diff options
Diffstat (limited to 'libtommath/mtest/mpi.c')
-rw-r--r-- | libtommath/mtest/mpi.c | 3985 |
1 files changed, 0 insertions, 3985 deletions
diff --git a/libtommath/mtest/mpi.c b/libtommath/mtest/mpi.c deleted file mode 100644 index 48dbe27..0000000 --- a/libtommath/mtest/mpi.c +++ /dev/null @@ -1,3985 +0,0 @@ -/* - mpi.c - - by Michael J. Fromberger <sting@linguist.dartmouth.edu> - Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved - - Arbitrary precision integer arithmetic library - - $Id$ - */ - -#include "mpi.h" -#include <stdlib.h> -#include <string.h> -#include <ctype.h> - -#if MP_DEBUG -#include <stdio.h> - -#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);} -#else -#define DIAG(T,V) -#endif - -/* - If MP_LOGTAB is not defined, use the math library to compute the - logarithms on the fly. Otherwise, use the static table below. - Pick which works best for your system. - */ -#if MP_LOGTAB - -/* {{{ s_logv_2[] - log table for 2 in various bases */ - -/* - A table of the logs of 2 for various bases (the 0 and 1 entries of - this table are meaningless and should not be referenced). - - This table is used to compute output lengths for the mp_toradix() - function. Since a number n in radix r takes up about log_r(n) - digits, we estimate the output size by taking the least integer - greater than log_r(n), where: - - log_r(n) = log_2(n) * log_r(2) - - This table, therefore, is a table of log_r(2) for 2 <= r <= 36, - which are the output bases supported. - */ - -#include "logtab.h" - -/* }}} */ -#define LOG_V_2(R) s_logv_2[(R)] - -#else - -#include <math.h> -#define LOG_V_2(R) (log(2.0)/log(R)) - -#endif - -/* Default precision for newly created mp_int's */ -static unsigned int s_mp_defprec = MP_DEFPREC; - -/* {{{ Digit arithmetic macros */ - -/* - When adding and multiplying digits, the results can be larger than - can be contained in an mp_digit. Thus, an mp_word is used. These - macros mask off the upper and lower digits of the mp_word (the - mp_word may be more than 2 mp_digits wide, but we only concern - ourselves with the low-order 2 mp_digits) - - If your mp_word DOES have more than 2 mp_digits, you need to - uncomment the first line, and comment out the second. - */ - -/* #define CARRYOUT(W) (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */ -#define CARRYOUT(W) ((W)>>DIGIT_BIT) -#define ACCUM(W) ((W)&MP_DIGIT_MAX) - -/* }}} */ - -/* {{{ Comparison constants */ - -#define MP_LT -1 -#define MP_EQ 0 -#define MP_GT 1 - -/* }}} */ - -/* {{{ Constant strings */ - -/* Constant strings returned by mp_strerror() */ -static const char *mp_err_string[] = { - "unknown result code", /* say what? */ - "boolean true", /* MP_OKAY, MP_YES */ - "boolean false", /* MP_NO */ - "out of memory", /* MP_MEM */ - "argument out of range", /* MP_RANGE */ - "invalid input parameter", /* MP_BADARG */ - "result is undefined" /* MP_UNDEF */ -}; - -/* Value to digit maps for radix conversion */ - -/* s_dmap_1 - standard digits and letters */ -static const char *s_dmap_1 = - "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; - -#if 0 -/* s_dmap_2 - base64 ordering for digits */ -static const char *s_dmap_2 = - "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; -#endif - -/* }}} */ - -/* {{{ Static function declarations */ - -/* - If MP_MACRO is false, these will be defined as actual functions; - otherwise, suitable macro definitions will be used. This works - around the fact that ANSI C89 doesn't support an 'inline' keyword - (although I hear C9x will ... about bloody time). At present, the - macro definitions are identical to the function bodies, but they'll - expand in place, instead of generating a function call. - - I chose these particular functions to be made into macros because - some profiling showed they are called a lot on a typical workload, - and yet they are primarily housekeeping. - */ -#if MP_MACRO == 0 - void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */ - void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy */ - void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */ - void s_mp_free(void *ptr); /* general free function */ -#else - - /* Even if these are defined as macros, we need to respect the settings - of the MP_MEMSET and MP_MEMCPY configuration options... - */ - #if MP_MEMSET == 0 - #define s_mp_setz(dp, count) \ - {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;} - #else - #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit)) - #endif /* MP_MEMSET */ - - #if MP_MEMCPY == 0 - #define s_mp_copy(sp, dp, count) \ - {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];} - #else - #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit)) - #endif /* MP_MEMCPY */ - - #define s_mp_alloc(nb, ni) calloc(nb, ni) - #define s_mp_free(ptr) {if(ptr) free(ptr);} -#endif /* MP_MACRO */ - -mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */ -mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */ - -void s_mp_clamp(mp_int *mp); /* clip leading zeroes */ - -void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */ - -mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */ -void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */ -void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */ -void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */ -mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place*/ -void s_mp_div_2(mp_int *mp); /* divide by 2 in place */ -mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */ -mp_digit s_mp_norm(mp_int *a, mp_int *b); /* normalize for division */ -mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */ -mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */ -mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */ -mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r); - /* unsigned digit divide */ -mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu); - /* Barrett reduction */ -mp_err s_mp_add(mp_int *a, mp_int *b); /* magnitude addition */ -mp_err s_mp_sub(mp_int *a, mp_int *b); /* magnitude subtract */ -mp_err s_mp_mul(mp_int *a, mp_int *b); /* magnitude multiply */ -#if 0 -void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len); - /* multiply buffers in place */ -#endif -#if MP_SQUARE -mp_err s_mp_sqr(mp_int *a); /* magnitude square */ -#else -#define s_mp_sqr(a) s_mp_mul(a, a) -#endif -mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */ -mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */ -int s_mp_cmp(mp_int *a, mp_int *b); /* magnitude comparison */ -int s_mp_cmp_d(mp_int *a, mp_digit d); /* magnitude digit compare */ -int s_mp_ispow2(mp_int *v); /* is v a power of 2? */ -int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */ - -int s_mp_tovalue(char ch, int r); /* convert ch to value */ -char s_mp_todigit(int val, int r, int low); /* convert val to digit */ -int s_mp_outlen(int bits, int r); /* output length in bytes */ - -/* }}} */ - -/* {{{ Default precision manipulation */ - -unsigned int mp_get_prec(void) -{ - return s_mp_defprec; - -} /* end mp_get_prec() */ - -void mp_set_prec(unsigned int prec) -{ - if(prec == 0) - s_mp_defprec = MP_DEFPREC; - else - s_mp_defprec = prec; - -} /* end mp_set_prec() */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ mp_init(mp) */ - -/* - mp_init(mp) - - Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, - MP_MEM if memory could not be allocated for the structure. - */ - -mp_err mp_init(mp_int *mp) -{ - return mp_init_size(mp, s_mp_defprec); - -} /* end mp_init() */ - -/* }}} */ - -/* {{{ mp_init_array(mp[], count) */ - -mp_err mp_init_array(mp_int mp[], int count) -{ - mp_err res; - int pos; - - ARGCHK(mp !=NULL && count > 0, MP_BADARG); - - for(pos = 0; pos < count; ++pos) { - if((res = mp_init(&mp[pos])) != MP_OKAY) - goto CLEANUP; - } - - return MP_OKAY; - - CLEANUP: - while(--pos >= 0) - mp_clear(&mp[pos]); - - return res; - -} /* end mp_init_array() */ - -/* }}} */ - -/* {{{ mp_init_size(mp, prec) */ - -/* - mp_init_size(mp, prec) - - Initialize a new zero-valued mp_int with at least the given - precision; returns MP_OKAY if successful, or MP_MEM if memory could - not be allocated for the structure. - */ - -mp_err mp_init_size(mp_int *mp, mp_size prec) -{ - ARGCHK(mp != NULL && prec > 0, MP_BADARG); - - if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL) - return MP_MEM; - - SIGN(mp) = MP_ZPOS; - USED(mp) = 1; - ALLOC(mp) = prec; - - return MP_OKAY; - -} /* end mp_init_size() */ - -/* }}} */ - -/* {{{ mp_init_copy(mp, from) */ - -/* - mp_init_copy(mp, from) - - Initialize mp as an exact copy of from. Returns MP_OKAY if - successful, MP_MEM if memory could not be allocated for the new - structure. - */ - -mp_err mp_init_copy(mp_int *mp, mp_int *from) -{ - ARGCHK(mp != NULL && from != NULL, MP_BADARG); - - if(mp == from) - return MP_OKAY; - - if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) - return MP_MEM; - - s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); - USED(mp) = USED(from); - ALLOC(mp) = USED(from); - SIGN(mp) = SIGN(from); - - return MP_OKAY; - -} /* end mp_init_copy() */ - -/* }}} */ - -/* {{{ mp_copy(from, to) */ - -/* - mp_copy(from, to) - - Copies the mp_int 'from' to the mp_int 'to'. It is presumed that - 'to' has already been initialized (if not, use mp_init_copy() - instead). If 'from' and 'to' are identical, nothing happens. - */ - -mp_err mp_copy(mp_int *from, mp_int *to) -{ - ARGCHK(from != NULL && to != NULL, MP_BADARG); - - if(from == to) - return MP_OKAY; - - { /* copy */ - mp_digit *tmp; - - /* - If the allocated buffer in 'to' already has enough space to hold - all the used digits of 'from', we'll re-use it to avoid hitting - the memory allocater more than necessary; otherwise, we'd have - to grow anyway, so we just allocate a hunk and