x027f;
- fpu_control_t oldRoundingMode;
- _FPU_GETCW(oldRoundingMode);
- _FPU_SETCW(roundTo53Bits);
-#endif
+ TCL_IEEE_DOUBLE_ROUNDING;
/*
* Test for the easy cases.
@@ -1306,39 +1551,42 @@ MakeLowPrecisionDouble(
if (numSigDigs <= DBL_DIG) {
if (exponent >= 0) {
if (exponent <= mmaxpow) {
- /*
+ /*
* The significand is an exact integer, and so is
* 10**exponent. The product will be correct to within 1/2 ulp
* without special handling.
*/
- retval = (double)(Tcl_WideInt)significand * pow10[ exponent ];
+ retval = (double)
+ ((Tcl_WideInt)significand * pow10vals[exponent]);
goto returnValue;
} else {
int diff = DBL_DIG - numSigDigs;
+
if (exponent-diff <= mmaxpow) {
- /*
+ /*
* 10**exponent is not an exact integer, but
* 10**(exponent-diff) is exact, and so is
* significand*10**diff, so we can still compute the value
* with only one roundoff.
*/
- volatile double factor =
- (double)(Tcl_WideInt)significand * pow10[diff];
- retval = factor * pow10[exponent-diff];
+ volatile double factor = (double)
+ ((Tcl_WideInt)significand * pow10vals[diff]);
+ retval = factor * pow10vals[exponent-diff];
goto returnValue;
}
}
} else {
if (exponent >= -mmaxpow) {
- /*
+ /*
* 10**-exponent is an exact integer, and so is the
* significand. Compute the result by one division, again with
* only one rounding.
*/
- retval = (double)(Tcl_WideInt)significand / pow10[-exponent];
+ retval = (double)
+ ((Tcl_WideInt)significand / pow10vals[-exponent]);
goto returnValue;
}
}
@@ -1353,7 +1601,7 @@ MakeLowPrecisionDouble(
retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs,
exponent);
mp_clear(&significandBig);
-
+
/*
* Come here to return the computed value.
*/
@@ -1367,9 +1615,7 @@ MakeLowPrecisionDouble(
* On gcc on x86, restore the floating point mode word.
*/
-#if defined(__GNUC__) && defined(__i386)
- _FPU_SETCW(oldRoundingMode);
-#endif
+ TCL_DEFAULT_DOUBLE_ROUNDING;
return retval;
}
@@ -1394,13 +1640,13 @@ MakeLowPrecisionDouble(
static double
MakeHighPrecisionDouble(
- int signum, /* 1=negative, 0=nonnegative */
- mp_int *significand, /* Exact significand of the number */
- int numSigDigs, /* Number of significant digits */
- int exponent) /* Power of 10 by which to multiply */
+ int signum, /* 1=negative, 0=nonnegative. */
+ mp_int *significand, /* Exact significand of the number. */
+ int numSigDigs, /* Number of significant digits. */
+ int exponent) /* Power of 10 by which to multiply. */
{
double retval;
- int machexp; /* Machine exponent of a power of 10 */
+ int machexp; /* Machine exponent of a power of 10. */
/*
* With gcc on x86, the floating point rounding mode is double-extended.
@@ -1410,12 +1656,7 @@ MakeHighPrecisionDouble(
* ulp, so we need to change rounding mode to 53-bits.
*/
-#if defined(__GNUC__) && defined(__i386)
- fpu_control_t roundTo53Bits = 0x027f;
- fpu_control_t oldRoundingMode;
- _FPU_GETCW(oldRoundingMode);
- _FPU_SETCW(roundTo53Bits);
-#endif
+ TCL_IEEE_DOUBLE_ROUNDING;
/*
* Quick checks for over/underflow.
@@ -1430,7 +1671,7 @@ MakeHighPrecisionDouble(
goto returnValue;
}
- /*
+ /*
* Develop a first approximation to the significand. It is tempting simply
* to force bignum to double, but that will overflow on input numbers like
* 1.[string repeat 0 1000]1; while this is a not terribly likely
@@ -1446,11 +1687,14 @@ MakeHighPrecisionDouble(
goto returnValue;
}
retval = SafeLdExp(retval, machexp);
+ if (tiny == 0.0) {
+ tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits);
+ }
if (retval < tiny) {
retval = tiny;
}
- /*
+ /*
* Refine the result twice. (The second refinement should be necessary
* only if the best approximation is a power of 2 minus 1/2 ulp).
*/
@@ -1471,9 +1715,8 @@ MakeHighPrecisionDouble(
* On gcc on x86, restore the floating point mode word.
*/
-#if defined(__GNUC__) && defined(__i386)
- _FPU_SETCW(oldRoundingMode);
-#endif
+ TCL_DEFAULT_DOUBLE_ROUNDING;
+
return retval;
}
@@ -1492,8 +1735,8 @@ MakeHighPrecisionDouble(
#ifdef IEEE_FLOATING_POINT
static double
MakeNaN(
- int signum, /* Sign bit (1=negative, 0=nonnegative */
- Tcl_WideUInt tags) /* Tag bits to put in the NaN */
+ int signum, /* Sign bit (1=negative, 0=nonnegative. */
+ Tcl_WideUInt tags) /* Tag bits to put in the NaN. */
{
union {
Tcl_WideUInt iv;
@@ -1507,7 +1750,9 @@ MakeNaN(
} else {
theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48;
}
-
+ if (n770_fp) {
+ theNaN.iv = Nokia770Twiddle(theNaN.iv);
+ }
return theNaN.dv;
}
#endif
@@ -1529,28 +1774,28 @@ MakeNaN(
static double
RefineApproximation(
- double approxResult, /* Approximate result of conversion */
- mp_int *exactSignificand, /* Integer significand */
- int exponent) /* Power of 10 to multiply by significand */
+ double approxResult, /* Approximate result of conversion. */
+ mp_int *exactSignificand, /* Integer significand. */
+ int exponent) /* Power of 10 to multiply by significand. */
{
int M2, M5; /* Powers of 2 and of 5 needed to put the
* decimal and binary numbers over a common
* denominator. */
- double significand; /* Sigificand of the binary number */
- int binExponent; /* Exponent of the binary number */
+ double significand; /* Sigificand of the binary number. */
+ int binExponent; /* Exponent of the binary number. */
int msb; /* Most significant bit position of an
- * intermediate result */
+ * intermediate result. */
int nDigits; /* Number of mp_digit's in an intermediate
- * result */
+ * result. */
mp_int twoMv; /* Approx binary value expressed as an exact
- * integer scaled by the multiplier 2M */
+ * integer scaled by the multiplier 2M. */
mp_int twoMd; /* Exact decimal value expressed as an exact
- * integer scaled by the multiplier 2M */
- int scale; /* Scale factor for M */
- int multiplier; /* Power of two to scale M */
+ * integer scaled by the multiplier 2M. */
+ int scale; /* Scale factor for M. */
+ int multiplier; /* Power of two to scale M. */
double num, den; /* Numerator and denominator of the correction
- * term */
- double quot; /* Correction term */
+ * term. */
+ double quot; /* Correction term. */
double minincr; /* Lower bound on the absolute value of the
* correction term. */
int i;
@@ -1580,12 +1825,12 @@ RefineApproximation(
M5 = 0;
} else {
M5 = -exponent;
- if ((M5-1) > M2) {
- M2 = M5-1;
+ if (M5 - 1 > M2) {
+ M2 = M5 - 1;
}
}
- /*
+ /*
* The floating point number is significand*2**binExponent. Compute the
* large integer significand*2**(binExponent+M2+1). The 2**-1 bit of the
* significand (the most significant) corresponds to the
@@ -1610,8 +1855,8 @@ RefineApproximation(
mp_mul(&twoMv, pow5+i, &twoMv);
}
}
-
- /*
+
+ /*
* Collect the decimal significand as a high precision integer. The least
* significant bit corresponds to bit M2+exponent+1 so it will need to be
* shifted left by that many bits after being multiplied by
@@ -1620,7 +1865,7 @@ RefineApproximation(
mp_init_copy(&twoMd, exactSignificand);
for (i=0; i<=8; ++i) {
- if ((M5+exponent) & (1 << i)) {
+ if ((M5 + exponent) & (1 << i)) {
mp_mul(&twoMd, pow5+i, &twoMd);
}
}
@@ -1630,7 +1875,7 @@ RefineApproximation(
/*
* The result, 2Mv-2Md, needs to be divided by 2M to yield a correction
* term. Because 2M may well overflow a double, we need to scale the
- * denominator by a factor of 2**binExponent-mantBits
+ * denominator by a factor of 2**binExponent-mantBits.
*/
scale = binExponent - mantBits - 1;
@@ -1654,12 +1899,12 @@ RefineApproximation(
*/
if (mp_cmp_mag(&twoMd, &twoMv) == MP_LT) {
- mp_clear(&twoMd);
- mp_clear(&twoMv);
+ mp_clear(&twoMd);
+ mp_clear(&twoMv);
return approxResult;
}
- /*
+ /*
* Convert the numerator and denominator of the corrector term accurately
* to floating point numbers.
*/
@@ -1685,405 +1930,2387 @@ RefineApproximation(
/*
*----------------------------------------------------------------------
*
- * TclDoubleDigits --
+ * MultPow5 --
+ *
+ * Multiply a bignum by a power of 5.
+ *
+ * Side effects:
+ * Stores base*5**n in result.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static void
+MulPow5(
+ mp_int *base, /* Number to multiply. */
+ unsigned n, /* Power of 5 to multiply by. */
+ mp_int *result) /* Place to store the result. */
+{
+ mp_int *p = base;
+ int n13 = n / 13;
+ int r = n % 13;
+
+ if (r != 0) {
+ mp_mul_d(p, dpow5[r], result);
+ p = result;
+ }
+ r = 0;
+ while (n13 != 0) {
+ if (n13 & 1) {
+ mp_mul(p, pow5_13+r, result);
+ p = result;
+ }
+ n13 >>= 1;
+ ++r;
+ }
+ if (p != result) {
+ mp_copy(p, result);
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * NormalizeRightward --
*
- * Converts a double to a string of digits.
+ * Shifts a number rightward until it is odd (that is, until the least
+ * significant bit is nonzero.
*
* Results:
- * Returns the position of the character in the string after which the
- * decimal point should appear. Since the string contains only
- * significant digits, the position may be less than zero or greater than
- * the length of the string.
+ * Returns the number of bit positions by which the number was shifted.
*
* Side effects:
- * Stores the digits in the given buffer and sets 'signum' according to
- * the sign of the number.
+ * Shifts the number in place; *wPtr is replaced by the shifted number.
*
*----------------------------------------------------------------------
+ */
+
+inline static int
+NormalizeRightward(
+ Tcl_WideUInt *wPtr) /* INOUT: Number to shift. */
+{
+ int rv = 0;
+ Tcl_WideUInt w = *wPtr;
+ if (!(w & (Tcl_WideUInt) 0xffffffff)) {
+ w >>= 32; rv += 32;
+ }
+ if (!(w & (Tcl_WideUInt) 0xffff)) {
+ w >>= 16; rv += 16;
+ }
+ if (!(w & (Tcl_WideUInt) 0xff)) {
+ w >>= 8; rv += 8;
+ }
+ if (!(w & (Tcl_WideUInt) 0xf)) {
+ w >>= 4; rv += 4;
+ }
+ if (!(w & 0x3)) {
+ w >>= 2; rv += 2;
+ }
+ if (!(w & 0x1)) {
+ w >>= 1; ++rv;
+ }
+ *wPtr = w;
+ return rv;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * RequiredPrecision --
+ *
+ * Determines the number of bits needed to hold an intger.
+ *
+ * Results:
+ * Returns the position of the most significant bit (0 - 63). Returns 0
+ * if the number is zero.
+ *
+ *----------------------------------------------------------------------
*/
-int
-TclDoubleDigits(
- char *buffer, /* Buffer in which to store the result, must
- * have at least 18 chars */
- double v, /* Number to convert. Must be finite, and not
- * NaN */
- int *signum) /* Output: 1 if the number is negative.
