diff options
Diffstat (limited to 'libtommath/bn_mp_sqrt.c')
-rw-r--r-- | libtommath/bn_mp_sqrt.c | 142 |
1 files changed, 142 insertions, 0 deletions
diff --git a/libtommath/bn_mp_sqrt.c b/libtommath/bn_mp_sqrt.c new file mode 100644 index 0000000..016b8ba --- /dev/null +++ b/libtommath/bn_mp_sqrt.c @@ -0,0 +1,142 @@ +#include <tommath.h> + +#ifdef BN_MP_SQRT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +#ifndef NO_FLOATING_POINT +#include <math.h> +#endif + +/* this function is less generic than mp_n_root, simpler and faster */ +int mp_sqrt(mp_int *arg, mp_int *ret) +{ + int res; + mp_int t1,t2; + int i, j, k; +#ifndef NO_FLOATING_POINT + volatile double d; + mp_digit dig; +#endif + + /* must be positive */ + if (arg->sign == MP_NEG) { + return MP_VAL; + } + + /* easy out */ + if (mp_iszero(arg) == MP_YES) { + mp_zero(ret); + return MP_OKAY; + } + + i = (arg->used / 2) - 1; + j = 2 * i; + if ((res = mp_init_size(&t1, i+2)) != MP_OKAY) { + return res; + } + + if ((res = mp_init(&t2)) != MP_OKAY) { + goto E2; + } + + for (k = 0; k < i; ++k) { + t1.dp[k] = (mp_digit) 0; + } + +#ifndef NO_FLOATING_POINT + + /* Estimate the square root using the hardware floating point unit. */ + + d = 0.0; + for (k = arg->used-1; k >= j; --k) { + d = ldexp(d, DIGIT_BIT) + (double) (arg->dp[k]); + } + + /* + * At this point, d is the nearest floating point number to the most + * significant 1 or 2 mp_digits of arg. Extract its square root. + */ + + d = sqrt(d); + + /* dig is the most significant mp_digit of the square root */ + + dig = (mp_digit) ldexp(d, -DIGIT_BIT); + + /* + * If the most significant digit is nonzero, find the next digit down + * by subtracting DIGIT_BIT times thie most significant digit. + * Subtract one from the result so that our initial estimate is always + * low. + */ + + if (dig) { + t1.used = i+2; + d -= ldexp((double) dig, DIGIT_BIT); + if (d >= 1.0) { + t1.dp[i+1] = dig; + t1.dp[i] = ((mp_digit) d) - 1; + } else { + t1.dp[i+1] = dig-1; + t1.dp[i] = MP_DIGIT_MAX; + } + } else { + t1.used = i+1; + t1.dp[i] = ((mp_digit) d) - 1; + } + +#else + + /* Estimate the square root as having 1 in the most significant place. */ + + t1.used = i + 2; + t1.dp[i+1] = (mp_digit) 1; + t1.dp[i] = (mp_digit) 0; + +#endif + + /* t1 > 0 */ + if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { + goto E1; + } + if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { + goto E1; + } + if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { + goto E1; + } + /* And now t1 > sqrt(arg) */ + do { + if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { + goto E1; + } + if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { + goto E1; + } + if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { + goto E1; + } + /* t1 >= sqrt(arg) >= t2 at this point */ + } while (mp_cmp_mag(&t1,&t2) == MP_GT); + + mp_exch(&t1,ret); + +E1: mp_clear(&t2); +E2: mp_clear(&t1); + return res; +} + +#endif |