summaryrefslogtreecommitdiffstats
path: root/libtommath/etc
diff options
context:
space:
mode:
Diffstat (limited to 'libtommath/etc')
-rw-r--r--libtommath/etc/2kprime.12
-rw-r--r--libtommath/etc/2kprime.c84
-rw-r--r--libtommath/etc/drprime.c64
-rw-r--r--libtommath/etc/drprimes.2825
-rw-r--r--libtommath/etc/drprimes.txt9
-rw-r--r--libtommath/etc/makefile50
-rw-r--r--libtommath/etc/makefile.icc67
-rw-r--r--libtommath/etc/makefile.msvc23
-rw-r--r--libtommath/etc/mersenne.c144
-rw-r--r--libtommath/etc/mont.c50
-rw-r--r--libtommath/etc/pprime.c400
-rw-r--r--libtommath/etc/prime.1024414
-rw-r--r--libtommath/etc/prime.512205
-rw-r--r--libtommath/etc/timer.asm37
-rw-r--r--libtommath/etc/tune.c145
15 files changed, 0 insertions, 1719 deletions
diff --git a/libtommath/etc/2kprime.1 b/libtommath/etc/2kprime.1
deleted file mode 100644
index c41ded1..0000000
--- a/libtommath/etc/2kprime.1
+++ /dev/null
@@ -1,2 +0,0 @@
-256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
-512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
diff --git a/libtommath/etc/2kprime.c b/libtommath/etc/2kprime.c
deleted file mode 100644
index 9450283..0000000
--- a/libtommath/etc/2kprime.c
+++ /dev/null
@@ -1,84 +0,0 @@
-/* Makes safe primes of a 2k nature */
-#include <tommath.h>
-#include <time.h>
-
-int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096};
-
-int main(void)
-{
- char buf[2000];
- int x, y;
- mp_int q, p;
- FILE *out;
- clock_t t1;
- mp_digit z;
-
- mp_init_multi(&q, &p, NULL);
-
- out = fopen("2kprime.1", "w");
- for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
- top:
- mp_2expt(&q, sizes[x]);
- mp_add_d(&q, 3, &q);
- z = -3;
-
- t1 = clock();
- for(;;) {
- mp_sub_d(&q, 4, &q);
- z += 4;
-
- if (z > MP_MASK) {
- printf("No primes of size %d found\n", sizes[x]);
- break;
- }
-
- if (clock() - t1 > CLOCKS_PER_SEC) {
- printf("."); fflush(stdout);
-// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
- t1 = clock();
- }
-
- /* quick test on q */
- mp_prime_is_prime(&q, 1, &y);
- if (y == 0) {
- continue;
- }
-
- /* find (q-1)/2 */
- mp_sub_d(&q, 1, &p);
- mp_div_2(&p, &p);
- mp_prime_is_prime(&p, 3, &y);
- if (y == 0) {
- continue;
- }
-
- /* test on q */
- mp_prime_is_prime(&q, 3, &y);
- if (y == 0) {
- continue;
- }
-
- break;
- }
-
- if (y == 0) {
- ++sizes[x];
- goto top;
- }
-
- mp_toradix(&q, buf, 10);
- printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
- fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
- }
-
- return 0;
-}
-
-
-
-
-
-
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
diff --git a/libtommath/etc/drprime.c b/libtommath/etc/drprime.c
deleted file mode 100644
index c7d253f..0000000
--- a/libtommath/etc/drprime.c
+++ /dev/null
@@ -1,64 +0,0 @@
-/* Makes safe primes of a DR nature */
-#include <tommath.h>
-
-int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT };
-int main(void)
-{
- int res, x, y;
- char buf[4096];
- FILE *out;
- mp_int a, b;
-
- mp_init(&a);
- mp_init(&b);
-
- out = fopen("drprimes.txt", "w");
- for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
- top:
- printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
- mp_grow(&a, sizes[x]);
- mp_zero(&a);
- for (y = 1; y < sizes[x]; y++) {
- a.dp[y] = MP_MASK;
- }
-
- /* make a DR modulus */
- a.dp[0] = -1;
- a.used = sizes[x];
-
- /* now loop */
- res = 0;
- for (;;) {
- a.dp[0] += 4;
- if (a.dp[0] >= MP_MASK) break;
- mp_prime_is_prime(&a, 1, &res);
- if (res == 0) continue;
- printf("."); fflush(stdout);
- mp_sub_d(&a, 1, &b);
- mp_div_2(&b, &b);
- mp_prime_is_prime(&b, 3, &res);
- if (res == 0) continue;
- mp_prime_is_prime(&a, 3, &res);
- if (res == 1) break;
- }
-
- if (res != 1) {
- printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
- } else {
- mp_toradix(&a, buf, 10);
- printf("\n\np == %s\n\n", buf);
- fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
- }
- }
- fclose(out);
-
- mp_clear(&a);
- mp_clear(&b);
-
- return 0;
-}
-
-
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
diff --git a/libtommath/etc/drprimes.28 b/libtommath/etc/drprimes.28
deleted file mode 100644
index 9d438ad..0000000
--- a/libtommath/etc/drprimes.28
+++ /dev/null
@@ -1,25 +0,0 @@
-DR safe primes for 28-bit digits.
