summaryrefslogtreecommitdiffstats
path: root/generic/tclTomMath.h
diff options
context:
space:
mode:
Diffstat (limited to 'generic/tclTomMath.h')
-rw-r--r--generic/tclTomMath.h813
1 files changed, 813 insertions, 0 deletions
diff --git a/generic/tclTomMath.h b/generic/tclTomMath.h
new file mode 100644
index 0000000..df54ff5
--- /dev/null
+++ b/generic/tclTomMath.h
@@ -0,0 +1,813 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com
+ */
+#ifndef BN_H_
+#define BN_H_
+
+#include "tclTomMathDecls.h"
+#ifndef MODULE_SCOPE
+#define MODULE_SCOPE extern
+#endif
+
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* detect 64-bit mode if possible */
+#if defined(NEVER) /* 128-bit ints fail in too many places */
+# if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
+# define MP_64BIT
+# endif
+#endif
+
+/* some default configurations.
+ *
+ * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
+ * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
+ *
+ * At the very least a mp_digit must be able to hold 7 bits
+ * [any size beyond that is ok provided it doesn't overflow the data type]
+ */
+#ifdef MP_8BIT
+#ifndef MP_DIGIT_DECLARED
+typedef uint8_t mp_digit;
+#define MP_DIGIT_DECLARED
+#endif
+#ifndef MP_WORD_DECLARED
+typedef uint16_t mp_word;
+#define MP_WORD_DECLARED
+#endif
+# define MP_SIZEOF_MP_DIGIT 1
+# ifdef DIGIT_BIT
+# error You must not define DIGIT_BIT when using MP_8BIT
+# endif
+#elif defined(MP_16BIT)
+#ifndef MP_DIGIT_DECLARED
+typedef uint16_t mp_digit;
+#define MP_DIGIT_DECLARED
+#endif
+#ifndef MP_WORD_DECLARED
+typedef uint32_t mp_word;
+#define MP_WORD_DECLARED
+#endif
+# define MP_SIZEOF_MP_DIGIT 2
+# ifdef DIGIT_BIT
+# error You must not define DIGIT_BIT when using MP_16BIT
+# endif
+#elif defined(MP_64BIT)
+/* for GCC only on supported platforms */
+#ifndef MP_DIGIT_DECLARED
+typedef uint64_t mp_digit;
+#define MP_DIGIT_DECLARED
+#endif
+# if defined(_WIN32)
+#ifndef MP_WORD_DECLARED
+typedef unsigned __int128 mp_word;
+#define MP_WORD_DECLARED
+#endif
+# elif defined(__GNUC__)
+typedef unsigned long mp_word __attribute__((mode(TI)));
+# else
+/* it seems you have a problem
+ * but we assume you can somewhere define your own uint128_t */
+#ifndef MP_WORD_DECLARED
+typedef uint128_t mp_word;
+#define MP_WORD_DECLARED
+#endif
+# endif
+
+# define DIGIT_BIT 60
+#else
+/* this is the default case, 28-bit digits */
+
+/* this is to make porting into LibTomCrypt easier :-) */
+#ifndef MP_DIGIT_DECLARED
+typedef uint32_t mp_digit;
+#define MP_DIGIT_DECLARED
+#endif
+#ifndef MP_WORD_DECLARED
+typedef uint64_t mp_word;
+#define MP_WORD_DECLARED
+#endif
+
+# ifdef MP_31BIT
+/* this is an extension that uses 31-bit digits */
+# define DIGIT_BIT 31
+# else
+/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
+# define DIGIT_BIT 28
+# define MP_28BIT
+# endif
+#endif
+
+/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
+#ifndef DIGIT_BIT
+# define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */
+typedef uint_least32_t mp_min_u32;
+#else
+typedef mp_digit mp_min_u32;
+#endif
+
+/* use arc4random on platforms that support it */
+#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
+# define MP_GEN_RANDOM() arc4random()
+# define MP_GEN_RANDOM_MAX 0xffffffff
+#endif
+
+/* use rand() as fall-back if there's no better rand function */
+#ifndef MP_GEN_RANDOM
+# define MP_GEN_RANDOM() rand()
+# define MP_GEN_RANDOM_MAX RAND_MAX
+#endif
+
+#define MP_DIGIT_BIT DIGIT_BIT
+#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
+#define MP_DIGIT_MAX MP_MASK
+
+/* equalities */
+#define MP_LT -1 /* less than */
+#define MP_EQ 0 /* equal to */
+#define MP_GT 1 /* greater than */
+
+#define MP_ZPOS 0 /* positive integer */
+#define MP_NEG 1 /* negative */
+
+#define MP_OKAY 0 /* ok result */
+#define MP_MEM -2 /* out of mem */
+#define MP_VAL -3 /* invalid input */
+#define MP_RANGE MP_VAL
+
+#define MP_YES 1 /* yes response */
+#define MP_NO 0 /* no response */
+
+/* Primality generation flags */
+#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
+#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
+#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
+
+typedef int mp_err;
+
+/* you'll have to tune these... */
+#if defined(BUILD_tcl) || !defined(_WIN32)
+MODULE_SCOPE int KARATSUBA_MUL_CUTOFF,
+ KARATSUBA_SQR_CUTOFF,
+ TOOM_MUL_CUTOFF,
+ TOOM_SQR_CUTOFF;
+#endif
+
+/* define this to use lower memory usage routines (exptmods mostly) */
+/* #define MP_LOW_MEM */
+
+/* default precision */
+#ifndef MP_PREC
+# ifndef MP_LOW_MEM
+# define MP_PREC 32 /* default digits of precision */
+# else
+# define MP_PREC 8 /* default digits of precision */
+# endif
+#endif
+
+/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
+#define MP_WARRAY (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))
+
+/* the infamous mp_int structure */
+#ifndef MP_INT_DECLARED
+#define MP_INT_DECLARED
+typedef struct mp_int mp_int;
+#endif
+struct mp_int {
+ int used, alloc, sign;
+ mp_digit *dp;
+};
+
+/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+
+
+#define USED(m) ((m)->used)
+#define DIGIT(m, k) ((m)->dp[(k)])
+#define SIGN(m) ((m)->sign)
+
+/* error code to char* string */
+const char *mp_error_to_string(int code);
+
+/* ---> init and deinit bignum functions <--- */
+/* init a bignum */
+/*
+int mp_init(mp_int *a);
+*/
+
+/* free a bignum */
+/*
+void mp_clear(mp_int *a);
+*/
+
+/* init a null terminated series of arguments */
+/*
+int mp_init_multi(mp_int *mp, ...);
+*/
+
+/* clear a null terminated series of arguments */
+/*
+void mp_clear_multi(mp_int *mp, ...);
+*/
+
+/* exchange two ints */
+/*
+void mp_exch(mp_int *a, mp_int *b);
+*/
+
+/* shrink ram required for a bignum */
+/*
+int mp_shrink(mp_int *a);
+*/
+
+/* grow an int to a given size */
+/*
+int mp_grow(mp_int *a, int size);
+*/
+
+/* init to a given number of digits */
+/*
+int mp_init_size(mp_int *a, int size);
+*/
+
+/* ---> Basic Manipulations <--- */
+#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
+#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
+#define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
+#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
+
+/* set to zero */
+/*
+void mp_zero(mp_int *a);
+*/
+
+/* set to a digit */
+/*
+void mp_set(mp_int *a, mp_digit b);
+*/
+
+/* set a 32-bit const */
+/*
+int mp_set_int(mp_int *a, unsigned long b);
+*/
+
+/* set a platform dependent unsigned long value */
+/*
+int mp_set_long(mp_int *a, unsigned long b);
+*/
+
+/* set a platform dependent unsigned long long value */
+/*
+int mp_set_long_long(mp_int *a, unsigned long long b);
+*/
+
+/* get a 32-bit value */
+/*
+unsigned long mp_get_int(const mp_int *a);
+*/
+
+/* get a platform dependent unsigned long value */
+/*
+unsigned long mp_get_long(const mp_int *a);
+*/
+
+/* get a platform dependent unsigned long long value */
+/*
+unsigned long long mp_get_long_long(const mp_int *a);
+*/
+
+/* initialize and set a digit */
+/*
+int mp_init_set(mp_int *a, mp_digit b);
+*/
+
+/* initialize and set 32-bit value */
+/*
+int mp_init_set_int(mp_int *a, unsigned long b);
+*/
+
+/* copy, b = a */
+/*
+int mp_copy(const mp_int *a, mp_int *b);
+*/
+
+/* inits and copies, a = b */
+/*
+int mp_init_copy(mp_int *a, const mp_int *b);
+*/
+
+/* trim unused digits */
+/*
+void mp_clamp(mp_int *a);
+*/
+
+/* import binary data */
+/*
+int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
+*/
+
+/* export binary data */
+/*
+int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
+*/
+
+/* ---> digit manipulation <--- */
+
+/* right shift by "b" digits */
+/*
+void mp_rshd(mp_int *a, int b);
+*/
+
+/* left shift by "b" digits */
+/*
+int mp_lshd(mp_int *a, int b);
+*/
+
+/* c = a / 2**b, implemented as c = a >> b */
+/*
+int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
+*/
+
+/* b = a/2 */
+/*
+int mp_div_2(const mp_int *a, mp_int *b);
+*/
+
+/* c = a * 2**b, implemented as c = a << b */
+/*
+int mp_mul_2d(const mp_int *a, int b, mp_int *c);
+*/
+
+/* b = a*2 */
+/*
+int mp_mul_2(const mp_int *a, mp_int *b);
+*/
+
+/* c = a mod 2**b */
+/*
+int mp_mod_2d(const mp_int *a, int b, mp_int *c);
+*/
+
+/* computes a = 2**b */
+/*
+int mp_2expt(mp_int *a, int b);
+*/
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+/*
