summaryrefslogtreecommitdiffstats
path: root/libtommath/mtest/mpi.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtommath/mtest/mpi.c')
-rw-r--r--libtommath/mtest/mpi.c176
1 files changed, 91 insertions, 85 deletions
diff --git a/libtommath/mtest/mpi.c b/libtommath/mtest/mpi.c
index 4566e89..567b12d 100644
--- a/libtommath/mtest/mpi.c
+++ b/libtommath/mtest/mpi.c
@@ -5,6 +5,8 @@
Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
Arbitrary precision integer arithmetic library
+
+ $Id$
*/
#include "mpi.h"
@@ -20,7 +22,7 @@
#define DIAG(T,V)
#endif
-/*
+/*
If MP_LOGTAB is not defined, use the math library to compute the
logarithms on the fly. Otherwise, use the static table below.
Pick which works best for your system.
@@ -31,7 +33,7 @@
/*
A table of the logs of 2 for various bases (the 0 and 1 entries of
- this table are meaningless and should not be referenced).
+ this table are meaningless and should not be referenced).
This table is used to compute output lengths for the mp_toradix()
function. Since a number n in radix r takes up about log_r(n)
@@ -41,7 +43,7 @@
log_r(n) = log_2(n) * log_r(2)
This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
- which are the output bases supported.
+ which are the output bases supported.
*/
#include "logtab.h"
@@ -102,7 +104,7 @@ static const char *const mp_err_string[] = {
/* Value to digit maps for radix conversion */
/* s_dmap_1 - standard digits and letters */
-static const char *s_dmap_1 =
+static const char *s_dmap_1 =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#if 0
@@ -115,7 +117,7 @@ static const char *s_dmap_2 =
/* {{{ Static function declarations */
-/*
+/*
If MP_MACRO is false, these will be defined as actual functions;
otherwise, suitable macro definitions will be used. This works
around the fact that ANSI C89 doesn't support an 'inline' keyword
@@ -256,7 +258,7 @@ mp_err mp_init_array(mp_int mp[], int count)
return MP_OKAY;
CLEANUP:
- while(--pos >= 0)
+ while(--pos >= 0)
mp_clear(&mp[pos]);
return res;
@@ -353,7 +355,7 @@ mp_err mp_copy(mp_int *from, mp_int *to)
if(ALLOC(to) >= USED(from)) {
s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
-
+
} else {
if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
return MP_MEM;
@@ -443,7 +445,7 @@ void mp_clear_array(mp_int mp[], int count)
{
ARGCHK(mp != NULL && count > 0, MP_BADARG);
- while(--count >= 0)
+ while(--count >= 0)
mp_clear(&mp[count]);
} /* end mp_clear_array() */
@@ -453,7 +455,7 @@ void mp_clear_array(mp_int mp[], int count)
/* {{{ mp_zero(mp) */
/*
- mp_zero(mp)
+ mp_zero(mp)
Set mp to zero. Does not change the allocated size of the structure,
and therefore cannot fail (except on a bad argument, which we ignore)
@@ -504,7 +506,7 @@ mp_err mp_set_int(mp_int *mp, long z)
if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
return res;
- res = s_mp_add_d(mp,
+ res = s_mp_add_d(mp,
(mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
if(res != MP_OKAY)
return res;
@@ -839,9 +841,9 @@ mp_err mp_neg(mp_int *a, mp_int *b)
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
- if(s_mp_cmp_d(b, 0) == MP_EQ)
+ if(s_mp_cmp_d(b, 0) == MP_EQ)
SIGN(b) = MP_ZPOS;
- else
+ else
SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
return MP_OKAY;
@@ -868,7 +870,7 @@ mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */
/* Commutativity of addition lets us do this in either order,
- so we avoid having to use a temporary even if the result
+ so we avoid having to use a temporary even if the result
is supposed to replace the output
*/
if(c == b) {
@@ -878,14 +880,14 @@ mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
return res;
- if((res = s_mp_add(c, b)) != MP_OKAY)
+ if((res = s_mp_add(c, b)) != MP_OKAY)
return res;
}
} else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */
/* If the output is going to be clobbered, we will use a temporary
- variable; otherwise, we'll do it without touching the memory
+ variable; otherwise, we'll do it without touching the memory
allocator at all, if possible
*/
if(c == b) {
@@ -1017,7 +1019,7 @@ mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
mp_clear(&tmp);
} else {
- if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
+ if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
return res;
if((res = s_mp_sub(c, a)) != MP_OKAY)
@@ -1064,12 +1066,12 @@ mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
if((res = s_mp_mul(c, b)) != MP_OKAY)
return res;
}
-
+
if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
SIGN(c) = MP_ZPOS;
else
SIGN(c) = sgn;
-
+
return MP_OKAY;
} /* end mp_mul() */
@@ -1158,7 +1160,7 @@ mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
return res;
}
- if(q)
+ if(q)
mp_zero(q);
return MP_OKAY;
@@ -1204,10 +1206,10 @@ mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
SIGN(&rtmp) = MP_ZPOS;
/* Copy output, if it is needed */
- if(q)
+ if(q)
s_mp_exch(&qtmp, q);
- if(r)
+ if(r)
s_mp_exch(&rtmp, r);
CLEANUP:
@@ -1262,7 +1264,7 @@ mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
mp_int s, x;
mp_err res;
mp_digit d;
- int dig, bit;
+ unsigned int bit, dig;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
@@ -1284,12 +1286,12 @@ mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
/* Loop over bits of each non-maximal digit */
for(bit = 0; bit < DIGIT_BIT; bit++) {
if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY)
goto CLEANUP;
}
d >>= 1;
-
+
if((res = s_mp_sqr(&x)) != MP_OKAY)
goto CLEANUP;
}
@@ -1309,7 +1311,7 @@ mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
if((res = s_mp_sqr(&x)) != MP_OKAY)
goto CLEANUP;
}
-
+
if(mp_iseven(b))
SIGN(&s) = SIGN(a);
@@ -1360,7 +1362,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
/*
If |a| > m, we need to divide to get the remainder and take the
- absolute value.
+ absolute value.
If |a| < m, we don't need to do any division, just copy and adjust
the sign (if a is negative).
@@ -1374,7 +1376,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
if((mag = s_mp_cmp(a, m)) > 0) {
if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
return res;
-
+
if(SIGN(c) == MP_NEG) {
if((res = mp_add(c, m, c)) != MP_OKAY)
return res;
@@ -1389,7 +1391,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
return res;
}
-
+
} else {
mp_zero(c);
@@ -1462,9 +1464,9 @@ mp_err mp_sqrt(mp_int *a, mp_int *b)
return MP_RANGE;
/* Special cases for zero and one, trivial */
- if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
+ if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
return mp_copy(a, b);
-
+
/* Initialize the temporaries we'll use below */
if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
return res;
@@ -1506,7 +1508,7 @@ mp_add_d(&x, 1, &x);
CLEANUP:
mp_clear(&x);
X:
- mp_clear(&t);
+ mp_clear(&t);
return res;
@@ -1624,7 +1626,7 @@ mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
Compute c = (a ** b) mod m. Uses a standard square-and-multiply
method with modular reductions at each step. (This is basically the
same code as mp_expt(), except for the addition of the reductions)
-
+
The modular reductions are done using Barrett's algorithm (see
s_mp_reduce() below for details)
*/
@@ -1635,7 +1637,7 @@ mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
mp_err res;
mp_digit d, *db = DIGITS(b);
mp_size ub = USED(b);
- int dig, bit;
+ unsigned int bit, dig;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
@@ -1653,7 +1655,7 @@ mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
mp_set(&s, 1);
/* mu = b^2k / m */
- s_mp_add_d(&mu, 1);
+ s_mp_add_d(&mu, 1);
s_mp_lshd(&mu, 2 * USED(m));
if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
goto CLEANUP;