- * Should handle -0 correctly on the IEEE
- * architecture. */
+static int
+RequiredPrecision(
+ Tcl_WideUInt w) /* Number to interrogate. */
{
- int e; /* Power of FLT_RADIX that satisfies
- * v = f * FLT_RADIX**e */
- int lowOK, highOK;
- mp_int r; /* Scaled significand. */
- mp_int s; /* Divisor such that v = r / s */
- int smallestSig; /* Flag == 1 iff v's significand is the
- * smallest that can be represented. */
- mp_int mplus; /* Scaled epsilon: (r + 2* mplus) == v(+)
- * where v(+) is the floating point successor
- * of v. */
- mp_int mminus; /* Scaled epsilon: (r - 2*mminus) == v(-)
- * where v(-) is the floating point
- * predecessor of v. */
- mp_int temp;
- int rfac2 = 0; /* Powers of 2 and 5 by which large */
- int rfac5 = 0; /* integers should be scaled. */
- int sfac2 = 0;
- int sfac5 = 0;
- int mplusfac2 = 0;
- int mminusfac2 = 0;
- char c;
- int i, k, n;
+ int rv;
+ unsigned long wi;
+
+ if (w & ((Tcl_WideUInt) 0xffffffff << 32)) {
+ wi = (unsigned long) (w >> 32); rv = 32;
+ } else {
+ wi = (unsigned long) w; rv = 0;
+ }
+ if (wi & 0xffff0000) {
+ wi >>= 16; rv += 16;
+ }
+ if (wi & 0xff00) {
+ wi >>= 8; rv += 8;
+ }
+ if (wi & 0xf0) {
+ wi >>= 4; rv += 4;
+ }
+ if (wi & 0xc) {
+ wi >>= 2; rv += 2;
+ }
+ if (wi & 0x2) {
+ wi >>= 1; ++rv;
+ }
+ if (wi & 0x1) {
+ ++rv;
+ }
+ return rv;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * DoubleToExpAndSig --
+ *
+ * Separates a 'double' into exponent and significand.
+ *
+ * Side effects:
+ * Stores the significand in '*significand' and the exponent in '*expon'
+ * so that dv == significand * 2.0**expon, and significand is odd. Also
+ * stores the position of the leftmost 1-bit in 'significand' in 'bits'.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static void
+DoubleToExpAndSig(
+ double dv, /* Number to convert. */
+ Tcl_WideUInt *significand, /* OUTPUT: Significand of the number. */
+ int *expon, /* OUTPUT: Exponent to multiply the number
+ * by. */
+ int *bits) /* OUTPUT: Number of significant bits. */
+{
+ Double d; /* Number being converted. */
+ Tcl_WideUInt z; /* Significand under construction. */
+ int de; /* Exponent of the number. */
+ int k; /* Bit count. */
+
+ d.d = dv;
/*
- * Split the number into absolute value and signum.
+ * Extract exponent and significand.
*/
- v = AbsoluteValue(v, signum);
+ de = (d.w.word0 & EXP_MASK) >> EXP_SHIFT;
+ z = d.q & SIG_MASK;
+ if (de != 0) {
+ z |= HIDDEN_BIT;
+ k = NormalizeRightward(&z);
+ *bits = FP_PRECISION - k;
+ *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1);
+ } else {
+ k = NormalizeRightward(&z);
+ *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1) + 1;
+ *bits = RequiredPrecision(z);
+ }
+ *significand = z;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TakeAbsoluteValue --
+ *
+ * Takes the absolute value of a 'double' including 0, Inf and NaN
+ *
+ * Side effects:
+ * The 'double' in *d is replaced with its absolute value. The signum is
+ * stored in 'sign': 1 for negative, 0 for nonnegative.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static void
+TakeAbsoluteValue(
+ Double *d, /* Number to replace with absolute value. */
+ int *sign) /* Place to put the signum. */
+{
+ if (d->w.word0 & SIGN_BIT) {
+ *sign = 1;
+ d->w.word0 &= ~SIGN_BIT;
+ } else {
+ *sign = 0;
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * FormatInfAndNaN --
+ *
+ * Bailout for formatting infinities and Not-A-Number.
+ *
+ * Results:
+ * Returns one of the strings 'Infinity' and 'NaN'. The string returned
+ * must be freed by the caller using 'ckfree'.
+ *
+ * Side effects:
+ * Stores 9999 in *decpt, and sets '*endPtr' to designate the terminating
+ * NUL byte of the string if 'endPtr' is not NULL.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+FormatInfAndNaN(
+ Double *d, /* Exceptional number to format. */
+ int *decpt, /* Decimal point to set to a bogus value. */
+ char **endPtr) /* Pointer to the end of the formatted data */
+{
+ char *retval;
+
+ *decpt = 9999;
+ if (!(d->w.word1) && !(d->w.word0 & HI_ORDER_SIG_MASK)) {
+ retval = ckalloc(9);
+ strcpy(retval, "Infinity");
+ if (endPtr) {
+ *endPtr = retval + 8;
+ }
+ } else {
+ retval = ckalloc(4);
+ strcpy(retval, "NaN");
+ if (endPtr) {
+ *endPtr = retval + 3;
+ }
+ }
+ return retval;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * FormatZero --
+ *
+ * Bailout to format a zero floating-point number.
+ *
+ * Results:
+ * Returns the constant string "0"
+ *
+ * Side effects:
+ * Stores 1 in '*decpt' and puts a pointer to the NUL byte terminating
+ * the string in '*endPtr' if 'endPtr' is not NULL.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+FormatZero(
+ int *decpt, /* Location of the decimal point. */
+ char **endPtr) /* Pointer to the end of the formatted data */
+{
+ char *retval = ckalloc(2);
+
+ strcpy(retval, "0");
+ if (endPtr) {
+ *endPtr = retval+1;
+ }
+ *decpt = 0;
+ return retval;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ApproximateLog10 --
+ *
+ * Computes a two-term Taylor series approximation to the common log of a
+ * number, and computes the number's binary log.
+ *
+ * Results:
+ * Return an approximation to floor(log10(bw*2**be)) that is either exact
+ * or 1 too high.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static int
+ApproximateLog10(
+ Tcl_WideUInt bw, /* Integer significand of the number. */
+ int be, /* Power of two to scale bw. */
+ int bbits) /* Number of bits of precision in bw. */
+{
+ int i; /* Log base 2 of the number. */
+ int k; /* Floor(Log base 10 of the number) */
+ double ds; /* Mantissa of the number. */
+ Double d2;
/*
- * Handle zero specially.
+ * Compute i and d2 such that d = d2*2**i, and 1 < d2 < 2.
+ * Compute an approximation to log10(d),
+ * log10(d) ~ log10(2) * i + log10(1.5)
+ * + (significand-1.5)/(1.5 * log(10))
*/
- if (v == 0.0) {
- *buffer++ = '0';
- *buffer++ = '\0';
- return 1;
+ d2.q = bw << (FP_PRECISION - bbits) & SIG_MASK;
+ d2.w.word0 |= (EXPONENT_BIAS) << EXP_SHIFT;
+ i = be + bbits - 1;
+ ds = (d2.d - 1.5) * TWO_OVER_3LOG10
+ + LOG10_3HALVES_PLUS_FUDGE + LOG10_2 * i;
+ k = (int) ds;
+ if (k > ds) {
+ --k;
}
+ return k;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * BetterLog10 --
+ *
+ * Improves the result of ApproximateLog10 for numbers in the range
+ * 1 .. 10**(TEN_PMAX)-1
+ *
+ * Side effects:
+ * Sets k_check to 0 if the new result is known to be exact, and to 1 if
+ * it may still be one too high.
+ *
+ * Results:
+ * Returns the improved approximation to log10(d).
+ *
+ *----------------------------------------------------------------------
+ */
- /*
- * Find a large integer r, and integer e, such that
- * v = r * FLT_RADIX**e
- * and r is as small as possible. Also determine whether the significand
- * is the smallest possible.
+inline static int
+BetterLog10(
+ double d, /* Original number to format. */
+ int k, /* Characteristic(Log base 10) of the
+ * number. */
+ int *k_check) /* Flag == 1 if k is inexact. */
+{
+ /*
+ * Performance hack. If k is in the range 0..TEN_PMAX, then we can use a
+ * powers-of-ten table to check it.
*/
- smallestSig = GetIntegerTimesPower(v, &r, &e);
+ if (k >= 0 && k <= TEN_PMAX) {
+ if (d < tens[k]) {
+ k--;
+ }
+ *k_check = 0;
+ } else {
+ *k_check = 1;
+ }
+ return k;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ComputeScale --
+ *
+ * Prepares to format a floating-point number as decimal.
+ *
+ * Parameters:
+ * floor(log10*x) is k (or possibly k-1). floor(log2(x) is i. The
+ * significand of x requires bbits bits to represent.
+ *
+ * Results:
+ * Determines integers b2, b5, s2, s5 so that sig*2**b2*5**b5/2**s2*2**s5
+ * exactly represents the value of the x/10**k. This value will lie in
+ * the range [1 .. 10), and allows for computing successive digits by
+ * multiplying sig%10 by 10.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static void
+ComputeScale(
+ int be, /* Exponent part of number: d = bw * 2**be. */
+ int k, /* Characteristic of log10(number). */
+ int *b2, /* OUTPUT: Power of 2 in the numerator. */
+ int *b5, /* OUTPUT: Power of 5 in the numerator. */
+ int *s2, /* OUTPUT: Power of 2 in the denominator. */
+ int *s5) /* OUTPUT: Power of 5 in the denominator. */
+{
+ /*
+ * Scale numerator and denominator powers of 2 so that the input binary
+ * number is the ratio of integers.
+ */
- lowOK = highOK = (mp_iseven(&r));
+ if (be <= 0) {
+ *b2 = 0;
+ *s2 = -be;
+ } else {
+ *b2 = be;
+ *s2 = 0;
+ }
/*
- * We are going to want to develop integers r, s, mplus, and mminus such
- * that v = r / s, v(+)-v / 2 = mplus / s; v-v(-) / 2 = mminus / s and
- * then scale either s or r, mplus, mminus by an appropriate power of ten.
- *
- * We actually do this by keeping track of the powers of 2 and 5 by which
- * f is multiplied to yield v and by which 1 is multiplied to yield s,
- * mplus, and mminus.
+ * Scale numerator and denominator so that the output decimal number is
+ * the ratio of integers.
*/
- if (e >= 0) {
- int bits = e * log2FLT_RADIX;
+ if (k >= 0) {
+ *b5 = 0;
+ *s5 = k;
+ *s2 += k;
+ } else {
+ *b2 -= k;
+ *b5 = -k;
+ *s5 = 0;
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * SetPrecisionLimits --
+ *
+ * Determines how many digits of significance should be computed (and,
+ * hence, how much memory need be allocated) for formatting a floating
+ * point number.
+ *
+ * Given that 'k' is floor(log10(x)):
+ * if 'shortest' format is used, there will be at most 18 digits in the
+ * result.
+ * if 'F' format is used, there will be at most 'ndigits' + k + 1 digits
+ * if 'E' format is used, there will be exactly 'ndigits' digits.
+ *
+ * Side effects:
+ * Adjusts '*ndigitsPtr' to have a valid value. Stores the maximum memory
+ * allocation needed in *iPtr. Sets '*iLimPtr' to the limiting number of
+ * digits to convert if k has been guessed correctly, and '*iLim1Ptr' to
+ * the limiting number of digits to convert if k has been guessed to be
+ * one too high.
+ *
+ *----------------------------------------------------------------------
+ */
- if (!smallestSig) {
- /*
- * Normal case, m+ and m- are both FLT_RADIX**e
- */
+inline static void
+SetPrecisionLimits(
+ int convType, /* Type of conversion: TCL_DD_SHORTEST,
+ * TCL_DD_STEELE0, TCL_DD_E_FMT,
+ * TCL_DD_F_FMT. */
+ int k, /* Floor(log10(number to convert)) */
+ int *ndigitsPtr, /* IN/OUT: Number of digits requested (will be
+ * adjusted if needed). */
+ int *iPtr, /* OUT: Maximum number of digits to return. */
+ int *iLimPtr, /* OUT: Number of digits of significance if
+ * the bignum method is used.*/
+ int *iLim1Ptr) /* OUT: Number of digits of significance if
+ * the quick method is used. */
+{
+ switch (convType) {
+ case TCL_DD_SHORTEST0:
+ case TCL_DD_STEELE0:
+ *iLimPtr = *iLim1Ptr = -1;
+ *iPtr = 18;
+ *ndigitsPtr = 0;
+ break;
+ case TCL_DD_E_FORMAT:
+ if (*ndigitsPtr <= 0) {
+ *ndigitsPtr = 1;
+ }
+ *iLimPtr = *iLim1Ptr = *iPtr = *ndigitsPtr;
+ break;
+ case TCL_DD_F_FORMAT:
+ *iPtr = *ndigitsPtr + k + 1;
+ *iLimPtr = *iPtr;
+ *iLim1Ptr = *iPtr - 1;
+ if (*iPtr <= 0) {
+ *iPtr = 1;
+ }
+ break;
+ default:
+ *iPtr = -1;
+ *iLimPtr = -1;
+ *iLim1Ptr = -1;
+ Tcl_Panic("impossible conversion type in TclDoubleDigits");
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * BumpUp --
+ *
+ * Increases a string of digits ending in a series of nines to designate
+ * the next higher number. xxxxb9999... -> xxxx(b+1)0000...
