diff options
Diffstat (limited to 'generic/tclStrToD.c')
-rwxr-xr-x | generic/tclStrToD.c | 2772 |
1 files changed, 2474 insertions, 298 deletions
diff --git a/generic/tclStrToD.c b/generic/tclStrToD.c index d0a5345..8171df0 100755 --- a/generic/tclStrToD.c +++ b/generic/tclStrToD.c @@ -14,7 +14,7 @@ * See the file "license.terms" for information on usage and redistribution of * this file, and for a DISCLAIMER OF ALL WARRANTIES. * - * RCS: @(#) $Id: tclStrToD.c,v 1.46 2010/05/21 12:43:29 nijtmans Exp $ + * RCS: @(#) $Id: tclStrToD.c,v 1.47 2010/11/28 23:20:11 kennykb Exp $ * *---------------------------------------------------------------------- */ @@ -90,6 +90,66 @@ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); * runtime). */ +/* Magic constants */ + +#define LOG10_2 0.3010299956639812 +#define TWO_OVER_3LOG10 0.28952965460216784 +#define LOG10_3HALVES_PLUS_FUDGE 0.1760912590558 + +/* Definitions of the parts of an IEEE754-format floating point number */ + +#define SIGN_BIT 0x80000000 + /* Mask for the sign bit in the first + * word of a double */ +#define EXP_MASK 0x7ff00000 + /* Mask for the exponent field in the + * first word of a double */ +#define EXP_SHIFT 20 + /* Shift count to make the exponent an + * integer */ +#define HIDDEN_BIT (((Tcl_WideUInt) 0x00100000) << 32) + /* Hidden 1 bit for the significand */ +#define HI_ORDER_SIG_MASK 0x000fffff + /* Mask for the high-order part of the + * significand in the first word of a + * double */ +#define SIG_MASK (((Tcl_WideUInt) HI_ORDER_SIG_MASK << 32) \ + | 0xffffffff) + /* Mask for the 52-bit significand. */ +#define FP_PRECISION 53 + /* Number of bits of significand plus the + * hidden bit */ +#define EXPONENT_BIAS 0x3ff + /* Bias of the exponent 0 */ + +/* Derived quantities */ + +#define TEN_PMAX 22 + /* floor(FP_PRECISION*log(2)/log(5)) */ +#define QUICK_MAX 14 + /* floor((FP_PRECISION-1)*log(2)/log(10)) - 1 */ +#define BLETCH 0x10 + /* Highest power of two that is greater than + * DBL_MAX_10_EXP, divided by 16 */ +#define DIGIT_GROUP 8 + /* floor(DIGIT_BIT*log(2)/log(10)) */ + +/* Union used to dismantle floating point numbers. */ + +typedef union Double { + struct { +#ifdef WORDS_BIGENDIAN + int word0; + int word1; +#else + int word1; + int word0; +#endif + } w; + double d; + Tcl_WideUInt q; +} Double; + static int maxpow10_wide; /* The powers of ten that can be represented * exactly as wide integers. */ static Tcl_WideUInt *pow10_wide; @@ -123,6 +183,7 @@ static const double pow_10_2_n[] = { /* Inexact higher powers of ten. */ 1.0e+128, 1.0e+256 }; + static int n770_fp; /* Flag is 1 on Nokia N770 floating point. * Nokia's floating point has the words * reversed: if big-endian is 7654 3210, @@ -131,27 +192,161 @@ static int n770_fp; /* Flag is 1 on Nokia N770 floating point. * little-endian within the 32-bit words * but big-endian between them. */ +/* Table of powers of 5 that are small enough to fit in an mp_digit. */ + +static const mp_digit dpow5[13] = { + 1, 5, 25, 125, + 625, 3125, 15625, 78125, + 390625, 1953125, 9765625, 48828125, + 244140625 +}; + +/* Table of powers: pow5_13[n] = 5**(13*2**(n+1)) */ +static mp_int pow5_13[5]; /* Table of powers: 5**13, 5**26, 5**52, + * 5**104, 5**208 */ +static const double tens[] = { + 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +}; + +static const int itens [] = { + 1, + 10, + 100, + 1000, + 10000, + 100000, + 1000000, + 10000000, + 100000000 +}; + +static const Tcl_WideUInt wtens[] = { + 1, 10, 100, 1000, 10000, 100000, 1000000, + (Tcl_WideUInt) 1000000*10, (Tcl_WideUInt) 1000000*100, + (Tcl_WideUInt) 1000000*1000, (Tcl_WideUInt) 1000000*10000, + (Tcl_WideUInt) 1000000*100000, (Tcl_WideUInt) 1000000*1000000, + (Tcl_WideUInt) 1000000*1000000*10, (Tcl_WideUInt) 1000000*1000000*100, + (Tcl_WideUInt) 1000000*1000000*1000,(Tcl_WideUInt) 1000000*1000000*10000 + +}; + +static const double bigtens[] = { + 1e016, 1e032, 1e064, 1e128, 1e256 +}; +#define N_BIGTENS 5 + +static const int log2pow5[27] = { + 01, 3, 5, 7, 10, 12, 14, 17, 19, 21, + 24, 26, 28, 31, 33, 35, 38, 40, 42, 45, + 47, 49, 52, 54, 56, 59, 61 +}; +#define N_LOG2POW5 27 + +static const Tcl_WideUInt wuipow5[27] = { + (Tcl_WideUInt) 1, /* 5**0 */ + (Tcl_WideUInt) 5, + (Tcl_WideUInt) 25, + (Tcl_WideUInt) 125, + (Tcl_WideUInt) 625, + (Tcl_WideUInt) 3125, /* 5**5 */ + (Tcl_WideUInt) 3125*5, + (Tcl_WideUInt) 3125*25, + (Tcl_WideUInt) 3125*125, + (Tcl_WideUInt) 3125*625, + (Tcl_WideUInt) 3125*3125, /* 5**10 */ + (Tcl_WideUInt) 3125*3125*5, + (Tcl_WideUInt) 3125*3125*25, + (Tcl_WideUInt) 3125*3125*125, + (Tcl_WideUInt) 3125*3125*625, + (Tcl_WideUInt) 3125*3125*3125, /* 5**15 */ + (Tcl_WideUInt) 3125*3125*3125*5, + (Tcl_WideUInt) 3125*3125*3125*25, + (Tcl_WideUInt) 3125*3125*3125*125, + (Tcl_WideUInt) 3125*3125*3125*625, + (Tcl_WideUInt) 3125*3125*3125*3125, /* 5**20 */ + (Tcl_WideUInt) 3125*3125*3125*3125*5, + (Tcl_WideUInt) 3125*3125*3125*3125*25, + (Tcl_WideUInt) 3125*3125*3125*3125*125, + (Tcl_WideUInt) 3125*3125*3125*3125*625, + (Tcl_WideUInt) 3125*3125*3125*3125*3125, /* 5**25 */ + (Tcl_WideUInt) 3125*3125*3125*3125*3125*5 /* 5**26 */ +}; + /* * Static functions defined in this file. */ -static double AbsoluteValue(double v, int *signum); static int AccumulateDecimalDigit(unsigned, int, Tcl_WideUInt *, mp_int *, int); -static double BignumToBiasedFrExp(const mp_int *big, int *machexp); -static int GetIntegerTimesPower(double v, mp_int *r, int *e); static double MakeHighPrecisionDouble(int signum, mp_int *significand, int nSigDigs, int exponent); static double MakeLowPrecisionDouble(int signum, Tcl_WideUInt significand, int nSigDigs, int exponent); static double MakeNaN(int signum, Tcl_WideUInt tag); -static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w); -static double Pow10TimesFrExp(int exponent, double fraction, - int *machexp); static double RefineApproximation(double approx, mp_int *exactSignificand, int exponent); +static void MulPow5(mp_int*, unsigned, mp_int*); +static int NormalizeRightward(Tcl_WideUInt*); +static int RequiredPrecision(Tcl_WideUInt); +static void DoubleToExpAndSig(double, Tcl_WideUInt*, int*, int*); +static void TakeAbsoluteValue(Double*, int*); +static char* FormatInfAndNaN(Double*, int*, char**); +static char* FormatZero(int*, char**); +static int ApproximateLog10(Tcl_WideUInt, int, int); +static int BetterLog10(double, int, int*); +static void ComputeScale(int, int, int*, int*, int*, int*); +static void SetPrecisionLimits(int, int, int*, int*, int*, int*); +static char* BumpUp(char*, char*, int*); +static int AdjustRange(double*, int); +static char* ShorteningQuickFormat(double, int, int, double, + char*, int*); +static char* StrictQuickFormat(double, int, int, double, + char*, int*); +static char* QuickConversion(double, int, int, int, int, int, int, + int*, char**); +static void CastOutPowersOf2(int*, int*, int*); +static char* ShorteningInt64Conversion(Double*, int, Tcl_WideUInt, + int, int, int, int, int, int, int, int, int, + int, int, int*, char**); +static char* StrictInt64Conversion(Double*, int, Tcl_WideUInt, + int, int, int, int, int, int, + int, int, int*, char**); +static int ShouldBankerRoundUpPowD(mp_int*, int, int); +static int ShouldBankerRoundUpToNextPowD(mp_int*, mp_int*, + int, int, int, mp_int*); +static char* ShorteningBignumConversionPowD(Double* dPtr, + int convType, Tcl_WideUInt bw, int b2, int b5, + int m2plus, int m2minus, int m5, + int sd, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static char* StrictBignumConversionPowD(Double* dPtr, int convType, + Tcl_WideUInt bw, int b2, int b5, + int sd, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static int ShouldBankerRoundUp(mp_int*, mp_int*, int); +static int ShouldBankerRoundUpToNext(mp_int*, mp_int*, mp_int*, + int, int, mp_int*); +static char* ShorteningBignumConversion(Double* dPtr, int convType, + Tcl_WideUInt bw, int b2, + int m2plus, int m2minus, + int s2, int s5, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static char* StrictBignumConversion(Double* dPtr, int convType, + Tcl_WideUInt bw, int b2, + int s2, int s5, int k, int len, + int ilim, int ilim1, int* decpt, + char** endPtr); +static double BignumToBiasedFrExp(const mp_int *big, int *machexp); +static double Pow10TimesFrExp(int exponent, double fraction, + int *machexp); static double SafeLdExp(double fraction, int exponent); +static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w); /* *---------------------------------------------------------------------- @@ -1732,414 +1927,2362 @@ RefineApproximation( } /* - *---------------------------------------------------------------------- + *----------------------------------------------------------------------------- * - * TclDoubleDigits -- + * MultPow5 -- + * + * Multiply a bignum by a power of 5. + * + * Side effects: + * Stores base*5**n in result + * + *----------------------------------------------------------------------------- + */ + +inline static void +MulPow5(mp_int* base, /* Number to multiply */ + unsigned n, /* Power of 5 to multiply by */ + mp_int* result) /* Place to store the result */ +{ + mp_int* p = base; + int n13 = n / 13; + int r = n % 13; + if (r != 0) { + mp_mul_d(p, dpow5[r], result); + p = result; + } + r = 0; + while (n13 != 0) { + if (n13 & 1) { + mp_mul(p, pow5_13+r, result); + p = result; + } + n13 >>= 1; + ++r; + } + if (p != result) { + mp_copy(p, result); + } +} + +/* + *----------------------------------------------------------------------------- + * + * NormalizeRightward -- * - * Converts a double to a string of digits. + * Shifts a number rightward until it is odd (that is, until the + * least significant bit is nonzero. * * Results: - * Returns the position of the character in the string after which the - * decimal point should appear. Since the string contains only - * significant digits, the position may be less than zero or greater than - * the length of the string. + * Returns the number of bit positions by which the number was shifted. * * Side effects: - * Stores the digits in the given buffer and sets 'signum' according to - * the sign of the number. + * Shifts the number in place; *wPtr is replaced by the shifted number. * - *---------------------------------------------------------------------- + *----------------------------------------------------------------------------- + */ +inline static int +NormalizeRightward(Tcl_WideUInt* wPtr) + /* INOUT: Number to shift */ +{ + int rv = 0; + Tcl_WideUInt w = *wPtr; + if (!(w & (Tcl_WideUInt) 0xffffffff)) { + w >>= 32; rv += 32; + } + if (!(w & (Tcl_WideUInt) 0xffff)) { + w >>= 16; rv += 16; + } + if (!(w & (Tcl_WideUInt) 0xff)) { + w >>= 8; rv += 8; + } + if (!(w & (Tcl_WideUInt) 0xf)) { + w >>= 4; rv += 4; + } + if (!(w & 0x3)) { + w >>= 2; rv += 2; + } + if (!(w & 0x1)) { + w >>= 1; ++rv; + } + *wPtr = w; + return rv; +} + +/* + *-----------------------------------------------------------------------------0 + * + * RequiredPrecision -- + * + * Determines the number of bits needed to hold an intger. + * + * Results: + * Returns the position of the most significant bit (0 - 63). + * Returns 0 if the number is zero. + * + *---------------------------------------------------------------------------- */ -int -TclDoubleDigits( - char *buffer, /* Buffer in which to store the result, must - * have at least 18 chars */ - double v, /* Number to convert. Must be finite, and not - * NaN */ - int *signum) /* Output: 1 if the number is negative. - * Should handle -0 correctly on the IEEE - * architecture. */ +static int +RequiredPrecision(Tcl_WideUInt w) + /* Number to interrogate */ { - int e; /* Power of FLT_RADIX that satisfies - * v = f * FLT_RADIX**e */ - int lowOK, highOK; - mp_int r; /* Scaled significand. */ - mp_int s; /* Divisor such that v = r / s */ - int smallestSig; /* Flag == 1 iff v's significand is the - * smallest that can be represented. */ - mp_int mplus; /* Scaled epsilon: (r + 2* mplus) == v(+) - * where v(+) is the floating point successor - * of v. */ - mp_int mminus; /* Scaled epsilon: (r - 2*mminus) == v(-) - * where v(-) is the floating point - * predecessor of v. */ - mp_int temp; - int rfac2 = 0; /* Powers of 2 and 5 by which large */ - int rfac5 = 0; /* integers should be scaled. */ - int sfac2 = 0; - int sfac5 = 0; - int mplusfac2 = 0; - int mminusfac2 = 0; - char c; - int i, k, n; + int rv; + unsigned long wi; + if (w & ((Tcl_WideUInt) 0xffffffff << 32)) { + wi = w >> 32; rv = 32; + } else { + wi = w; rv = 0; + } + if (wi & 0xffff0000) { + wi >>= 16; rv += 16; + } + if (wi & 0xff00) { + wi >>= 8; rv += 8; + } + if (wi & 0xf0) { + wi >>= 4; rv += 4; + } + if (wi & 0xc) { + wi >>= 2; rv += 2; + } + if (wi & 0x2) { + wi >>= 1; ++rv; + } + if (wi & 0x1) { + ++rv; + } + return rv; +} + +/* + *----------------------------------------------------------------------------- + * + * DoubleToExpAndSig -- + * + * Separates a 'double' into exponent and significand. + * + * Side effects: + * Stores the significand in '*significand' and the exponent in + * '*expon' so that dv == significand * 2.0**expon, and significand + * is odd. Also stores the position of the leftmost 1-bit in 'significand' + * in 'bits'. + * + *----------------------------------------------------------------------------- + */ + +inline static void +DoubleToExpAndSig(double dv, /* Number to convert */ + Tcl_WideUInt* significand, + /* OUTPUT: Significand of the number */ + int* expon, /* OUTPUT: Exponent to multiply the number by */ + int* bits) /* OUTPUT: Number of significant bits */ +{ + Double d; /* Number being converted */ + Tcl_WideUInt z; /* Significand under construction */ + int de; /* Exponent of the number */ + int k; /* Bit count */ + + d.d = dv; + + /* Extract exponent and significand */ + + de = (d.w.word0 & EXP_MASK) >> EXP_SHIFT; + z = d.q & SIG_MASK; + if (de != 0) { + z |= HIDDEN_BIT; + k = NormalizeRightward(&z); + *bits = FP_PRECISION - k; + *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1); + } else { + k = NormalizeRightward(&z); + *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1) + 1; + *bits = RequiredPrecision(z); + } + *significand = z; +} + +/* + *----------------------------------------------------------------------------- + * + * TakeAbsoluteValue -- + * + * Takes the absolute value of a 'double' including 0, Inf and NaN + * + * Side effects: + * The 'double' in *d is replaced with its absolute value. The + * signum is stored in 'sign': 1 for negative, 0 for nonnegative. + * + *----------------------------------------------------------------------------- + */ + +inline static void +TakeAbsoluteValue(Double* d, /* Number to replace with absolute value */ + int* sign) /* Place to put the signum */ +{ + if (d->w.word0 & SIGN_BIT) { + *sign = 1; + d->w.word0 &= ~SIGN_BIT; + } else { + *sign = 0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * FormatInfAndNaN -- + * + * Bailout for formatting infinities and Not-A-Number. + * + * Results: + * Returns one of the strings 'Infinity' and 'NaN'. + * + * Side effects: + * Stores 9999 in *decpt, and sets '*endPtr' to designate the + * terminating NUL byte of the string if 'endPtr' is not NULL. + * + * The string returned must be freed by the caller using 'ckfree'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +FormatInfAndNaN(Double* d, /* Exceptional number to format */ + int* decpt, /* Decimal point to set to a bogus value */ + char** endPtr) /* Pointer to the end of the formatted data */ +{ + char* retval; + *decpt = 9999; + if (!(d->w.word1) && !(d->w.word0 & HI_ORDER_SIG_MASK)) { + retval = ckalloc(9); + strcpy(retval, "Infinity"); + if (endPtr) { + *endPtr = retval + 8; + } + } else { + retval = ckalloc(4); + strcpy(retval, "NaN"); + if (endPtr) { + *endPtr = retval + 3; + } + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * FormatZero -- + * + * Bailout to format a zero floating-point number. + * + * Results: + * Returns the constant string "0" + * + * Side effects: + * Stores 1 in '*decpt' and puts a pointer to the NUL byte terminating + * the string in '*endPtr' if 'endPtr' is not NULL. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +FormatZero(int* decpt, /* Location of the decimal point */ + char** endPtr) /* Pointer to the end of the formatted data */ +{ + char* retval = ckalloc(2); + strcpy(retval, "0"); + if (endPtr) { + *endPtr = retval+1; + } + *decpt = 0; + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * ApproximateLog10 -- + * + * Computes a two-term Taylor series approximation to the common + * log of a number, and computes the number's binary log. + * + * Results: + * Return an approximation to floor(log10(bw*2**be)) that is either + * exact or 1 too high. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ApproximateLog10(Tcl_WideUInt bw, + /* Integer significand of the number */ + int be, /* Power of two to scale bw */ + int bbits) /* Number of bits of precision in bw */ +{ + int i; /* Log base 2 of the number */ + int k; /* Floor(Log base 10 of the number) */ + double ds; /* Mantissa of the number */ + Double d2; /* - * Split the number into absolute value and signum. + * Compute i and d2 such that d = d2*2**i, and 1 < d2 < 2. + * Compute an approximation to log10(d), + * log10(d) ~ log10(2) * i + log10(1.5) + * + (significand-1.5)/(1.5 * log(10)) */ - v = AbsoluteValue(v, signum); + d2.q = bw << (FP_PRECISION - bbits) & SIG_MASK; + d2.w.word0 |= (EXPONENT_BIAS) << EXP_SHIFT; + i = be + bbits - 1; + ds = (d2.d - 1.5) * TWO_OVER_3LOG10 + + LOG10_3HALVES_PLUS_FUDGE + + LOG10_2 * i; + k = (int) ds; + if (k > ds) { + --k; + } + return k; +} + +/* + *----------------------------------------------------------------------------- + * + * BetterLog10 -- + * + * Improves the result of ApproximateLog10 for numbers in the range + * 1 .. 