@@ -1864,7 +1866,7 @@ int mp_cmp_int(mp_int *a, long z)
int out;
ARGCHK(a != NULL, MP_EQ);
-
+
mp_init(&tmp); mp_set_int(&tmp, z);
out = mp_cmp(a, &tmp);
mp_clear(&tmp);
@@ -1951,13 +1953,13 @@ mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
if(mp_isodd(&u)) {
if((res = mp_copy(&v, &t)) != MP_OKAY)
goto CLEANUP;
-
+
/* t = -v */
if(SIGN(&v) == MP_ZPOS)
SIGN(&t) = MP_NEG;
else
SIGN(&t) = MP_ZPOS;
-
+
} else {
if((res = mp_copy(&u, &t)) != MP_OKAY)
goto CLEANUP;
@@ -2150,7 +2152,7 @@ mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
if(y)
if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
-
+
if(g)
if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
@@ -2253,7 +2255,7 @@ void mp_print(mp_int *mp, FILE *ofp)
/* {{{ mp_read_signed_bin(mp, str, len) */
-/*
+/*
mp_read_signed_bin(mp, str, len)
Read in a raw value (base 256) into the given mp_int
@@ -2330,16 +2332,16 @@ mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
return res;
}
-
+
return MP_OKAY;
-
+
} /* end mp_read_unsigned_bin() */
/* }}} */
/* {{{ mp_unsigned_bin_size(mp) */
-int mp_unsigned_bin_size(mp_int *mp)
+int mp_unsigned_bin_size(mp_int *mp)
{
mp_digit topdig;
int count;
@@ -2385,7 +2387,7 @@ mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str)
/* Generate digits in reverse order */
while(dp < end) {
- int ix;
+ unsigned int ix;
d = *dp;
for(ix = 0; ix < sizeof(mp_digit); ++ix) {
@@ -2438,7 +2440,7 @@ int mp_count_bits(mp_int *mp)
}
return len;
-
+
} /* end mp_count_bits() */
/* }}} */
@@ -2460,14 +2462,14 @@ mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix)
mp_err res;
mp_sign sig = MP_ZPOS;
- ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
+ ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
MP_BADARG);
mp_zero(mp);
/* Skip leading non-digit characters until a digit or '-' or '+' */
- while(str[ix] &&
- (s_mp_tovalue(str[ix], radix) < 0) &&
+ while(str[ix] &&
+ (s_mp_tovalue(str[ix], radix) < 0) &&
str[ix] != '-' &&
str[ix] != '+') {
++ix;
@@ -2523,7 +2525,7 @@ int mp_radix_size(mp_int *mp, int radix)
/* num = number of digits
qty = number of bits per digit
radix = target base
-
+
Return the number of digits in the specified radix that would be
needed to express 'num' digits of 'qty' bits each.
*/
@@ -2539,7 +2541,7 @@ int mp_value_radix_size(int num, int qty, int radix)
/* {{{ mp_toradix(mp, str, radix) */
-mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix)
+mp_err mp_toradix(mp_int *mp, char *str, int radix)
{
int ix, pos = 0;
@@ -2585,14 +2587,14 @@ mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix)
/* Reverse the digits and sign indicator */
ix = 0;
while(ix < pos) {
- char tmp = str[ix];
+ char _tmp = str[ix];
str[ix] = str[pos];
- str[pos] = tmp;
+ str[pos] = _tmp;
++ix;
--pos;
}
-
+
mp_clear(&tmp);
}
@@ -2804,18 +2806,18 @@ void s_mp_exch(mp_int *a, mp_int *b)
/* {{{ s_mp_lshd(mp, p) */
-/*
+/*
Shift mp leftward by p digits, growing if needed, and zero-filling
the in-shifted digits at the right end. This is a convenient
alternative to multiplication by powers of the radix
- */
+ */
mp_err s_mp_lshd(mp_int *mp, mp_size p)
{
mp_err res;
mp_size pos;
mp_digit *dp;
- int ix;
+ int ix;
if(p == 0)
return MP_OKAY;
@@ -2827,11 +2829,11 @@ mp_err s_mp_lshd(mp_int *mp, mp_size p)
dp = DIGITS(mp);
/* Shift all the significant figures over as needed */
- for(ix = pos - p; ix >= 0; ix--)
+ for(ix = pos - p; ix >= 0; ix--)
dp[ix + p] = dp[ix];
/* Fill the bottom digits with zeroes */
- for(ix = 0; ix < p; ix++)
+ for(ix = 0; (unsigned)ix < p; ix++)
dp[ix] = 0;
return MP_OKAY;
@@ -2842,7 +2844,7 @@ mp_err s_mp_lshd(mp_int *mp, mp_size p)
/* {{{ s_mp_rshd(mp, p) */
-/*
+/*
Shift mp rightward by p digits. Maintains the invariant that
digits above the precision are all zero. Digits shifted off the
end are lost. Cannot fail.