-
-224-bit prime:
-p == 26959946667150639794667015087019630673637144422540572481103341844143
-
-532-bit prime:
-p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
-
-784-bit prime:
-p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
-
-1036-bit prime:
-p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
-
-1540-bit prime:
-p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
-
-2072-bit prime:
-p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
-
-3080-bit prime:
-p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
-
-4116-bit prime:
-p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679
diff --git a/libtommath/etc/drprimes.txt b/libtommath/etc/drprimes.txt
deleted file mode 100644
index 7c97f67..0000000
--- a/libtommath/etc/drprimes.txt
+++ /dev/null
@@ -1,9 +0,0 @@
-300-bit prime:
-p == 2037035976334486086268445688409378161051468393665936250636140449354381298610415201576637819
-
-540-bit prime:
-p == 3599131035634557106248430806148785487095757694641533306480604458089470064537190296255232548883112685719936728506816716098566612844395439751206810991770626477344739
-
-780-bit prime:
-p == 6359114106063703798370219984742410466332205126109989319225557147754704702203399726411277962562135973685197744935448875852478791860694279747355800678568677946181447581781401213133886609947027230004277244697462656003655947791725966271167
-
diff --git a/libtommath/etc/makefile b/libtommath/etc/makefile
deleted file mode 100644
index 99154d8..0000000
--- a/libtommath/etc/makefile
+++ /dev/null
@@ -1,50 +0,0 @@
-CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops -I../
-
-# default lib name (requires install with root)
-# LIBNAME=-ltommath
-
-# libname when you can't install the lib with install
-LIBNAME=../libtommath.a
-
-#provable primes
-pprime: pprime.o
- $(CC) pprime.o $(LIBNAME) -o pprime
-
-# portable [well requires clock()] tuning app
-tune: tune.o
- $(CC) tune.o $(LIBNAME) -o tune
-
-# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
-tune86: tune.c
- nasm -f coff timer.asm
- $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
-
-# for cygwin
-tune86c: tune.c
- nasm -f gnuwin32 timer.asm
- $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
-
-#make tune86 for linux or any ELF format
-tune86l: tune.c
- nasm -f elf -DUSE_ELF timer.asm
- $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
-
-# spits out mersenne primes
-mersenne: mersenne.o
- $(CC) mersenne.o $(LIBNAME) -o mersenne
-
-# fines DR safe primes for the given config
-drprime: drprime.o
- $(CC) drprime.o $(LIBNAME) -o drprime
-
-# fines 2k safe primes for the given config
-2kprime: 2kprime.o
- $(CC) 2kprime.o $(LIBNAME) -o 2kprime
-
-mont: mont.o
- $(CC) mont.o $(LIBNAME) -o mont
-
-
-clean:
- rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat \
- *.da *.dyn *.dpi *~
diff --git a/libtommath/etc/makefile.icc b/libtommath/etc/makefile.icc
deleted file mode 100644
index 8a1ffff..0000000
--- a/libtommath/etc/makefile.icc
+++ /dev/null
@@ -1,67 +0,0 @@
-CC = icc
-
-CFLAGS += -I../
-
-# optimize for SPEED
-#
-# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
-# -ax? specifies make code specifically for ? but compatible with IA-32
-# -x? specifies compile solely for ? [not specifically IA-32 compatible]
-#
-# where ? is
-# K - PIII
-# W - first P4 [Williamette]
-# N - P4 Northwood
-# P - P4 Prescott
-# B - Blend of P4 and PM [mobile]
-#
-# Default to just generic max opts
-CFLAGS += -O3 -xP -ip
-
-# default lib name (requires install with root)
-# LIBNAME=-ltommath
-
-# libname when you can't install the lib with install
-LIBNAME=../libtommath.a
-
-#provable primes
-pprime: pprime.o
- $(CC) pprime.o $(LIBNAME) -o pprime
-
-# portable [well requires clock()] tuning app
-tune: tune.o
- $(CC) tune.o $(LIBNAME) -o tune
-
-# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
-tune86: tune.c
- nasm -f coff timer.asm
- $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
-
-# for cygwin
-tune86c: tune.c
- nasm -f gnuwin32 timer.asm
- $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
-
-#make tune86 for linux or any ELF format
-tune86l: tune.c
- nasm -f elf -DUSE_ELF timer.asm
- $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
-