+int mp_cnt_lsb(const mp_int *a);
+*/
+
+/* I Love Earth! */
+
+/* makes a pseudo-random int of a given size */
+/*
+int mp_rand(mp_int *a, int digits);
+*/
+
+/* ---> binary operations <--- */
+/* c = a XOR b */
+/*
+int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* c = a OR b */
+/*
+int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* c = a AND b */
+/*
+int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* ---> Basic arithmetic <--- */
+
+/* b = -a */
+/*
+int mp_neg(const mp_int *a, mp_int *b);
+*/
+
+/* b = |a| */
+/*
+int mp_abs(const mp_int *a, mp_int *b);
+*/
+
+/* compare a to b */
+/*
+int mp_cmp(const mp_int *a, const mp_int *b);
+*/
+
+/* compare |a| to |b| */
+/*
+int mp_cmp_mag(const mp_int *a, const mp_int *b);
+*/
+
+/* c = a + b */
+/*
+int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* c = a - b */
+/*
+int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* c = a * b */
+/*
+int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* b = a*a */
+/*
+int mp_sqr(const mp_int *a, mp_int *b);
+*/
+
+/* a/b => cb + d == a */
+/*
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
+*/
+
+/* c = a mod b, 0 <= c < b */
+/*
+int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* ---> single digit functions <--- */
+
+/* compare against a single digit */
+/*
+int mp_cmp_d(const mp_int *a, mp_digit b);
+*/
+
+/* c = a + b */
+/*
+int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
+*/
+
+/* c = a - b */
+/*
+int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
+*/
+
+/* c = a * b */
+/*
+int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
+*/
+
+/* a/b => cb + d == a */
+/*
+int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+*/
+
+/* a/3 => 3c + d == a */
+/*
+int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
+*/
+
+/* c = a**b */
+/*
+int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
+*/
+/*
+int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
+*/
+
+/* c = a mod b, 0 <= c < b */
+/*
+int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
+*/
+
+/* ---> number theory <--- */
+
+/* d = a + b (mod c) */
+/*
+int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
+*/
+
+/* d = a - b (mod c) */
+/*
+int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
+*/
+
+/* d = a * b (mod c) */
+/*
+int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
+*/
+
+/* c = a * a (mod b) */
+/*
+int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* c = 1/a (mod b) */
+/*
+int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* c = (a, b) */
+/*
+int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* produces value such that U1*a + U2*b = U3 */
+/*
+int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+*/
+
+/* c = [a, b] or (a*b)/(a, b) */
+/*
+int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
+*/
+
+/* finds one of the b'th root of a, such that |c|**b <= |a|
+ *
+ * returns error if a < 0 and b is even
+ */
+/*
+int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
+*/
+/*
+int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
+*/
+
+/* special sqrt algo */
+/*
+int mp_sqrt(const mp_int *arg, mp_int *ret);
+*/
+
+/* special sqrt (mod prime) */
+/*
+int mp_sqrtmod_prime(const mp_int *arg, const mp_int *prime, mp_int *ret);
+*/
+
+/* is number a square? */
+/*
+int mp_is_square(const mp_int *arg, int *ret);
+*/
+
+/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
+/*
+int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
+*/
+
+/* used to setup the Barrett reduction for a given modulus b */
+/*
+int mp_reduce_setup(mp_int *a, const mp_int *b);
+*/
+
+/* Barrett Reduction, computes a (mod b) with a precomputed value c
+ *
+ * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
+ * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
+ */
+/*
+int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
+*/
+
+/* setups the montgomery reduction */
+/*
+int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
+*/
+
+/* computes a = B**n mod b without division or multiplication useful for
+ * normalizing numbers in a Montgomery system.
+ */
+/*
+int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
+*/
+
+/* computes x/R == x (mod N) via Montgomery Reduction */
+/*
+int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
+*/
+
+/* returns 1 if a is a valid DR modulus */
+/*
+int mp_dr_is_modulus(const mp_int *a);
+*/
+
+/* sets the value of "d" required for mp_dr_reduce */
+/*
+void mp_dr_setup(const mp_int *a, mp_digit *d);
+*/
+
+/* reduces a modulo b using the Diminished Radix method */
+/*
+int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
+*/
+
+/* returns true if a can be reduced with mp_reduce_2k */
+/*
+int mp_reduce_is_2k(const mp_int *a);
+*/
+
+/* determines k value for 2k reduction */
+/*
+int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
+*/
+
+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
+/*
+int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
+*/
+
+/* returns true if a can be reduced with mp_reduce_2k_l */
+/*
+int mp_reduce_is_2k_l(const mp_int *a);
+*/
+
+/* determines k value for 2k reduction */
+/*
+int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
+*/
+
+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
+/*
+int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
+*/
+
+/* d = a**b (mod c) */
+/*
+int mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
+*/
+
+/* ---> Primes <--- */
+
+/* number of primes */
+#ifdef MP_8BIT
+# define PRIME_SIZE 31
+#else
+# define PRIME_SIZE 256
+#endif
+
+/* table of first PRIME_SIZE primes */
+#if defined(BUILD_tcl) || !defined(_WIN32)
+MODULE_SCOPE const mp_digit ltm_prime_tab[PRIME_SIZE];
+#endif
+
+/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
+/*
+int mp_prime_is_divisible(const mp_int *a, int *result);
+*/
+
+/* performs one Fermat test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+/*
+int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
+*/
+
+/* performs one Miller-Rabin test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+/*
+int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
+*/
+
+/* This gives [for a given bit size] the number of trials required
+ * such that Miller-Rabin gives a prob of failure lower than 2^-96
+ */
+/*
+int mp_prime_rabin_miller_trials(int size);
+*/
+
+/* performs t rounds of Miller-Rabin on "a" using the first
+ * t prime bases. Also performs an initial sieve of trial
+ * division. Determines if "a" is prime with probability
+ * of error no more than (1/4)**t.
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+/*
+int mp_prime_is_prime(const mp_int *a, int t, int *result);
+*/
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
+ */
+/*
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
+*/
+
+/* makes a truly random prime of a given size (bytes),
+ * call with bbs = 1 if you want it to be congruent to 3 mod 4
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ * The prime generated will be larger than 2^(8*size).
+ */
+#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
+
+/* makes a truly random prime of a given size (bits),
+ *
+ * Flags are as follows:
+ *
+ * LTM_PRIME_BBS - make prime congruent to 3 mod 4
+ * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
+ * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ */
+/*
+int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
+*/
+
+/* ---> radix conversion <--- */
+/*
+int mp_count_bits(const mp_int *a);
+*/
+
+/*
+int mp_unsigned_bin_size(const mp_int *a);
+*/
+/*
+int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
+*/
+/*
+int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
+*/
+/*
+int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
+*/
+
+/*
+int mp_signed_bin_size(const mp_int *a);
+*/
+/*
+int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
+*/
+/*
+int mp_to_signed_bin(const mp_int *a, unsigned char *b);
+*/
+/*
+int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
+*/
+
+/*
+int mp_read_radix(mp_int *a, const char *str, int radix);
+*/
+/*
+int mp_toradix(const mp_int *a, char *str, int radix);
+*/
+/*
+int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
+*/
+/*
+int mp_radix_size(const mp_int *a, int radix, int *size);
+*/
+
+#ifndef LTM_NO_FILE
+/*
+int mp_fread(mp_int *a, int radix, FILE *stream);
+*/
+/*
+int mp_fwrite(const mp_int *a, int radix, FILE *stream);
+*/
+#endif
+
+#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
+#define mp_raw_size(mp) mp_signed_bin_size(mp)
+#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
+#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
+#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
+#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
+
+#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
+#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
+#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
+#define mp_tohex(M, S) mp_toradix((M), (S), 16)
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
+