make the copy as - usual - */ - if(ALLOC(to) >= USED(from)) { - s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); - s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); - - } else { - if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) - return MP_MEM; - - s_mp_copy(DIGITS(from), tmp, USED(from)); - - if(DIGITS(to) != NULL) { -#if MP_CRYPTO - s_mp_setz(DIGITS(to), ALLOC(to)); -#endif - s_mp_free(DIGITS(to)); - } - - DIGITS(to) = tmp; - ALLOC(to) = USED(from); - } - - /* Copy the precision and sign from the original */ - USED(to) = USED(from); - SIGN(to) = SIGN(from); - } /* end copy */ - - return MP_OKAY; - -} /* end mp_copy() */ - -/* }}} */ - -/* {{{ mp_exch(mp1, mp2) */ - -/* - mp_exch(mp1, mp2) - - Exchange mp1 and mp2 without allocating any intermediate memory - (well, unless you count the stack space needed for this call and the - locals it creates...). This cannot fail. - */ - -void mp_exch(mp_int *mp1, mp_int *mp2) -{ -#if MP_ARGCHK == 2 - assert(mp1 != NULL && mp2 != NULL); -#else - if(mp1 == NULL || mp2 == NULL) - return; -#endif - - s_mp_exch(mp1, mp2); - -} /* end mp_exch() */ - -/* }}} */ - -/* {{{ mp_clear(mp) */ - -/* - mp_clear(mp) - - Release the storage used by an mp_int, and void its fields so that - if someone calls mp_clear() again for the same int later, we won't - get tollchocked. - */ - -void mp_clear(mp_int *mp) -{ - if(mp == NULL) - return; - - if(DIGITS(mp) != NULL) { -#if MP_CRYPTO - s_mp_setz(DIGITS(mp), ALLOC(mp)); -#endif - s_mp_free(DIGITS(mp)); - DIGITS(mp) = NULL; - } - - USED(mp) = 0; - ALLOC(mp) = 0; - -} /* end mp_clear() */ - -/* }}} */ - -/* {{{ mp_clear_array(mp[], count) */ - -void mp_clear_array(mp_int mp[], int count) -{ - ARGCHK(mp != NULL && count > 0, MP_BADARG); - - while(--count >= 0) - mp_clear(&mp[count]); - -} /* end mp_clear_array() */ - -/* }}} */ - -/* {{{ mp_zero(mp) */ - -/* - mp_zero(mp) - - Set mp to zero. Does not change the allocated size of the structure, - and therefore cannot fail (except on a bad argument, which we ignore) - */ -void mp_zero(mp_int *mp) -{ - if(mp == NULL) - return; - - s_mp_setz(DIGITS(mp), ALLOC(mp)); - USED(mp) = 1; - SIGN(mp) = MP_ZPOS; - -} /* end mp_zero() */ - -/* }}} */ - -/* {{{ mp_set(mp, d) */ - -void mp_set(mp_int *mp, mp_digit d) -{ - if(mp == NULL) - return; - - mp_zero(mp); - DIGIT(mp, 0) = d; - -} /* end mp_set() */ - -/* }}} */ - -/* {{{ mp_set_int(mp, z) */ - -mp_err mp_set_int(mp_int *mp, long z) -{ - int ix; - unsigned long v = abs(z); - mp_err res; - - ARGCHK(mp != NULL, MP_BADARG); - - mp_zero(mp); - if(z == 0) - return MP_OKAY; /* shortcut for zero */ - - for(ix = sizeof(long) - 1; ix >= 0; ix--) { - - if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) - return res; - - res = s_mp_add_d(mp, - (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); - if(res != MP_OKAY) - return res; - - } - - if(z < 0) - SIGN(mp) = MP_NEG; - - return MP_OKAY; - -} /* end mp_set_int() */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ Digit arithmetic */ - -/* {{{ mp_add_d(a, d, b) */ - -/* - mp_add_d(a, d, b) - - Compute the sum b = a + d, for a single digit d. Respects the sign of - its primary addend (single digits are unsigned anyway). - */ - -mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b) -{ - mp_err res = MP_OKAY; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - if((res = mp_copy(a, b)) != MP_OKAY) - return res; - - if(SIGN(b) == MP_ZPOS) { - res = s_mp_add_d(b, d); - } else if(s_mp_cmp_d(b, d) >= 0) { - res = s_mp_sub_d(b, d); - } else { - SIGN(b) = MP_ZPOS; - - DIGIT(b, 0) = d - DIGIT(b, 0); - } - - return res; - -} /* end mp_add_d() */ - -/* }}} */ - -/* {{{ mp_sub_d(a, d, b) */ - -/* - mp_sub_d(a, d, b) - - Compute the difference b = a - d, for a single digit d. Respects the - sign of its subtrahend (single digits are unsigned anyway). - */ - -mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - if((res = mp_copy(a, b)) != MP_OKAY) - return res; - - if(SIGN(b) == MP_NEG) { - if((res = s_mp_add_d(b, d)) != MP_OKAY) - return res; - - } else if(s_mp_cmp_d(b, d) >= 0) { - if((res = s_mp_sub_d(b, d)) != MP_OKAY) - return res; - - } else { - mp_neg(b, b); - - DIGIT(b, 0) = d - DIGIT(b, 0); - SIGN(b) = MP_NEG; - } - - if(s_mp_cmp_d(b, 0) == 0) - SIGN(b) = MP_ZPOS; - - return MP_OKAY; - -} /* end mp_sub_d() */ - -/* }}} */ - -/* {{{ mp_mul_d(a, d, b) */ - -/* - mp_mul_d(a, d, b) - - Compute the product b = a * d, for a single digit d. Respects the sign - of its multiplicand (single digits are unsigned anyway) - */ - -mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - if(d == 0) { - mp_zero(b); - return MP_OKAY; - } - - if((res = mp_copy(a, b)) != MP_OKAY) - return res; - - res = s_mp_mul_d(b, d); - - return res; - -} /* end mp_mul_d() */ - -/* }}} */ - -/* {{{ mp_mul_2(a, c) */ - -mp_err mp_mul_2(mp_int *a, mp_int *c) -{ - mp_err res; - - ARGCHK(a != NULL && c != NULL, MP_BADARG); - - if((res = mp_copy(a, c)) != MP_OKAY) - return res; - - return s_mp_mul_2(c); - -} /* end mp_mul_2() */ - -/* }}} */ - -/* {{{ mp_div_d(a, d, q, r) */ - -/* - mp_div_d(a, d, q, r) - - Compute the quotient q = a / d and remainder r = a mod d, for a - single digit d. Respects the sign of its divisor (single digits are - unsigned anyway). - */ - -mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r) -{ - mp_err res; - mp_digit rem; - int pow; - - ARGCHK(a != NULL, MP_BADARG); - - if(d == 0) - return MP_RANGE; - - /* Shortcut for powers of two ... */ - if((pow = s_mp_ispow2d(d)) >= 0) { - mp_digit mask; - - mask = (1 << pow) - 1; - rem = DIGIT(a, 0) & mask; - - if(q) { - mp_copy(a, q); - s_mp_div_2d(q, pow); - } - - if(r) - *r = rem; - - return MP_OKAY; - } - - /* - If the quotient is actually going to be returned, we'll try to - avoid hitting the memory allocator by copying the dividend into it - and doing the division there. This can't be any _worse_ than - always copying, and will sometimes be better (since it won't make - another copy) - - If it's not going to be returned, we need to allocate a temporary - to hold the quotient, which will just be discarded. - */ - if(q) { - if((res = mp_copy(a, q)) != MP_OKAY) - return res; - - res = s_mp_div_d(q, d, &rem); - if(s_mp_cmp_d(q, 0) == MP_EQ) - SIGN(q) = MP_ZPOS; - - } else { - mp_int qp; - - if((res = mp_init_copy(&qp, a)) != MP_OKAY) - return res; - - res = s_mp_div_d(&qp, d, &rem); - if(s_mp_cmp_d(&qp, 0) == 0) - SIGN(&qp) = MP_ZPOS; - - mp_clear(&qp); - } - - if(r) - *r = rem; - - return res; - -} /* end mp_div_d() */ - -/* }}} */ - -/* {{{ mp_div_2(a, c) */ - -/* - mp_div_2(a, c) - - Compute c = a / 2, disregarding the remainder. - */ - -mp_err mp_div_2(mp_int *a, mp_int *c) -{ - mp_err res; - - ARGCHK(a != NULL && c != NULL, MP_BADARG); - - if((res = mp_copy(a, c)) != MP_OKAY) - return res; - - s_mp_div_2(c); - - return MP_OKAY; - -} /* end mp_div_2() */ - -/* }}} */ - -/* {{{ mp_expt_d(a, d, b) */ - -mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c) -{ - mp_int s, x; - mp_err res; - - ARGCHK(a != NULL && c != NULL, MP_BADARG); - - if((res = mp_init(&s)) != MP_OKAY) - return res; - if((res = mp_init_copy(&x, a)) != MP_OKAY) - goto X; - - DIGIT(&s, 0) = 1; - - while(d != 0) { - if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY) - goto CLEANUP; - } - - d >>= 1; - - if((res = s_mp_sqr(&x)) != MP_OKAY) - goto CLEANUP; - } - - s_mp_exch(&s, c); - -CLEANUP: - mp_clear(&x); -X: - mp_clear(&s); - - return res; - -} /* end mp_expt_d() */ - -/* }}} */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ Full arithmetic */ - -/* {{{ mp_abs(a, b) */ - -/* - mp_abs(a, b) - - Compute b = |a|. 'a' and 'b' may be identical. - */ - -mp_err mp_abs(mp_int *a, mp_int *b) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - if((res = mp_copy(a, b)) != MP_OKAY) - return res; - - SIGN(b) = MP_ZPOS; - - return MP_OKAY; - -} /* end mp_abs() */ - -/* }}} */ - -/* {{{ mp_neg(a, b) */ - -/* - mp_neg(a, b) - - Compute b = -a. 'a' and 'b' may be identical. - */ - -mp_err mp_neg(mp_int *a, mp_int *b) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - if((res = mp_copy(a, b)) != MP_OKAY) - return res; - - if(s_mp_cmp_d(b, 0) == MP_EQ) - SIGN(b) = MP_ZPOS; - else - SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG; - - return MP_OKAY; - -} /* end mp_neg() */ - -/* }}} */ - -/* {{{ mp_add(a, b, c) */ - -/* - mp_add(a, b, c) - - Compute c = a + b. All parameters may be identical. - */ - -mp_err mp_add(mp_int *a, mp_int *b, mp_int *c) -{ - mp_err res; - int cmp; - - ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); - - if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ - - /* Commutativity of addition lets us do this in either order, - so we avoid having to use a temporary even if the result - is supposed to replace the output - */ - if(c == b) { - if((res = s_mp_add(c, a)) != MP_OKAY) - return res; - } else { - if(c != a && (res = mp_copy(a, c)) != MP_OKAY) - return res; - - if((res = s_mp_add(c, b)) != MP_OKAY) - return res; - } - - } else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */ - - /* If the output is going to be clobbered, we will use a temporary - variable; otherwise, we'll do it without touching the memory - allocator at all, if possible - */ - if(c == b) { - mp_int tmp; - - if((res = mp_init_copy(&tmp, a)) != MP_OKAY) - return res; - if((res = s_mp_sub(&tmp, b)) != MP_OKAY) { - mp_clear(&tmp); - return res; - } - - s_mp_exch(&tmp, c); - mp_clear(&tmp); - - } else { - - if(c != a && (res = mp_copy(a, c)) != MP_OKAY) - return res; - if((res = s_mp_sub(c, b)) != MP_OKAY) - return res; - - } - - } else if(cmp == 0) { /* different sign, a == b */ - - mp_zero(c); - return MP_OKAY; - - } else { /* different sign: a < b */ - - /* See above... */ - if(c == a) { - mp_int tmp; - - if((res = mp_init_copy(&tmp, b)) != MP_OKAY) - return res; - if((res = s_mp_sub(&tmp, a)) != MP_OKAY) { - mp_clear(&tmp); - return res; - } - - s_mp_exch(&tmp, c); - mp_clear(&tmp); - - } else { - - if(c != b && (res = mp_copy(b, c)) != MP_OKAY) - return res; - if((res = s_mp_sub(c, a)) != MP_OKAY) - return res; - - } - } - - if(USED(c) == 1 && DIGIT(c, 0) == 0) - SIGN(c) = MP_ZPOS; - - return MP_OKAY; - -} /* end mp_add() */ - -/* }}} */ - -/* {{{ mp_sub(a, b, c) */ - -/* - mp_sub(a, b, c) - - Compute c = a - b. All parameters may be identical. - */ - -mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c) -{ - mp_err res; - int cmp; - - ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); - - if(SIGN(a) != SIGN(b)) { - if(c == a) { - if((res = s_mp_add(c, b)) != MP_OKAY) - return res; - } else { - if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) - return res; - if((res = s_mp_add(c, a)) != MP_OKAY) - return res; - SIGN(c) = SIGN(a); - } - - } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */ - if(c == b) { - mp_int tmp; - - if((res = mp_init_copy(&tmp, a)) != MP_OKAY) - return res; - if((res = s_mp_sub(&tmp, b)) != MP_OKAY) { - mp_clear(&tmp); - return res; - } - s_mp_exch(&tmp, c); - mp_clear(&tmp); - - } else { - if(c != a && ((res = mp_copy(a, c)) != MP_OKAY)) - return res; - - if((res = s_mp_sub(c, b)) != MP_OKAY) - return res; - } - - } else if(cmp == 0) { /* Same sign, equal magnitude */ - mp_zero(c); - return MP_OKAY; - - } else { /* Same sign, b > a */ - if(c == a) { - mp_int tmp; - - if((res = mp_init_copy(&tmp, b)) != MP_OKAY) - return res; - - if((res = s_mp_sub(&tmp, a)) != MP_OKAY) { - mp_clear(&tmp); - return res; - } - s_mp_exch(&tmp, c); - mp_clear(&tmp); - - } else { - if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) - return res; - - if((res = s_mp_sub(c, a)) != MP_OKAY) - return res; - } - - SIGN(c) = !SIGN(b); - } - - if(USED(c) == 1 && DIGIT(c, 0) == 0) - SIGN(c) = MP_ZPOS; - - return MP_OKAY; - -} /* end mp_sub() */ - -/* }}} */ - -/* {{{ mp_mul(a, b, c) */ - -/* - mp_mul(a, b, c) - - Compute c = a * b. All parameters may be identical. - */ - -mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c) -{ - mp_err res; - mp_sign sgn; - - ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); - - sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG; - - if(c == b) { - if((res = s_mp_mul(c, a)) != MP_OKAY) - return res; - - } else { - if((res = mp_copy(a, c)) != MP_OKAY) - return res; - - if((res = s_mp_mul(c, b)) != MP_OKAY) - return res; - } - - if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ) - SIGN(c) = MP_ZPOS; - else - SIGN(c) = sgn; - - return MP_OKAY; - -} /* end mp_mul() */ - -/* }}} */ - -/* {{{ mp_mul_2d(a, d, c) */ - -/* - mp_mul_2d(a, d, c) - - Compute c = a * 2^d. a may be the same as c. - */ - -mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c) -{ - mp_err res; - - ARGCHK(a != NULL && c != NULL, MP_BADARG); - - if((res = mp_copy(a, c)) != MP_OKAY) - return res; - - if(d == 0) - return MP_OKAY; - - return s_mp_mul_2d(c, d); - -} /* end mp_mul() */ - -/* }}} */ - -/* {{{ mp_sqr(a, b) */ - -#if MP_SQUARE -mp_err mp_sqr(mp_int *a, mp_int *b) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - if((res = mp_copy(a, b)) != MP_OKAY) - return res; - - if((res = s_mp_sqr(b)) != MP_OKAY) - return res; - - SIGN(b) = MP_ZPOS; - - return MP_OKAY; - -} /* end mp_sqr() */ -#endif - -/* }}} */ - -/* {{{ mp_div(a, b, q, r) */ - -/* - mp_div(a, b, q, r) - - Compute q = a / b and r = a mod b. Input parameters may be re-used - as output parameters. If q or r is NULL, that portion of the - computation will be discarded (although it will still be computed) - - Pay no attention to the hacker behind the curtain. - */ - -mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r) -{ - mp_err res; - mp_int qtmp, rtmp; - int cmp; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - if(mp_cmp_z(b) == MP_EQ) - return MP_RANGE; - - /* If a <= b, we can compute the solution without division, and - avoid any memory allocation - */ - if((cmp = s_mp_cmp(a, b)) < 0) { - if(r) { - if((res = mp_copy(a, r)) != MP_OKAY) - return res; - } - - if(q) - mp_zero(q); - - return MP_OKAY; - - } else if(cmp == 0) { - - /* Set quotient to 1, with appropriate sign */ - if(q) { - int qneg = (SIGN(a) != SIGN(b)); - - mp_set(q, 1); - if(qneg) - SIGN(q) = MP_NEG; - } - - if(r) - mp_zero(r); - - return MP_OKAY; - } - - /* If we get here, it means we actually have to do some division */ - - /* Set up some temporaries... */ - if((res = mp_init_copy(&qtmp, a)) != MP_OKAY) - return res; - if((res = mp_init_copy(&rtmp, b)) != MP_OKAY) - goto CLEANUP; - - if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY) - goto CLEANUP; - - /* Compute the signs for the output */ - SIGN(&rtmp) = SIGN(a); /* Sr = Sa */ - if(SIGN(a) == SIGN(b)) - SIGN(&qtmp) = MP_ZPOS; /* Sq = MP_ZPOS if Sa = Sb */ - else - SIGN(&qtmp) = MP_NEG; /* Sq = MP_NEG if Sa != Sb */ - - if(s_mp_cmp_d(&qtmp, 0) == MP_EQ) - SIGN(&qtmp) = MP_ZPOS; - if(s_mp_cmp_d(&rtmp, 0) == MP_EQ) - SIGN(&rtmp) = MP_ZPOS; - - /* Copy output, if it is needed */ - if(q) - s_mp_exch(&qtmp, q); - - if(r) - s_mp_exch(&rtmp, r); - -CLEANUP: - mp_clear(&rtmp); - mp_clear(&qtmp); - - return res; - -} /* end mp_div() */ - -/* }}} */ - -/* {{{ mp_div_2d(a, d, q, r) */ - -mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r) -{ - mp_err res; - - ARGCHK(a != NULL, MP_BADARG); - - if(q) { - if((res = mp_copy(a, q)) != MP_OKAY) - return res; - - s_mp_div_2d(q, d); - } - - if(r) { - if((res = mp_copy(a, r)) != MP_OKAY) - return res; - - s_mp_mod_2d(r, d); - } - - return MP_OKAY; - -} /* end mp_div_2d() */ - -/* }}} */ - -/* {{{ mp_expt(a, b, c) */ - -/* - mp_expt(a, b, c) - - Compute c = a ** b, that is, raise a to the b power. Uses a - standard iterative square-and-multiply technique. - */ - -mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) -{ - mp_int s, x; - mp_err res; - mp_digit d; - unsigned int bit, dig; - - ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); - - if(mp_cmp_z(b) < 0) - return MP_RANGE; - - if((res = mp_init(&s)) != MP_OKAY) - return res; - - mp_set(&s, 1); - - if((res = mp_init_copy(&x, a)) != MP_OKAY) - goto X; - - /* Loop over low-order digits in ascending order */ - for(dig = 0; dig < (USED(b) - 1); dig++) { - d = DIGIT(b, dig); - - /* Loop over bits of each non-maximal digit */ - for(bit = 0; bit < DIGIT_BIT; bit++) { - if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY) - goto CLEANUP; - } - - d >>= 1; - - if((res = s_mp_sqr(&x)) != MP_OKAY) - goto CLEANUP; - } - } - - /* Consider now the last digit... */ - d = DIGIT(b, dig); - - while(d) { - if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY) - goto CLEANUP; - } - - d >>= 1; - - if((res = s_mp_sqr(&x)) != MP_OKAY) - goto CLEANUP; - } - - if(mp_iseven(b)) - SIGN(&s) = SIGN(a); - - res = mp_copy(&s, c); - -CLEANUP: - mp_clear(&x); -X: - mp_clear(&s); - - return res; - -} /* end mp_expt() */ - -/* }}} */ - -/* {{{ mp_2expt(a, k) */ - -/* Compute a = 2^k */ - -mp_err mp_2expt(mp_int *a, mp_digit k) -{ - ARGCHK(a != NULL, MP_BADARG); - - return s_mp_2expt(a, k); - -} /* end mp_2expt() */ - -/* }}} */ - -/* {{{ mp_mod(a, m, c) */ - -/* - mp_mod(a, m, c) - - Compute c = a (mod m). Result will always be 0 <= c < m. - */ - -mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c) -{ - mp_err res; - int mag; - - ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); - - if(SIGN(m) == MP_NEG) - return MP_RANGE; - - /* - If |a| > m, we need to divide to get the remainder and take the - absolute value. - - If |a| < m, we don't need to do any division, just copy and adjust - the sign (if a is negative). - - If |a| == m, we can simply set the result to zero. - - This order is intended to minimize the average path length of the - comparison chain on common workloads -- the most frequent cases are - that |a| != m, so we do those first. - */ - if((mag = s_mp_cmp(a, m)) > 0) { - if((res = mp_div(a, m, NULL, c)) != MP_OKAY) - return res; - - if(SIGN(c) == MP_NEG) { - if((res = mp_add(c, m, c)) != MP_OKAY) - return res; - } - - } else if(mag < 0) { - if((res = mp_copy(a, c)) != MP_OKAY) - return res; - - if(mp_cmp_z(a) < 0) { - if((res = mp_add(c, m, c)) != MP_OKAY) - return res; - - } - - } else { - mp_zero(c); - - } - - return MP_OKAY; - -} /* end mp_mod() */ - -/* }}} */ - -/* {{{ mp_mod_d(a, d, c) */ - -/* - mp_mod_d(a, d, c) - - Compute c = a (mod d). Result will always be 0 <= c < d - */ -mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c) -{ - mp_err res; - mp_digit rem; - - ARGCHK(a != NULL && c != NULL, MP_BADARG); - - if(s_mp_cmp_d(a, d) > 0) { - if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) - return res; - - } else { - if(SIGN(a) == MP_NEG) - rem = d - DIGIT(a, 0); - else - rem = DIGIT(a, 0); - } - - if(c) - *c = rem; - - return MP_OKAY; - -} /* end mp_mod_d() */ - -/* }}} */ - -/* {{{ mp_sqrt(a, b) */ - -/* - mp_sqrt(a, b) - - Compute the integer square root of a, and store the result in b. - Uses an integer-arithmetic version of Newton's iterative linear - approximation technique to determine this value; the result has the - following two properties: - - b^2 <= a - (b+1)^2 >= a - - It is a range error to pass a negative value. - */ -mp_err mp_sqrt(mp_int *a, mp_int *b) -{ - mp_int x, t; - mp_err res; - - ARGCHK(a != NULL && b != NULL, MP_BADARG); - - /* Cannot take square root of a negative value */ - if(SIGN(a) == MP_NEG) - return MP_RANGE; - - /* Special cases for zero and one, trivial */ - if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) - return mp_copy(a, b); - - /* Initialize the temporaries we'll use below */ - if((res = mp_init_size(&t, USED(a))) != MP_OKAY) - return res; - - /* Compute an initial guess for the iteration as