-# spits out mersenne primes
-mersenne: mersenne.o
- $(CC) mersenne.o $(LIBNAME) -o mersenne
-
-# fines DR safe primes for the given config
-drprime: drprime.o
- $(CC) drprime.o $(LIBNAME) -o drprime
-
-# fines 2k safe primes for the given config
-2kprime: 2kprime.o
- $(CC) 2kprime.o $(LIBNAME) -o 2kprime
-
-mont: mont.o
- $(CC) mont.o $(LIBNAME) -o mont
-
-
-clean:
- rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat *.il
diff --git a/libtommath/etc/makefile.msvc b/libtommath/etc/makefile.msvc
deleted file mode 100644
index 2833372..0000000
--- a/libtommath/etc/makefile.msvc
+++ /dev/null
@@ -1,23 +0,0 @@
-#MSVC Makefile
-#
-#Tom St Denis
-
-CFLAGS = /I../ /Ox /DWIN32 /W3
-
-pprime: pprime.obj
- cl pprime.obj ../tommath.lib
-
-mersenne: mersenne.obj
- cl mersenne.obj ../tommath.lib
-
-tune: tune.obj
- cl tune.obj ../tommath.lib
-
-mont: mont.obj
- cl mont.obj ../tommath.lib
-
-drprime: drprime.obj
- cl drprime.obj ../tommath.lib
-
-2kprime: 2kprime.obj
- cl 2kprime.obj ../tommath.lib
diff --git a/libtommath/etc/mersenne.c b/libtommath/etc/mersenne.c
deleted file mode 100644
index ae6725a..0000000
--- a/libtommath/etc/mersenne.c
+++ /dev/null
@@ -1,144 +0,0 @@
-/* Finds Mersenne primes using the Lucas-Lehmer test
- *
- * Tom St Denis, tomstdenis@gmail.com
- */
-#include <time.h>
-#include <tommath.h>
-
-int
-is_mersenne (long s, int *pp)
-{
- mp_int n, u;
- int res, k;
-
- *pp = 0;
-
- if ((res = mp_init (&n)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_init (&u)) != MP_OKAY) {
- goto LBL_N;
- }
-
- /* n = 2^s - 1 */
- if ((res = mp_2expt(&n, s)) != MP_OKAY) {
- goto LBL_MU;
- }
- if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
- goto LBL_MU;
- }
-
- /* set u=4 */
- mp_set (&u, 4);
-
- /* for k=1 to s-2 do */
- for (k = 1; k <= s - 2; k++) {
- /* u = u^2 - 2 mod n */
- if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
- goto LBL_MU;
- }
- if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
- goto LBL_MU;
- }
-
- /* make sure u is positive */
- while (u.sign == MP_NEG) {
- if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
- goto LBL_MU;
- }
- }
-
- /* reduce */
- if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
- goto LBL_MU;
- }
- }
-
- /* if u == 0 then its prime */
- if (mp_iszero (&u) == 1) {
- mp_prime_is_prime(&n, 8, pp);
- if (*pp != 1) printf("FAILURE\n");
- }
-
- res = MP_OKAY;
-LBL_MU:mp_clear (&u);
-LBL_N:mp_clear (&n);
- return res;
-}
-
-/* square root of a long < 65536 */
-long
-i_sqrt (long x)
-{
- long x1, x2;
-
- x2 = 16;
- do {
- x1 = x2;
- x2 = x1 - ((x1 * x1) - x) / (2 * x1);
- } while (x1 != x2);
-
- if (x1 * x1 > x) {
- --x1;
- }
-
- return x1;
-}
-
-/* is the long prime by brute force */
-int
-isprime (long k)
-{
- long y, z;
-
- y = i_sqrt (k);
- for (z = 2; z <= y; z++) {
- if ((k % z) == 0)
- return 0;
- }
- return 1;
-}
-
-
-int
-main (void)
-{
- int pp;
- long k;
- clock_t tt;
-
- k = 3;
-
- for (;;) {
- /* start time */
- tt = clock ();
-
- /* test if 2^k - 1 is prime */
- if (is_mersenne (k, &pp) != MP_OKAY) {
- printf ("Whoa error\n");
- return -1;
- }
-
- if (pp == 1) {
- /* count time */
- tt = clock () - tt;
-
- /* display if prime */
- printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
- }
-
- /* goto next odd exponent */
- k += 2;
-
- /* but make sure its prime */
- while (isprime (k) == 0) {
- k += 2;
- }
- }
- return 0;
-}
-
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
diff --git a/libtommath/etc/mont.c b/libtommath/etc/mont.c
deleted file mode 100644
index 45cf3fd..0000000
--- a/libtommath/etc/mont.c
+++ /dev/null
@@ -1,50 +0,0 @@
-/* tests the montgomery routines */
-#include <tommath.h>
-
-int main(void)
-{
- mp_int modulus, R, p, pp;
- mp_digit mp;
- long x, y;
-
- srand(time(NULL));
- mp_init_multi(&modulus, &R, &p, &pp, NULL);
-
- /* loop through various sizes */
- for (x = 4; x < 256; x++) {
- printf("DIGITS == %3ld...", x); fflush(stdout);
-
- /* make up the odd modulus */
- mp_rand(&modulus, x);
- modulus.dp[0] |= 1;
-
- /* now find the R value */
- mp_montgomery_calc_normalization(&R, &modulus);
- mp_montgomery_setup(&modulus, &mp);
-
- /* now run through a bunch tests */
- for (y = 0; y < 1000; y++) {
- mp_rand(&p, x/2); /* p = random */