+ *
+ * Results:
+ * Returns a pointer to the end of the adjusted string.
+ *
+ * Side effects:
+ * In the case that the string consists solely of '999999', sets it to
+ * "1" and moves the decimal point (*kPtr) one place to the right.
+ *
+ *----------------------------------------------------------------------
+ */
- rfac2 = bits + 1;
- sfac2 = 1;
- mplusfac2 = bits;
- mminusfac2 = bits;
- } else {
- /*
- * If f is equal to the smallest significand, then we need another
- * factor of FLT_RADIX in s to cope with stepping to the next
- * smaller exponent when going to e's predecessor.
- */
+inline static char *
+BumpUp(
+ char *s, /* Cursor pointing one past the end of the
+ * string. */
+ char *retval, /* Start of the string of digits. */
+ int *kPtr) /* Position of the decimal point. */
+{
+ while (*--s == '9') {
+ if (s == retval) {
+ ++(*kPtr);
+ *s = '1';
+ return s+1;
+ }
+ }
+ ++*s;
+ ++s;
+ return s;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * AdjustRange --
+ *
+ * Rescales a 'double' in preparation for formatting it using the 'quick'
+ * double-to-string method.
+ *
+ * Results:
+ * Returns the precision that has been lost in the prescaling as a count
+ * of units in the least significant place.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static int
+AdjustRange(
+ double *dPtr, /* INOUT: Number to adjust. */
+ int k) /* IN: floor(log10(d)) */
+{
+ int ieps; /* Number of roundoff errors that have
+ * accumulated. */
+ double d = *dPtr; /* Number to adjust. */
+ double ds;
+ int i, j, j1;
+
+ ieps = 2;
+
+ if (k > 0) {
+ /*
+ * The number must be reduced to bring it into range.
+ */
- rfac2 = bits + log2FLT_RADIX + 1;
- sfac2 = 1 + log2FLT_RADIX;
- mplusfac2 = bits + log2FLT_RADIX;
- mminusfac2 = bits;
+ ds = tens[k & 0xf];
+ j = k >> 4;
+ if (j & BLETCH) {
+ j &= (BLETCH-1);
+ d /= bigtens[N_BIGTENS - 1];
+ ieps++;
+ }
+ i = 0;
+ for (; j != 0; j>>=1) {
+ if (j & 1) {
+ ds *= bigtens[i];
+ ++ieps;
+ }
+ ++i;
}
+ d /= ds;
+ } else if ((j1 = -k) != 0) {
+ /*
+ * The number must be increased to bring it into range.
+ */
+
+ d *= tens[j1 & 0xf];
+ i = 0;
+ for (j = j1>>4; j; j>>=1) {
+ if (j & 1) {
+ ieps++;
+ d *= bigtens[i];
+ }
+ ++i;
+ }
+ }
+
+ *dPtr = d;
+ return ieps;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShorteningQuickFormat --
+ *
+ * Returns a 'quick' format of a double precision number to a string of
+ * digits, preferring a shorter string of digits if the shorter string is
+ * still within 1/2 ulp of the number.
+ *
+ * Results:
+ * Returns the string of digits. Returns NULL if the 'quick' method fails
+ * and the bignum method must be used.
+ *
+ * Side effects:
+ * Stores the position of the decimal point at '*kPtr'.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+ShorteningQuickFormat(
+ double d, /* Number to convert. */
+ int k, /* floor(log10(d)) */
+ int ilim, /* Number of significant digits to return. */
+ double eps, /* Estimated roundoff error. */
+ char *retval, /* Buffer to receive the digit string. */
+ int *kPtr) /* Pointer to stash the position of the
+ * decimal point. */
+{
+ char *s = retval; /* Cursor in the return value. */
+ int digit; /* Current digit. */
+ int i;
+
+ eps = 0.5 / tens[ilim-1] - eps;
+ i = 0;
+ for (;;) {
+ /*
+ * Convert a digit.
+ */
+
+ digit = (int) d;
+ d -= digit;
+ *s++ = '0' + digit;
+
+ /*
+ * Truncate the conversion if the string of digits is within 1/2 ulp
+ * of the actual value.
+ */
+
+ if (d < eps) {
+ *kPtr = k;
+ return s;
+ }
+ if ((1. - d) < eps) {
+ *kPtr = k;
+ return BumpUp(s, retval, kPtr);
+ }
+
+ /*
+ * Bail out if the conversion fails to converge to a sufficiently
+ * precise value.
+ */
+
+ if (++i >= ilim) {
+ return NULL;
+ }
+
+ /*
+ * Bring the next digit to the integer part.
+ */
+
+ eps *= 10;
+ d *= 10.0;
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * StrictQuickFormat --
+ *
+ * Convert a double precision number of a string of a precise number of
+ * digits, using the 'quick' double precision method.
+ *
+ * Results:
+ * Returns the digit string, or NULL if the bignum method must be used to
+ * do the formatting.
+ *
+ * Side effects:
+ * Stores the position of the decimal point in '*kPtr'.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+StrictQuickFormat(
+ double d, /* Number to convert. */
+ int k, /* floor(log10(d)) */
+ int ilim, /* Number of significant digits to return. */
+ double eps, /* Estimated roundoff error. */
+ char *retval, /* Start of the digit string. */
+ int *kPtr) /* Pointer to stash the position of the
+ * decimal point. */
+{
+ char *s = retval; /* Cursor in the return value. */
+ int digit; /* Current digit of the answer. */
+ int i;
+
+ eps *= tens[ilim-1];
+ i = 1;
+ for (;;) {
+ /*
+ * Extract a digit.
+ */
+
+ digit = (int) d;
+ d -= digit;
+ if (d == 0.0) {
+ ilim = i;
+ }
+ *s++ = '0' + digit;
+
+ /*
+ * When the given digit count is reached, handle trailing strings of 0
+ * and 9.
+ */
+
+ if (i == ilim) {
+ if (d > 0.5 + eps) {
+ *kPtr = k;
+ return BumpUp(s, retval, kPtr);
+ } else if (d < 0.5 - eps) {
+ while (*--s == '0') {
+ /* do nothing */
+ }
+ s++;
+ *kPtr = k;
+ return s;
+ } else {
+ return NULL;
+ }
+ }
+
+ /*
+ * Advance to the next digit.
+ */
+
+ ++i;
+ d *= 10.0;
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * QuickConversion --
+ *
+ * Converts a floating point number the 'quick' way, when only a limited
+ * number of digits is required and floating point arithmetic can
+ * therefore be used for the intermediate results.
+ *
+ * Results:
+ * Returns the converted string, or NULL if the bignum method must be
+ * used.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+QuickConversion(
+ double e, /* Number to format. */
+ int k, /* floor(log10(d)), approximately. */
+ int k_check, /* 0 if k is exact, 1 if it may be too high */
+ int flags, /* Flags passed to dtoa:
+ * TCL_DD_SHORTEN_FLAG */
+ int len, /* Length of the return value. */
+ int ilim, /* Number of digits to store. */
+ int ilim1, /* Number of digits to store if we misguessed
+ * k. */
+ int *decpt, /* OUTPUT: Location of the decimal point. */
+ char **endPtr) /* OUTPUT: Pointer to the terminal null
+ * byte. */
+{
+ int ieps; /* Number of 1-ulp roundoff errors that have
+ * accumulated in the calculation. */
+ Double eps; /* Estimated roundoff error. */
+ char *retval; /* Returned string. */
+ char *end; /* Pointer to the terminal null byte in the
+ * returned string. */
+ volatile double d; /* Workaround for a bug in mingw gcc 3.4.5 */
+
+ /*
+ * Bring d into the range [1 .. 10).
+ */
+
+ ieps = AdjustRange(&e, k);
+ d = e;
+
+ /*
+ * If the guessed value of k didn't get d into range, adjust it by one. If
+ * that leaves us outside the range in which quick format is accurate,
+ * bail out.
+ */
+
+ if (k_check && d < 1. && ilim > 0) {
+ if (ilim1 < 0) {
+ return NULL;
+ }
+ ilim = ilim1;
+ --k;
+ d *= 10.0;
+ ++ieps;
+ }
+
+ /*
+ * Compute estimated roundoff error.
+ */
+
+ eps.d = ieps * d + 7.;
+ eps.w.word0 -= (FP_PRECISION-1) << EXP_SHIFT;
+
+ /*
+ * Handle the peculiar case where the result has no significant digits.
+ */
+
+ retval = ckalloc(len + 1);
+ if (ilim == 0) {
+ d -= 5.;
+ if (d > eps.d) {
+ *retval = '1';
+ *decpt = k;
+ return retval;
+ } else if (d < -eps.d) {
+ *decpt = k;
+ return retval;
+ } else {
+ ckfree(retval);
+ return NULL;
+ }
+ }
+
+ /*
+ * Format the digit string.
+ */
+
+ if (flags & TCL_DD_SHORTEN_FLAG) {
+ end = ShorteningQuickFormat(d, k, ilim, eps.d, retval, decpt);
} else {
+ end = StrictQuickFormat(d, k, ilim, eps.d, retval, decpt);
+ }
+ if (end == NULL) {
+ ckfree(retval);
+ return NULL;
+ }
+ *end = '\0';
+ if (endPtr != NULL) {
+ *endPtr = end;
+ }
+ return retval;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * CastOutPowersOf2 --
+ *
+ * Adjust the factors 'b2', 'm2', and 's2' to cast out common powers of 2
+ * from numerator and denominator in preparation for the 'bignum' method
+ * of floating point conversion.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static void
+CastOutPowersOf2(
+ int *b2, /* Power of 2 to multiply the significand. */
+ int *m2, /* Power of 2 to multiply 1/2 ulp. */
+ int *s2) /* Power of 2 to multiply the common
+ * denominator. */
+{
+ int i;
+
+ if (*m2 > 0 && *s2 > 0) { /* Find the smallest power of 2 in the
+ * numerator. */
+ if (*m2 < *s2) { /* Find the lowest common denominator. */
+ i = *m2;
+ } else {
+ i = *s2;
+ }
+ *b2 -= i; /* Reduce to lowest terms. */
+ *m2 -= i;
+ *s2 -= i;
+ }
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShorteningInt64Conversion --
+ *
+ * Converts a double-precision number to the shortest string of digits
+ * that reconverts exactly to the given number, or to 'ilim' digits if
+ * that will yield a shorter result. The numerator and denominator in
+ * David Gay's conversion algorithm are known to fit in Tcl_WideUInt,
+ * giving considerably faster arithmetic than mp_int's.
+ *
+ * Results:
+ * Returns the string of significant decimal digits, in newly allocated
+ * memory
+ *
+ * Side effects:
+ * Stores the location of the decimal point in '*decpt' and the location
+ * of the terminal null byte in '*endPtr'.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+ShorteningInt64Conversion(
+ Double *dPtr, /* Original number to convert. */
+ int convType, /* Type of conversion (shortest, Steele,
+ * E format, F format). */
+ Tcl_WideUInt bw, /* Integer significand. */
+ int b2, int b5, /* Scale factor for the significand in the
+ * numerator. */
+ int m2plus, int m2minus, int m5,
+ /* Scale factors for 1/2 ulp in the numerator
+ * (will be different if bw == 1. */
+ int s2, int s5, /* Scale factors for the denominator. */
+ int k, /* Number of output digits before the decimal
+ * point. */
+ int len, /* Number of digits to allocate. */
+ int ilim, /* Number of digits to convert if b >= s */
+ int ilim1, /* Number of digits to convert if b < s */
+ int *decpt, /* OUTPUT: Position of the decimal point. */
+ char **endPtr) /* OUTPUT: Position of the terminal '\0' at
+ * the end of the returned string. */
+{
+ char *retval = ckalloc(len + 1);
+ /* Output buffer. */
+ Tcl_WideUInt b = (bw * wuipow5[b5]) << b2;
+ /* Numerator of the fraction being
+ * converted. */
+ Tcl_WideUInt S = wuipow5[s5] << s2;
+ /* Denominator of the fraction being
+ * converted. */
+ Tcl_WideUInt mplus, mminus; /* Ranges for testing whether the result is
+ * within roundoff of being exact. */
+ int digit; /* Current output digit. */
+ char *s = retval; /* Cursor in the output buffer. */
+ int i; /* Current position in the output buffer. */
+
+ /*
+ * Adjust if the logarithm was guessed wrong.