a itself */ - if((res = mp_init_copy(&x, a)) != MP_OKAY) - goto X; - -s_mp_rshd(&x, (USED(&x)/2)+1); -mp_add_d(&x, 1, &x); - - for(;;) { - /* t = (x * x) - a */ - mp_copy(&x, &t); /* can't fail, t is big enough for original x */ - if((res = mp_sqr(&t, &t)) != MP_OKAY || - (res = mp_sub(&t, a, &t)) != MP_OKAY) - goto CLEANUP; - - /* t = t / 2x */ - s_mp_mul_2(&x); - if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) - goto CLEANUP; - s_mp_div_2(&x); - - /* Terminate the loop, if the quotient is zero */ - if(mp_cmp_z(&t) == MP_EQ) - break; - - /* x = x - t */ - if((res = mp_sub(&x, &t, &x)) != MP_OKAY) - goto CLEANUP; - - } - - /* Copy result to output parameter */ - mp_sub_d(&x, 1, &x); - s_mp_exch(&x, b); - - CLEANUP: - mp_clear(&x); - X: - mp_clear(&t); - - return res; - -} /* end mp_sqrt() */ - -/* }}} */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ Modular arithmetic */ - -#if MP_MODARITH -/* {{{ mp_addmod(a, b, m, c) */ - -/* - mp_addmod(a, b, m, c) - - Compute c = (a + b) mod m - */ - -mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); - - if((res = mp_add(a, b, c)) != MP_OKAY) - return res; - if((res = mp_mod(c, m, c)) != MP_OKAY) - return res; - - return MP_OKAY; - -} - -/* }}} */ - -/* {{{ mp_submod(a, b, m, c) */ - -/* - mp_submod(a, b, m, c) - - Compute c = (a - b) mod m - */ - -mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); - - if((res = mp_sub(a, b, c)) != MP_OKAY) - return res; - if((res = mp_mod(c, m, c)) != MP_OKAY) - return res; - - return MP_OKAY; - -} - -/* }}} */ - -/* {{{ mp_mulmod(a, b, m, c) */ - -/* - mp_mulmod(a, b, m, c) - - Compute c = (a * b) mod m - */ - -mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) -{ - mp_err res; - - ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); - - if((res = mp_mul(a, b, c)) != MP_OKAY) - return res; - if((res = mp_mod(c, m, c)) != MP_OKAY) - return res; - - return MP_OKAY; - -} - -/* }}} */ - -/* {{{ mp_sqrmod(a, m, c) */ - -#if MP_SQUARE -mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c) -{ - mp_err res; - - ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); - - if((res = mp_sqr(a, c)) != MP_OKAY) - return res; - if((res = mp_mod(c, m, c)) != MP_OKAY) - return res; - - return MP_OKAY; - -} /* end mp_sqrmod() */ -#endif - -/* }}} */ - -/* {{{ mp_exptmod(a, b, m, c) */ - -/* - mp_exptmod(a, b, m, c) - - Compute c = (a ** b) mod m. Uses a standard square-and-multiply - method with modular reductions at each step. (This is basically the - same code as mp_expt(), except for the addition of the reductions) - - The modular reductions are done using Barrett's algorithm (see - s_mp_reduce() below for details) - */ - -mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) -{ - mp_int s, x, mu; - mp_err res; - mp_digit d, *db = DIGITS(b); - mp_size ub = USED(b); - unsigned int bit, dig; - - ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); - - if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) - return MP_RANGE; - - if((res = mp_init(&s)) != MP_OKAY) - return res; - if((res = mp_init_copy(&x, a)) != MP_OKAY) - goto X; - if((res = mp_mod(&x, m, &x)) != MP_OKAY || - (res = mp_init(&mu)) != MP_OKAY) - goto MU; - - mp_set(&s, 1); - - /* mu = b^2k / m */ - s_mp_add_d(&mu, 1); - s_mp_lshd(&mu, 2 * USED(m)); - if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) - goto CLEANUP; - - /* Loop over digits of b in ascending order, except highest order */ - for(dig = 0; dig < (ub - 1); dig++) { - d = *db++; - - /* Loop over the bits of the lower-order digits */ - for(bit = 0; bit < DIGIT_BIT; bit++) { - if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY) - goto CLEANUP; - if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) - goto CLEANUP; - } - - d >>= 1; - - if((res = s_mp_sqr(&x)) != MP_OKAY) - goto CLEANUP; - if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) - goto CLEANUP; - } - } - - /* Now do the last digit... */ - d = *db; - - while(d) { - if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY) - goto CLEANUP; - if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) - goto CLEANUP; - } - - d >>= 1; - - if((res = s_mp_sqr(&x)) != MP_OKAY) - goto CLEANUP; - if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) - goto CLEANUP; - } - - s_mp_exch(&s, c); - - CLEANUP: - mp_clear(&mu); - MU: - mp_clear(&x); - X: - mp_clear(&s); - - return res; - -} /* end mp_exptmod() */ - -/* }}} */ - -/* {{{ mp_exptmod_d(a, d, m, c) */ - -mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c) -{ - mp_int s, x; - mp_err res; - - ARGCHK(a != NULL && c != NULL, MP_BADARG); - - if((res = mp_init(&s)) != MP_OKAY) - return res; - if((res = mp_init_copy(&x, a)) != MP_OKAY) - goto X; - - mp_set(&s, 1); - - while(d != 0) { - if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY || - (res = mp_mod(&s, m, &s)) != MP_OKAY) - goto CLEANUP; - } - - d /= 2; - - if((res = s_mp_sqr(&x)) != MP_OKAY || - (res = mp_mod(&x, m, &x)) != MP_OKAY) - goto CLEANUP; - } - - s_mp_exch(&s, c); - -CLEANUP: - mp_clear(&x); -X: - mp_clear(&s); - - return res; - -} /* end mp_exptmod_d() */ - -/* }}} */ -#endif /* if MP_MODARITH */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ Comparison functions */ - -/* {{{ mp_cmp_z(a) */ - -/* - mp_cmp_z(a) - - Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. - */ - -int mp_cmp_z(mp_int *a) -{ - if(SIGN(a) == MP_NEG) - return MP_LT; - else if(USED(a) == 1 && DIGIT(a, 0) == 0) - return MP_EQ; - else - return MP_GT; - -} /* end mp_cmp_z() */ - -/* }}} */ - -/* {{{ mp_cmp_d(a, d) */ - -/* - mp_cmp_d(a, d) - - Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d - */ - -int mp_cmp_d(mp_int *a, mp_digit d) -{ - ARGCHK(a != NULL, MP_EQ); - - if(SIGN(a) == MP_NEG) - return MP_LT; - - return s_mp_cmp_d(a, d); - -} /* end mp_cmp_d() */ - -/* }}} */ - -/* {{{ mp_cmp(a, b) */ - -int mp_cmp(mp_int *a, mp_int *b) -{ - ARGCHK(a != NULL && b != NULL, MP_EQ); - - if(SIGN(a) == SIGN(b)) { - int mag; - - if((mag = s_mp_cmp(a, b)) == MP_EQ) - return MP_EQ; - - if(SIGN(a) == MP_ZPOS) - return mag; - else - return -mag; - - } else if(SIGN(a) == MP_ZPOS) { - return MP_GT; - } else { - return MP_LT; - } - -} /* end mp_cmp() */ - -/* }}} */ - -/* {{{ mp_cmp_mag(a, b) */ - -/* - mp_cmp_mag(a, b) - - Compares |a| <=> |b|, and returns an appropriate comparison result - */ - -int mp_cmp_mag(mp_int *a, mp_int *b) -{ - ARGCHK(a != NULL && b != NULL, MP_EQ); - - return s_mp_cmp(a, b); - -} /* end mp_cmp_mag() */ - -/* }}} */ - -/* {{{ mp_cmp_int(a, z) */ - -/* - This just converts z to an mp_int, and uses the existing comparison - routines. This is sort of inefficient, but it's not clear to me how - frequently this wil get used anyway. For small positive constants, - you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). - */ -int mp_cmp_int(mp_int *a, long z) -{ - mp_int tmp; - int out; - - ARGCHK(a != NULL, MP_EQ); - - mp_init(&tmp); mp_set_int(&tmp, z); - out = mp_cmp(a, &tmp); - mp_clear(&tmp); - - return out; - -} /* end mp_cmp_int() */ - -/* }}} */ - -/* {{{ mp_isodd(a) */ - -/* - mp_isodd(a) - - Returns a true (non-zero) value if a is odd, false (zero) otherwise. - */ -int mp_isodd(mp_int *a) -{ - ARGCHK(a != NULL, 0); - - return (DIGIT(a, 0) & 1); - -} /* end mp_isodd() */ - -/* }}} */ - -/* {{{ mp_iseven(a) */ - -int mp_iseven(mp_int *a) -{ - return !mp_isodd(a); - -} /* end mp_iseven() */ - -/* }}} */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ Number theoretic functions */ - -#if MP_NUMTH -/* {{{ mp_gcd(a, b, c) */ - -/* - Like the old mp_gcd() function, except computes the GCD using the - binary algorithm due to Josef Stein in 1961 (via Knuth). - */ -mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) -{ - mp_err res; - mp_int u, v, t; - mp_size k = 0; - - ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); - - if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) - return MP_RANGE; - if(mp_cmp_z(a) == MP_EQ) { - return mp_copy(b, c); - } else if(mp_cmp_z(b) == MP_EQ) { - return mp_copy(a, c); - } - - if((res = mp_init(&t)) != MP_OKAY) - return res; - if((res = mp_init_copy(&u, a)) != MP_OKAY) - goto U; - if((res = mp_init_copy(&v, b)) != MP_OKAY) - goto V; - - SIGN(&u) = MP_ZPOS; - SIGN(&v) = MP_ZPOS; - - /* Divide out common factors of 2 until at least 1 of a, b is even */ - while(mp_iseven(&u) && mp_iseven(&v)) { - s_mp_div_2(&u); - s_mp_div_2(&v); - ++k; - } - - /* Initialize t */ - if(mp_isodd(&u)) { - if((res = mp_copy(&v, &t)) != MP_OKAY) - goto CLEANUP; - - /* t = -v */ - if(SIGN(&v) == MP_ZPOS) - SIGN(&t) = MP_NEG; - else - SIGN(&t) = MP_ZPOS; - - } else { - if((res = mp_copy(&u, &t)) != MP_OKAY) - goto CLEANUP; - - } - - for(;;) { - while(mp_iseven(&t)) { - s_mp_div_2(&t); - } - - if(mp_cmp_z(&t) == MP_GT) { - if((res = mp_copy(&t, &u)) != MP_OKAY) - goto CLEANUP; - - } else { - if((res = mp_copy(&t, &v)) != MP_OKAY) - goto CLEANUP; - - /* v = -t */ - if(SIGN(&t) == MP_ZPOS) - SIGN(&v) = MP_NEG; - else - SIGN(&v) = MP_ZPOS; - } - - if((res = mp_sub(&u, &v, &t)) != MP_OKAY) - goto CLEANUP; - - if(s_mp_cmp_d(&t, 0) == MP_EQ) - break; - } - - s_mp_2expt(&v, k); /* v = 2^k */ - res = mp_mul(&u, &v, c); /* c = u * v */ - - CLEANUP: - mp_clear(&v); - V: - mp_clear(&u); - U: - mp_clear(&t); - - return res; - -} /* end mp_bgcd() */ - -/* }}} */ - -/* {{{ mp_lcm(a, b, c) */ - -/* We compute the least common multiple using the rule: - - ab = [a, b](a, b) - - ... by computing the product, and dividing out the gcd. - */ - -mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) -{ - mp_int gcd, prod; - mp_err res; - - ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); - - /* Set up temporaries */ - if((res = mp_init(&gcd)) != MP_OKAY) - return res; - if((res = mp_init(&prod)) != MP_OKAY) - goto GCD; - - if((res = mp_mul(a, b, &prod)) != MP_OKAY) - goto