10**(TEN_PMAX)-1 + * + * Side effects: + * Sets k_check to 0 if the new result is known to be exact, and to + * 1 if it may still be one too high. + * + * Results: + * Returns the improved approximation to log10(d) + * + *----------------------------------------------------------------------------- + */ - /* - * Handle zero specially. +inline static int +BetterLog10(double d, /* Original number to format */ + int k, /* Characteristic(Log base 10) of the number */ + int* k_check) /* Flag == 1 if k is inexact */ +{ + /* + * Performance hack. If k is in the range 0..TEN_PMAX, then we can + * use a powers-of-ten table to check it. */ + if (k >= 0 && k <= TEN_PMAX) { + if (d < tens[k]) { + k--; + } + *k_check = 0; + } else { + *k_check = 1; + } + return k; +} + +/* + *----------------------------------------------------------------------------- + * + * ComputeScale -- + * + * Prepares to format a floating-point number as decimal. + * + * Parameters: + * floor(log10*x) is k (or possibly k-1). floor(log2(x) is i. + * The significand of x requires bbits bits to represent. + * + * Results: + * Determines integers b2, b5, s2, s5 so that sig*2**b2*5**b5/2**s2*2**s5 + * exactly represents the value of the x/10**k. This value will lie + * in the range [1 .. 10), and allows for computing successive digits + * by multiplying sig%10 by 10. + * + *----------------------------------------------------------------------------- + */ - if (v == 0.0) { - *buffer++ = '0'; - *buffer++ = '\0'; - return 1; +inline static void +ComputeScale(int be, /* Exponent part of number: d = bw * 2**be */ + int k, /* Characteristic of log10(number) */ + int* b2, /* OUTPUT: Power of 2 in the numerator */ + int* b5, /* OUTPUT: Power of 5 in the numerator */ + int* s2, /* OUTPUT: Power of 2 in the denominator */ + int* s5) /* OUTPUT: Power of 5 in the denominator */ +{ + + /* + * Scale numerator and denominator powers of 2 so that the + * input binary number is the ratio of integers + */ + if (be <= 0) { + *b2 = 0; + *s2 = -be; + } else { + *b2 = be; + *s2 = 0; } + /* + * Scale numerator and denominator so that the output decimal number + * is the ratio of integers + */ + if (k >= 0) { + *b5 = 0; + *s5 = k; + *s2 += k; + } else { + *b2 -= k; + *b5 = -k; + *s5 = 0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * SetPrecisionLimits -- + * + * Determines how many digits of significance should be computed + * (and, hence, how much memory need be allocated) for formatting a + * floating point number. + * + * Given that 'k' is floor(log10(x)): + * if 'shortest' format is used, there will be at most 18 digits in the result. + * if 'F' format is used, there will be at most 'ndigits' + k + 1 digits + * if 'E' format is used, there will be exactly 'ndigits' digits. + * + * Side effects: + * Adjusts '*ndigitsPtr' to have a valid value. + * Stores the maximum memory allocation needed in *iPtr. + * Sets '*iLimPtr' to the limiting number of digits to convert if k + * has been guessed correctly, and '*iLim1Ptr' to the limiting number + * of digits to convert if k has been guessed to be one too high. + * + *----------------------------------------------------------------------------- + */ + +inline static void +SetPrecisionLimits(int convType, + /* Type of conversion: + * TCL_DD_SHORTEST + * TCL_DD_STEELE0 + * TCL_DD_E_FMT + * TCL_DD_F_FMT */ + int k, /* Floor(log10(number to convert)) */ + int* ndigitsPtr, + /* IN/OUT: Number of digits requested + * (Will be adjusted if needed) */ + int* iPtr, /* OUT: Maximum number of digits + * to return */ + int *iLimPtr,/* OUT: Number of digits of significance + * if the bignum method is used.*/ + int *iLim1Ptr) + /* OUT: Number of digits of significance + * if the quick method is used. */ +{ + switch(convType) { + case TCL_DD_SHORTEST0: + case TCL_DD_STEELE0: + *iLimPtr = *iLim1Ptr = -1; + *iPtr = 18; + *ndigitsPtr = 0; + break; + case TCL_DD_E_FORMAT: + if (*ndigitsPtr <= 0) { + *ndigitsPtr = 1; + } + *iLimPtr = *iLim1Ptr = *iPtr = *ndigitsPtr; + break; + case TCL_DD_F_FORMAT: + *iPtr = *ndigitsPtr + k + 1; + *iLimPtr = *iPtr; + *iLim1Ptr = *iPtr - 1; + if (*iPtr <= 0) { + *iPtr = 1; + } + break; + } +} + +/* + *----------------------------------------------------------------------------- + * + * BumpUp -- + * + * Increases a string of digits ending in a series of nines to + * designate the next higher number. xxxxb9999... -> xxxx(b+1)0000... + * + * Results: + * Returns a pointer to the end of the adjusted string. + * + * Side effects: + * In the case that the string consists solely of '999999', sets it + * to "1" and moves the decimal point (*kPtr) one place to the right. + * + *----------------------------------------------------------------------------- + */ + + +inline static char* +BumpUp(char* s, /* Cursor pointing one past the end of the + * string */ + char* retval, /* Start of the string of digits */ + int* kPtr) /* Position of the decimal point */ +{ + while (*--s == '9') { + if (s == retval) { + ++(*kPtr); + *s = '1'; + return s+1; + } + } + ++*s; + ++s; + return s; +} + +/* + *----------------------------------------------------------------------------- + * + * AdjustRange -- + * + * Rescales a 'double' in preparation for formatting it using the + * 'quick' double-to-string method. + * + * Results: + * Returns the precision that has been lost in the prescaling as + * a count of units in the least significant place. + * + *----------------------------------------------------------------------------- + */ + +inline static int +AdjustRange(double* dPtr, /* INOUT: Number to adjust */ + int k) /* IN: floor(log10(d)) */ +{ + int ieps; /* Number of roundoff errors that have + * accumulated */ + double d = *dPtr; /* Number to adjust */ + double ds; + int i, j, j1; + + ieps = 2; + + if (k > 0) { + /* + * The number must be reduced to bring it into range. + */ + ds = tens[k & 0xf]; + j = k >> 4; + if (j & BLETCH) { + j &= (BLETCH-1); + d /= bigtens[N_BIGTENS - 1]; + ieps++; + } + i = 0; + for (; j != 0; j>>=1) { + if (j & 1) { + ds *= bigtens[i]; + ++ieps; + } + ++i; + } + d /= ds; + } else if ((j1 = -k) != 0) { + /* + * The number must be increased to bring it into range + */ + d *= tens[j1 & 0xf]; + i = 0; + for (j = j1>>4; j; j>>=1) { + if (j & 1) { + ieps++; + d *= bigtens[i]; + } + ++i; + } + } + + *dPtr = d; + return ieps; +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningQuickFormat -- + * + * Returns a 'quick' format of a double precision number to a string + * of digits, preferring a shorter string of digits if the shorter + * string is still within 1/2 ulp of the number. + * + * Results: + * Returns the string of digits. Returns NULL if the 'quick' method + * fails and the bignum method must be used. + * + * Side effects: + * Stores the position of the decimal point at '*kPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningQuickFormat(double d, /* Number to convert */ + int k, /* floor(log10(d)) */ + int ilim, /* Number of significant digits to return */ + double eps, + /* Estimated roundoff error */ + char* retval, + /* Buffer to receive the digit string */ + int* kPtr) + /* Pointer to stash the position of + * the decimal point */ +{ + char* s = retval; /* Cursor in the return value */ + int digit; /* Current digit */ + int i; + + eps = 0.5 / tens[ilim-1] - eps; + i = 0; + for (;;) { + /* Convert a digit */ + + digit = d; + d -= digit; + *s++ = '0' + digit; + + /* + * Truncate the conversion if the string of digits is within + * 1/2 ulp of the actual value. + */ + + if (d < eps) { + *kPtr = k; + return s; + } + if ((1. - d) < eps) { + *kPtr = k; + return BumpUp(s, retval, kPtr); + } + + /* + * Bail out if the conversion fails to converge to a sufficiently + * precise value + */ + + if (++i >= ilim) { + return NULL; + } + + /* + * Bring the next digit to the integer part. + */ + + eps *= 10; + d *= 10.0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * StrictQuickFormat -- + * + * Convert a double precision number of a string of a precise number + * of digits, using the 'quick' double precision method. + * + * Results: + * Returns the digit string, or NULL if the bignum method must be + * used to do the formatting. + * + * Side effects: + * Stores the position of the decimal point in '*kPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +StrictQuickFormat(double d, /* Number to convert */ + int k, /* floor(log10(d)) */ + int ilim, /* Number of significant digits to return */ + double eps, /* Estimated roundoff error */ + char* retval, /* Start of the digit string */ + int* kPtr) /* Pointer to stash the position of + * the decimal point */ +{ + char* s = retval; /* Cursor in the return value */ + int digit; /* Current digit of the answer */ + int i; + + eps *= tens[ilim-1]; + i = 1; + for (;;) { + /* Extract a digit */ + digit = d; + d -= digit; + if (d == 0.0) { + ilim = i; + } + *s++ = '0' + digit; + + /* + * When the given digit count is reached, handle trailing strings + * of 0 and 9. + */ + if (i == ilim) { + if (d > 0.5 + eps) { + *kPtr = k; + return BumpUp(s, retval, kPtr); + } else if (d < 0.5 - eps) { + while (*--s == '0') { + /* do nothing */ + } + s++; + *kPtr = k; + return s; + } else { + return NULL; + } + } + + /* Advance to the next digit */ + ++i; + d *= 10.0; + } +} + +/* + *----------------------------------------------------------------------------- + * + * QuickConversion -- + * + * Converts a floating point number the 'quick' way, when only a limited + * number of digits is required and floating point arithmetic can + * therefore be used for the intermediate results. + * + * Results: + * Returns the converted string, or NULL if the bignum method must + * be used. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +QuickConversion(double d, /* Number to format */ + int k, /* floor(log10(d)), approximately */ + int k_check, /* 0 if k is exact, 1 if it may be too high */ + int flags, /* Flags passed to dtoa: + * TCL_DD_SHORTEN_FLAG */ + int len, /* Length of the return value */ + int ilim, /* Number of digits to store */ + int ilim1, /* Number of digits to store if we + * musguessed k */ + int* decpt, /* OUTPUT: Location of the decimal point */ + char** endPtr) /* OUTPUT: Pointer to the terminal null byte */ +{ + int ieps; /* Number of 1-ulp roundoff errors that have + * accumulated in the calculation*/ + Double eps; /* Estimated roundoff error */ + char* retval; /* Returned string */ + char* end; /* Pointer to the terminal null byte in the + * returned string */ + /* - * Find a large integer r, and integer e, such that - * v = r * FLT_RADIX**e - * and r is as small as possible. Also determine whether the significand - * is the smallest possible. + * Bring d into the range [1 .. 10) */ + ieps = AdjustRange(&d, k); - smallestSig = GetIntegerTimesPower(v, &r, &e); + /* + * If the guessed value of k didn't get d into range, adjust it + * by one. If that leaves us outside the range in which quick format + * is accurate, bail out. + */ + if (k_check && d < 1. && ilim > 0) { + if (ilim1 < 0) { + return NULL; + } + ilim = ilim1; + --k; + d *= 10.0; + ++ieps; + } - lowOK = highOK = (mp_iseven(&r)); + /* + * Compute estimated roundoff error + */ + eps.d = ieps * d + 7.; + eps.w.word0 -= (FP_PRECISION-1) << EXP_SHIFT; /* - * We are going to want to develop integers r, s, mplus, and mminus such - * that v = r / s, v(+)-v / 2 = mplus / s; v-v(-) / 2 = mminus / s and - * then scale either s or r, mplus, mminus by an appropriate power of ten. - * - * We actually do this by keeping track of the powers of 2 and 5 by which - * f is multiplied to yield v and by which 1 is multiplied to yield s, - * mplus, and mminus. + * Handle the peculiar case where the result has no significant + * digits. */ + retval = ckalloc(len + 1); + if (ilim == 0) { + d -= 5.; + if (d > eps.d) { + *retval = '1'; + *decpt = k; + return retval; + } else if (d < -eps.d) { + *decpt = k; + return retval; + } else { + ckfree(retval); + return NULL; + } + } - if (e >= 0) { - int bits = e * log2FLT_RADIX; + /* Format the digit string */ - if (!smallestSig) { - /* - * Normal case, m+ and m- are both FLT_RADIX**e - */ + if (flags & TCL_DD_SHORTEN_FLAG) { + end = ShorteningQuickFormat(d, k, ilim, eps.d, retval, decpt); + } else { + end = StrictQuickFormat(d, k, ilim, eps.d, retval, decpt); + } + if (end == NULL) { + ckfree(retval); + return NULL; + } + *end = '\0'; + if (endPtr != NULL) { + *endPtr = end; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * CastOutPowersOf2 -- + * + * Adjust the factors 'b2', 'm2', and 's2' to cast out common powers + * of 2 from numerator and denominator in preparation for the 'bignum' + * method of floating point conversion. + * + *----------------------------------------------------------------------------- + */ - rfac2 = bits + 1; - sfac2 = 1; - mplusfac2 = bits; - mminusfac2 = bits; +inline static void +CastOutPowersOf2(int* b2, /* Power of 2 to multiply the significand */ + int* m2, /* Power of 2 to multiply 1/2 ulp */ + int* s2) /* Power of 2 to multiply the common + * denominator */ +{ + int i; + if (*m2 > 0 && *s2 > 0) { /* Find the smallest power of 2 in the + * numerator */ + if (*m2 < *s2) { /* Find the lowest common denominatorr */ + i = *m2; } else { + i = *s2; + } + *b2 -= i; /* Reduce to lowest terms */ + *m2 -= i; + *s2 -= i; + } +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningInt64Conversion -- + * + * Converts a double-precision number to the shortest string of + * digits that reconverts exactly to the given number, or to + * 'ilim' digits if that will yield a shorter result. The numerator and + * denominator in David Gay's conversion algorithm are known to fit + * in Tcl_WideUInt, giving considerably faster arithmetic than mp_int's. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningInt64Conversion(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int m2plus, int m2minus, int m5, + /* Scale factors for 1/2 ulp in + * the numerator (will be different if + * bw == 1 */ + int s2, int s5, + /* Scale factors for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; + /* Numerator of the fraction being converted */ + Tcl_WideUInt S = wuipow5[s5] << s2; + /* Denominator of the fraction being + * converted */ + Tcl_WideUInt mplus, mminus; /* Ranges for testing whether the result + * is within roundoff of being exact */ + int digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Current position in the output buffer */ + + /* Adjust if the logarithm was guessed wrong */ + + if (b < S) { + b = 10 * b; + ++m2plus; ++m2minus; ++m5; + ilim = ilim1; + --k; + } + + /* Compute roundoff ranges */ + + mplus = wuipow5[m5] << m2plus; + mminus = wuipow5[m5] << m2minus; + + /* Loop through the digits */ + + i = 1; + for (;;) { + digit = (int)(b / S); + if (digit > 10) { + Tcl_Panic("wrong digit!"); + } + b = b % S; + + /* + * Does the current digit put us on the low side of the exact value + * but within within roundoff of being exact? + */ + if (b < mplus + || (b == mplus + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { /* - * If f is equal to the smallest significand, then we need another - * factor of FLT_RADIX in s to cope with stepping to the next - * smaller exponent when going to e's predecessor. + * Make sure we shouldn't be rounding *up* instead, + * in case the next number above is closer */ + if (2 * b > S + || (2 * b == S + && (digit & 1) != 0)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + } - rfac2 = bits + log2FLT_RADIX + 1; - sfac2 = 1 + log2FLT_RADIX; - mplusfac2 = bits + log2FLT_RADIX; - mminusfac2 = bits; + /* Stash the current digit */ + + *s++ = '0' + digit; + break; } - } else { + /* - * v has digits after the binary point + * Does one plus the current digit put us within roundoff of the + * number? */ + if (b > S - mminus + || (b == S - mminus + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { + if (digit == 9) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + ++digit; + *s++ = '0' + digit; + break; + } - if (e <= DBL_MIN_EXP-DBL_MANT_DIG || !smallestSig) { - /* - * Either f isn't the smallest significand or e is the smallest - * exponent. mplus and mminus will both be 1. - */ + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (2*b > S + || (2*b == S && (digit & 1) != 0)) { + s = BumpUp(s, retval, &k); + } + break; + } + + /* Advance to the next digit */ + + b = 10 * b; + mplus = 10 * mplus; + mminus = 10 * mminus; + ++i; + } + + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * StrictInt64Conversion -- + * + * Converts a double-precision number to a fixed-length string of + * 'ilim' digits that reconverts exactly to the given number. + * ('ilim' should be replaced with 'ilim1' in the case where + * log10(d) has been overestimated). The numerator and + * denominator in David Gay's conversion algorithm are known to fit + * in Tcl_WideUInt, giving considerably faster arithmetic than mp_int's. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +StrictInt64Conversion(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int s2, int s5, + /* Scale factors for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + Tcl_WideUInt b = (bw * wuipow5[b5]) << b2; + /* Numerator of the fraction being converted */ + Tcl_WideUInt S = wuipow5[s5] << s2; + /* Denominator of the fraction being + * converted */ + int digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Current position in the output buffer */ + + /* Adjust if the logarithm was guessed wrong */ + + if (b < S) { + b = 10 * b; + ilim = ilim1; + --k; + } + + /* Loop through the digits */ + + i = 1; + for (;;) { + digit = (int)(b / S); + if (digit > 10) { + Tcl_Panic("wrong digit!"); + } + b = b % S; + + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (2*b > S + || (2*b == S && (digit & 1) != 0)) { + s = BumpUp(s, retval, &k); + } + break; + } + + /* Advance to the next digit */ + + b = 10 * b; + ++i; + } + + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUpPowD -- + * + * Test whether bankers' rounding should round a digit up. Assumption + * is made that the denominator of the fraction being tested is + * a power of 2**DIGIT_BIT. + * + * Results: + * Returns 1 iff the fraction is more than 1/2, or if the fraction + * is exactly 1/2 and the digit is odd. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpPowD(mp_int* b, + /* Numerator of the fraction */ + int sd, /* Denominator is 2**(sd*DIGIT_BIT) */ + int isodd) + /* 1 if the digit is odd, 0 if even */ +{ + int i; + const static mp_digit topbit = (1<<(DIGIT_BIT-1)); + if (b->used < sd || (b->dp[sd-1] & topbit) == 0) { + return 0; + } + if (b->dp[sd-1] != topbit) { + return 1; + } + for (i = sd-2; i >= 0; --i) { + if (b->dp[i] != 0) { + return 1; + } + } + return isodd; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUpToNextPowD -- + * + * Tests whether bankers' rounding will round down in the + * "denominator is a power of 2**MP_DIGIT" case. + * + * Results: + * Returns 1 if the rounding will be performed - which increases the + * digit by one - and 0 otherwise. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpToNextPowD(mp_int* b, + /* Numerator of the fraction */ + mp_int* m, + /* Numerator of the rounding tolerance */ + int sd, + /* Common denominator is 2**(sd*DIGIT_BIT) */ + int convType, + /* Conversion type: STEELE defeats + * round-to-even (Not sure why one wants to + * do this; I copied it from Gay) FIXME */ + int isodd, + /* 1 if the integer significand is odd */ + mp_int* temp) + /* Work area for the calculation */ +{ + int i; + + /* + * Compare B and S-m -- which is the same as comparing B+m and S -- + * which we do by computing b+m and doing a bitwhack compare against + * 2**(DIGIT_BIT*sd) + */ + mp_add(b, m, temp); + if (temp->used <= sd) { /* too few digits to be > S */ + return 0; + } + if (temp->used > sd+1 || temp->dp[sd] > 1) { + /* >= 2s */ + return 1; + } + for (i = sd-1; i >= 0; --i) { + /* check for ==s */ + if (temp->dp[i] != 0) { /* > s */ + return 1; + } + } + if (convType == TCL_DD_STEELE0) { + /* biased rounding */ + return 0; + } + return isodd; +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningBignumConversionPowD -- + * + * Converts a double-precision number to the shortest string of + * digits that reconverts exactly to the given number, or to + * 'ilim' digits if that will yield a shorter result. The denominator + * in David Gay's conversion algorithm is known to be a power of + * 2**DIGIT_BIT, and hence the division in the main loop may be replaced + * by a digit shift and mask. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningBignumConversionPowD(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int m2plus, int m2minus, int m5, + /* Scale factors for 1/2 ulp in + * the numerator (will be different if + * bw == 1 */ + int sd, + /* Scale factor for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + mp_int b; /* Numerator of the fraction being converted */ + mp_int mplus, mminus; /* Bounds for roundoff */ + mp_digit digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Index in the output buffer */ + mp_int temp; + int r1; + + /* + * b = bw * 2**b2 * 5**b5 + * mminus = 5**m5 + */ + + TclBNInitBignumFromWideUInt(&b, bw); + mp_init_set_int(&mminus, 1); + MulPow5(&b, b5, &b); + mp_mul_2d(&b, b2, &b); + + /* Adjust if the logarithm was guessed wrong */ + + if (b.used <= sd) { + mp_mul_d(&b, 10, &b); + ++m2plus; ++m2minus; ++m5; + ilim = ilim1; + --k; + } + + /* + * mminus = 5**m5 * 2**m2minus + * mplus = 5**m5 * 2**m2plus + */ + + mp_mul_2d(&mminus, m2minus, &mminus); + MulPow5(&mminus, m5, &mminus); + if (m2plus > m2minus) { + mp_init_copy(&mplus, &mminus); + mp_mul_2d(&mplus, m2plus-m2minus, &mplus); + } + mp_init(&temp); + + /* Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT) + * by mp_digit extraction */ - rfac2 = 1; - sfac2 = 1 - e * log2FLT_RADIX; - mplusfac2 = 0; - mminusfac2 = 0; + i = 0; + for (;;) { + if (b.used <= sd) { + digit = 0; } else { + digit = b.dp[sd]; + if (b.used > sd+1 || digit >= 10) { + Tcl_Panic("wrong digit!"); + } + --b.used; mp_clamp(&b); + } + + /* + * Does the current digit put us on the low side of the exact value + * but within within roundoff of being exact? + */ + + r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus); + if (r1 == MP_LT + || (r1 == MP_EQ + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { /* - * f is the smallest significand, but e is not the smallest - * exponent. We need to scale by FLT_RADIX again to cope with the - * fact that v's predecessor has a smaller exponent. + * Make sure we shouldn't be rounding *up* instead, + * in case the next number above is closer */ + if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + } + + /* Stash the last digit */ + + *s++ = '0' + digit; + break; + } + + /* + * Does one plus the current digit put us within roundoff of the + * number? + */ + + if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd, + convType, dPtr->w.word1 & 1, + &temp)) { + if (digit == 9) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + ++digit; + *s++ = '0' + digit; + break; + } - rfac2 = 1 + log2FLT_RADIX; - sfac2 = 1 + log2FLT_RADIX * (1 - e); - mplusfac2 = FLT_RADIX; - mminusfac2 = 0; + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { + s = BumpUp(s, retval, &k); + } + break; + } + + /* Advance to the next digit */ + + mp_mul_d(&b, 10, &b); + mp_mul_d(&mminus, 10, &mminus); + if (m2plus > m2minus) { + mp_mul_2d(&mminus, m2plus-m2minus, &mplus); } + ++i; } - /* - * Estimate the highest power of ten that will be needed to hold the - * result. + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + if (m2plus > m2minus) { + mp_clear(&mplus); + } + mp_clear_multi(&b, &mminus, &temp, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * StrictBignumConversionPowD -- + * + * Converts a double-precision number to a fixed-lengt string of + * 'ilim' digits (or 'ilim1' if log10(d) has been overestimated.) + * The denominator in David Gay's conversion algorithm is known to + * be a power of 2**DIGIT_BIT, and hence the division in the main + * loop may be replaced by a digit shift and mask. + * + * Results: + * Returns the string of significant decimal digits, in newly + * allocated memory. + * + * Side effects: + * Stores the location of the decimal point in '*decpt' and the + * location of the terminal null byte in '*endPtr'. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +StrictBignumConversionPowD(Double* dPtr, + /* Original number to convert */ + int convType, + /* Type of conversion (shortest, Steele, + E format, F format) */ + Tcl_WideUInt bw, + /* Integer significand */ + int b2, int b5, + /* Scale factor for the significand + * in the numerator */ + int sd, + /* Scale factor for the denominator */ + int k, + /* Number of output digits before the decimal + * point */ + int len, + /* Number of digits to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Position of the terminal '\0' + * at the end of the returned string */ +{ + + char* retval = ckalloc(len + 1); + /* Output buffer */ + mp_int b; /* Numerator of the fraction being converted */ + mp_digit digit; /* Current output digit */ + char* s = retval; /* Cursor in the output buffer */ + int i; /* Index in the output buffer */ + mp_int temp; + + /* + * b = bw * 2**b2 * 5**b5 */ - k = (int) ceil(log(v) / log(10.)); - if (k >= 0) { - sfac2 += k; - sfac5 = k; - } else { - rfac2 -= k; - mplusfac2 -= k; - mminusfac2 -= k; - rfac5 = -k; + TclBNInitBignumFromWideUInt(&b, bw); + MulPow5(&b, b5, &b); + mp_mul_2d(&b, b2, &b); + + /* Adjust if the logarithm was guessed wrong */ + + if (b.used <= sd) { + mp_mul_d(&b, 10, &b); + ilim = ilim1; + --k; } + mp_init(&temp); - /* - * Scale r, s, mplus, mminus by the appropriate powers of 2 and 5. + /* + * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT) + * by mp_digit extraction */ - mp_init_set(&mplus, 1); - for (i=0 ; i<=8 ; ++i) { - if (rfac5 & (1 << i)) { - mp_mul(&mplus, pow5+i, &mplus); + i = 1; + for (;;) { + if (b.used <= sd) { + digit = 0; + } else { + digit = b.dp[sd]; + if (b.used > sd+1 || digit >= 10) { + Tcl_Panic("wrong digit!"); + } + --b.used; mp_clamp(&b); } - } - mp_mul(&r, &mplus, &r); - mp_mul_2d(&r, rfac2, &r); - mp_init_copy(&mminus, &mplus); - mp_mul_2d(&mplus, mplusfac2, &mplus); - mp_mul_2d(&mminus, mminusfac2, &mminus); - mp_init_set(&s, 1); - for (i=0 ; i<=8 ; ++i) { - if (sfac5 & (1 << i)) { - mp_mul(&s, pow5+i, &s); + + /* + * Have we converted all the requested digits? + */ + *s++ = '0' + digit; + if (i == ilim) { + if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) { + s = BumpUp(s, retval, &k); + } + break; } + + /* Advance to the next digit */ + + mp_mul_d(&b, 10, &b); + ++i; } - mp_mul_2d(&s, sfac2, &s); - /* - * It is possible for k to be off by one because we used an inexact - * logarithm. + /* + * Endgame - store the location of the decimal point and the end of the + * string. */ + mp_clear_multi(&b, &temp, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUp -- + * + * Tests whether a digit should be rounded up or down when finishing + * bignum-based floating point conversion. + * + * Results: + * Returns 1 if the number needs to be rounded up, 0 otherwise. + * + *----------------------------------------------------------------------------- + */ - mp_init(&temp); - mp_add(&r, &mplus, &temp); - i = mp_cmp_mag(&temp, &s); - if (i>0 || (highOK && i==0)) { - mp_mul_d(&s, 10, &s); - k++; - } else { - mp_mul_d(&temp, 10, &temp); - i = mp_cmp_mag(&temp, &s); - if (i<0 || (highOK && i==0)) { - mp_mul_d(&r, 10, &r); - mp_mul_d(&mplus, 10, &mplus); - mp_mul_d(&mminus, 10, &mminus); - k--; +inline static int +ShouldBankerRoundUp(mp_int* twor, + /* 2x the