+ */
+
+ if (b < S) {
+ b = 10 * b;
+ ++m2plus; ++m2minus; ++m5;
+ ilim = ilim1;
+ --k;
+ }
+
+ /*
+ * Compute roundoff ranges.
+ */
+
+ mplus = wuipow5[m5] << m2plus;
+ mminus = wuipow5[m5] << m2minus;
+
+ /*
+ * Loop through the digits.
+ */
+
+ i = 1;
+ for (;;) {
+ digit = (int)(b / S);
+ if (digit > 10) {
+ Tcl_Panic("wrong digit!");
+ }
+ b = b % S;
+
/*
- * v has digits after the binary point
+ * Does the current digit put us on the low side of the exact value
+ * but within within roundoff of being exact?
*/
- if (e <= DBL_MIN_EXP-DBL_MANT_DIG || !smallestSig) {
+ if (b < mplus || (b == mplus
+ && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
/*
- * Either f isn't the smallest significand or e is the smallest
- * exponent. mplus and mminus will both be 1.
+ * Make sure we shouldn't be rounding *up* instead, in case the
+ * next number above is closer.
*/
- rfac2 = 1;
- sfac2 = 1 - e * log2FLT_RADIX;
- mplusfac2 = 0;
- mminusfac2 = 0;
- } else {
+ if (2 * b > S || (2 * b == S && (digit & 1) != 0)) {
+ ++digit;
+ if (digit == 10) {
+ *s++ = '9';
+ s = BumpUp(s, retval, &k);
+ break;
+ }
+ }
+
/*
- * f is the smallest significand, but e is not the smallest
- * exponent. We need to scale by FLT_RADIX again to cope with the
- * fact that v's predecessor has a smaller exponent.
+ * Stash the current digit.
*/
- rfac2 = 1 + log2FLT_RADIX;
- sfac2 = 1 + log2FLT_RADIX * (1 - e);
- mplusfac2 = FLT_RADIX;
- mminusfac2 = 0;
+ *s++ = '0' + digit;
+ break;
+ }
+
+ /*
+ * Does one plus the current digit put us within roundoff of the
+ * number?
+ */
+
+ if (b > S - mminus || (b == S - mminus
+ && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
+ if (digit == 9) {
+ *s++ = '9';
+ s = BumpUp(s, retval, &k);
+ break;
+ }
+ ++digit;
+ *s++ = '0' + digit;
+ break;
+ }
+
+ /*
+ * Have we converted all the requested digits?
+ */
+
+ *s++ = '0' + digit;
+ if (i == ilim) {
+ if (2*b > S || (2*b == S && (digit & 1) != 0)) {
+ s = BumpUp(s, retval, &k);
+ }
+ break;
}
+
+ /*
+ * Advance to the next digit.
+ */
+
+ b = 10 * b;
+ mplus = 10 * mplus;
+ mminus = 10 * mminus;
+ ++i;
}
/*
- * Estimate the highest power of ten that will be needed to hold the
- * result.
+ * Endgame - store the location of the decimal point and the end of the
+ * string.
*/
- k = (int) ceil(log(v) / log(10.));
- if (k >= 0) {
- sfac2 += k;
- sfac5 = k;
- } else {
- rfac2 -= k;
- mplusfac2 -= k;
- mminusfac2 -= k;
- rfac5 = -k;
+ *s = '\0';
+ *decpt = k;
+ if (endPtr) {
+ *endPtr = s;
+ }
+ return retval;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * StrictInt64Conversion --
+ *
+ * Converts a double-precision number to a fixed-length string of 'ilim'
+ * digits that reconverts exactly to the given number. ('ilim' should be
+ * replaced with 'ilim1' in the case where log10(d) has been
+ * overestimated). The numerator and denominator in David Gay's
+ * conversion algorithm are known to fit in Tcl_WideUInt, giving
+ * considerably faster arithmetic than mp_int's.
+ *
+ * Results:
+ * Returns the string of significant decimal digits, in newly allocated
+ * memory
+ *
+ * Side effects:
+ * Stores the location of the decimal point in '*decpt' and the location
+ * of the terminal null byte in '*endPtr'.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+StrictInt64Conversion(
+ Double *dPtr, /* Original number to convert. */
+ int convType, /* Type of conversion (shortest, Steele,
+ * E format, F format). */
+ Tcl_WideUInt bw, /* Integer significand. */
+ int b2, int b5, /* Scale factor for the significand in the
+ * numerator. */
+ int s2, int s5, /* Scale factors for the denominator. */
+ int k, /* Number of output digits before the decimal
+ * point. */
+ int len, /* Number of digits to allocate. */
+ int ilim, /* Number of digits to convert if b >= s */
+ int ilim1, /* Number of digits to convert if b < s */
+ int *decpt, /* OUTPUT: Position of the decimal point. */
+ char **endPtr) /* OUTPUT: Position of the terminal '\0' at
+ * the end of the returned string. */
+{
+ char *retval = ckalloc(len + 1);
+ /* Output buffer. */
+ Tcl_WideUInt b = (bw * wuipow5[b5]) << b2;
+ /* Numerator of the fraction being
+ * converted. */
+ Tcl_WideUInt S = wuipow5[s5] << s2;
+ /* Denominator of the fraction being
+ * converted. */
+ int digit; /* Current output digit. */
+ char *s = retval; /* Cursor in the output buffer. */
+ int i; /* Current position in the output buffer. */
+
+ /*
+ * Adjust if the logarithm was guessed wrong.
+ */
+
+ if (b < S) {
+ b = 10 * b;
+ ilim = ilim1;
+ --k;
}
/*
- * Scale r, s, mplus, mminus by the appropriate powers of 2 and 5.
+ * Loop through the digits.
*/
- mp_init_set(&mplus, 1);
- for (i=0 ; i<=8 ; ++i) {
- if (rfac5 & (1 << i)) {
- mp_mul(&mplus, pow5+i, &mplus);
+ i = 1;
+ for (;;) {
+ digit = (int)(b / S);
+ if (digit > 10) {
+ Tcl_Panic("wrong digit!");
+ }
+ b = b % S;
+
+ /*
+ * Have we converted all the requested digits?
+ */
+
+ *s++ = '0' + digit;
+ if (i == ilim) {
+ if (2*b > S || (2*b == S && (digit & 1) != 0)) {
+ s = BumpUp(s, retval, &k);
+ } else {
+ while (*--s == '0') {
+ /* do nothing */
+ }
+ ++s;
+ }
+ break;
}
+
+ /*
+ * Advance to the next digit.
+ */
+
+ b = 10 * b;
+ ++i;
+ }
+
+ /*
+ * Endgame - store the location of the decimal point and the end of the
+ * string.
+ */
+
+ *s = '\0';
+ *decpt = k;
+ if (endPtr) {
+ *endPtr = s;
}
- mp_mul(&r, &mplus, &r);
- mp_mul_2d(&r, rfac2, &r);
- mp_init_copy(&mminus, &mplus);
- mp_mul_2d(&mplus, mplusfac2, &mplus);
- mp_mul_2d(&mminus, mminusfac2, &mminus);
- mp_init_set(&s, 1);
- for (i=0 ; i<=8 ; ++i) {
- if (sfac5 & (1 << i)) {
- mp_mul(&s, pow5+i, &s);
+ return retval;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShouldBankerRoundUpPowD --
+ *
+ * Test whether bankers' rounding should round a digit up. Assumption is
+ * made that the denominator of the fraction being tested is a power of
+ * 2**DIGIT_BIT.
+ *
+ * Results:
+ * Returns 1 iff the fraction is more than 1/2, or if the fraction is
+ * exactly 1/2 and the digit is odd.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static int
+ShouldBankerRoundUpPowD(
+ mp_int *b, /* Numerator of the fraction. */
+ int sd, /* Denominator is 2**(sd*DIGIT_BIT). */
+ int isodd) /* 1 if the digit is odd, 0 if even. */
+{
+ int i;
+ static const mp_digit topbit = 1 << (DIGIT_BIT - 1);
+
+ if (b->used < sd || (b->dp[sd-1] & topbit) == 0) {
+ return 0;
+ }
+ if (b->dp[sd-1] != topbit) {
+ return 1;
+ }
+ for (i = sd-2; i >= 0; --i) {
+ if (b->dp[i] != 0) {
+ return 1;
}
}
- mp_mul_2d(&s, sfac2, &s);
+ return isodd;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShouldBankerRoundUpToNextPowD --
+ *
+ * Tests whether bankers' rounding will round down in the "denominator is
+ * a power of 2**MP_DIGIT" case.
+ *
+ * Results:
+ * Returns 1 if the rounding will be performed - which increases the
+ * digit by one - and 0 otherwise.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static int
+ShouldBankerRoundUpToNextPowD(
+ mp_int *b, /* Numerator of the fraction. */
+ mp_int *m, /* Numerator of the rounding tolerance. */
+ int sd, /* Common denominator is 2**(sd*DIGIT_BIT). */
+ int convType, /* Conversion type: STEELE defeats
+ * round-to-even (not sure why one wants to do
+ * this; I copied it from Gay). FIXME */
+ int isodd, /* 1 if the integer significand is odd. */
+ mp_int *temp) /* Work area for the calculation. */
+{
+ int i;
/*
- * It is possible for k to be off by one because we used an inexact
- * logarithm.
+ * Compare B and S-m - which is the same as comparing B+m and S - which we
+ * do by computing b+m and doing a bitwhack compare against
+ * 2**(DIGIT_BIT*sd)
*/
- mp_init(&temp);
- mp_add(&r, &mplus, &temp);
- i = mp_cmp_mag(&temp, &s);
- if (i>0 || (highOK && i==0)) {
- mp_mul_d(&s, 10, &s);
- ++k;
- } else {
- mp_mul_d(&temp, 10, &temp);
- i = mp_cmp_mag(&temp, &s);
- if (i<0 || (highOK && i==0)) {
- mp_mul_d(&r, 10, &r);
- mp_mul_d(&mplus, 10, &mplus);
- mp_mul_d(&mminus, 10, &mminus);
- --k;
+ mp_add(b, m, temp);
+ if (temp->used <= sd) { /* Too few digits to be > s */
+ return 0;
+ }
+ if (temp->used > sd+1 || temp->dp[sd] > 1) {
+ /* >= 2s */
+ return 1;
+ }
+ for (i = sd-1; i >= 0; --i) {
+ /* Check for ==s */
+ if (temp->dp[i] != 0) { /* > s */
+ return 1;
}
}
+ if (convType == TCL_DD_STEELE0) {
+ /* Biased rounding. */
+ return 0;
+ }
+ return isodd;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShorteningBignumConversionPowD --
+ *
+ * Converts a double-precision number to the shortest string of digits
+ * that reconverts exactly to the given number, or to 'ilim' digits if
+ * that will yield a shorter result. The denominator in David Gay's
+ * conversion algorithm is known to be a power of 2**DIGIT_BIT, and hence
+ * the division in the main loop may be replaced by a digit shift and
+ * mask.
+ *
+ * Results:
+ * Returns the string of significant decimal digits, in newly allocated
+ * memory
+ *
+ * Side effects:
+ * Stores the location of the decimal point in '*decpt' and the location
+ * of the terminal null byte in '*endPtr'.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+ShorteningBignumConversionPowD(
+ Double *dPtr, /* Original number to convert. */
+ int convType, /* Type of conversion (shortest, Steele,
+ * E format, F format). */
+ Tcl_WideUInt bw, /* Integer significand. */
+ int b2, int b5, /* Scale factor for the significand in the
+ * numerator. */
+ int m2plus, int m2minus, int m5,
+ /* Scale factors for 1/2 ulp in the numerator
+ * (will be different if bw == 1). */
+ int sd, /* Scale factor for the denominator. */
+ int k, /* Number of output digits before the decimal
+ * point. */
+ int len, /* Number of digits to allocate. */
+ int ilim, /* Number of digits to convert if b >= s */
+ int ilim1, /* Number of digits to convert if b < s */
+ int *decpt, /* OUTPUT: Position of the decimal point. */
+ char **endPtr) /* OUTPUT: Position of the terminal '\0' at
+ * the end of the returned string. */
+{
+ char *retval = ckalloc(len + 1);
+ /* Output buffer. */
+ mp_int b; /* Numerator of the fraction being
+ * converted. */
+ mp_int mplus, mminus; /* Bounds for roundoff. */
+ mp_digit digit; /* Current output digit. */
+ char *s = retval; /* Cursor in the output buffer. */
+ int i; /* Index in the output buffer. */
+ mp_int temp;
+ int r1;
+
+ /*
+ * b = bw * 2**b2 * 5**b5
+ * mminus = 5**m5
+ */
+
+ TclBNInitBignumFromWideUInt(&b, bw);
+ mp_init_set_int(&mminus, 1);
+ MulPow5(&b, b5, &b);
+ mp_mul_2d(&b, b2, &b);
/*
- * At this point, k contains the power of ten by which we're scaling the
- * result. r/s is at least 1/10 and strictly less than ten, and v = r/s *
- * 10**k. mplus and mminus give the rounding limits.