CLEANUP; - if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) - goto CLEANUP; - - res = mp_div(&prod, &gcd, c, NULL); - - CLEANUP: - mp_clear(&prod); - GCD: - mp_clear(&gcd); - - return res; - -} /* end mp_lcm() */ - -/* }}} */ - -/* {{{ mp_xgcd(a, b, g, x, y) */ - -/* - mp_xgcd(a, b, g, x, y) - - Compute g = (a, b) and values x and y satisfying Bezout's identity - (that is, ax + by = g). This uses the extended binary GCD algorithm - based on the Stein algorithm used for mp_gcd() - */ - -mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y) -{ - mp_int gx, xc, yc, u, v, A, B, C, D; - mp_int *clean[9]; - mp_err res; - int last = -1; - - if(mp_cmp_z(b) == 0) - return MP_RANGE; - - /* Initialize all these variables we need */ - if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP; - clean[++last] = &u; - if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP; - clean[++last] = &v; - if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP; - clean[++last] = &gx; - if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP; - clean[++last] = &A; - if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP; - clean[++last] = &B; - if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP; - clean[++last] = &C; - if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP; - clean[++last] = &D; - if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP; - clean[++last] = &xc; - mp_abs(&xc, &xc); - if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP; - clean[++last] = &yc; - mp_abs(&yc, &yc); - - mp_set(&gx, 1); - - /* Divide by two until at least one of them is even */ - while(mp_iseven(&xc) && mp_iseven(&yc)) { - s_mp_div_2(&xc); - s_mp_div_2(&yc); - if((res = s_mp_mul_2(&gx)) != MP_OKAY) - goto CLEANUP; - } - - mp_copy(&xc, &u); - mp_copy(&yc, &v); - mp_set(&A, 1); mp_set(&D, 1); - - /* Loop through binary GCD algorithm */ - for(;;) { - while(mp_iseven(&u)) { - s_mp_div_2(&u); - - if(mp_iseven(&A) && mp_iseven(&B)) { - s_mp_div_2(&A); s_mp_div_2(&B); - } else { - if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP; - s_mp_div_2(&A); - if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP; - s_mp_div_2(&B); - } - } - - while(mp_iseven(&v)) { - s_mp_div_2(&v); - - if(mp_iseven(&C) && mp_iseven(&D)) { - s_mp_div_2(&C); s_mp_div_2(&D); - } else { - if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP; - s_mp_div_2(&C); - if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP; - s_mp_div_2(&D); - } - } - - if(mp_cmp(&u, &v) >= 0) { - if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP; - if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP; - if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP; - - } else { - if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP; - if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP; - if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP; - - } - - /* If we're done, copy results to output */ - if(mp_cmp_z(&u) == 0) { - if(x) - if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP; - - if(y) - if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP; - - if(g) - if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP; - - break; - } - } - - CLEANUP: - while(last >= 0) - mp_clear(clean[last--]); - - return res; - -} /* end mp_xgcd() */ - -/* }}} */ - -/* {{{ mp_invmod(a, m, c) */ - -/* - mp_invmod(a, m, c) - - Compute c = a^-1 (mod m), if there is an inverse for a (mod m). - This is equivalent to the question of whether (a, m) = 1. If not, - MP_UNDEF is returned, and there is no inverse. - */ - -mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c) -{ - mp_int g, x; - mp_err res; - - ARGCHK(a && m && c, MP_BADARG); - - if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) - return MP_RANGE; - - if((res = mp_init(&g)) != MP_OKAY) - return res; - if((res = mp_init(&x)) != MP_OKAY) - goto X; - - if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY) - goto CLEANUP; - - if(mp_cmp_d(&g, 1) != MP_EQ) { - res = MP_UNDEF; - goto CLEANUP; - } - - res = mp_mod(&x, m, c); - SIGN(c) = SIGN(a); - -CLEANUP: - mp_clear(&x); -X: - mp_clear(&g); - - return res; - -} /* end mp_invmod() */ - -/* }}} */ -#endif /* if MP_NUMTH */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ mp_print(mp, ofp) */ - -#if MP_IOFUNC -/* - mp_print(mp, ofp) - - Print a textual representation of the given mp_int on the output - stream 'ofp'. Output is generated using the internal radix. - */ - -void mp_print(mp_int *mp, FILE *ofp) -{ - int ix; - - if(mp == NULL || ofp == NULL) - return; - - fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp); - - for(ix = USED(mp) - 1; ix >= 0; ix--) { - fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); - } - -} /* end mp_print() */ - -#endif /* if MP_IOFUNC */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* {{{ More I/O Functions */ - -/* {{{ mp_read_signed_bin(mp, str, len) */ - -/* - mp_read_signed_bin(mp, str, len) - - Read in a raw value (base 256) into the given mp_int - */ - -mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len) -{ - mp_err res; - - ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); - - if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) { - /* Get sign from first byte */ - if(str[0]) - SIGN(mp) = MP_NEG; - else - SIGN(mp) = MP_ZPOS; - } - - return res; - -} /* end mp_read_signed_bin() */ - -/* }}} */ - -/* {{{ mp_signed_bin_size(mp) */ - -int mp_signed_bin_size(mp_int *mp) -{ - ARGCHK(mp != NULL, 0); - - return mp_unsigned_bin_size(mp) + 1; - -} /* end mp_signed_bin_size() */ - -/* }}} */ - -/* {{{ mp_to_signed_bin(mp, str) */ - -mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str) -{ - ARGCHK(mp != NULL && str != NULL, MP_BADARG); - - /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */ - str[0] = (char)SIGN(mp); - - return mp_to_unsigned_bin(mp, str + 1); - -} /* end mp_to_signed_bin() */ - -/* }}} */ - -/* {{{ mp_read_unsigned_bin(mp, str, len) */ - -/* - mp_read_unsigned_bin(mp, str, len) - - Read in an unsigned value (base 256) into the given mp_int - */ - -mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len) -{ - int ix; - mp_err res; - - ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); - - mp_zero(mp); - - for(ix = 0; ix < len; ix++) { - if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) - return res; - - if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY) - return res; - } - - return MP_OKAY; - -} /* end mp_read_unsigned_bin() */ - -/* }}} */ - -/* {{{ mp_unsigned_bin_size(mp) */ - -int mp_unsigned_bin_size(mp_int *mp) -{ - mp_digit topdig; - int count; - - ARGCHK(mp != NULL, 0); - - /* Special case for the value zero */ - if(USED(mp) == 1 && DIGIT(mp, 0) == 0) - return 1; - - count = (USED(mp) - 1) * sizeof(mp_digit); - topdig = DIGIT(mp, USED(mp) - 1); - - while(topdig != 0) { - ++count; - topdig >>= CHAR_BIT; - } - - return count; - -} /* end mp_unsigned_bin_size() */ - -/* }}} */ - -/* {{{ mp_to_unsigned_bin(mp, str) */ - -mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str) -{ - mp_digit *dp, *end, d; - unsigned char *spos; - - ARGCHK(mp != NULL && str != NULL, MP_BADARG); - - dp = DIGITS(mp); - end = dp + USED(mp) - 1; - spos = str; - - /* Special case for zero, quick test */ - if(dp == end && *dp == 0) { - *str = '\0'; - return MP_OKAY; - } - - /* Generate digits in reverse order */ - while(dp < end) { - unsigned int ix; - - d = *dp; - for(ix = 0; ix < sizeof(mp_digit); ++ix) { - *spos = d & UCHAR_MAX; - d >>= CHAR_BIT; - ++spos; - } - - ++dp; - } - - /* Now handle last digit specially, high order zeroes are not written */ - d = *end; - while(d != 0) { - *spos = d & UCHAR_MAX; - d >>= CHAR_BIT; - ++spos; - } - - /* Reverse everything to get digits in the correct order */ - while(--spos > str) { - unsigned char t = *str; - *str = *spos; - *spos = t; - - ++str; - } - - return MP_OKAY; - -} /* end mp_to_unsigned_bin() */ - -/* }}} */ - -/* {{{ mp_count_bits(mp) */ - -int mp_count_bits(mp_int *mp) -{ - int len; - mp_digit d; - - ARGCHK(mp != NULL, MP_BADARG); - - len = DIGIT_BIT * (USED(mp) - 1); - d = DIGIT(mp, USED(mp) - 1); - - while(d != 0) { - ++len; - d >>= 1; - } - - return len; - -} /* end mp_count_bits() */ - -/* }}} */ - -/* {{{ mp_read_radix(mp, str, radix) */ - -/* - mp_read_radix(mp, str, radix) - - Read an integer from the given string, and set mp to the resulting - value. The input is presumed to be in base 10. Leading non-digit - characters are ignored, and the function reads until a non-digit - character or the end of the string. - */ - -mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix) -{ - int ix = 0, val = 0; - mp_err res; - mp_sign sig = MP_ZPOS; - - ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, - MP_BADARG); - - mp_zero(mp); - - /* Skip leading non-digit characters until a digit or '-' or '+' */ - while(str[ix] && - (s_mp_tovalue(str[ix], radix) < 0) && - str[ix] != '-' && - str[ix] != '+') { - ++ix; - } - - if(str[ix] == '-') { - sig = MP_NEG; - ++ix; - } else if(str[ix] == '+') { - sig = MP_ZPOS; /* this is the default anyway... */ - ++ix; - } - - while((val = s_mp_tovalue(str[ix], radix)) >= 0) { - if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) - return res; - if((res = s_mp_add_d(mp, val)) != MP_OKAY) - return res; - ++ix; - } - - if(s_mp_cmp_d(mp, 0) == MP_EQ) - SIGN(mp) = MP_ZPOS; - else - SIGN(mp) = sig; - - return MP_OKAY; - -} /* end mp_read_radix() */ - -/* }}} */ - -/* {{{ mp_radix_size(mp, radix) */ - -int mp_radix_size(mp_int *mp, int radix) -{ - int len; - ARGCHK(mp != NULL, 0); - - len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */ - - if(mp_cmp_z(mp) < 0) - ++len; /* for sign */ - - return len; - -} /* end mp_radix_size() */ - -/* }}} */ - -/* {{{ mp_value_radix_size(num, qty, radix) */ - -/* num = number of digits - qty = number of bits per digit - radix = target base - - Return the number of digits in the specified radix that would be - needed to express 'num' digits of 'qty' bits each. - */ -int mp_value_radix_size(int num, int qty, int radix) -{ - ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0); - - return s_mp_outlen(num * qty, radix); - -} /* end mp_value_radix_size() */ - -/* }}} */ - -/* {{{ mp_toradix(mp, str, radix) */ - -mp_err mp_toradix(mp_int *mp, char *str, int radix) -{ - int ix, pos = 0; - - ARGCHK(mp != NULL && str != NULL, MP_BADARG); - ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); - - if(mp_cmp_z(mp) == MP_EQ) { - str[0] = '0'; - str[1] = '\0'; - } else { - mp_err res; - mp_int tmp; - mp_sign sgn; - mp_digit rem, rdx = (mp_digit)radix; - char ch; - - if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) - return res; - - /* Save sign for later, and take absolute value */ - sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS; - - /* Generate output digits in reverse order */ - while(mp_cmp_z(&tmp) != 0) { - if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) { - mp_clear(&tmp); - return res; - } - - /* Generate digits, use capital letters */ - ch = s_mp_todigit(rem, radix, 0); - - str[pos++] = ch; - } - - /* Add - sign if original value was negative */ - if(sgn == MP_NEG) - str[pos++] = '-'; - - /* Add trailing NUL to end the string */ - str[pos--] = '\0'; - - /* Reverse the digits and sign indicator */ - ix = 0; - while(ix < pos) { - char _tmp = str[ix]; - - str[ix] = str[pos]; - str[pos] = _tmp; - ++ix; - --pos; - } - - mp_clear(&tmp); - } - - return MP_OKAY; - -} /* end mp_toradix() */ - -/* }}} */ - -/* {{{ mp_char2value(ch, r) */ - -int mp_char2value(char ch, int r) -{ - return s_mp_tovalue(ch, r); - -} /* end mp_tovalue() */ - -/* }}} */ - -/* }}} */ - -/* {{{ mp_strerror(ec) */ - -/* - mp_strerror(ec) - - Return a string describing the meaning of error code 'ec'. The - string returned is allocated in static memory, so the caller should - not attempt to modify or free the memory associated with this - string. - */ -const char *mp_strerror(mp_err ec) -{ - int aec = (ec < 0) ? -ec : ec; - - /* Code values are negative, so the senses of these comparisons - are accurate */ - if(ec < MP_LAST_CODE || ec > MP_OKAY) { - return mp_err_string[0]; /* unknown error code */ - } else { - return mp_err_string[aec + 1]; - } - -} /* end mp_strerror() */ - -/* }}} */ - -/*========================================================================*/ -/*------------------------------------------------------------------------*/ -/* Static function definitions (internal use only) */ - -/* {{{ Memory management */ - -/* {{{ s_mp_grow(mp, min) */ - -/* Make sure there are at least 'min' digits allocated to mp */ -mp_err s_mp_grow(mp_int *mp, mp_size min) -{ - if(min > ALLOC(mp)) { - mp_digit *tmp; - - /* Set min to next nearest default precision block size */ - min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec; - - if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL) - return MP_MEM; - - s_mp_copy(DIGITS(mp), tmp, USED(mp)); - -#if MP_CRYPTO - s_mp_setz(DIGITS(mp), ALLOC(mp)); -#endif - s_mp_free(DIGITS(mp)); - DIGITS(mp) = tmp; - ALLOC(mp) = min; - } - - return MP_OKAY; - -} /* end s_mp_grow() */ - -/* }}} */ - -/* {{{ s_mp_pad(mp, min) */ - -/* Make sure the used size of mp is at least 'min', growing if needed */ -mp_err s_mp_pad(mp_int *mp, mp_size min) -{ - if(min > USED(mp)) { - mp_err res; - - /* Make sure there is room to increase precision */ - if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY) - return res; - - /* Increase precision; should already be 0-filled */ - USED(mp) = min; - } - - return MP_OKAY; - -} /* end s_mp_pad() */ - -/* }}} */ - -/* {{{ s_mp_setz(dp, count) */ - -#if MP_MACRO == 0 -/* Set 'count' digits pointed to by dp to be zeroes */ -void s_mp_setz(mp_digit *dp, mp_size count) -{ -#if MP_MEMSET == 0 - int ix; - - for(ix = 0; ix < count; ix++) - dp[ix] = 0; -#else - memset(dp, 0, count * sizeof(mp_digit)); -#endif - -} /* end s_mp_setz() */ -#endif - -/* }}} */ - -/* {{{ s_mp_copy(sp, dp, count) */ - -#if MP_MACRO == 0 -/* Copy 'count' digits from sp to dp */ -void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count) -{ -#if MP_MEMCPY == 0 - int ix; - - for(ix = 0; ix < count; ix++) - dp[ix] = sp[ix]; -#else - memcpy(dp, sp, count * sizeof(mp_digit)); -#endif - -} /* end s_mp_copy() */ -#endif - -/* }}} */ - -/* {{{ s_mp_alloc(nb, ni) */ - -#if MP_MACRO == 0 -/* Allocate ni records of nb bytes each, and return a pointer to that */ -void *s_mp_alloc(size_t nb, size_t ni) -{ - return calloc(nb, ni); - -} /* end s_mp_alloc() */ -#endif - -/* }}} */ - -/* {{{ s_mp_free(ptr) */ - -#if MP_MACRO == 0 -/* Free the memory pointed to by ptr */ -void s_mp_free(void *ptr) -{ - if(ptr) - free(ptr); - -} /* end s_mp_free() */ -#endif - -/* }}} */ - -/* {{{ s_mp_clamp(mp) */ - -/* Remove leading zeroes from the given value */ -void s_mp_clamp(mp_int *mp) -{ - mp_size du = USED(mp); - mp_digit *zp = DIGITS(mp) + du - 1; - - while(du > 1 && !*zp--) - --du; - - USED(mp) = du; - -} /* end s_mp_clamp() */ - - -/* }}} */ - -/* {{{ s_mp_exch(a, b) */ - -/* Exchange the data for a and b; (b, a) = (a, b) */ -void s_mp_exch(mp_int *a, mp_int *b) -{ - mp_int tmp; - - tmp = *a; - *a = *b; - *b = tmp; - -} /* end s_mp_exch() */ - -/* }}} */ - -/* }}} */ - -/* {{{ Arithmetic helpers */ - -/* {{{ s_mp_lshd(mp, p) */ - -/* - Shift mp leftward by p digits, growing if needed, and zero-filling - the in-shifted digits at the right end. This is a convenient - alternative to multiplication by powers of the radix - */ - -mp_err s_mp_lshd(mp_int *mp, mp_size p) -{ - mp_err res; - mp_size pos; - mp_digit *dp; - int ix; - - if(p == 0) - return MP_OKAY; - - if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) - return res; - - pos = USED(mp) - 1; - dp = DIGITS(mp); - - /* Shift all the significant figures over as needed */ - for(ix = pos - p; ix >= 0; ix--) - dp[ix + p] = dp[ix]; - - /* Fill the bottom digits with zeroes */ - for(ix = 0; (unsigned)ix < p; ix++) - dp[ix] = 0; - - return MP_OKAY; - -} /* end s_mp_lshd() */ - -/* }}} */ - -/* {{{ s_mp_rshd(mp, p) */ - -/* - Shift mp rightward by p digits. Maintains the invariant that - digits above the precision are all zero. Digits shifted off the - end are lost. Cannot fail. - */ - -void s_mp_rshd(mp_int *mp, mp_size p) -{ - mp_size ix; - mp_digit *dp; - - if(p == 0) - return; - - /* Shortcut when all digits are to be shifted off */ - if(p >= USED(mp)) { - s_mp_setz(DIGITS(mp), ALLOC(mp)); - USED(mp) = 1; - SIGN(mp) = MP_ZPOS; - return; - } - - /* Shift all the significant figures over as needed */ - dp = DIGITS(mp); - for(ix = p; ix < USED(mp); ix++) - dp[ix - p] = dp[ix]; - - /* Fill the top digits with zeroes */ - ix -= p; - while(ix < USED(mp)) - dp[ix++] = 0; - - /* Strip off any leading zeroes */ - s_mp_clamp(mp); - -} /* end s_mp_rshd() */ - -/* }}} */ - -/* {{{ s_mp_div_2(mp) */ - -/* Divide by two -- take advantage of radix properties to do it fast */ -void s_mp_div_2(mp_int *mp) -{ - s_mp_div_2d(mp, 1); - -} /* end s_mp_div_2() */ - -/* }}} */ - -/* {{{ s_mp_mul_2(mp) */ - -mp_err s_mp_mul_2(mp_int *mp) -{ - unsigned int ix; - mp_digit kin = 0, kout, *dp = DIGITS(mp); - mp_err res; - - /* Shift digits leftward by 1 bit */ - for(ix = 0; ix < USED(mp); ix++) { - kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1; - dp[ix] = (dp[ix] << 1) | kin; - - kin = kout; - } - - /* Deal with rollover from last digit */ - if(kin) { - if(ix >= ALLOC(mp)) { - if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) - return res; - dp = DIGITS(mp); - } - - dp[ix] = kin; - USED(mp) += 1; - } - - return MP_OKAY; - -} /* end s_mp_mul_2() */ - -/* }}} */ - -/* {{{ s_mp_mod_2d(mp, d) */ - -/* - Remainder the integer by 2^d, where d is a number of bits. This - amounts to a bitwise AND of the value, and does not require the full - division code - */ -void s_mp_mod_2d(mp_int *mp, mp_digit d) -{ - unsigned int ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); - unsigned int ix; - mp_digit dmask, *dp = DIGITS(mp); - - if(ndig >= USED(mp)) - return; - - /* Flush all the bits above 2^d in its digit */ - dmask = (1 << nbit) - 1; - dp[ndig] &= dmask; - - /* Flush all digits above the one with 2^d in it */ - for(ix = ndig + 1; ix < USED(mp); ix++) - dp[ix] = 0; - - s_mp_clamp(mp); - -} /* end s_mp_mod_2d() */ - -/* }}} */ - -/* {{{ s_mp_mul_2d(mp, d) */ - -/* - Multiply by the integer 2^d, where d is a number of bits. This - amounts to a bitwise shift of the value, and does not require the - full multiplication code. - */ -mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) -{ - mp_err res; - mp_digit save, next, mask, *dp; - mp_size used; - unsigned int ix; - - if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY) - return res; - - dp = DIGITS(mp); used = USED(mp); - d %= DIGIT_BIT; - - mask = (1 << d) - 1; - - /* If the shift requires another digit, make sure we've got one to - work with */ - if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) { - if((res = s_mp_grow(mp, used + 1)) != MP_OKAY) - return res; - dp = DIGITS(mp); - } - - /* Do the shifting... */ - save = 0; - for(ix = 0; ix < used; ix++) { - next = (dp[ix] >> (DIGIT_BIT - d)) & mask; - dp[ix] = (dp[ix] << d) | save; - save = next; - } - - /* If, at this point, we have a nonzero carryout into the next - digit, we'll increase the size by one digit, and store it... - */ - if(save) { - dp[used] = save; - USED(mp) += 1; - } - - s_mp_clamp(mp); - return MP_OKAY; - -} /* end s_mp_mul_2d() */ - -/* }}} */ - -/* {{{ s_mp_div_2d(mp, d) */ - -/* - Divide the integer by 2^d, where d is a number of bits. This - amounts to a