diff options
Diffstat (limited to 'libtommath/bn_mp_n_root.c')
| -rw-r--r-- | libtommath/bn_mp_n_root.c | 128 | 
1 files changed, 128 insertions, 0 deletions
| diff --git a/libtommath/bn_mp_n_root.c b/libtommath/bn_mp_n_root.c new file mode 100644 index 0000000..b2700a8 --- /dev/null +++ b/libtommath/bn_mp_n_root.c @@ -0,0 +1,128 @@ +#include <tommath.h> +#ifdef BN_MP_N_ROOT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* find the n'th root of an integer  + * + * Result found such that (c)**b <= a and (c+1)**b > a  + * + * This algorithm uses Newton's approximation  + * x[i+1] = x[i] - f(x[i])/f'(x[i])  + * which will find the root in log(N) time where  + * each step involves a fair bit.  This is not meant to  + * find huge roots [square and cube, etc]. + */ +int mp_n_root (mp_int * a, mp_digit b, mp_int * c) +{ +  mp_int  t1, t2, t3; +  int     res, neg; + +  /* input must be positive if b is even */ +  if ((b & 1) == 0 && a->sign == MP_NEG) { +    return MP_VAL; +  } + +  if ((res = mp_init (&t1)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_init (&t2)) != MP_OKAY) { +    goto LBL_T1; +  } + +  if ((res = mp_init (&t3)) != MP_OKAY) { +    goto LBL_T2; +  } + +  /* if a is negative fudge the sign but keep track */ +  neg     = a->sign; +  a->sign = MP_ZPOS; + +  /* t2 = 2 */ +  mp_set (&t2, 2); + +  do { +    /* t1 = t2 */ +    if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { +      goto LBL_T3; +    } + +    /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ +     +    /* t3 = t1**(b-1) */ +    if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {    +      goto LBL_T3; +    } + +    /* numerator */ +    /* t2 = t1**b */ +    if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {     +      goto LBL_T3; +    } + +    /* t2 = t1**b - a */ +    if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {   +      goto LBL_T3; +    } + +    /* denominator */ +    /* t3 = t1**(b-1) * b  */ +    if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {     +      goto LBL_T3; +    } + +    /* t3 = (t1**b - a)/(b * t1**(b-1)) */ +    if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {   +      goto LBL_T3; +    } + +    if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { +      goto LBL_T3; +    } +  }  while (mp_cmp (&t1, &t2) != MP_EQ); + +  /* result can be off by a few so check */ +  for (;;) { +    if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { +      goto LBL_T3; +    } + +    if (mp_cmp (&t2, a) == MP_GT) { +      if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { +         goto LBL_T3; +      } +    } else { +      break; +    } +  } + +  /* reset the sign of a first */ +  a->sign = neg; + +  /* set the result */ +  mp_exch (&t1, c); + +  /* set the sign of the result */ +  c->sign = neg; + +  res = MP_OKAY; + +LBL_T3:mp_clear (&t3); +LBL_T2:mp_clear (&t2); +LBL_T1:mp_clear (&t1); +  return res; +} +#endif | 