+ * Adjust if the logarithm was guessed wrong.
*/
+ if (b.used <= sd) {
+ mp_mul_d(&b, 10, &b);
+ ++m2plus; ++m2minus; ++m5;
+ ilim = ilim1;
+ --k;
+ }
+
+ /*
+ * mminus = 5**m5 * 2**m2minus
+ * mplus = 5**m5 * 2**m2plus
+ */
+
+ mp_mul_2d(&mminus, m2minus, &mminus);
+ MulPow5(&mminus, m5, &mminus);
+ if (m2plus > m2minus) {
+ mp_init_copy(&mplus, &mminus);
+ mp_mul_2d(&mplus, m2plus-m2minus, &mplus);
+ }
+ mp_init(&temp);
+
+ /*
+ * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT)
+ * by mp_digit extraction.
+ */
+
+ i = 0;
for (;;) {
- int tc1, tc2;
+ if (b.used <= sd) {
+ digit = 0;
+ } else {
+ digit = b.dp[sd];
+ if (b.used > sd+1 || digit >= 10) {
+ Tcl_Panic("wrong digit!");
+ }
+ --b.used; mp_clamp(&b);
+ }
+
+ /*
+ * Does the current digit put us on the low side of the exact value
+ * but within within roundoff of being exact?
+ */
+
+ r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus);
+ if (r1 == MP_LT || (r1 == MP_EQ
+ && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
+ /*
+ * Make sure we shouldn't be rounding *up* instead, in case the
+ * next number above is closer.
+ */
+
+ if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
+ ++digit;
+ if (digit == 10) {
+ *s++ = '9';
+ s = BumpUp(s, retval, &k);
+ break;
+ }
+ }
+
+ /*
+ * Stash the last digit.
+ */
+
+ *s++ = '0' + digit;
+ break;
+ }
+
+ /*
+ * Does one plus the current digit put us within roundoff of the
+ * number?
+ */
+
+ if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd, convType,
+ dPtr->w.word1 & 1, &temp)) {
+ if (digit == 9) {
+ *s++ = '9';
+ s = BumpUp(s, retval, &k);
+ break;
+ }
+ ++digit;
+ *s++ = '0' + digit;
+ break;
+ }
+
+ /*
+ * Have we converted all the requested digits?
+ */
+
+ *s++ = '0' + digit;
+ if (i == ilim) {
+ if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
+ s = BumpUp(s, retval, &k);
+ }
+ break;
+ }
- mp_mul_d(&r, 10, &r);
- mp_div(&r, &s, &temp, &r); /* temp = 10r / s; r = 10r mod s */
- i = temp.dp[0];
- mp_mul_d(&mplus, 10, &mplus);
+ /*
+ * Advance to the next digit.
+ */
+
+ mp_mul_d(&b, 10, &b);
mp_mul_d(&mminus, 10, &mminus);
- tc1 = mp_cmp_mag(&r, &mminus);
- if (lowOK) {
- tc1 = (tc1 <= 0);
- } else {
- tc1 = (tc1 < 0);
+ if (m2plus > m2minus) {
+ mp_mul_2d(&mminus, m2plus-m2minus, &mplus);
}
- mp_add(&r, &mplus, &temp);
- tc2 = mp_cmp_mag(&temp, &s);
- if (highOK) {
- tc2 = (tc2 >= 0);
+ ++i;
+ }
+
+ /*
+ * Endgame - store the location of the decimal point and the end of the
+ * string.
+ */
+
+ if (m2plus > m2minus) {
+ mp_clear(&mplus);
+ }
+ mp_clear_multi(&b, &mminus, &temp, NULL);
+ *s = '\0';
+ *decpt = k;
+ if (endPtr) {
+ *endPtr = s;
+ }
+ return retval;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * StrictBignumConversionPowD --
+ *
+ * Converts a double-precision number to a fixed-lengt string of 'ilim'
+ * digits (or 'ilim1' if log10(d) has been overestimated). The
+ * denominator in David Gay's conversion algorithm is known to be a power
+ * of 2**DIGIT_BIT, and hence the division in the main loop may be
+ * replaced by a digit shift and mask.
+ *
+ * Results:
+ * Returns the string of significant decimal digits, in newly allocated
+ * memory.
+ *
+ * Side effects:
+ * Stores the location of the decimal point in '*decpt' and the location
+ * of the terminal null byte in '*endPtr'.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+StrictBignumConversionPowD(
+ Double *dPtr, /* Original number to convert. */
+ int convType, /* Type of conversion (shortest, Steele,
+ * E format, F format). */
+ Tcl_WideUInt bw, /* Integer significand. */
+ int b2, int b5, /* Scale factor for the significand in the
+ * numerator. */
+ int sd, /* Scale factor for the denominator. */
+ int k, /* Number of output digits before the decimal
+ * point. */
+ int len, /* Number of digits to allocate. */
+ int ilim, /* Number of digits to convert if b >= s */
+ int ilim1, /* Number of digits to convert if b < s */
+ int *decpt, /* OUTPUT: Position of the decimal point. */
+ char **endPtr) /* OUTPUT: Position of the terminal '\0' at
+ * the end of the returned string. */
+{
+ char *retval = ckalloc(len + 1);
+ /* Output buffer. */
+ mp_int b; /* Numerator of the fraction being
+ * converted. */
+ mp_digit digit; /* Current output digit. */
+ char *s = retval; /* Cursor in the output buffer. */
+ int i; /* Index in the output buffer. */
+ mp_int temp;
+
+ /*
+ * b = bw * 2**b2 * 5**b5
+ */
+
+ TclBNInitBignumFromWideUInt(&b, bw);
+ MulPow5(&b, b5, &b);
+ mp_mul_2d(&b, b2, &b);
+
+ /*
+ * Adjust if the logarithm was guessed wrong.
+ */
+
+ if (b.used <= sd) {
+ mp_mul_d(&b, 10, &b);
+ ilim = ilim1;
+ --k;
+ }
+ mp_init(&temp);
+
+ /*
+ * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT)
+ * by mp_digit extraction.
+ */
+
+ i = 1;
+ for (;;) {
+ if (b.used <= sd) {
+ digit = 0;
} else {
- tc2= (tc2 > 0);
+ digit = b.dp[sd];
+ if (b.used > sd+1 || digit >= 10) {
+ Tcl_Panic("wrong digit!");
+ }
+ --b.used;
+ mp_clamp(&b);
}
- if (!tc1) {
- if (!tc2) {
- *buffer++ = '0' + i;
- } else {
- c = (char) (i + '1');
- break;
+
+ /*
+ * Have we converted all the requested digits?
+ */
+
+ *s++ = '0' + digit;
+ if (i == ilim) {
+ if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
+ s = BumpUp(s, retval, &k);
}
+ while (*--s == '0') {
+ /* do nothing */
+ }
+ ++s;
+ break;
+ }
+
+ /*
+ * Advance to the next digit.
+ */
+
+ mp_mul_d(&b, 10, &b);
+ ++i;
+ }
+
+ /*
+ * Endgame - store the location of the decimal point and the end of the
+ * string.
+ */
+
+ mp_clear_multi(&b, &temp, NULL);
+ *s = '\0';
+ *decpt = k;
+ if (endPtr) {
+ *endPtr = s;
+ }
+ return retval;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShouldBankerRoundUp --
+ *
+ * Tests whether a digit should be rounded up or down when finishing
+ * bignum-based floating point conversion.
+ *
+ * Results:
+ * Returns 1 if the number needs to be rounded up, 0 otherwise.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static int
+ShouldBankerRoundUp(
+ mp_int *twor, /* 2x the remainder from thd division that
+ * produced the last digit. */
+ mp_int *S, /* Denominator. */
+ int isodd) /* Flag == 1 if the last digit is odd. */
+{
+ int r = mp_cmp_mag(twor, S);
+
+ switch (r) {
+ case MP_LT:
+ return 0;
+ case MP_EQ:
+ return isodd;
+ case MP_GT:
+ return 1;
+ }
+ Tcl_Panic("in ShouldBankerRoundUp, trichotomy fails!");
+ return 0;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShouldBankerRoundUpToNext --
+ *
+ * Tests whether the remainder is great enough to force rounding to the
+ * next higher digit.
+ *
+ * Results:
+ * Returns 1 if the number should be rounded up, 0 otherwise.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static int
+ShouldBankerRoundUpToNext(
+ mp_int *b, /* Remainder from the division that produced
+ * the last digit. */
+ mp_int *m, /* Numerator of the rounding tolerance. */
+ mp_int *S, /* Denominator. */
+ int convType, /* Conversion type: STEELE0 defeats
+ * round-to-even. (Not sure why one would want
+ * this; I coped it from Gay). FIXME */
+ int isodd, /* 1 if the integer significand is odd. */
+ mp_int *temp) /* Work area needed for the calculation. */
+{
+ int r;
+
+ /*
+ * Compare b and S-m: this is the same as comparing B+m and S.
+ */
+
+ mp_add(b, m, temp);
+ r = mp_cmp_mag(temp, S);
+ switch(r) {
+ case MP_LT:
+ return 0;
+ case MP_EQ:
+ if (convType == TCL_DD_STEELE0) {
+ return 0;
} else {
- if (!tc2) {
- c = (char) (i + '0');
- } else {
- mp_mul_2d(&r, 1, &r);
- n = mp_cmp_mag(&r, &s);
- if (n < 0) {
- c = (char) (i + '0');
- } else {
- c = (char) (i + '1');
+ return isodd;
+ }
+ case MP_GT:
+ return 1;
+ }
+ Tcl_Panic("in ShouldBankerRoundUpToNext, trichotomy fails!");
+ return 0;
+}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * ShorteningBignumConversion --
+ *
+ * Convert a floating point number to a variable-length digit string
+ * using the multiprecision method.
+ *
+ * Results:
+ * Returns the string of digits.
+ *
+ * Side effects:
+ * Stores the position of the decimal point in *decpt. Stores a pointer
+ * to the end of the number in *endPtr.
+ *
+ *----------------------------------------------------------------------
+ */
+
+inline static char *
+ShorteningBignumConversion(
+ Double *dPtr, /* Original number being converted. */
+ int convType, /* Conversion type. */
+ Tcl_WideUInt bw, /* Integer significand and exponent. */
+ int b2, /* Scale factor for the significand. */
+ int m2plus, int m2minus, /* Scale factors for 1/2 ulp in numerator. */
+ int s2, int s5, /* Scale factors for denominator. */
+ int k, /* Guessed position of the decimal point. */
+ int len, /* Size of the digit buffer to allocate. */
+ int ilim, /* Number of digits to convert if b >= s */
+ int ilim1, /* Number of digits to convert if b < s */
+ int *decpt, /* OUTPUT: Position of the decimal point. */
+ char **endPtr) /* OUTPUT: Pointer to the end of the number */
+{
+ char *retval = ckalloc(len+1);
+ /* Buffer of digits to return. */
+ char *s = retval; /* Cursor in the return value. */
+ mp_int b; /* Numerator of the result. */
+ mp_int mminus; /* 1/2 ulp below the result. */
+ mp_int mplus; /* 1/2 ulp above the result. */
+ mp_int S; /* Denominator of the result. */
+ mp_int dig; /* Current digit of the result. */
+ int digit; /* Current digit of the result. */
+ mp_int temp; /* Work area. */
+ int minit = 1; /* Fudge factor for when we misguess k. */
+ int i;
+ int r1;
+
+ /*
+ * b = bw * 2**b2 * 5**b5
+ * S = 2**s2 * 5*s5
+ */
+
+ TclBNInitBignumFromWideUInt(&b, bw);
+ mp_mul_2d(&b, b2, &b);
+ mp_init_set_int(&S, 1);
+ MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);
+
+ /*
+ * Handle the case where we guess the position of the decimal point wrong.