remainder from thd division that + * produced the last digit */ + mp_int* S, /* Denominator */ + int isodd) /* Flag == 1 if the last digit is odd */ +{ + int r = mp_cmp_mag(twor, S); + switch (r) { + case MP_LT: + return 0; + case MP_EQ: + return isodd; + case MP_GT: + return 1; + } + Tcl_Panic("in ShouldBankerRoundUp, trichotomy fails!"); + return 0; +} + +/* + *----------------------------------------------------------------------------- + * + * ShouldBankerRoundUpToNext -- + * + * Tests whether the remainder is great enough to force rounding + * to the next higher digit. + * + * Results: + * Returns 1 if the number should be rounded up, 0 otherwise. + * + *----------------------------------------------------------------------------- + */ + +inline static int +ShouldBankerRoundUpToNext(mp_int* b, + /* Remainder from the division that produced + * the last digit. */ + mp_int* m, + /* Numerator of the rounding tolerance */ + mp_int* S, + /* Denominator */ + int convType, + /* Conversion type: STEELE0 defeats + * round-to-even. (Not sure why one would + * want this; I coped it from Gay. FIXME */ + int isodd, + /* 1 if the integer significand is odd */ + mp_int* temp) + /* Work area needed for the calculation */ +{ + int r; + /* Compare b and S-m: this is the same as comparing B+m and S. */ + mp_add(b, m, temp); + r = mp_cmp_mag(temp, S); + switch(r) { + case MP_LT: + return 0; + case MP_EQ: + if (convType == TCL_DD_STEELE0) { + return 0; + } else { + return isodd; } + case MP_GT: + return 1; } + Tcl_Panic("in ShouldBankerRoundUpToNext, trichotomy fails!"); + return 0; +} + +/* + *----------------------------------------------------------------------------- + * + * ShorteningBignumConversion -- + * + * Convert a floating point number to a variable-length digit string + * using the multiprecision method. + * + * Results: + * Returns the string of digits. + * + * Side effects: + * Stores the position of the decimal point in *decpt. + * Stores a pointer to the end of the number in *endPtr. + * + *----------------------------------------------------------------------------- + */ + +inline static char* +ShorteningBignumConversion(Double* dPtr, + /* Original number being converted */ + int convType, + /* Conversion type */ + Tcl_WideUInt bw, + /* Integer significand and exponent */ + int b2, + /* Scale factor for the significand */ + int m2plus, int m2minus, + /* Scale factors for 1/2 ulp in numerator */ + int s2, int s5, + /* Scale factors for denominator */ + int k, + /* Guessed position of the decimal point */ + int len, + /* Size of the digit buffer to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Pointer to the end of the number */ +{ + char* retval = ckalloc(len+1); + /* Buffer of digits to return */ + char* s = retval; /* Cursor in the return value */ + mp_int b; /* Numerator of the result */ + mp_int mminus; /* 1/2 ulp below the result */ + mp_int mplus; /* 1/2 ulp above the result */ + mp_int S; /* Denominator of the result */ + mp_int dig; /* Current digit of the result */ + int digit; /* Current digit of the result */ + mp_int temp; /* Work area */ + int minit = 1; /* Fudge factor for when we misguess k */ + int i; + int r1; /* - * At this point, k contains the power of ten by which we're scaling the - * result. r/s is at least 1/10 and strictly less than ten, and v = r/s * - * 10**k. mplus and mminus give the rounding limits. + * b = bw * 2**b2 * 5**b5 + * S = 2**s2 * 5*s5 */ - for (;;) { - int tc1, tc2; + TclBNInitBignumFromWideUInt(&b, bw); + mp_mul_2d(&b, b2, &b); + mp_init_set_int(&S, 1); + MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); - mp_mul_d(&r, 10, &r); - mp_div(&r, &s, &temp, &r); /* temp = 10r / s; r = 10r mod s */ - i = temp.dp[0]; - mp_mul_d(&mplus, 10, &mplus); - mp_mul_d(&mminus, 10, &mminus); - tc1 = mp_cmp_mag(&r, &mminus); - if (lowOK) { - tc1 = (tc1 <= 0); - } else { - tc1 = (tc1 < 0); + /* + * Handle the case where we guess the position of the decimal point + * wrong. + */ + + if (mp_cmp_mag(&b, &S) == MP_LT) { + mp_mul_d(&b, 10, &b); + minit = 10; + ilim =ilim1; + --k; + } + + /* mminus = 2**m2minus * 5**m5 */ + + mp_init_set_int(&mminus, minit); + mp_mul_2d(&mminus, m2minus, &mminus); + if (m2plus > m2minus) { + mp_init_copy(&mplus, &mminus); + mp_mul_2d(&mplus, m2plus-m2minus, &mplus); + } + mp_init(&temp); + + /* Loop through the digits */ + + mp_init(&dig); + i = 1; + for (;;) { + mp_div(&b, &S, &dig, &b); + if (dig.used > 1 || dig.dp[0] >= 10) { + Tcl_Panic("wrong digit!"); } - mp_add(&r, &mplus, &temp); - tc2 = mp_cmp_mag(&temp, &s); - if (highOK) { - tc2 = (tc2 >= 0); - } else { - tc2 = (tc2 > 0); + digit = dig.dp[0]; + + /* + * Does the current digit leave us with a remainder small enough to + * round to it? + */ + + r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus); + if (r1 == MP_LT + || (r1 == MP_EQ + && convType != TCL_DD_STEELE0 + && (dPtr->w.word1 & 1) == 0)) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); + break; + } + } + *s++ = '0' + digit; + break; } - if (!tc1) { - if (!tc2) { - *buffer++ = '0' + i; - } else { - c = (char) (i + '1'); + + /* + * Does the current digit leave us with a remainder large enough + * to commit to rounding up to the next higher digit? + */ + + if (ShouldBankerRoundUpToNext(&b, &mminus, &S, convType, + dPtr->w.word1 & 1, &temp)) { + ++digit; + if (digit == 10) { + *s++ = '9'; + s = BumpUp(s, retval, &k); break; } - } else { - if (!tc2) { - c = (char) (i + '0'); - } else { - mp_mul_2d(&r, 1, &r); - n = mp_cmp_mag(&r, &s); - if (n < 0) { - c = (char) (i + '0'); - } else { - c = (char) (i + '1'); - } + *s++ = '0' + digit; + break; + } + + /* Have we converted all the requested digits? */ + + *s++ = '0' + digit; + if (i == ilim) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + s = BumpUp(s, retval, &k); } break; } - }; - *buffer++ = c; - *buffer++ = '\0'; - /* - * Free memory, and return. + /* Advance to the next digit */ + + if (s5 > 0) { + + /* Can possibly shorten the denominator */ + mp_mul_2d(&b, 1, &b); + mp_mul_2d(&mminus, 1, &mminus); + if (m2plus > m2minus) { + mp_mul_2d(&mplus, 1, &mplus); + } + mp_div_d(&S, 5, &S, NULL); + --s5; + /* + * TODO: It might possibly be a win to fall back to + * int64 arithmetic here if S < 2**64/10. But it's + * a win only for a fairly narrow range of magnitudes + * so perhaps not worth bothering. We already know that + * we shorten the denominator by at least 1 mp_digit, perhaps + * 2. as we do the conversion for 17 digits of significance. + * Possible savings: + * 10**26 1 trip through loop before fallback possible + * 10**27 1 trip + * 10**28 2 trips + * 10**29 3 trips + * 10**30 4 trips + * 10**31 5 trips + * 10**32 6 trips + * 10**33 7 trips + * 10**34 8 trips + * 10**35 9 trips + * 10**36 10 trips + * 10**37 11 trips + * 10**38 12 trips + * 10**39 13 trips + * 10**40 14 trips + * 10**41 15 trips + * 10**42 16 trips + * thereafter no gain. + */ + } else { + mp_mul_d(&b, 10, &b); + mp_mul_d(&mminus, 10, &mminus); + if (m2plus > m2minus) { + mp_mul_2d(&mplus, 10, &mplus); + } + } + + ++i; + } + + + /* + * Endgame - store the location of the decimal point and the end of the + * string. */ + if (m2plus > m2minus) { + mp_clear(&mplus); + } + mp_clear_multi(&b, &mminus, &temp, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; - mp_clear_multi(&r, &s, &mplus, &mminus, &temp, NULL); - return k; } - + /* - *---------------------------------------------------------------------- + *----------------------------------------------------------------------------- * - * AbsoluteValue -- + * StrictBignumConversion -- * - * Splits a 'double' into its absolute value and sign. + * Convert a floating point number to a fixed-length digit string + * using the multiprecision method. * * Results: - * Returns the absolute value. + * Returns the string of digits. * * Side effects: - * Stores the signum in '*signum'. + * Stores the position of the decimal point in *decpt. + * Stores a pointer to the end of the number in *endPtr. * - *---------------------------------------------------------------------- + *----------------------------------------------------------------------------- */ -static double -AbsoluteValue( - double v, /* Number to split */ - int *signum) /* (Output) Sign of the number 1=-, 0=+ */ +inline static char* +StrictBignumConversion(Double* dPtr, + /* Original number being converted */ + int convType, + /* Conversion type */ + Tcl_WideUInt bw, + /* Integer significand and exponent */ + int b2, /* Scale factor for the significand */ + int s2, int s5, + /* Scale factors for denominator */ + int k, /* Guessed position of the decimal point */ + int len, /* Size of the digit buffer to allocate */ + int ilim, + /* Number of digits to convert if b >= s */ + int ilim1, + /* Number of digits to convert if b < s */ + int* decpt, + /* OUTPUT: Position of the decimal point */ + char** endPtr) + /* OUTPUT: Pointer to the end of the number */ { + char* retval = ckalloc(len+1); + /* Buffer of digits to return */ + char* s = retval; /* Cursor in the return value */ + mp_int b; /* Numerator of the result */ + mp_int S; /* Denominator of the result */ + mp_int dig; /* Current digit of the result */ + int digit; /* Current digit of the result */ + mp_int temp; /* Work area */ + int g; /* Size of the current digit groun */ + int i, j; + /* - * Take the absolute value of the number, and report the number's sign. - * Take special steps to preserve signed zeroes in IEEE floating point. - * (We can't use fpclassify, because that's a C9x feature and we still - * have to build on C89 compilers.) + * b = bw * 2**b2 * 5**b5 + * S = 2**s2 * 5*s5 */ -#ifndef IEEE_FLOATING_POINT - if (v >= 0.0) { - *signum = 0; - } else { - *signum = 1; - v = -v; - } -#else - union { - Tcl_WideUInt iv; - double dv; - } bitwhack; - bitwhack.dv = v; - if (n770_fp) { - bitwhack.iv = Nokia770Twiddle(bitwhack.iv); + TclBNInitBignumFromWideUInt(&b, bw); + mp_mul_2d(&b, b2, &b); + mp_init_set_int(&S, 1); + MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S); + + /* + * Handle the case where we guess the position of the decimal point + * wrong. + */ + + if (mp_cmp_mag(&b, &S) == MP_LT) { + mp_mul_d(&b, 10, &b); + ilim =ilim1; + --k; } - if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { - *signum = 1; - bitwhack.iv &= ~((Tcl_WideUInt) 1 << 63); - if (n770_fp) { - bitwhack.iv = Nokia770Twiddle(bitwhack.iv); + mp_init(&temp); + + /* Convert the leading digit */ + + mp_init(&dig); + i = 0; + mp_div(&b, &S, &dig, &b); + if (dig.used > 1 || dig.dp[0] >= 10) { + Tcl_Panic("wrong digit!"); + } + digit = dig.dp[0]; + + /* Is a single digit all that was requested? */ + + *s++ = '0' + digit; + if (++i >= ilim) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + s = BumpUp(s, retval, &k); } - v = bitwhack.dv; } else { - *signum = 0; + + for (;;) { + + /* Shift by a group of digits. */ + + g = ilim - i; + if (g > DIGIT_GROUP) { + g = DIGIT_GROUP; + } + if (s5 >= g) { + mp_div_d(&S, dpow5[g], &S, NULL); + s5 -= g; + } else if (s5 > 0) { + mp_div_d(&S, dpow5[s5], &S, NULL); + mp_mul_d(&b, dpow5[g - s5], &b); + s5 = 0; + } else { + mp_mul_d(&b, dpow5[g], &b); + } + mp_mul_2d(&b, g, &b); + + /* + * As with the shortening bignum conversion, it's possible at + * this point that we will have reduced the denominator to + * less than 2**64/10, at which point it would be possible to + * fall back to to int64 arithmetic. But the potential payoff + * is tremendously less - unless we're working in F format - + * because we know that three groups of digits will always + * suffice for %#.17e, the longest format that doesn't introduce + * empty precision. + */ + + /* Extract the next digit */ + + mp_div(&b, &S, &dig, &b); + if (dig.used > 1) { + Tcl_Panic("wrong digit!"); + } + digit = dig.dp[0]; + for (j = g-1; j >= 0; --j) { + int t = itens[j]; + *s++ = digit / t + '0'; + digit %= t; + } + i += g; + + /* Have we converted all the requested digits? */ + + if (i == ilim) { + mp_mul_2d(&b, 1, &b); + if (ShouldBankerRoundUp(&b, &S, digit&1)) { + s = BumpUp(s, retval, &k); + } + break; + } + } } -#endif - return v; + /* + * Endgame - store the location of the decimal point and the end of the + * string. + */ + mp_clear_multi(&b, &temp, NULL); + *s = '\0'; + *decpt = k; + if (endPtr) { + *endPtr = s; + } + return retval; + } /* - *---------------------------------------------------------------------- + *----------------------------------------------------------------------------- * - * GetIntegerTimesPower -- + * TclDoubleDigits -- * - * Converts a floating point number to an exact integer times a power of - * the floating point radix. + * Core of Tcl's conversion of double-precision floating point numbers + * to decimal. * * Results: - * Returns 1 if it converted the smallest significand, 0 otherwise. + * Returns a newly-allocated string of digits. * * Side effects: - * Initializes the integer value (does not just assign it), and stores - * the exponent. + * Sets *decpt to the index of the character in the string before the + * place that the decimal point should go. If 'endPtr' is not NULL, + * sets endPtr to point to the terminating '\0' byte of the string. + * Sets *sign to 1 if a minus sign should be printed with the number, + * or 0 if a plus sign (or no sign) should appear. * - *---------------------------------------------------------------------- + * This function is a service routine that produces the string of digits + * for floating-point-to-decimal conversion. It can do a number of things + * according to the 'flags' argument. Valid values for 'flags' include: + * TCL_DD_SHORTEST - This is the default for floating point conversion + * if ::tcl_precision is 0. It constructs the shortest string + * of digits that will reconvert to the given number when scanned. + * For floating point numbers that are exactly between two + * decimal numbers, it resolves using the 'round to even' rule. + * With this value, the 'ndigits' parameter is ignored. + * TCL_DD_STEELE - This value is not recommended and may be removed + * in the future. It follows the conversion algorithm outlined + * in "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, + * pp. 112-126]. This rule has the effect of rendering 1e23 + * as 9.9999999999999999e22 - which is a 'better' approximation + * in the sense that it will reconvert correctly even if + * a subsequent input conversion is 'round up' or 'round down' + * rather than 'round to nearest', but is surprising otherwise. + * TCL_DD_E_FORMAT - This value is used to prepare numbers for %e + * format conversion (or for default floating->string if + * tcl_precision is not 0). It constructs a string of at most + * 'ndigits' digits, choosing the one that is closest to the + * given number (and resolving ties with 'round to even'). + * It is allowed to return fewer than 'ndigits' if the number + * converts exactly; if the TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG + * is supplied instead, it is also allowed to return fewer digits + * if the shorter string will still reconvert to the given + * input number. + * TCL_DD_F_FORMAT - This value is used to prepare numbers for %f + * format conversion. It requests that conversion proceed until + * 'ndigits' digits after the decimal point have been converted. + * It is possible for this format to result in a zero-length + * string if the number is sufficiently small. Again, it + * is permissible for TCL_DD_F_FORMAT to return fewer digits + * for a number that converts exactly, and changing the + * argument to TCL_DD_F_FORMAT|TCL_DD_SHORTEN_FLAG will allow + * the routine also to return fewer digits if the shorter string + * will still reconvert without loss to the given input number. + * + * To any of these flags may be OR'ed TCL_DD_NO_QUICK; this flag + * requires all calculations to be done in exact arithmetic. Normally, + * E and F format with fewer than about 14 digits will be done with + * a quick floating point approximation and fall back on the exact + * arithmetic only if the input number is close enough to the + * midpoint between two decimal strings that more precision is needed + * to resolve which string is correct. + * + * The value stored in the 'decpt' argument on return may be negative + * (indicating that the decimal point falls to the left of the string) + * or greater than the length of the string. In addition, the value -9999 + * is used as a sentinel to indicate that the string is one of the special + * values "Infinity" and "NaN", and that no decimal point should be inserted. + * + *----------------------------------------------------------------------------- */ - -static int -GetIntegerTimesPower( - double v, /* Value to convert */ - mp_int *rPtr, /* (Output) Integer value */ - int *ePtr) /* (Output) Power of FLT_RADIX by which r must - * be multiplied to yield v*/ +char* +TclDoubleDigits(double dv, /* Number to convert */ + int ndigits, /* Number of digits requested */ + int flags, /* Conversion flags */ + int* decpt, /* OUTPUT: Position of the decimal point */ + int* sign, /* OUTPUT: 1 if the result is negative */ + char** endPtr) /* OUTPUT: If not NULL, receives a pointer + * to one character beyond the end + * of the returned string */ { - double a, f; - int e, i, n; + int convType = (flags & TCL_DD_CONVERSION_TYPE_MASK); + /* Type of conversion being performed + * TCL_DD_SHORTEST0 + * TCL_DD_STEELE0 + * TCL_DD_E_FORMAT + * TCL_DD_F_FORMAT */ + Double d; /* Union for deconstructing doubles */ + Tcl_WideUInt bw; /* Integer significand */ + int be; /* Power of 2 by which b must be multiplied */ + int bbits; /* Number of bits needed to represent b */ + int denorm; /* Flag == 1 iff the input number was + * denormalized */ + int k; /* Estimate of floor(log10(d)) */ + int k_check; /* Flag == 1 if d is near enough to a + * power of ten that k must be checked */ + int b2, b5, s2, s5; /* Powers of 2 and 5 in the numerator and + * denominator of intermediate results */ + int ilim, ilim1; + char* retval; /* Return value from this function */ + int i; - /* - * Develop f and e such that v = f * FLT_RADIX**e, with - * 1.0/FLT_RADIX <= f < 1. + /* Put the input number into a union for bit-whacking */ + + d.d = dv; + + /* + * Handle the cases of negative numbers (by taking the absolute value: + * this includes -Inf and -NaN!), infinity, Not a Number, and zero. */ - f = frexp(v, &e); -#if FLT_RADIX > 2 - n = e % log2FLT_RADIX; - if (n > 0) { - n -= log2FLT_RADIX; - e += 1; - f *= ldexp(1.0, n); + TakeAbsoluteValue(&d, sign); + if ((d.w.word0 & EXP_MASK) == EXP_MASK) { + return FormatInfAndNaN(&d, decpt, endPtr); } - e = (e - n) / log2FLT_RADIX; -#endif - if (f == 1.0) { - f = 1.0 / FLT_RADIX; - e += 1; + if (d.d == 0.0) { + return FormatZero(decpt, endPtr); } + /* + * Unpack the floating point into a wide integer and an exponent. + * Determine the number of bits that the big integer requires, and + * compute a quick approximation (which may be one too high) of + * ceil(log10(d.d)). + */ + denorm = ((d.w.word0 & EXP_MASK) == 0); + DoubleToExpAndSig(d.d, &bw, &be, &bbits); + k = ApproximateLog10(bw, be, bbits); + k = BetterLog10(d.d, k, &k_check); + + /* At this point, we have: + * d is the number to convert. + * bw are significand and exponent: d == bw*2**be, + * bbits is the length of bw: 2**bbits-1 <= bw < 2**bbits + * k is either ceil(log10(d)) or ceil(log10(d))+1. k_check is 0 + * if we know that k is exactly ceil(log10(d)) and 1 if we need to + * check. + * We want a rational number + * r = b * 10**(1-k) = bw * 2**b2 * 5**b5 / (2**s2 / 5**s5), + * with b2, b5, s2, s5 >= 0. Note that the most significant decimal + * digit is floor(r) and that successive digits can be obtained + * by setting r <- 10*floor(r) (or b <= 10 * (b % S)). + * Find appropriate b2, b5, s2, s5. + */ + + ComputeScale(be, k, &b2, &b5, &s2, &s5); + /* - * If the original number was denormalized, adjust e and f to be denormal - * as well. + * Correct an incorrect caller-supplied 'ndigits'. + * Also determine: + * i = The maximum number of decimal digits that will be returned in the + * formatted string. This is k + 1 + ndigits for F format, 18 for + * shortest and Steele, and ndigits for E format. + * ilim = The number of significant digits to convert if + * k has been guessed correctly. This is -1 for shortest and Steele + * (which stop when all significance has been lost), 'ndigits' + * for E format, and 'k + 1 + ndigits' for F format. + * ilim1 = The minimum number of significant digits to convert if + * k has been guessed 1 too high. This, too, is -1 for shortest + * and Steele, and 'ndigits' for E format, but it's 'ndigits-1' + * for F format. */ - if (e < DBL_MIN_EXP) { - n = mantBits + (e - DBL_MIN_EXP)*log2FLT_RADIX; - f = ldexp(f, (e - DBL_MIN_EXP)*log2FLT_RADIX); - e = DBL_MIN_EXP; - n = (n + DIGIT_BIT - 1) / DIGIT_BIT; - } else { - n = mantDIGIT; + SetPrecisionLimits(convType, k, &ndigits, &i, &ilim, &ilim1); + + /* + * Try to do low-precision conversion in floating point rather + * than resorting to expensive multiprecision arithmetic + */ + if (ilim >= 0 && ilim <= QUICK_MAX && !(flags & TCL_DD_NO_QUICK)) { + if ((retval = QuickConversion(d.d, k, k_check, flags, + i, ilim, ilim1, + decpt, endPtr)) != NULL) { + return retval; + } } - /* - * Now extract the base-2**DIGIT_BIT digits of f into a multi-precision - * integer r. Preserve the invariant v = r * 2**rfac2 * FLT_RADIX**e by - * adjusting e. - */ - - a = f; - n = mantDIGIT; - mp_init_size(rPtr, n); - rPtr->used = n; - rPtr->sign = MP_ZPOS; - i = (mantBits % DIGIT_BIT); - if (i == 0) { - i = DIGIT_BIT; - } - while (n > 0) { - a *= ldexp(1.0, i); - i = DIGIT_BIT; - rPtr->dp[--n] = (mp_digit) a; - a -= (mp_digit) a; - } - *ePtr = e - DBL_MANT_DIG; - return (f == 1.0 / FLT_RADIX); + /* + * For shortening conversions, determine the upper and lower bounds + * for the remainder at which we can stop. + * m+ = (2**m2plus * 5**m5) / (2**s2 * 5**s5) is the limit on the + * high side, and + * m- = (2**m2minus * 5**m5) / (2**s2 * 5**s5) is the limit on the + * low side. + * We may need to increase s2 to put m2plus, m2minus, b2 over a + * common denominator. + */ + + if (flags & TCL_DD_SHORTEN_FLAG) { + int m2minus = b2; + int m2plus; + int m5 = b5; + int len = i; + + /* + * Find the quantity i so that (2**i*5**b5)/(2**s2*5**s5) + * is 1/2 unit in the least significant place of the floating + * point number. + */ + if (denorm) { + i = be + EXPONENT_BIAS + (FP_PRECISION-1); + } else { + i = 1 + FP_PRECISION - bbits; + } + b2 += i; + s2 += i; + + /* + * Reduce the fractions to lowest terms, since the above calculation + * may have left excess powers of 2 in numerator and denominator + */ + CastOutPowersOf2(&b2, &m2minus, &s2); + + /* + * In the special case where bw==1, the nearest floating point number + * to it on the low side is 1/4 ulp below it. Adjust accordingly. + */ + m2plus = m2minus; + if (!denorm && bw == 1) { + ++b2; + ++s2; + ++m2plus; + } + + if (s5+1 < N_LOG2POW5 + && s2+1 + log2pow5[s5+1] <= 64) { + /* + * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit + * word, then all our intermediate calculations can be done + * using exact 64-bit arithmetic with no need for expensive + * multiprecision operations. (This will be true for all numbers + * in the range [1.0e-3 .. 1.0e+24]). + */ + + return ShorteningInt64Conversion(&d, convType, bw, b2, b5, + m2plus, m2minus, m5, + s2, s5, k, len, ilim, ilim1, + decpt, endPtr); + } else if (s5 == 0) { + /* + * The denominator is a power of 2, so we can replace division + * by digit shifts. First we round up s2 to a multiple of + * DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch + * into a version of the comparison that's specialized for + * the 'power of mp_digit in the denominator' case. + */ + if (s2 % DIGIT_BIT != 0) { + int delta = DIGIT_BIT - (s2 % DIGIT_BIT); + b2 += delta; + m2plus += delta; + m2minus += delta; + s2 += delta; + } + return ShorteningBignumConversionPowD(&d, convType, bw, b2, b5, + m2plus, m2minus, m5, + s2/DIGIT_BIT, k, len, + ilim, ilim1, decpt, endPtr); + } else { + + /* + * Alas, there's no helpful special case; use full-up + * bignum arithmetic for the conversion + */ + + return ShorteningBignumConversion(&d, convType, bw, + b2, m2plus, m2minus, + s2, s5, k, len, + ilim, ilim1, decpt, endPtr); + + } + + } else { + + /* Non-shortening conversion */ + + int len = i; + + /* Reduce numerator and denominator to lowest terms */ + + if (b2 >= s2 && s2 > 0) { + b2 -= s2; s2 = 0; + } else if (s2 >= b2 && b2 > 0) { + s2 -= b2; b2 = 0; + } + + if (s5+1 < N_LOG2POW5 + && s2+1 + log2pow5[s5+1] <= 64) { + /* + * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit + * word, then all our intermediate calculations can be done + * using exact 64-bit arithmetic with no need for expensive + * multiprecision operations. + */ + + return StrictInt64Conversion(&d, convType, bw, b2, b5, + s2, s5, k, len, ilim, ilim1, + decpt, endPtr); + + } else if (s5 == 0) { + /* + * The denominator is a power of 2, so we can replace division + * by digit shifts. First we round up s2 to a multiple of + * DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch + * into a version of the comparison that's specialized for + * the 'power of mp_digit in the denominator' case. + */ + if (s2 % DIGIT_BIT != 0) { + int delta = DIGIT_BIT - (s2 % DIGIT_BIT); + b2 += delta; + s2 += delta; + } + return StrictBignumConversionPowD(&d, convType, bw, b2, b5, + s2/DIGIT_BIT, k, len, + ilim, ilim1, decpt, endPtr); + } else { + /* + * There are no helpful special cases, but at least we know + * in advance how many digits we will convert. We can run the + * conversion in steps of DIGIT_GROUP digits, so as to + * have many fewer mp_int divisions. + */ + return StrictBignumConversion(&d, convType, bw, b2, s2, s5, + k, len, ilim, ilim1, decpt, endPtr); + } + } } + /* *---------------------------------------------------------------------- @@ -2237,6 +4380,11 @@ TclInitDoubleConversion(void) for (i=0; i<8; ++i) { mp_sqr(pow5+i, pow5+i+1); } + mp_init_set_int(pow5_13, 1220703125); + for (i = 1; i < 5; ++i) { + mp_init(pow5_13 + i); + mp_sqr(pow5_13 + i - 1, pow5_13 + i); + } /* * Determine the number of decimal digits to the left and right of the @@ -2293,7 +4441,7 @@ TclFinalizeDoubleConversion(void) { int i; - Tcl_Free((char *) pow10_wide); + ckfree((char *) pow10_wide); for (i=0; i<9; ++i) { mp_clear(pow5 + i); } @@ -2433,6 +4581,20 @@ TclBignumToDouble( return -r; } } + +/* + *----------------------------------------------------------------------------- + * + * TclCeil -- + * + * Computes the smallest floating point number that is at least the + * mp_int argument. + * + * Results: + * Returns the floating point number. + * + *----------------------------------------------------------------------------- + */ double TclCeil( @@ -2476,6 +4638,20 @@ TclCeil( mp_clear(&b); return r; } + +/* + *----------------------------------------------------------------------------- + * + * TclFloor -- + * + * Computes the largest floating point number less than or equal to + * the mp_int argument. + * + * Results: + * Returns the floating point value. + * + *----------------------------------------------------------------------------- + */ double TclFloor( |