- mp_mul(&p, &R, &pp); /* pp = R * p */
- mp_montgomery_reduce(&pp, &modulus, mp);
-
- /* should be equal to p */
- if (mp_cmp(&pp, &p) != MP_EQ) {
- printf("FAILURE!\n");
- exit(-1);
- }
- }
- printf("PASSED\n");
- }
-
- return 0;
-}
-
-
-
-
-
-
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
diff --git a/libtommath/etc/pprime.c b/libtommath/etc/pprime.c
deleted file mode 100644
index 9f94423..0000000
--- a/libtommath/etc/pprime.c
+++ /dev/null
@@ -1,400 +0,0 @@
-/* Generates provable primes
- *
- * See http://gmail.com:8080/papers/pp.pdf for more info.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
- */
-#include <time.h>
-#include "tommath.h"
-
-int n_prime;
-FILE *primes;
-
-/* fast square root */
-static mp_digit
-i_sqrt (mp_word x)
-{
- mp_word x1, x2;
-
- x2 = x;
- do {
- x1 = x2;
- x2 = x1 - ((x1 * x1) - x) / (2 * x1);
- } while (x1 != x2);
-
- if (x1 * x1 > x) {
- --x1;
- }
-
- return x1;
-}
-
-
-/* generates a prime digit */
-static void gen_prime (void)
-{
- mp_digit r, x, y, next;
- FILE *out;
-
- out = fopen("pprime.dat", "wb");
-
- /* write first set of primes */
- r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
- r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
-
- /* get square root, since if 'r' is composite its factors must be < than this */
- y = i_sqrt (r);
- next = (y + 1) * (y + 1);
-
- for (;;) {
- do {
- r += 2; /* next candidate */
- r &= MP_MASK;
- if (r < 31) break;
-
- /* update sqrt ? */
- if (next <= r) {
- ++y;
- next = (y + 1) * (y + 1);
- }
-
- /* loop if divisible by 3,5,7,11,13,17,19,23,29 */
- if ((r % 3) == 0) {
- x = 0;
- continue;
- }
- if ((r % 5) == 0) {
- x = 0;
- continue;
- }
- if ((r % 7) == 0) {
- x = 0;
- continue;
- }
- if ((r % 11) == 0) {
- x = 0;
- continue;
- }
- if ((r % 13) == 0) {
- x = 0;
- continue;
- }
- if ((r % 17) == 0) {
- x = 0;
- continue;
- }
- if ((r % 19) == 0) {
- x = 0;
- continue;
- }
- if ((r % 23) == 0) {
- x = 0;
- continue;
- }
- if ((r % 29) == 0) {
- x = 0;
- continue;
- }
-
- /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
- for (x = 30; x <= y; x += 30) {
- if ((r % (x + 1)) == 0) {
- x = 0;
- break;
- }
- if ((r % (x + 7)) == 0) {
- x = 0;
- break;
- }
- if ((r % (x + 11)) == 0) {
- x = 0;
- break;
- }
- if ((r % (x + 13)) == 0) {
- x = 0;
- break;
- }
- if ((r % (x + 17)) == 0) {
- x = 0;
- break;
- }
- if ((r % (x + 19)) == 0) {
- x = 0;
- break;
- }
- if ((r % (x + 23)) == 0) {
- x = 0;
- break;
- }
- if ((r % (x + 29)) == 0) {
- x = 0;
- break;
- }
- }
- } while (x == 0);
- if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
- if (r < 31) break;
- }
-
- fclose(out);
-}
-
-void load_tab(void)
-{
- primes = fopen("pprime.dat", "rb");
- if (primes == NULL) {
- gen_prime();
- primes = fopen("pprime.dat", "rb");
- }
- fseek(primes, 0, SEEK_END);
- n_prime = ftell(primes) / sizeof(mp_digit);
-}
-
-mp_digit prime_digit(void)
-{
- int n;
- mp_digit d;
-
- n = abs(rand()) % n_prime;
- fseek(primes, n * sizeof(mp_digit), SEEK_SET);
- fread(&d, 1, sizeof(mp_digit), primes);
- return d;
-}
-
-
-/* makes a prime of at least k bits */
-int
-pprime (int k, int li, mp_int * p, mp_int * q)
-{
- mp_int a, b, c, n, x, y, z, v;
- int res, ii;
- static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
-
- /* single digit ? */
- if (k <= (int) DIGIT_BIT) {
- mp_set (p, prime_digit ());
- return MP_OKAY;
- }
-
- if ((res = mp_init (&c)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_init (&v)) != MP_OKAY) {
- goto LBL_C;
- }
-
- /* product of first 50 primes */
- if ((res =
- mp_read_radix (&v,
- "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
- 10)) != MP_OKAY) {
- goto LBL_V;
- }
-
- if ((res = mp_init (&a)) != MP_OKAY) {
- goto LBL_V;
- }
-
- /* set the prime */
- mp_set (&a, prime_digit ());
-
- if ((res = mp_init (&b)) != MP_OKAY) {
- goto LBL_A;
- }
-
- if ((res = mp_init (&n)) != MP_OKAY) {
- goto LBL_B;
- }
-
- if ((res = mp_init (&x)) != MP_OKAY) {
- goto LBL_N;
- }
-
- if ((res = mp_init (&y)) != MP_OKAY) {
- goto LBL_X;
- }
-
- if ((res = mp_init (&z)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- /* now loop making the single digit */
- while (mp_count_bits (&a) < k) {
- fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
- fflush (stderr);
- top:
- mp_set (&b, prime_digit ());
-
- /* now compute z = a * b * 2 */
- if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
- goto LBL_Z;
- }
-
- if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
- goto LBL_Z;
- }
-
- if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
- goto LBL_Z;
- }
-
- /* n = z + 1 */
- if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
- goto LBL_Z;
- }
-
- /* check (n, v) == 1 */
- if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
- goto LBL_Z;
- }
-
- if (mp_cmp_d (&y, 1) != MP_EQ)
- goto top;
-
- /* now try base x=bases[ii] */
- for (ii = 0; ii < li; ii++) {
- mp_set (&x, bases[ii]);
-
- /* compute x^a mod n */
- if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
- goto LBL_Z;
- }
-
- /* if y == 1 loop */
- if (mp_cmp_d (&y, 1) == MP_EQ)
- continue;
-
- /* now x^2a mod n */
- if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
- goto LBL_Z;
- }
-
- if (mp_cmp_d (&y, 1) == MP_EQ)
- continue;
-
- /* compute x^b mod n */
- if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
- goto LBL_Z;
- }
-
- /* if y == 1 loop */
- if (mp_cmp_d (&y, 1) == MP_EQ)
- continue;
-
- /* now x^2b mod n */
- if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
- goto LBL_Z;
- }
-
- if (mp_cmp_d (&y, 1) == MP_EQ)
- continue;
-
- /* compute x^c mod n == x^ab mod n */
- if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
- goto LBL_Z;
- }
-
- /* if y == 1 loop */
- if (mp_cmp_d (&y, 1) == MP_EQ)
- continue;
-
- /* now compute (x^c mod n)^2 */
- if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
- goto LBL_Z;
- }
-
- /* y should be 1 */
- if (mp_cmp_d (&y, 1) != MP_EQ)
- continue;
- break;
- }
-
- /* no bases worked? */
- if (ii == li)
- goto top;
-
-{
- char buf[4096];
-
- mp_toradix(&n, buf, 10);
- printf("Certificate of primality for:\n%s\n\n", buf);
- mp_toradix(&a, buf, 10);
- printf("A == \n%s\n\n", buf);
- mp_toradix(&b, buf, 10);
- printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
- printf("----------------------------------------------------------------\n");
-}
-
- /* a = n */
- mp_copy (&n, &a);
- }
-
- /* get q to be the order of the large prime subgroup */
- mp_sub_d (&n, 1, q);
- mp_div_2 (q, q);
- mp_div (q, &b, q, NULL);
-
- mp_exch (&n, p);
-
- res = MP_OKAY;
-LBL_Z:mp_clear (&z);
-LBL_Y:mp_clear (&y);
-LBL_X:mp_clear (&x);
-LBL_N:mp_clear (&n);
-LBL_B:mp_clear (&b);
-LBL_A:mp_clear (&a);
-LBL_V:mp_clear (&v);
-LBL_C:mp_clear (&c);
- return res;
-}
-
-
-int
-main (void)
-{
- mp_int p, q;
- char buf[4096];
- int k, li;
- clock_t t1;
-
- srand (time (NULL));
- load_tab();
-
- printf ("Enter # of bits: \n");
- fgets (buf, sizeof (buf), stdin);
- sscanf (buf, "%d", &k);
-
- printf ("Enter number of bases to try (1 to 8):\n");
- fgets (buf, sizeof (buf), stdin);
- sscanf (buf, "%d", &li);
-
-
- mp_init (&p);
- mp_init (&q);
-
- t1 = clock ();
- pprime (k, li, &p, &q);
- t1 = clock () - t1;
-
- printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
-
- mp_toradix (&p, buf, 10);
- printf ("P == %s\n", buf);
- mp_toradix (&q, buf, 10);
- printf ("Q == %s\n", buf);
-
- return 0;
-}
-
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
diff --git a/libtommath/etc/prime.1024 b/libtommath/etc/prime.1024
deleted file mode 100644
index 5636e2d..0000000
--- a/libtommath/etc/prime.1024
+++ /dev/null
@@ -1,414 +0,0 @@
-Enter # of bits:
-Enter number of bases to try (1 to 8):
-Certificate of primality for:
-36360080703173363
-
-A ==
-89963569
-
-B ==
-202082249
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-4851595597739856136987139
-
-A ==
-36360080703173363
-
-B ==
-66715963
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-19550639734462621430325731591027
-
-A ==
-4851595597739856136987139
-
-B ==
-2014867
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-10409036141344317165691858509923818734539
-
-A ==
-19550639734462621430325731591027
-
-B ==
-266207047
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-1049829549988285012736475602118094726647504414203
-
-A ==
-10409036141344317165691858509923818734539
-
-B ==
-50428759
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-77194737385528288387712399596835459931920358844586615003
