diff options
Diffstat (limited to 'libtommath/bn_fast_mp_invmod.c')
-rw-r--r-- | libtommath/bn_fast_mp_invmod.c | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/libtommath/bn_fast_mp_invmod.c b/libtommath/bn_fast_mp_invmod.c new file mode 100644 index 0000000..fafd9dc --- /dev/null +++ b/libtommath/bn_fast_mp_invmod.c @@ -0,0 +1,144 @@ +#include <tommath.h> +#ifdef BN_FAST_MP_INVMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes the modular inverse via binary extended euclidean algorithm, + * that is c = 1/a mod b + * + * Based on slow invmod except this is optimized for the case where b is + * odd as per HAC Note 14.64 on pp. 610 + */ +int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) +{ + mp_int x, y, u, v, B, D; + int res, neg; + + /* 2. [modified] b must be odd */ + if (mp_iseven (b) == 1) { + return MP_VAL; + } + + /* init all our temps */ + if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { + return res; + } + + /* x == modulus, y == value to invert */ + if ((res = mp_copy (b, &x)) != MP_OKAY) { + goto LBL_ERR; + } + + /* we need y = |a| */ + if ((res = mp_mod (a, b, &y)) != MP_OKAY) { + goto LBL_ERR; + } + + /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ + if ((res = mp_copy (&x, &u)) != MP_OKAY) { + goto LBL_ERR; + } + if ((res = mp_copy (&y, &v)) != MP_OKAY) { + goto LBL_ERR; + } + mp_set (&D, 1); + +top: + /* 4. while u is even do */ + while (mp_iseven (&u) == 1) { + /* 4.1 u = u/2 */ + if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { + goto LBL_ERR; + } + /* 4.2 if B is odd then */ + if (mp_isodd (&B) == 1) { + if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { + goto LBL_ERR; + } + } + /* B = B/2 */ + if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { + goto LBL_ERR; + } + } + + /* 5. while v is even do */ + while (mp_iseven (&v) == 1) { + /* 5.1 v = v/2 */ + if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { + goto LBL_ERR; + } + /* 5.2 if D is odd then */ + if (mp_isodd (&D) == 1) { + /* D = (D-x)/2 */ + if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { + goto LBL_ERR; + } + } + /* D = D/2 */ + if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { + goto LBL_ERR; + } + } + + /* 6. if u >= v then */ + if (mp_cmp (&u, &v) != MP_LT) { + /* u = u - v, B = B - D */ + if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { + goto LBL_ERR; + } + + if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { + goto LBL_ERR; + } + } else { + /* v - v - u, D = D - B */ + if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { + goto LBL_ERR; + } + + if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { + goto LBL_ERR; + } + } + + /* if not zero goto step 4 */ + if (mp_iszero (&u) == 0) { + goto top; + } + + /* now a = C, b = D, gcd == g*v */ + + /* if v != 1 then there is no inverse */ + if (mp_cmp_d (&v, 1) != MP_EQ) { + res = MP_VAL; + goto LBL_ERR; + } + + /* b is now the inverse */ + neg = a->sign; + while (D.sign == MP_NEG) { + if ((res = mp_add (&D, b, &D)) != MP_OKAY) { + goto LBL_ERR; + } + } + mp_exch (&D, c); + c->sign = neg; + res = MP_OKAY; + +LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); + return res; +} +#endif |