+ */
+
+ if (mp_cmp_mag(&b, &S) == MP_LT) {
+ mp_mul_d(&b, 10, &b);
+ minit = 10;
+ ilim =ilim1;
+ --k;
+ }
+
+ /*
+ * mminus = 2**m2minus * 5**m5
+ */
+
+ mp_init_set_int(&mminus, minit);
+ mp_mul_2d(&mminus, m2minus, &mminus);
+ if (m2plus > m2minus) {
+ mp_init_copy(&mplus, &mminus);
+ mp_mul_2d(&mplus, m2plus-m2minus, &mplus);
+ }
+ mp_init(&temp);
+
+ /*
+ * Loop through the digits.
+ */
+
+ mp_init(&dig);
+ i = 1;
+ for (;;) {
+ mp_div(&b, &S, &dig, &b);
+ if (dig.used > 1 || dig.dp[0] >= 10) {
+ Tcl_Panic("wrong digit!");
+ }
+ digit = dig.dp[0];
+
+ /*
+ * Does the current digit leave us with a remainder small enough to
+ * round to it?
+ */
+
+ r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus);
+ if (r1 == MP_LT || (r1 == MP_EQ
+ && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
+ mp_mul_2d(&b, 1, &b);
+ if (ShouldBankerRoundUp(&b, &S, digit&1)) {
+ ++digit;
+ if (digit == 10) {
+ *s++ = '9';
+ s = BumpUp(s, retval, &k);
+ break;
}
}
+ *s++ = '0' + digit;
+ break;
+ }
+
+ /*
+ * Does the current digit leave us with a remainder large enough to
+ * commit to rounding up to the next higher digit?
+ */
+
+ if (ShouldBankerRoundUpToNext(&b, &mminus, &S, convType,
+ dPtr->w.word1 & 1, &temp)) {
+ ++digit;
+ if (digit == 10) {
+ *s++ = '9';
+ s = BumpUp(s, retval, &k);
+ break;
+ }
+ *s++ = '0' + digit;
break;
}
- };
- *buffer++ = c;
- *buffer++ = '\0';
+
+ /*
+ * Have we converted all the requested digits?
+ */
+
+ *s++ = '0' + digit;
+ if (i == ilim) {
+ mp_mul_2d(&b, 1, &b);
+ if (ShouldBankerRoundUp(&b, &S, digit&1)) {
+ s = BumpUp(s, retval, &k);
+ }
+ break;
+ }
+
+ /*
+ * Advance to the next digit.
+ */
+
+ if (s5 > 0) {
+ /*
+ * Can possibly shorten the denominator.
+ */
+
+ mp_mul_2d(&b, 1, &b);
+ mp_mul_2d(&mminus, 1, &mminus);
+ if (m2plus > m2minus) {
+ mp_mul_2d(&mplus, 1, &mplus);
+ }
+ mp_div_d(&S, 5, &S, NULL);
+ --s5;
+
+ /*
+ * IDEA: It might possibly be a win to fall back to int64
+ * arithmetic here if S < 2**64/10. But it's a win only for
+ * a fairly narrow range of magnitudes so perhaps not worth
+ * bothering. We already know that we shorten the
+ * denominator by at least 1 mp_digit, perhaps 2, as we do
+ * the conversion for 17 digits of significance.
+ * Possible savings:
+ * 10**26 1 trip through loop before fallback possible
+ * 10**27 1 trip
+ * 10**28 2 trips
+ * 10**29 3 trips
+ * 10**30 4 trips
+ * 10**31 5 trips
+ * 10**32 6 trips
+ * 10**33 7 trips
+ * 10**34 8 trips
+ * 10**35 9 trips
+ * 10**36 10 trips
+ * 10**37 11 trips
+ * 10**38 12 trips
+ * 10**39 13 trips
+ * 10**40 14 trips
+ * 10**41 15 trips
+ * 10**42 16 trips
+ * thereafter no gain.
+ */
+ } else {
+ mp_mul_d(&b, 10, &b);
+ mp_mul_d(&mminus, 10, &mminus);
+ if (m2plus > m2minus) {
+ mp_mul_2d(&mplus, 10, &mplus);
+ }
+ }
+
+ ++i;
+ }
/*
- * Free memory, and return.
+ * Endgame - store the location of the decimal point and the end of the
+ * string.
*/
- mp_clear_multi(&r, &s, &mplus, &mminus, &temp, NULL);
- return k;
+ if (m2plus > m2minus) {
+ mp_clear(&mplus);
+ }
+ mp_clear_multi(&b, &mminus, &temp, &dig, &S, NULL);
+ *s = '\0';
+ *decpt = k;
+ if (endPtr) {
+ *endPtr = s;
+ }
+ return retval;
}
/*
*----------------------------------------------------------------------
*
- * AbsoluteValue --
+ * StrictBignumConversion --
*
- * Splits a 'double' into its absolute value and sign.
+ * Convert a floating point number to a fixed-length digit string using
+ * the multiprecision method.
*
* Results:
- * Returns the absolute value.
+ * Returns the string of digits.
*
* Side effects:
- * Stores the signum in '*signum'.
+ * Stores the position of the decimal point in *decpt. Stores a pointer
+ * to the end of the number in *endPtr.
*
*----------------------------------------------------------------------
*/
-static double
-AbsoluteValue(
- double v, /* Number to split */
- int *signum) /* (Output) Sign of the number 1=-, 0=+ */
+inline static char *
+StrictBignumConversion(
+ Double *dPtr, /* Original number being converted. */
+ int convType, /* Conversion type. */
+ Tcl_WideUInt bw, /* Integer significand and exponent. */
+ int b2, /* Scale factor for the significand. */
+ int s2, int s5, /* Scale factors for denominator. */
+ int k, /* Guessed position of the decimal point. */
+ int len, /* Size of the digit buffer to allocate. */
+ int ilim, /* Number of digits to convert if b >= s */
+ int ilim1, /* Number of digits to convert if b < s */
+ int *decpt, /* OUTPUT: Position of the decimal point. */
+ char **endPtr) /* OUTPUT: Pointer to the end of the number */
{
+ char *retval = ckalloc(len+1);
+ /* Buffer of digits to return. */
+ char *s = retval; /* Cursor in the return value. */
+ mp_int b; /* Numerator of the result. */
+ mp_int S; /* Denominator of the result. */
+ mp_int dig; /* Current digit of the result. */
+ int digit; /* Current digit of the result. */
+ mp_int temp; /* Work area. */
+ int g; /* Size of the current digit ground. */
+ int i, j;
+
/*
- * Take the absolute value of the number, and report the number's sign.
- * Take special steps to preserve signed zeroes in IEEE floating point.
- * (We can't use fpclassify, because that's a C9x feature and we still
- * have to build on C89 compilers.)
+ * b = bw * 2**b2 * 5**b5
+ * S = 2**s2 * 5*s5
*/
-#ifndef IEEE_FLOATING_POINT
- if (v >= 0.0) {
- *signum = 0;
- } else {
- *signum = 1;
- v = -v;
+ mp_init_multi(&temp, &dig, NULL);
+ TclBNInitBignumFromWideUInt(&b, bw);
+ mp_mul_2d(&b, b2, &b);
+ mp_init_set_int(&S, 1);
+ MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);
+
+ /*
+ * Handle the case where we guess the position of the decimal point wrong.
+ */
+
+ if (mp_cmp_mag(&b, &S) == MP_LT) {
+ mp_mul_d(&b, 10, &b);
+ ilim =ilim1;
+ --k;
}
-#else
- union {
- Tcl_WideUInt iv;
- double dv;
- } bitwhack;
- bitwhack.dv = v;
- if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) {
- *signum = 1;
- bitwhack.iv &= ~((Tcl_WideUInt) 1 << 63);
- v = bitwhack.dv;
+
+ /*
+ * Convert the leading digit.
+ */
+
+ i = 0;
+ mp_div(&b, &S, &dig, &b);
+ if (dig.used > 1 || dig.dp[0] >= 10) {
+ Tcl_Panic("wrong digit!");
+ }
+ digit = dig.dp[0];
+
+ /*
+ * Is a single digit all that was requested?
+ */
+
+ *s++ = '0' + digit;
+ if (++i >= ilim) {
+ mp_mul_2d(&b, 1, &b);
+ if (ShouldBankerRoundUp(&b, &S, digit&1)) {
+ s = BumpUp(s, retval, &k);
+ }
} else {
- *signum = 0;
+ for (;;) {
+ /*
+ * Shift by a group of digits.
+ */
+
+ g = ilim - i;
+ if (g > DIGIT_GROUP) {
+ g = DIGIT_GROUP;
+ }
+ if (s5 >= g) {
+ mp_div_d(&S, dpow5[g], &S, NULL);
+ s5 -= g;
+ } else if (s5 > 0) {
+ mp_div_d(&S, dpow5[s5], &S, NULL);
+ mp_mul_d(&b, dpow5[g - s5], &b);
+ s5 = 0;
+ } else {
+ mp_mul_d(&b, dpow5[g], &b);
+ }
+ mp_mul_2d(&b, g, &b);
+
+ /*
+ * As with the shortening bignum conversion, it's possible at this
+ * point that we will have reduced the denominator to less than
+ * 2**64/10, at which point it would be possible to fall back to
+ * to int64 arithmetic. But the potential payoff is tremendously
+ * less - unless we're working in F format - because we know that
+ * three groups of digits will always suffice for %#.17e, the
+ * longest format that doesn't introduce empty precision.
+ *
+ * Extract the next group of digits.
+ */
+
+ mp_div(&b, &S, &dig, &b);
+ if (dig.used > 1) {
+ Tcl_Panic("wrong digit!");
+ }
+ digit = dig.dp[0];
+ for (j = g-1; j >= 0; --j) {
+ int t = itens[j];
+
+ *s++ = digit / t + '0';
+ digit %= t;
+ }
+ i += g;
+
+ /*
+ * Have we converted all the requested digits?
+ */
+
+ if (i == ilim) {
+ mp_mul_2d(&b, 1, &b);
+ if (ShouldBankerRoundUp(&b, &S, digit&1)) {
+ s = BumpUp(s, retval, &k);
+ }
+ break;
+ }
+ }
}
-#endif
- return v;
+ while (*--s == '0') {
+ /* do nothing */
+ }
+ ++s;
+
+ /*
+ * Endgame - store the location of the decimal point and the end of the
+ * string.
+ */
+
+ mp_clear_multi(&b, &S, &temp, &dig, NULL);
+ *s = '\0';
+ *decpt = k;
+ if (endPtr) {
+ *endPtr = s;
+ }
+ return retval;
}
/*
*----------------------------------------------------------------------
*
- * GetIntegerTimesPower --
+ * TclDoubleDigits --
*
- * Converts a floating point number to an exact integer times a power of
- * the floating point radix.
+ * Core of Tcl's conversion of double-precision floating point numbers to
+ * decimal.
*
* Results:
- * Returns 1 if it converted the smallest significand, 0 otherwise.
+ * Returns a newly-allocated string of digits.
*
* Side effects:
- * Initializes the integer value (does not just assign it), and stores
- * the exponent.
+ * Sets *decpt to the index of the character in the string before the
+ * place that the decimal point should go. If 'endPtr' is not NULL, sets
+ * endPtr to point to the terminating '\0' byte of the string. Sets *sign
+ * to 1 if a minus sign should be printed with the number, or 0 if a plus
+ * sign (or no sign) should appear.
+ *
+ * This function is a service routine that produces the string of digits for
+ * floating-point-to-decimal conversion. It can do a number of things
+ * according to the 'flags' argument. Valid values for 'flags' include:
+ * TCL_DD_SHORTEST - This is the default for floating point conversion if
+ * ::tcl_precision is 0. It constructs the shortest string of
+ * digits that will reconvert to the given number when scanned.
+ * For floating point numbers that are exactly between two
+ * decimal numbers, it resolves using the 'round to even' rule.
+ * With this value, the 'ndigits' parameter is ignored.
+ * TCL_DD_STEELE - This value is not recommended and may be removed in
+ * the future. It follows the conversion algorithm outlined in
+ * "How to Print Floating-Point Numbers Accurately" by Guy
+ * L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90,
+ * pp. 112-126]. This rule has the effect of rendering 1e23 as
+ * 9.9999999999999999e22 - which is a 'better' approximation in
+ * the sense that it will reconvert correctly even if a
+ * subsequent input conversion is 'round up' or 'round down'
+ * rather than 'round to nearest', but is surprising otherwise.
+ * TCL_DD_E_FORMAT - This value is used to prepare numbers for %e format
+ * conversion (or for default floating->string if tcl_precision
+ * is not 0). It constructs a string of at most 'ndigits' digits,
+ * choosing the one that is closest to the given number (and
+ * resolving ties with 'round to even'). It is allowed to return
+ * fewer than 'ndigits' if the number converts exactly; if the
+ * TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG is supplied instead, it
+ * also returns fewer digits if the shorter string will still
+ * reconvert without loss to the given input number. In any case,
+ * strings of trailing zeroes are suppressed.