-
-A ==
-1049829549988285012736475602118094726647504414203
-
-B ==
-36765367
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-35663756695365208574443215955488689578374232732893628896541201763
-
-A ==
-77194737385528288387712399596835459931920358844586615003
-
-B ==
-230998627
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-16711831463502165169495622246023119698415848120292671294127567620396469803
-
-A ==
-35663756695365208574443215955488689578374232732893628896541201763
-
-B ==
-234297127
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-6163534781560285962890718925972249753147470953579266394395432475622345597103528739
-
-A ==
-16711831463502165169495622246023119698415848120292671294127567620396469803
-
-B ==
-184406323
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
-
-A ==
-6163534781560285962890718925972249753147470953579266394395432475622345597103528739
-
-B ==
-66054487
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
-
-A ==
-814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
-
-B ==
-108362239
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
-
-A ==
-176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
-
-B ==
-127286707
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
-
-A ==
-44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
-
-B ==
-229284691
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
-
-A ==
-20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
-
-B ==
-152800771
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
-
-A ==
-6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
-
-B ==
-246595759
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
-
-A ==
-3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
-
-B ==
-4252063
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
-
-A ==
-26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
-
-B ==
-210605419
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
-
-A ==
-11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
-
-B ==
-74170111
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
-
-A ==
-1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
-
-B ==
-260016763
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
-
-A ==
-857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
-
-B ==
-102563707
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
-
-A ==
-175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
-
-B ==
-137747527
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
-
-A ==
-48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
-
-B ==
-135672847
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
-
-A ==
-13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
-
-B ==
-241523587
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
-
-A ==
-6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
-
-B ==
-248388667
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
-
-A ==
-3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
-
-B ==
-61849651
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
-
-A ==
-390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
-
-B ==
-62201707
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
-
-A ==
-48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
-
-B ==
-264832231
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
-
-A ==
-25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
-
-B ==
-54494047
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
-
-A ==
-2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
-
-B ==
-131594179
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
-
-A ==
-738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
-
-B ==
-266107603
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
-
-A ==
-392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
-
-B ==
-214408111
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
-
-A ==
-168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
-
-B ==
-44122723
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
-
-A ==
-14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
-
-B ==
-40808563
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
-
-A ==
-1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