@@ -2896,7 +2898,7 @@ void s_mp_div_2(mp_int *mp)
mp_err s_mp_mul_2(mp_int *mp)
{
- int ix;
+ unsigned int ix;
mp_digit kin = 0, kout, *dp = DIGITS(mp);
mp_err res;
@@ -2968,7 +2970,7 @@ mp_err s_mp_mul_2d(mp_int *mp, mp_digit d)
mp_err res;
mp_digit save, next, mask, *dp;
mp_size used;
- int ix;
+ unsigned int ix;
if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
return res;
@@ -3052,7 +3054,7 @@ void s_mp_div_2d(mp_int *mp, mp_digit d)
end of the division process).
We multiply by the smallest power of 2 that gives us a leading digit
- at least half the radix. By choosing a power of 2, we simplify the
+ at least half the radix. By choosing a power of 2, we simplify the
multiplication and division steps to simple shifts.
*/
mp_digit s_mp_norm(mp_int *a, mp_int *b)
@@ -3064,7 +3066,7 @@ mp_digit s_mp_norm(mp_int *a, mp_int *b)
t <<= 1;
++d;
}
-
+
if(d != 0) {
s_mp_mul_2d(a, d);
s_mp_mul_2d(b, d);
@@ -3186,14 +3188,14 @@ mp_err s_mp_mul_d(mp_int *a, mp_digit d)
test guarantees we have enough storage to do this safely.
*/
if(k) {
- dp[max] = k;
+ dp[max] = k;
USED(a) = max + 1;
}
s_mp_clamp(a);
return MP_OKAY;
-
+
} /* end s_mp_mul_d() */
/* }}} */
@@ -3287,7 +3289,7 @@ mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */
}
/* If we run out of 'b' digits before we're actually done, make
- sure the carries get propagated upward...
+ sure the carries get propagated upward...
*/
used = USED(a);
while(w && ix < used) {
@@ -3349,7 +3351,7 @@ mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */
/* Clobber any leading zeroes we created */
s_mp_clamp(a);
- /*
+ /*
If there was a borrow out, then |b| > |a| in violation
of our input invariant. We've already done the work,
but we'll at least complain about it...
@@ -3385,7 +3387,7 @@ mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1)));
#else
s_mp_mul_dig(&q, m, um + 1);
-#endif
+#endif
/* x = x - q */
if((res = mp_sub(x, &q, x)) != MP_OKAY)
@@ -3439,7 +3441,7 @@ mp_err s_mp_mul(mp_int *a, mp_int *b)
pb = DIGITS(b);
for(ix = 0; ix < ub; ++ix, ++pb) {
- if(*pb == 0)
+ if(*pb == 0)
continue;
/* Inner product: Digits of a */
@@ -3478,7 +3480,7 @@ void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
for(ix = 0; ix < len; ++ix, ++b) {
if(*b == 0)
continue;
-
+
pa = a;
for(jx = 0; jx < len; ++jx, ++pa) {
pt = out + ix + jx;
@@ -3545,7 +3547,7 @@ mp_err s_mp_sqr(mp_int *a)
*/
for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
mp_word u = 0, v;
-
+
/* Store this in a temporary to avoid indirections later */
pt = pbt + ix + jx;
@@ -3566,7 +3568,7 @@ mp_err s_mp_sqr(mp_int *a)
v = *pt + k;
/* If we do not already have an overflow carry, check to see
- if the addition will cause one, and set the carry out if so
+ if the addition will cause one, and set the carry out if so
*/
u |= ((MP_WORD_MAX - v) < w);
@@ -3590,7 +3592,7 @@ mp_err s_mp_sqr(mp_int *a)
/* If we are carrying out, propagate the carry to the next digit
in the output. This may cascade, so we have to be somewhat
circumspect -- but we will have enough precision in the output
- that we won't overflow
+ that we won't overflow
*/
kx = 1;
while(k) {
@@ -3662,7 +3664,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
while(ix >= 0) {
/* Find a partial substring of a which is at least b */
while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
- if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
+ if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
goto CLEANUP;
if((res = s_mp_lshd(&quot, 1)) != MP_OKAY)
@@ -3674,8 +3676,8 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
}
/* If we didn't find one, we're finished dividing */
- if(s_mp_cmp(&rem, b) < 0)
- break;
+ if(s_mp_cmp(&rem, b) < 0)
+ break;
/* Compute a guess for the next quotient digit */
q = DIGIT(&rem, USED(&rem) - 1);
@@ -3693,7 +3695,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
if((res = s_mp_mul_d(&t, q)) != MP_OKAY)
goto CLEANUP;
- /*
+ /*
If it's too big, back it off. We should not have to do this
more than once, or, in rare cases, twice. Knuth describes a
method by which this could be reduced to a maximum of once, but
@@ -3717,7 +3719,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
}
/* Denormalize remainder */
- if(d != 0)
+ if(d != 0)
s_mp_div_2d(&rem, d);
s_mp_clamp(&quot);
@@ -3725,7 +3727,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
/* Copy quotient back to output */
s_mp_exch(&quot, a);
-
+
/* Copy remainder back to output */
s_mp_exch(&rem, b);
@@ -3755,7 +3757,7 @@ mp_err s_mp_2expt(mp_int *a, mp_digit k)
mp_zero(a);
if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
return res;
-
+
DIGIT(a, dig) |= (1 << bit);
return MP_OKAY;
@@ -3813,7 +3815,7 @@ int s_mp_cmp_d(mp_int *a, mp_digit d)
if(ua > 1)
return MP_GT;
- if(*ap < d)
+ if(*ap < d)
return MP_LT;
else if(*ap > d)
return MP_GT;
@@ -3855,7 +3857,7 @@ int s_mp_ispow2(mp_int *v)
}
return ((uv - 1) * DIGIT_BIT) + extra;
- }
+ }
return -1;
@@ -3899,7 +3901,7 @@ int s_mp_ispow2d(mp_digit d)
int s_mp_tovalue(char ch, int r)
{
int val, xch;
-
+
if(r > 36)
xch = ch;
else
@@ -3915,7 +3917,7 @@ int s_mp_tovalue(char ch, int r)
val = 62;
else if(xch == '/')
val = 63;
- else
+ else
return -1;
if(val < 0 || val >= r)
@@ -3937,7 +3939,7 @@ int s_mp_tovalue(char ch, int r)
The results may be odd if you use a radix < 2 or > 64, you are
expected to know what you're doing.
*/
-
+
char s_mp_todigit(int val, int r, int low)
{
char ch;
@@ -3958,7 +3960,7 @@ char s_mp_todigit(int val, int r, int low)
/* {{{ s_mp_outlen(bits, radix) */
-/*
+/*
Return an estimate for how long a string is needed to hold a radix
r representation of a number with 'bits' significant bits.
@@ -3977,3 +3979,7 @@ int s_mp_outlen(int bits, int r)
/*------------------------------------------------------------------------*/
/* HERE THERE BE DRAGONS */
/* crc==4242132123, version==2, Sat Feb 02 06:43:52 2002 */
+
+/* $Source$ */
+/* $Revision$ */
+/* $Date$ */