bitwise shift of the value, and does not require the - full division code (used in Barrett reduction, see below) - */ -void s_mp_div_2d(mp_int *mp, mp_digit d) -{ - int ix; - mp_digit save, next, mask, *dp = DIGITS(mp); - - s_mp_rshd(mp, d / DIGIT_BIT); - d %= DIGIT_BIT; - - mask = (1 << d) - 1; - - save = 0; - for(ix = USED(mp) - 1; ix >= 0; ix--) { - next = dp[ix] & mask; - dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d)); - save = next; - } - - s_mp_clamp(mp); - -} /* end s_mp_div_2d() */ - -/* }}} */ - -/* {{{ s_mp_norm(a, b) */ - -/* - s_mp_norm(a, b) - - Normalize a and b for division, where b is the divisor. In order - that we might make good guesses for quotient digits, we want the - leading digit of b to be at least half the radix, which we - accomplish by multiplying a and b by a constant. This constant is - returned (so that it can be divided back out of the remainder at the - end of the division process). - - We multiply by the smallest power of 2 that gives us a leading digit - at least half the radix. By choosing a power of 2, we simplify the - multiplication and division steps to simple shifts. - */ -mp_digit s_mp_norm(mp_int *a, mp_int *b) -{ - mp_digit t, d = 0; - - t = DIGIT(b, USED(b) - 1); - while(t < (RADIX / 2)) { - t <<= 1; - ++d; - } - - if(d != 0) { - s_mp_mul_2d(a, d); - s_mp_mul_2d(b, d); - } - - return d; - -} /* end s_mp_norm() */ - -/* }}} */ - -/* }}} */ - -/* {{{ Primitive digit arithmetic */ - -/* {{{ s_mp_add_d(mp, d) */ - -/* Add d to |mp| in place */ -mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ -{ - mp_word w, k = 0; - mp_size ix = 1, used = USED(mp); - mp_digit *dp = DIGITS(mp); - - w = dp[0] + d; - dp[0] = ACCUM(w); - k = CARRYOUT(w); - - while(ix < used && k) { - w = dp[ix] + k; - dp[ix] = ACCUM(w); - k = CARRYOUT(w); - ++ix; - } - - if(k != 0) { - mp_err res; - - if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) - return res; - - DIGIT(mp, ix) = k; - } - - return MP_OKAY; - -} /* end s_mp_add_d() */ - -/* }}} */ - -/* {{{ s_mp_sub_d(mp, d) */ - -/* Subtract d from |mp| in place, assumes |mp| > d */ -mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ -{ - mp_word w, b = 0; - mp_size ix = 1, used = USED(mp); - mp_digit *dp = DIGITS(mp); - - /* Compute initial subtraction */ - w = (RADIX + dp[0]) - d; - b = CARRYOUT(w) ? 0 : 1; - dp[0] = ACCUM(w); - - /* Propagate borrows leftward */ - while(b && ix < used) { - w = (RADIX + dp[ix]) - b; - b = CARRYOUT(w) ? 0 : 1; - dp[ix] = ACCUM(w); - ++ix; - } - - /* Remove leading zeroes */ - s_mp_clamp(mp); - - /* If we have a borrow out, it's a violation of the input invariant */ - if(b) - return MP_RANGE; - else - return MP_OKAY; - -} /* end s_mp_sub_d() */ - -/* }}} */ - -/* {{{ s_mp_mul_d(a, d) */ - -/* Compute a = a * d, single digit multiplication */ -mp_err s_mp_mul_d(mp_int *a, mp_digit d) -{ - mp_word w, k = 0; - mp_size ix, max; - mp_err res; - mp_digit *dp = DIGITS(a); - - /* - Single-digit multiplication will increase the precision of the - output by at most one digit. However, we can detect when this - will happen -- if the high-order digit of a, times d, gives a - two-digit result, then the precision of the result will increase; - otherwise it won't. We use this fact to avoid calling s_mp_pad() - unless absolutely necessary. - */ - max = USED(a); - w = dp[max - 1] * d; - if(CARRYOUT(w) != 0) { - if((res = s_mp_pad(a, max + 1)) != MP_OKAY) - return res; - dp = DIGITS(a); - } - - for(ix = 0; ix < max; ix++) { - w = (dp[ix] * d) + k; - dp[ix] = ACCUM(w); - k = CARRYOUT(w); - } - - /* If there is a precision increase, take care of it here; the above - test guarantees we have enough storage to do this safely. - */ - if(k) { - dp[max] = k; - USED(a) = max + 1; - } - - s_mp_clamp(a); - - return MP_OKAY; - -} /* end s_mp_mul_d() */ - -/* }}} */ - -/* {{{ s_mp_div_d(mp, d, r) */ - -/* - s_mp_div_d(mp, d, r) - - Compute the quotient mp = mp / d and remainder r = mp mod d, for a - single digit d. If r is null, the remainder will be discarded. - */ - -mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) -{ - mp_word w = 0, t; - mp_int quot; - mp_err res; - mp_digit *dp = DIGITS(mp), *qp; - int ix; - - if(d == 0) - return MP_RANGE; - - /* Make room for the quotient */ - if((res = mp_init_size(", USED(mp))) != MP_OKAY) - return res; - - USED(") = USED(mp); /* so clamping will work below */ - qp = DIGITS("); - - /* Divide without subtraction */ - for(ix = USED(mp) - 1; ix >= 0; ix--) { - w = (w << DIGIT_BIT) | dp[ix]; - - if(w >= d) { - t = w / d; - w = w % d; - } else { - t = 0; - } - - qp[ix] = t; - } - - /* Deliver the remainder, if desired */ - if(r) - *r = w; - - s_mp_clamp("); - mp_exch(", mp); - mp_clear("); - - return MP_OKAY; - -} /* end s_mp_div_d() */ - -/* }}} */ - -/* }}} */ - -/* {{{ Primitive full arithmetic */ - -/* {{{ s_mp_add(a, b) */ - -/* Compute a = |a| + |b| */ -mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */ -{ - mp_word w = 0; - mp_digit *pa, *pb; - mp_size ix, used = USED(b); - mp_err res; - - /* Make sure a has enough precision for the output value */ - if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY) - return res; - - /* - Add up all digits up to the precision of b. If b had initially - the same precision as a, or greater, we took care of it by the - padding step above, so there is no problem. If b had initially - less precision, we'll have to make sure the carry out is duly - propagated upward among the higher-order digits of the sum. - */ - pa = DIGITS(a); - pb = DIGITS(b); - for(ix = 0; ix < used; ++ix) { - w += *pa + *pb++; - *pa++ = ACCUM(w); - w = CARRYOUT(w); - } - - /* If we run out of 'b' digits before we're actually done, make - sure the carries get propagated upward... - */ - used = USED(a); - while(w && ix < used) { - w += *pa; - *pa++ = ACCUM(w); - w = CARRYOUT(w); - ++ix; - } - - /* If there's an overall carry out, increase precision and include - it. We could have done this initially, but why touch the memory - allocator unless we're sure we have to? - */ - if(w) { - if((res = s_mp_pad(a, used + 1)) != MP_OKAY) - return res; - - DIGIT(a, ix) = w; /* pa may not be valid after s_mp_pad() call */ - } - - return MP_OKAY; - -} /* end s_mp_add() */ - -/* }}} */ - -/* {{{ s_mp_sub(a, b) */ - -/* Compute a = |a| - |b|, assumes |a| >= |b| */ -mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */ -{ - mp_word w = 0; - mp_digit *pa, *pb; - mp_size ix, used = USED(b); - - /* - Subtract and propagate borrow. Up to the precision of b, this - accounts for the digits of b; after that, we just make sure the - carries get to the right place. This saves having to pad b out to - the precision of a just to make the loops work right... - */ - pa = DIGITS(a); - pb = DIGITS(b); - - for(ix = 0; ix < used; ++ix) { - w = (RADIX + *pa) - w - *pb++; - *pa++ = ACCUM(w); - w = CARRYOUT(w) ? 0 : 1; - } - - used = USED(a); - while(ix < used) { - w = RADIX + *pa - w; - *pa++ = ACCUM(w); - w = CARRYOUT(w) ? 0 : 1; - ++ix; - } - - /* Clobber any leading zeroes we created */ - s_mp_clamp(a); - - /* - If there was a borrow out, then |b| > |a| in violation - of our input invariant. We've already done the work, - but we'll at least complain about it... - */ - if(w) - return MP_RANGE; - else - return MP_OKAY; - -} /* end s_mp_sub() */ - -/* }}} */ - -mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu) -{ - mp_int q; - mp_err res; - mp_size um = USED(m); - - if((res = mp_init_copy(&q, x)) != MP_OKAY) - return res; - - s_mp_rshd(&q, um - 1); /* q1 = x / b^(k-1) */ - s_mp_mul(&q, mu); /* q2 = q1 * mu */ - s_mp_rshd(&q, um + 1); /* q3 = q2 / b^(k+1) */ - - /* x = x mod b^(k+1), quick (no division) */ - s_mp_mod_2d(x, (mp_digit)(DIGIT_BIT * (um + 1))); - - /* q = q * m mod b^(k+1), quick (no division), uses the short multiplier */ -#ifndef SHRT_MUL - s_mp_mul(&q, m); - s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1))); -#else - s_mp_mul_dig(&q, m, um + 1); -#endif - - /* x = x - q */ - if((res = mp_sub(x, &q, x)) != MP_OKAY) - goto CLEANUP; - - /* If x < 0, add b^(k+1) to it */ - if(mp_cmp_z(x) < 0) { - mp_set(&q, 1); - if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY) - goto CLEANUP; - if((res = mp_add(x, &q, x)) != MP_OKAY) - goto CLEANUP; - } - - /* Back off if it's too big */ - while(mp_cmp(x, m) >= 0) { - if((res = s_mp_sub(x, m)) != MP_OKAY) - break; - } - - CLEANUP: - mp_clear(&q); - - return res; - -} /* end s_mp_reduce() */ - - - -/* {{{ s_mp_mul(a, b) */ - -/* Compute a = |a| * |b| */ -mp_err s_mp_mul(mp_int *a, mp_int *b) -{ - mp_word w, k = 0; - mp_int tmp; - mp_err res; - mp_size ix, jx, ua = USED(a), ub = USED(b); - mp_digit *pa, *pb, *pt, *pbt; - - if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY) - return res; - - /* This has the effect of left-padding with zeroes... */ - USED(&tmp) = ua + ub; - - /* We're going to need the base value each iteration */ - pbt = DIGITS(&tmp); - - /* Outer loop: Digits of b */ - - pb = DIGITS(b); - for(ix = 0; ix < ub; ++ix, ++pb) { - if(*pb == 0) - continue; - - /* Inner product: Digits of a */ - pa = DIGITS(a); - for(jx = 0; jx < ua; ++jx, ++pa) { - pt = pbt + ix + jx; - w = *pb * *pa + k + *pt; - *pt = ACCUM(w); - k = CARRYOUT(w); - } - - pbt[ix + jx] = k; - k = 0; - } - - s_mp_clamp(&tmp); - s_mp_exch(&tmp, a); - - mp_clear(&tmp); - - return MP_OKAY; - -} /* end s_mp_mul() */ - -/* }}} */ - -/* {{{ s_mp_kmul(a, b, out, len) */ - -#if 0 -void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len) -{ - mp_word w, k = 0; - mp_size ix, jx; - mp_digit *pa, *pt; - - for(ix = 0; ix < len; ++ix, ++b) { - if(*b == 0) - continue; - - pa = a; - for(jx = 0; jx < len; ++jx, ++pa) { - pt = out + ix + jx; - w = *b * *pa + k + *pt; - *pt = ACCUM(w); - k = CARRYOUT(w); - } - - out[ix + jx] = k; - k = 0; - } - -} /* end s_mp_kmul() */ -#endif - -/* }}} */ - -/* {{{ s_mp_sqr(a) */ - -/* - Computes the square of a, in place. This can be done more - efficiently than a general multiplication, because many of the - computation steps are redundant when squaring. The inner product - step is a bit more complicated, but we save a fair number of - iterations of the multiplication loop. - */ -#if MP_SQUARE -mp_err s_mp_sqr(mp_int *a) -{ - mp_word w, k = 0; - mp_int tmp; - mp_err res; - mp_size ix, jx, kx, used = USED(a); - mp_digit *pa1, *pa2, *pt, *pbt; - - if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY) - return res; - - /* Left-pad with zeroes */ - USED(&tmp) = 2 * used; - - /* We need the base value each time through the loop */ - pbt = DIGITS(&tmp); - - pa1 = DIGITS(a); - for(ix = 0; ix < used; ++ix, ++pa1) { - if(*pa1 == 0) - continue; - - w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1); - - pbt[ix + ix] = ACCUM(w); - k = CARRYOUT(w); - - /* - The inner product is computed as: - - (C, S) = t[i,j] + 2 a[i] a[j] + C - - This can overflow what can be represented in an mp_word, and - since C arithmetic does not provide any way to check for - overflow, we have to check explicitly for overflow conditions - before they happen. - */ - for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) { - mp_word u = 0, v; - - /* Store this in a temporary to avoid indirections later */ - pt = pbt + ix + jx; - - /* Compute the multiplicative step */ - w = *pa1 * *pa2; - - /* If w is more than half MP_WORD_MAX, the doubling will - overflow, and we need to record a carry out into the next - word */ - u = (w >> (MP_WORD_BIT - 1)) & 1; - - /* Double what we've got, overflow will be ignored as defined - for C arithmetic (we've already noted if it is to occur) - */ - w *= 2; - - /* Compute the additive step */ - v = *pt + k; - - /* If we do not already have an overflow carry, check to see - if the addition will cause one, and set the carry out if so - */ - u |= ((MP_WORD_MAX - v) < w); - - /* Add in the rest, again ignoring overflow */ - w += v; - - /* Set the i,j digit of the output */ - *pt = ACCUM(w); - - /* Save carry information for the next iteration of the loop. - This is why k must be an mp_word, instead of an mp_digit */ - k = CARRYOUT(w) | (u << DIGIT_BIT); - - } /* for(jx ...) */ - - /* Set the last digit in the cycle and reset the carry */ - k = DIGIT(&tmp, ix + jx) + k; - pbt[ix + jx] = ACCUM(k); - k = CARRYOUT(k); - - /* If we are carrying out, propagate the carry to the next digit - in the output. This may cascade, so we have to be somewhat - circumspect -- but we will have enough precision in the output - that we won't overflow - */ - kx = 1; - while(k) { - k = pbt[ix + jx + kx] + 1; - pbt[ix + jx + kx] = ACCUM(k); - k = CARRYOUT(k); - ++kx; - } - } /* for(ix ...) */ - - s_mp_clamp(&tmp); - s_mp_exch(&tmp, a); - - mp_clear(&tmp); - - return MP_OKAY; - -} /* end s_mp_sqr() */ -#endif - -/* }}} */ - -/* {{{ s_mp_div(a, b) */ - -/* - s_mp_div(a, b) - - Compute a = a / b and b = a mod b. Assumes b > a. - */ - -mp_err s_mp_div(mp_int *a, mp_int *b) -{ - mp_int quot, rem, t; - mp_word q; - mp_err res; - mp_digit d; - int ix; - - if(mp_cmp_z(b) == 0) - return MP_RANGE; - - /* Shortcut if b is power of two */ - if((ix = s_mp_ispow2(b)) >= 0) { - mp_copy(a, b); /* need this for remainder */ - s_mp_div_2d(a, (mp_digit)ix); - s_mp_mod_2d(b, (mp_digit)ix); - - return MP_OKAY; - } - - /* Allocate space to store the quotient */ - if((res = mp_init_size(", USED(a))) != MP_OKAY) - return res; - - /* A working temporary for division */ - if((res = mp_init_size(&t, USED(a))) != MP_OKAY) - goto T; - - /* Allocate space for the remainder */ - if((res = mp_init_size(&rem, USED(a))) != MP_OKAY) - goto REM; - - /* Normalize to optimize guessing */ - d = s_mp_norm(a, b); - - /* Perform the division itself...woo! */ - ix = USED(a) - 1; - - while(ix >= 0) { - /* Find a partial substring of a which is at least b */ - while(s_mp_cmp(&rem, b) < 0 && ix >= 0) { - if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) - goto CLEANUP; - - if((res = s_mp_lshd(", 1)) != MP_OKAY) - goto CLEANUP; - - DIGIT(&rem, 0) = DIGIT(a, ix); - s_mp_clamp(&rem); - --ix; - } - - /* If we didn't find one, we're finished dividing */ - if(s_mp_cmp(&rem, b) < 0) - break; - - /* Compute a guess for the next quotient digit */ - q = DIGIT(&rem, USED(&rem) - 1); - if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1) - q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2); - - q /= DIGIT(b, USED(b) - 1); - - /* The guess can be as much as RADIX + 1 */ - if(q >= RADIX) - q = RADIX - 1; - - /* See what that multiplies out to */ - mp_copy(b, &t); - if((res = s_mp_mul_d(&t, q)) != MP_OKAY) - goto CLEANUP; - - /* - If it's too big, back it off. We should not have to do this - more than once, or, in rare cases, twice. Knuth describes a - method by which this could be reduced to a maximum of once, but - I didn't implement that here. - */ - while(s_mp_cmp(&t, &rem) > 0) { - --q; - s_mp_sub(&t, b); - } - - /* At this point, q should be the right next digit */ - if((res = s_mp_sub(&rem, &t)) != MP_OKAY) - goto CLEANUP; - - /* - Include the digit in the quotient. We allocated enough memory - for any quotient we could ever possibly get, so we should not - have to check for failures here - */ - DIGIT(", 0) = q; - } - - /* Denormalize remainder */ - if(d != 0) - s_mp_div_2d(&rem, d); - - s_mp_clamp("); - s_mp_clamp(&rem); - - /* Copy quotient back to output */ - s_mp_exch(", a); - - /* Copy remainder back to output */ - s_mp_exch(&rem, b); - -CLEANUP: - mp_clear(&rem); -REM: - mp_clear(&t); -T: - mp_clear("); - - return res; - -} /* end s_mp_div() */ - -/* }}} */ - -/* {{{ s_mp_2expt(a, k) */ - -mp_err s_mp_2expt(mp_int *a, mp_digit k) -{ - mp_err res; - mp_size dig, bit; - - dig = k / DIGIT_BIT; - bit = k % DIGIT_BIT; - - mp_zero(a); - if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) - return res; - - DIGIT(a, dig) |= (1 << bit); - - return MP_OKAY; - -} /* end s_mp_2expt() */ - -/* }}} */ - - -/* }}} */ - -/* }}} */ - -/* {{{ Primitive comparisons */ - -/* {{{ s_mp_cmp(a, b) */ - -/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ -int s_mp_cmp(mp_int *a, mp_int *b) -{ - mp_size ua = USED(a), ub = USED(b); - - if(ua > ub) - return MP_GT; - else if(ua < ub) - return MP_LT; - else { - int ix = ua - 1; - mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix; - - while(ix >= 0) { - if(*ap > *bp) - return MP_GT; - else if(*ap < *bp) - return MP_LT; - - --ap; --bp; --ix; - } - - return MP_EQ; - } - -} /* end s_mp_cmp() */ - -/* }}} */ - -/* {{{ s_mp_cmp_d(a, d) */ - -/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ -int s_mp_cmp_d(mp_int *a, mp_digit d) -{ - mp_size ua = USED(a); - mp_digit *ap = DIGITS(a); - - if(ua > 1) - return MP_GT; - - if(*ap < d) - return MP_LT; - else if(*ap > d) - return MP_GT; - else - return MP_EQ; - -} /* end s_mp_cmp_d() */ - -/* }}} */ - -/* {{{ s_mp_ispow2(v) */ - -/* - Returns -1 if the value is not a power of two; otherwise, it returns - k such that v = 2^k, i.e. lg(v). - */ -int s_mp_ispow2(mp_int *v) -{ - mp_digit d, *dp; - mp_size uv = USED(v); - int extra = 0, ix; - - d = DIGIT(v, uv - 1); /* most significant digit of v */ - - while(d && ((d & 1) == 0)) { - d >>= 1; - ++extra; - } - - if(d == 1) { - ix = uv - 2; - dp = DIGITS(v) + ix; - - while(ix >= 0) { - if(*dp) - return -1; /* not a power of two */ - - --dp; --ix; - } - - return ((uv - 1) * DIGIT_BIT) + extra; - } - - return -1; - -} /* end s_mp_ispow2() */ - -/* }}} */ - -/* {{{ s_mp_ispow2d(d) */ - -int s_mp_ispow2d(mp_digit d) -{ - int pow = 0; - - while((d & 1) == 0) { - ++pow; d >>= 1; - } - - if(d == 1) - return pow; - - return -1; - -} /* end s_mp_ispow2d() */ - -/* }}} */ - -/* }}} */ - -/* {{{ Primitive I/O helpers */ - -/* {{{ s_mp_tovalue(ch, r) */ - -/* - Convert the given character to its digit value, in the given radix. - If the given character is not understood in the given radix, -1 is - returned. Otherwise the digit's numeric value is returned. - - The results will be odd if you use a radix < 2 or > 62, you are - expected to know what you're up to. - */ -int s_mp_tovalue(char ch, int r) -{ - int val, xch; - - if(r > 36) - xch = ch; - else - xch = toupper(ch); - - if(isdigit(xch)) - val = xch - '0'; - else if(isupper(xch)) - val = xch - 'A' + 10; - else if(islower(xch)) - val = xch - 'a' + 36; - else if(xch == '+') - val = 62; - else if(xch == '/') - val = 63; - else - return -1; - - if(val < 0 || val >= r) - return -1; - - return val; - -} /* end s_mp_tovalue() */ - -/* }}} */ - -/* {{{ s_mp_todigit(val, r, low) */ - -/* - Convert val to a radix-r digit, if possible. If val is out of range - for r, returns zero. Otherwise, returns an ASCII character denoting - the value in the given radix. - - The results may be odd if you use a radix < 2 or > 64, you are - expected to know what you're doing. - */ - -char s_mp_todigit(int val, int r, int low) -{ - char ch; - - if(val < 0 || val >= r) - return 0; - - ch = s_dmap_1[val]; - - if(r <= 36 && low) - ch = tolower(ch); - - return ch; - -} /* end s_mp_todigit() */ - -/* }}} */ - -/* {{{ s_mp_outlen(bits, radix) */ - -/* - Return an estimate for how long a string is needed to hold a radix - r representation of a number with 'bits' significant bits. - - Does not include space for a sign or a NUL terminator. - */ -int s_mp_outlen(int bits, int r) -{ - return (int)((double)bits * LOG_V_2(r)); - -} /* end s_mp_outlen() */ - -/* }}} */ - -/* }}} */ - -/*------------------------------------------------------------------------*/ -/* HERE THERE BE DRAGONS */ -/* crc==4242132123, version==2, Sat Feb 02 06:43:52 2002 */ - -/* $Source$ */ -/* $Revision$ */ -/* $Date$ */ |