-
-B ==
-77035759
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
-
-A ==
-186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
-
-B ==
-222383587
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
-
-A ==
-83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
-
-B ==
-23407687
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
-
-A ==
-3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
-
-B ==
-213701827
-
-G == 2
-----------------------------------------------------------------
-
-
-Took 33057 ticks, 1048 bits
-P == 1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
-Q == 3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
diff --git a/libtommath/etc/prime.512 b/libtommath/etc/prime.512
deleted file mode 100644
index cb6ec30..0000000
--- a/libtommath/etc/prime.512
+++ /dev/null
@@ -1,205 +0,0 @@
-Enter # of bits:
-Enter number of bases to try (1 to 8):
-Certificate of primality for:
-85933926807634727
-
-A ==
-253758023
-
-B ==
-169322581
-
-G == 5
-----------------------------------------------------------------
-Certificate of primality for:
-23930198825086241462113799
-
-A ==
-85933926807634727
-
-B ==
-139236037
-
-G == 11
-----------------------------------------------------------------
-Certificate of primality for:
-6401844647261612602378676572510019
-
-A ==
-23930198825086241462113799
-
-B ==
-133760791
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-269731366027728777712034888684015329354259
-
-A ==
-6401844647261612602378676572510019
-
-B ==
-21066691
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-37942338209025571690075025099189467992329684223707
-
-A ==
-269731366027728777712034888684015329354259
-
-B ==
-70333567
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-15306904714258982484473490774101705363308327436988160248323
-
-A ==
-37942338209025571690075025099189467992329684223707
-
-B ==
-201712723
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-1616744757018513392810355191503853040357155275733333124624513530099
-
-A ==
-15306904714258982484473490774101705363308327436988160248323
-
-B ==
-52810963
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-464222094814208047161771036072622485188658077940154689939306386289983787983
-
-A ==
-1616744757018513392810355191503853040357155275733333124624513530099
-
-B ==
-143566909
-
-G == 5
-----------------------------------------------------------------
-Certificate of primality for:
-187429931674053784626487560729643601208757374994177258429930699354770049369025096447
-
-A ==
-464222094814208047161771036072622485188658077940154689939306386289983787983
-
-B ==
-201875281
-
-G == 5
-----------------------------------------------------------------
-Certificate of primality for:
-100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
-
-A ==
-187429931674053784626487560729643601208757374994177258429930699354770049369025096447
-
-B ==
-268311523
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
-
-A ==
-100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
-
-B ==
-5834287
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
-
-A ==
-1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
-
-B ==
-81567097
-
-G == 5
-----------------------------------------------------------------
-Certificate of primality for:
-57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
-
-A ==
-191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
-
-B ==
-151095433
-
-G == 7
-----------------------------------------------------------------
-Certificate of primality for:
-13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
-
-A ==
-57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
-
-B ==
-119178679
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
-
-A ==
-13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
-
-B ==
-256552363
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
-
-A ==
-7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
-
-B ==
-86720989
-
-G == 5
-----------------------------------------------------------------
-Certificate of primality for:
-446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
-
-A ==
-1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
-
-B ==