+ * TCL_DD_F_FORMAT - This value is used to prepare numbers for %f format
+ * conversion. It requests that conversion proceed until
+ * 'ndigits' digits after the decimal point have been converted.
+ * It is possible for this format to result in a zero-length
+ * string if the number is sufficiently small. Again, it is
+ * permissible for TCL_DD_F_FORMAT to return fewer digits for a
+ * number that converts exactly, and changing the argument to
+ * TCL_DD_F_FORMAT|TCL_DD_SHORTEN_FLAG will allow the routine
+ * also to return fewer digits if the shorter string will still
+ * reconvert without loss to the given input number. Strings of
+ * trailing zeroes are suppressed.
+ *
+ * To any of these flags may be OR'ed TCL_DD_NO_QUICK; this flag requires
+ * all calculations to be done in exact arithmetic. Normally, E and F
+ * format with fewer than about 14 digits will be done with a quick
+ * floating point approximation and fall back on the exact arithmetic
+ * only if the input number is close enough to the midpoint between two
+ * decimal strings that more precision is needed to resolve which string
+ * is correct.
+ *
+ * The value stored in the 'decpt' argument on return may be negative
+ * (indicating that the decimal point falls to the left of the string) or
+ * greater than the length of the string. In addition, the value -9999 is used
+ * as a sentinel to indicate that the string is one of the special values
+ * "Infinity" and "NaN", and that no decimal point should be inserted.
*
*----------------------------------------------------------------------
*/
-static int
-GetIntegerTimesPower(
- double v, /* Value to convert */
- mp_int *rPtr, /* (Output) Integer value */
- int *ePtr) /* (Output) Power of FLT_RADIX by which r must
- * be multiplied to yield v*/
+char *
+TclDoubleDigits(
+ double dv, /* Number to convert. */
+ int ndigits, /* Number of digits requested. */
+ int flags, /* Conversion flags. */
+ int *decpt, /* OUTPUT: Position of the decimal point. */
+ int *sign, /* OUTPUT: 1 if the result is negative. */
+ char **endPtr) /* OUTPUT: If not NULL, receives a pointer to
+ * one character beyond the end of the
+ * returned string. */
{
- double a, f;
- int e, i, n;
+ int convType = (flags & TCL_DD_CONVERSION_TYPE_MASK);
+ /* Type of conversion being performed:
+ * TCL_DD_SHORTEST0, TCL_DD_STEELE0,
+ * TCL_DD_E_FORMAT, or TCL_DD_F_FORMAT. */
+ Double d; /* Union for deconstructing doubles. */
+ Tcl_WideUInt bw; /* Integer significand. */
+ int be; /* Power of 2 by which b must be multiplied */
+ int bbits; /* Number of bits needed to represent b. */
+ int denorm; /* Flag == 1 iff the input number was
+ * denormalized. */
+ int k; /* Estimate of floor(log10(d)). */
+ int k_check; /* Flag == 1 if d is near enough to a power of
+ * ten that k must be checked. */
+ int b2, b5, s2, s5; /* Powers of 2 and 5 in the numerator and
+ * denominator of intermediate results. */
+ int ilim = -1, ilim1 = -1; /* Number of digits to convert, and number to
+ * convert if log10(d) has been
+ * overestimated. */
+ char *retval; /* Return value from this function. */
+ int i = -1;
+
+ /*
+ * Put the input number into a union for bit-whacking.
+ */
+
+ d.d = dv;
/*
- * Develop f and e such that v = f * FLT_RADIX**e, with
- * 1.0/FLT_RADIX <= f < 1.
+ * Handle the cases of negative numbers (by taking the absolute value:
+ * this includes -Inf and -NaN!), infinity, Not a Number, and zero.
*/
- f = frexp(v, &e);
-#if FLT_RADIX > 2
- n = e % log2FLT_RADIX;
- if (n > 0) {
- n -= log2FLT_RADIX;
- e += 1;
- f *= ldexp(1.0, n);
+ TakeAbsoluteValue(&d, sign);
+ if ((d.w.word0 & EXP_MASK) == EXP_MASK) {
+ return FormatInfAndNaN(&d, decpt, endPtr);
}
- e = (e - n) / log2FLT_RADIX;
-#endif
- if (f == 1.0) {
- f = 1.0 / FLT_RADIX;
- e += 1;
+ if (d.d == 0.0) {
+ return FormatZero(decpt, endPtr);
}
/*
- * If the original number was denormalized, adjust e and f to be denormal
- * as well.
+ * Unpack the floating point into a wide integer and an exponent.
+ * Determine the number of bits that the big integer requires, and compute
+ * a quick approximation (which may be one too high) of ceil(log10(d.d)).
*/
- if (e < DBL_MIN_EXP) {
- n = mantBits + (e - DBL_MIN_EXP)*log2FLT_RADIX;
- f = ldexp(f, (e - DBL_MIN_EXP)*log2FLT_RADIX);
- e = DBL_MIN_EXP;
- n = (n + DIGIT_BIT - 1) / DIGIT_BIT;
- } else {
- n = mantDIGIT;
- }
+ denorm = ((d.w.word0 & EXP_MASK) == 0);
+ DoubleToExpAndSig(d.d, &bw, &be, &bbits);
+ k = ApproximateLog10(bw, be, bbits);
+ k = BetterLog10(d.d, k, &k_check);
+
+ /* At this point, we have:
+ * d is the number to convert.
+ * bw are significand and exponent: d == bw*2**be,
+ * bbits is the length of bw: 2**bbits-1 <= bw < 2**bbits
+ * k is either ceil(log10(d)) or ceil(log10(d))+1. k_check is 0 if we
+ * know that k is exactly ceil(log10(d)) and 1 if we need to check.
+ * We want a rational number
+ * r = b * 10**(1-k) = bw * 2**b2 * 5**b5 / (2**s2 / 5**s5),
+ * with b2, b5, s2, s5 >= 0. Note that the most significant decimal
+ * digit is floor(r) and that successive digits can be obtained by
+ * setting r <- 10*floor(r) (or b <= 10 * (b % S)). Find appropriate
+ * b2, b5, s2, s5.
+ */
+
+ ComputeScale(be, k, &b2, &b5, &s2, &s5);
/*
- * Now extract the base-2**DIGIT_BIT digits of f into a multi-precision
- * integer r. Preserve the invariant v = r * 2**rfac2 * FLT_RADIX**e by
- * adjusting e.
+ * Correct an incorrect caller-supplied 'ndigits'. Also determine:
+ * i = The maximum number of decimal digits that will be returned in the
+ * formatted string. This is k + 1 + ndigits for F format, 18 for
+ * shortest and Steele, and ndigits for E format.
+ * ilim = The number of significant digits to convert if k has been
+ * guessed correctly. This is -1 for shortest and Steele (which
+ * stop when all significance has been lost), 'ndigits' for E
+ * format, and 'k + 1 + ndigits' for F format.
+ * ilim1 = The minimum number of significant digits to convert if k has
+ * been guessed 1 too high. This, too, is -1 for shortest and
+ * Steele, and 'ndigits' for E format, but it's 'ndigits-1' for F
+ * format.
*/
- a = f;
- n = mantDIGIT;
- mp_init_size(rPtr, n);
- rPtr->used = n;
- rPtr->sign = MP_ZPOS;
- i = (mantBits % DIGIT_BIT);
- if (i == 0) {
- i = DIGIT_BIT;
+ SetPrecisionLimits(convType, k, &ndigits, &i, &ilim, &ilim1);
+
+ /*
+ * Try to do low-precision conversion in floating point rather than
+ * resorting to expensive multiprecision arithmetic.
+ */
+
+ if (ilim >= 0 && ilim <= QUICK_MAX && !(flags & TCL_DD_NO_QUICK)) {
+ retval = QuickConversion(d.d, k, k_check, flags, i, ilim, ilim1,
+ decpt, endPtr);
+ if (retval != NULL) {
+ return retval;
+ }
}
- while (n > 0) {
- a *= ldexp(1.0, i);
- i = DIGIT_BIT;
- rPtr->dp[--n] = (mp_digit) a;
- a -= (mp_digit) a;
+
+ /*
+ * For shortening conversions, determine the upper and lower bounds for
+ * the remainder at which we can stop.
+ * m+ = (2**m2plus * 5**m5) / (2**s2 * 5**s5) is the limit on the high
+ * side, and
+ * m- = (2**m2minus * 5**m5) / (2**s2 * 5**s5) is the limit on the low
+ * side.
+ * We may need to increase s2 to put m2plus, m2minus, b2 over a common
+ * denominator.
+ */
+
+ if (flags & TCL_DD_SHORTEN_FLAG) {
+ int m2minus = b2;
+ int m2plus;
+ int m5 = b5;
+ int len = i;
+
+ /*
+ * Find the quantity i so that (2**i*5**b5)/(2**s2*5**s5) is 1/2 unit
+ * in the least significant place of the floating point number.
+ */
+
+ if (denorm) {
+ i = be + EXPONENT_BIAS + (FP_PRECISION-1);
+ } else {
+ i = 1 + FP_PRECISION - bbits;
+ }
+ b2 += i;
+ s2 += i;
+
+ /*
+ * Reduce the fractions to lowest terms, since the above calculation
+ * may have left excess powers of 2 in numerator and denominator.
+ */
+
+ CastOutPowersOf2(&b2, &m2minus, &s2);
+
+ /*
+ * In the special case where bw==1, the nearest floating point number
+ * to it on the low side is 1/4 ulp below it. Adjust accordingly.
+ */
+
+ m2plus = m2minus;
+ if (!denorm && bw == 1) {
+ ++b2;
+ ++s2;
+ ++m2plus;
+ }
+
+ if (s5+1 < N_LOG2POW5 && s2+1 + log2pow5[s5+1] <= 64) {
+ /*
+ * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit word,
+ * then all our intermediate calculations can be done using exact
+ * 64-bit arithmetic with no need for expensive multiprecision
+ * operations. (This will be true for all numbers in the range
+ * [1.0e-3 .. 1.0e+24]).
+ */
+
+ return ShorteningInt64Conversion(&d, convType, bw, b2, b5, m2plus,
+ m2minus, m5, s2, s5, k, len, ilim, ilim1, decpt, endPtr);
+ } else if (s5 == 0) {
+ /*
+ * The denominator is a power of 2, so we can replace division by
+ * digit shifts. First we round up s2 to a multiple of DIGIT_BIT,
+ * and adjust m2 and b2 accordingly. Then we launch into a version
+ * of the comparison that's specialized for the 'power of mp_digit
+ * in the denominator' case.
+ */
+
+ if (s2 % DIGIT_BIT != 0) {
+ int delta = DIGIT_BIT - (s2 % DIGIT_BIT);
+
+ b2 += delta;
+ m2plus += delta;
+ m2minus += delta;
+ s2 += delta;
+ }
+ return ShorteningBignumConversionPowD(&d, convType, bw, b2, b5,
+ m2plus, m2minus, m5, s2/DIGIT_BIT, k, len, ilim, ilim1,
+ decpt, endPtr);
+ } else {
+ /*
+ * Alas, there's no helpful special case; use full-up bignum
+ * arithmetic for the conversion.
+ */
+
+ return ShorteningBignumConversion(&d, convType, bw, b2, m2plus,
+ m2minus, s2, s5, k, len, ilim, ilim1, decpt, endPtr);
+ }
+ } else {
+ /*
+ * Non-shortening conversion.
+ */
+
+ int len = i;
+
+ /*
+ * Reduce numerator and denominator to lowest terms.
+ */
+
+ if (b2 >= s2 && s2 > 0) {
+ b2 -= s2; s2 = 0;
+ } else if (s2 >= b2 && b2 > 0) {
+ s2 -= b2; b2 = 0;
+ }
+
+ if (s5+1 < N_LOG2POW5 && s2+1 + log2pow5[s5+1] <= 64) {
+ /*
+ * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit word,
+ * then all our intermediate calculations can be done using exact
+ * 64-bit arithmetic with no need for expensive multiprecision
+ * operations.
+ */
+
+ return StrictInt64Conversion(&d, convType, bw, b2, b5, s2, s5, k,
+ len, ilim, ilim1, decpt, endPtr);
+ } else if (s5 == 0) {
+ /*
+ * The denominator is a power of 2, so we can replace division by
+ * digit shifts. First we round up s2 to a multiple of DIGIT_BIT,
+ * and adjust m2 and b2 accordingly. Then we launch into a version
+ * of the comparison that's specialized for the 'power of mp_digit
+ * in the denominator' case.
+ */
+
+ if (s2 % DIGIT_BIT != 0) {
+ int delta = DIGIT_BIT - (s2 % DIGIT_BIT);
+
+ b2 += delta;
+ s2 += delta;
+ }
+ return StrictBignumConversionPowD(&d, convType, bw, b2, b5,
+ s2/DIGIT_BIT, k, len, ilim, ilim1, decpt, endPtr);
+ } else {
+ /*
+ * There are no helpful special cases, but at least we know in
+ * advance how many digits we will convert. We can run the
+ * conversion in steps of DIGIT_GROUP digits, so as to have many
+ * fewer mp_int divisions.
+ */
+
+ return StrictBignumConversion(&d, convType, bw, b2, s2, s5, k,
+ len, ilim, ilim1, decpt, endPtr);
+ }
}
- *ePtr = e - DBL_MANT_DIG;
- return (f == 1.0 / FLT_RADIX);
}
/*
@@ -2112,6 +4339,19 @@ TclInitDoubleConversion(void)
int x;
Tcl_WideUInt u;
double d;
+#ifdef IEEE_FLOATING_POINT
+ union {
+ double dv;
+ Tcl_WideUInt iv;
+ } bitwhack;
+#endif
+#if defined(__sgi) && defined(_COMPILER_VERSION)
+ union fpc_csr mipsCR;
+
+ mipsCR.fc_word = get_fpc_csr();
+ mipsCR.fc_struct.flush = 0;
+ set_fpc_csr(mipsCR.fc_word);
+#endif
/*
* Initialize table of powers of 10 expressed as wide integers.
@@ -2119,8 +4359,7 @@ TclInitDoubleConversion(void)
maxpow10_wide = (int)
floor(sizeof(Tcl_WideUInt) * CHAR_BIT * log(2.) / log(10.));
- pow10_wide = (Tcl_WideUInt *)
- ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt));
+ pow10_wide = ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt));
u = 1;
for (i = 0; i < maxpow10_wide; ++i) {
pow10_wide[i] = u;
@@ -2129,20 +4368,20 @@ TclInitDoubleConversion(void)
pow10_wide[i] = u;
/*
- * Determine how many bits of precision a double has, and how many
- * decimal digits that represents.
+ * Determine how many bits of precision a double has, and how many decimal
+ * digits that represents.
*/
if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) {
Tcl_Panic("This code doesn't work on a decimal machine!");
}
- --log2FLT_RADIX;
+ log2FLT_RADIX--;
mantBits = DBL_MANT_DIG * log2FLT_RADIX;
d = 1.0;
- /*
- * Initialize a table of powers of ten that can be exactly represented
- * in a double.
+ /*
+ * Initialize a table of powers of ten that can be exactly represented in
+ * a double.
*/
x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0));
@@ -2152,7 +4391,7 @@ TclInitDoubleConversion(void)
mmaxpow = MAXPOW;
}
for (i=0 ; i<=mmaxpow ; ++i) {
- pow10[i] = d;
+ pow10vals[i] = d;
d *= 10.0;
}
@@ -2167,21 +4406,43 @@ TclInitDoubleConversion(void)
for (i=0; i<8; ++i) {
mp_sqr(pow5+i, pow5+i+1);
}
+ mp_init_set_int(pow5_13, 1220703125);
+ for (i = 1; i < 5; ++i) {
+ mp_init(pow5_13 + i);
+ mp_sqr(pow5_13 + i - 1, pow5_13 + i);
+ }
- /*
+ /*
* Determine the number of decimal digits to the left and right of the
* decimal point in the largest and smallest double, the smallest double
- * that differs from zero, and the number of mp_digits needed to represent
+ * that differs from zero, and the number of mp_digits needed to represent
* the significand of a double.
*/
- tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits);
maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX)
+ 0.5 * log(10.)) / log(10.));
minDigits = (int) floor((DBL_MIN_EXP - DBL_MANT_DIG)
* log((double) FLT_RADIX) / log(10.));
- mantDIGIT = (mantBits + DIGIT_BIT-1) / DIGIT_BIT;
log10_DIGIT_MAX = (int) floor(DIGIT_BIT * log(2.) / log(10.));
+
+ /*
+ * Nokia 770's software-emulated floating point is "middle endian": the
+ * bytes within a 32-bit word are little-endian (like the native
+ * integers), but the two words of a 'double' are presented most
+ * significant word first.
+ */
+
+#ifdef IEEE_FLOATING_POINT
+ bitwhack.dv = 1.000000238418579;
+ /* 3ff0 0000 4000 0000 */
+ if ((bitwhack.iv >> 32) == 0x3ff00000) {
+ n770_fp = 0;
+ } else if ((bitwhack.iv & 0xffffffff) == 0x3ff00000) {
+ n770_fp = 1;
+ } else {
+ Tcl_Panic("unknown floating point word order on this machine");
+ }
+#endif
}
/*
@@ -2201,14 +4462,17 @@ TclInitDoubleConversion(void)
*/
void
-TclFinalizeDoubleConversion()
+TclFinalizeDoubleConversion(void)
{
int i;
- Tcl_Free((char*)pow10_wide);
+ ckfree(pow10_wide);
for (i=0; i<9; ++i) {
mp_clear(pow5 + i);
}
+ for (i=0; i < 5; ++i) {
+ mp_clear(pow5_13 + i);
+ }
}
/*
@@ -2223,17 +4487,17 @@ TclFinalizeDoubleConversion()
* None.
*
* Side effects:
- * Initializes the bignum supplied, and stores the converted number
- * in it.
+ * Initializes the bignum supplied, and stores the converted number in
+ * it.
*
*----------------------------------------------------------------------
*/
int
Tcl_InitBignumFromDouble(
- Tcl_Interp *interp, /* For error message */
- double d, /* Number to convert */
- mp_int *b) /* Place to store the result */
+ Tcl_Interp *interp, /* For error message. */
+ double d, /* Number to convert. */
+ mp_int *b) /* Place to store the result. */
{
double fract;
int expt;
@@ -2244,7 +4508,8 @@ Tcl_InitBignumFromDouble(
if (TclIsInfinite(d)) {
if (interp != NULL) {
- char *s = "integer value too large to represent";
+ const char *s = "integer value too large to represent";
+
Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1));
Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", s, NULL);
}
@@ -2286,17 +4551,16 @@ Tcl_InitBignumFromDouble(
double
TclBignumToDouble(
- mp_int *a) /* Integer to convert. */
+ const mp_int *a) /* Integer to convert. */
{
mp_int b;
- int bits;
- int shift;
- int i;
+ int bits, shift, i, lsb;
double r;
+
/*
- * Determine how many bits we need, and extract that many from the input.
- * Round to nearest unit in the last place.
+ * We need a 'mantBits'-bit significand. Determine what shift will
+ * give us that.
*/
bits = mp_count_bits(a);
@@ -2308,17 +4572,54 @@ TclBignumToDouble(
return -HUGE_VAL;
}
}
- shift = mantBits + 1 - bits;
+ shift = mantBits - bits;
+
+ /*
+ * If shift > 0, shift the significand left by the requisite number of
+ * bits. If shift == 0, the significand is already exactly 'mantBits'
+ * in length. If shift < 0, we will need to shift the significand right
+ * by the requisite number of bits, and round it. If the '1-shift'
+ * least significant bits are 0, but the 'shift'th bit is nonzero,
+ * then the significand lies exactly between two values and must be
+ * 'rounded to even'.
+ */
+
mp_init(&b);
- if (shift > 0) {
+ if (shift == 0) {
+ mp_copy(a, &b);
+ } else if (shift > 0) {
mp_mul_2d(a, shift, &b);
} else if (shift < 0) {
- mp_div_2d(a, -shift, &b, NULL);
- } else {
- mp_copy(a, &b);
+ lsb = mp_cnt_lsb(a);
+ if (lsb == -1-shift) {
+
+ /*
+ * Round to even
+ */
+
+ mp_div_2d(a, -shift, &b, NULL);
+ if (mp_isodd(&b)) {
+ if (b.sign == MP_ZPOS) {
+ mp_add_d(&b, 1, &b);
+ } else {
+ mp_sub_d(&b, 1, &b);
+ }
+ }
+ } else {
+
+ /*
+ * Ordinary rounding
+ */
+
+ mp_div_2d(a, -1-shift, &b, NULL);
+ if (b.sign == MP_ZPOS) {
+ mp_add_d(&b, 1, &b);
+ } else {
+ mp_sub_d(&b, 1, &b);
+ }
+ mp_div_2d(&b, 1, &b, NULL);
+ }
}
- mp_add_d(&b, 1, &b);
- mp_div_2d(&b, 1, &b, NULL);
/*
* Accumulate the result, one mp_digit at a time.
@@ -2346,10 +4647,24 @@ TclBignumToDouble(
return -r;
}
}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclCeil --
+ *
+ * Computes the smallest floating point number that is at least the
+ * mp_int argument.
+ *
+ * Results:
+ * Returns the floating point number.
+ *
+ *----------------------------------------------------------------------
+ */
double
TclCeil(
- mp_int *a) /* Integer to convert. */
+ const mp_int *a) /* Integer to convert. */
{
double r = 0.0;
mp_int b;
@@ -2389,10 +4704,24 @@ TclCeil(
mp_clear(&b);
return r;
}
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclFloor --
+ *
+ * Computes the largest floating point number less than or equal to the
+ * mp_int argument.
+ *
+ * Results:
+ * Returns the floating point value.
+ *
+ *----------------------------------------------------------------------
+ */
double
TclFloor(
- mp_int *a) /* Integer to convert. */
+ const mp_int *a) /* Integer to convert. */
{
double r = 0.0;
mp_int b;
@@ -2448,8 +4777,8 @@ TclFloor(
static double
BignumToBiasedFrExp(
- mp_int *a, /* Integer to convert */
- int *machexp) /* Power of two */
+ const mp_int *a, /* Integer to convert. */
+ int *machexp) /* Power of two. */
{
mp_int b;
int bits;
@@ -2513,8 +4842,8 @@ BignumToBiasedFrExp(
static double
Pow10TimesFrExp(
- int exponent, /* Power of 10 to multiply by */
- double fraction, /* Significand of multiplicand */
+ int exponent, /* Power of 10 to multiply by. */
+ double fraction, /* Significand of multiplicand. */
int *machexp) /* On input, exponent of multiplicand. On
* output, exponent of result. */
{
@@ -2524,10 +4853,10 @@ Pow10TimesFrExp(
if (exponent > 0) {
/*
- * Multiply by 10**exponent
+ * Multiply by 10**exponent.
*/
-
- retval = frexp(retval * pow10[exponent&0xf], &j);
+
+ retval = frexp(retval * pow10vals[exponent&0xf], &j);
expt += j;
for (i=4; i<9; ++i) {
if (exponent & (1<<i)) {
@@ -2537,10 +4866,10 @@ Pow10TimesFrExp(
}
} else if (exponent < 0) {
/*
- * Divide by 10**-exponent
+ * Divide by 10**-exponent.
*/
- retval = frexp(retval / pow10[(-exponent) & 0xf], &j);
+ retval = frexp(retval / pow10vals[(-exponent) & 0xf], &j);
expt += j;
for (i=4; i<9; ++i) {
if ((-exponent) & (1<<i)) {
@@ -2622,6 +4951,9 @@ TclFormatNaN(
} bitwhack;
bitwhack.dv = value;
+ if (n770_fp) {
+ bitwhack.iv = Nokia770Twiddle(bitwhack.iv);
+ }
if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) {
bitwhack.iv &= ~ ((Tcl_WideUInt) 1 << 63);
*buffer++ = '-';
@@ -2639,6 +4971,42 @@ TclFormatNaN(
}
/*
+ *----------------------------------------------------------------------
+ *
+ * Nokia770Twiddle --
+ *
+ * Transpose the two words of a number for Nokia 770 floating point
+ * handling.
+ *
+ *----------------------------------------------------------------------
+ */
+#ifdef IEEE_FLOATING_POINT
+static Tcl_WideUInt
+Nokia770Twiddle(
+ Tcl_WideUInt w) /* Number to transpose. */
+{
+ return (((w >> 32) & 0xffffffff) | (w << 32));
+}
+#endif
+
+/*
+ *----------------------------------------------------------------------
+ *
+ * TclNokia770Doubles --
+ *
+ * Transpose the two words of a number for Nokia 770 floating point
+ * handling.
+ *
+ *----------------------------------------------------------------------
+ */
+
+int
+TclNokia770Doubles(void)
+{
+ return n770_fp;
+}
+
+/*
* Local Variables:
* mode: c
* c-basic-offset: 4