-182015287
-
-G == 2
-----------------------------------------------------------------
-Certificate of primality for:
-5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
-
-A ==
-446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
-
-B ==
-5920567
-
-G == 2
-----------------------------------------------------------------
-
-
-Took 3454 ticks, 521 bits
-P == 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
-Q == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
diff --git a/libtommath/etc/timer.asm b/libtommath/etc/timer.asm
deleted file mode 100644
index 326a947..0000000
--- a/libtommath/etc/timer.asm
+++ /dev/null
@@ -1,37 +0,0 @@
-; x86 timer in NASM
-;
-; Tom St Denis, tomstdenis@iahu.ca
-[bits 32]
-[section .data]
-time dd 0, 0
-
-[section .text]
-
-%ifdef USE_ELF
-[global t_start]
-t_start:
-%else
-[global _t_start]
-_t_start:
-%endif
- push edx
- push eax
- rdtsc
- mov [time+0],edx
- mov [time+4],eax
- pop eax
- pop edx
- ret
-
-%ifdef USE_ELF
-[global t_read]
-t_read:
-%else
-[global _t_read]
-_t_read:
-%endif
- rdtsc
- sub eax,[time+4]
- sbb edx,[time+0]
- ret
- \ No newline at end of file
diff --git a/libtommath/etc/tune.c b/libtommath/etc/tune.c
deleted file mode 100644
index c2ac998..0000000
--- a/libtommath/etc/tune.c
+++ /dev/null
@@ -1,145 +0,0 @@
-/* Tune the Karatsuba parameters
- *
- * Tom St Denis, tomstdenis@gmail.com
- */
-#include <tommath.h>
-#include <time.h>
-
-/* how many times todo each size mult. Depends on your computer. For slow computers
- * this can be low like 5 or 10. For fast [re: Athlon] should be 25 - 50 or so
- */
-#define TIMES (1UL<<14UL)
-
-#ifndef X86_TIMER
-
-/* RDTSC from Scott Duplichan */
-static ulong64 TIMFUNC (void)
- {
- #if defined __GNUC__
- #if defined(__i386__) || defined(__x86_64__)
- /* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
- * the old code always got a warning issued by gcc, clang did not complain...
- */
- unsigned hi, lo;
- __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
- return ((ulong64)lo)|( ((ulong64)hi)<<32);
- #else /* gcc-IA64 version */
- unsigned long result;
- __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
- while (__builtin_expect ((int) result == -1, 0))
- __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
- return result;
- #endif
-
- // Microsoft and Intel Windows compilers
- #elif defined _M_IX86
- __asm rdtsc
- #elif defined _M_AMD64
- return __rdtsc ();
- #elif defined _M_IA64
- #if defined __INTEL_COMPILER
- #include <ia64intrin.h>
- #endif
- return __getReg (3116);
- #else
- #error need rdtsc function for this build
- #endif
- }
-
-
-/* generic ISO C timer */
-ulong64 LBL_T;
-void t_start(void) { LBL_T = TIMFUNC(); }
-ulong64 t_read(void) { return TIMFUNC() - LBL_T; }
-
-#else
-extern void t_start(void);
-extern ulong64 t_read(void);
-#endif
-
-ulong64 time_mult(int size, int s)
-{
- unsigned long x;
- mp_int a, b, c;
- ulong64 t1;
-
- mp_init (&a);
- mp_init (&b);
- mp_init (&c);
-
- mp_rand (&a, size);
- mp_rand (&b, size);
-
- if (s == 1) {
- KARATSUBA_MUL_CUTOFF = size;
- } else {
- KARATSUBA_MUL_CUTOFF = 100000;
- }
-
- t_start();
- for (x = 0; x < TIMES; x++) {
- mp_mul(&a,&b,&c);
- }
- t1 = t_read();
- mp_clear (&a);
- mp_clear (&b);
- mp_clear (&c);
- return t1;
-}
-
-ulong64 time_sqr(int size, int s)
-{
- unsigned long x;
- mp_int a, b;
- ulong64 t1;
-
- mp_init (&a);
- mp_init (&b);
-
- mp_rand (&a, size);
-
- if (s == 1) {
- KARATSUBA_SQR_CUTOFF = size;
- } else {
- KARATSUBA_SQR_CUTOFF = 100000;
- }
-
- t_start();
- for (x = 0; x < TIMES; x++) {
- mp_sqr(&a,&b);
- }
- t1 = t_read();
- mp_clear (&a);
- mp_clear (&b);
- return t1;
-}
-
-int
-main (void)
-{
- ulong64 t1, t2;
- int x, y;
-
- for (x = 8; ; x += 2) {
- t1 = time_mult(x, 0);
- t2 = time_mult(x, 1);
- printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
- if (t2 < t1) break;
- }
- y = x;
-
- for (x = 8; ; x += 2) {
- t1 = time_sqr(x, 0);
- t2 = time_sqr(x, 1);
- printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
- if (t2 < t1) break;
- }
- printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
- printf("KARATSUBA_SQR_CUTOFF = %d\n", x);
-
- return 0;
-}
-
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */