diff options
Diffstat (limited to 'libtommath/pre_gen/mpi.c')
| -rw-r--r-- | libtommath/pre_gen/mpi.c | 9048 | 
1 files changed, 9048 insertions, 0 deletions
| diff --git a/libtommath/pre_gen/mpi.c b/libtommath/pre_gen/mpi.c new file mode 100644 index 0000000..d2224c0 --- /dev/null +++ b/libtommath/pre_gen/mpi.c @@ -0,0 +1,9048 @@ +/* Start: bn_error.c */ +#include <tommath.h> +#ifdef BN_ERROR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +static const struct { +     int code; +     char *msg; +} msgs[] = { +     { MP_OKAY, "Successful" }, +     { MP_MEM,  "Out of heap" }, +     { MP_VAL,  "Value out of range" } +}; + +/* return a char * string for a given code */ +char *mp_error_to_string(int code) +{ +   int x; + +   /* scan the lookup table for the given message */ +   for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) { +       if (msgs[x].code == code) { +          return msgs[x].msg; +       } +   } + +   /* generic reply for invalid code */ +   return "Invalid error code"; +} + +#endif + +/* End: bn_error.c */ + +/* Start: bn_fast_mp_invmod.c */ +#include <tommath.h> +#ifdef BN_FAST_MP_INVMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes the modular inverse via binary extended euclidean algorithm,  + * that is c = 1/a mod b  + * + * Based on slow invmod except this is optimized for the case where b is  + * odd as per HAC Note 14.64 on pp. 610 + */ +int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) +{ +  mp_int  x, y, u, v, B, D; +  int     res, neg; + +  /* 2. [modified] b must be odd   */ +  if (mp_iseven (b) == 1) { +    return MP_VAL; +  } + +  /* init all our temps */ +  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { +     return res; +  } + +  /* x == modulus, y == value to invert */ +  if ((res = mp_copy (b, &x)) != MP_OKAY) { +    goto LBL_ERR; +  } + +  /* we need y = |a| */ +  if ((res = mp_mod (a, b, &y)) != MP_OKAY) { +    goto LBL_ERR; +  } + +  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ +  if ((res = mp_copy (&x, &u)) != MP_OKAY) { +    goto LBL_ERR; +  } +  if ((res = mp_copy (&y, &v)) != MP_OKAY) { +    goto LBL_ERR; +  } +  mp_set (&D, 1); + +top: +  /* 4.  while u is even do */ +  while (mp_iseven (&u) == 1) { +    /* 4.1 u = u/2 */ +    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { +      goto LBL_ERR; +    } +    /* 4.2 if B is odd then */ +    if (mp_isodd (&B) == 1) { +      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { +        goto LBL_ERR; +      } +    } +    /* B = B/2 */ +    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } + +  /* 5.  while v is even do */ +  while (mp_iseven (&v) == 1) { +    /* 5.1 v = v/2 */ +    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { +      goto LBL_ERR; +    } +    /* 5.2 if D is odd then */ +    if (mp_isodd (&D) == 1) { +      /* D = (D-x)/2 */ +      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { +        goto LBL_ERR; +      } +    } +    /* D = D/2 */ +    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } + +  /* 6.  if u >= v then */ +  if (mp_cmp (&u, &v) != MP_LT) { +    /* u = u - v, B = B - D */ +    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { +      goto LBL_ERR; +    } + +    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } else { +    /* v - v - u, D = D - B */ +    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { +      goto LBL_ERR; +    } + +    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } + +  /* if not zero goto step 4 */ +  if (mp_iszero (&u) == 0) { +    goto top; +  } + +  /* now a = C, b = D, gcd == g*v */ + +  /* if v != 1 then there is no inverse */ +  if (mp_cmp_d (&v, 1) != MP_EQ) { +    res = MP_VAL; +    goto LBL_ERR; +  } + +  /* b is now the inverse */ +  neg = a->sign; +  while (D.sign == MP_NEG) { +    if ((res = mp_add (&D, b, &D)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } +  mp_exch (&D, c); +  c->sign = neg; +  res = MP_OKAY; + +LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); +  return res; +} +#endif + +/* End: bn_fast_mp_invmod.c */ + +/* Start: bn_fast_mp_montgomery_reduce.c */ +#include <tommath.h> +#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes xR**-1 == x (mod N) via Montgomery Reduction + * + * This is an optimized implementation of montgomery_reduce + * which uses the comba method to quickly calculate the columns of the + * reduction. + * + * Based on Algorithm 14.32 on pp.601 of HAC. +*/ +int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) +{ +  int     ix, res, olduse; +  mp_word W[MP_WARRAY]; + +  /* get old used count */ +  olduse = x->used; + +  /* grow a as required */ +  if (x->alloc < n->used + 1) { +    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { +      return res; +    } +  } + +  /* first we have to get the digits of the input into +   * an array of double precision words W[...] +   */ +  { +    register mp_word *_W; +    register mp_digit *tmpx; + +    /* alias for the W[] array */ +    _W   = W; + +    /* alias for the digits of  x*/ +    tmpx = x->dp; + +    /* copy the digits of a into W[0..a->used-1] */ +    for (ix = 0; ix < x->used; ix++) { +      *_W++ = *tmpx++; +    } + +    /* zero the high words of W[a->used..m->used*2] */ +    for (; ix < n->used * 2 + 1; ix++) { +      *_W++ = 0; +    } +  } + +  /* now we proceed to zero successive digits +   * from the least significant upwards +   */ +  for (ix = 0; ix < n->used; ix++) { +    /* mu = ai * m' mod b +     * +     * We avoid a double precision multiplication (which isn't required) +     * by casting the value down to a mp_digit.  Note this requires +     * that W[ix-1] have  the carry cleared (see after the inner loop) +     */ +    register mp_digit mu; +    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); + +    /* a = a + mu * m * b**i +     * +     * This is computed in place and on the fly.  The multiplication +     * by b**i is handled by offseting which columns the results +     * are added to. +     * +     * Note the comba method normally doesn't handle carries in the +     * inner loop In this case we fix the carry from the previous +     * column since the Montgomery reduction requires digits of the +     * result (so far) [see above] to work.  This is +     * handled by fixing up one carry after the inner loop.  The +     * carry fixups are done in order so after these loops the +     * first m->used words of W[] have the carries fixed +     */ +    { +      register int iy; +      register mp_digit *tmpn; +      register mp_word *_W; + +      /* alias for the digits of the modulus */ +      tmpn = n->dp; + +      /* Alias for the columns set by an offset of ix */ +      _W = W + ix; + +      /* inner loop */ +      for (iy = 0; iy < n->used; iy++) { +          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); +      } +    } + +    /* now fix carry for next digit, W[ix+1] */ +    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); +  } + +  /* now we have to propagate the carries and +   * shift the words downward [all those least +   * significant digits we zeroed]. +   */ +  { +    register mp_digit *tmpx; +    register mp_word *_W, *_W1; + +    /* nox fix rest of carries */ + +    /* alias for current word */ +    _W1 = W + ix; + +    /* alias for next word, where the carry goes */ +    _W = W + ++ix; + +    for (; ix <= n->used * 2 + 1; ix++) { +      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); +    } + +    /* copy out, A = A/b**n +     * +     * The result is A/b**n but instead of converting from an +     * array of mp_word to mp_digit than calling mp_rshd +     * we just copy them in the right order +     */ + +    /* alias for destination word */ +    tmpx = x->dp; + +    /* alias for shifted double precision result */ +    _W = W + n->used; + +    for (ix = 0; ix < n->used + 1; ix++) { +      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); +    } + +    /* zero oldused digits, if the input a was larger than +     * m->used+1 we'll have to clear the digits +     */ +    for (; ix < olduse; ix++) { +      *tmpx++ = 0; +    } +  } + +  /* set the max used and clamp */ +  x->used = n->used + 1; +  mp_clamp (x); + +  /* if A >= m then A = A - m */ +  if (mp_cmp_mag (x, n) != MP_LT) { +    return s_mp_sub (x, n, x); +  } +  return MP_OKAY; +} +#endif + +/* End: bn_fast_mp_montgomery_reduce.c */ + +/* Start: bn_fast_s_mp_mul_digs.c */ +#include <tommath.h> +#ifdef BN_FAST_S_MP_MUL_DIGS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* Fast (comba) multiplier + * + * This is the fast column-array [comba] multiplier.  It is  + * designed to compute the columns of the product first  + * then handle the carries afterwards.  This has the effect  + * of making the nested loops that compute the columns very + * simple and schedulable on super-scalar processors. + * + * This has been modified to produce a variable number of  + * digits of output so if say only a half-product is required  + * you don't have to compute the upper half (a feature  + * required for fast Barrett reduction). + * + * Based on Algorithm 14.12 on pp.595 of HAC. + * + */ +int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ +  int     olduse, res, pa, ix, iz; +  mp_digit W[MP_WARRAY]; +  register mp_word  _W; + +  /* grow the destination as required */ +  if (c->alloc < digs) { +    if ((res = mp_grow (c, digs)) != MP_OKAY) { +      return res; +    } +  } + +  /* number of output digits to produce */ +  pa = MIN(digs, a->used + b->used); + +  /* clear the carry */ +  _W = 0; +  for (ix = 0; ix < pa; ix++) {  +      int      tx, ty; +      int      iy; +      mp_digit *tmpx, *tmpy; + +      /* get offsets into the two bignums */ +      ty = MIN(b->used-1, ix); +      tx = ix - ty; + +      /* setup temp aliases */ +      tmpx = a->dp + tx; +      tmpy = b->dp + ty; + +      /* this is the number of times the loop will iterrate, essentially  +         while (tx++ < a->used && ty-- >= 0) { ... } +       */ +      iy = MIN(a->used-tx, ty+1); + +      /* execute loop */ +      for (iz = 0; iz < iy; ++iz) { +         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); + +      } + +      /* store term */ +      W[ix] = ((mp_digit)_W) & MP_MASK; + +      /* make next carry */ +      _W = _W >> ((mp_word)DIGIT_BIT); + } + +  /* setup dest */ +  olduse  = c->used; +  c->used = pa; + +  { +    register mp_digit *tmpc; +    tmpc = c->dp; +    for (ix = 0; ix < pa+1; ix++) { +      /* now extract the previous digit [below the carry] */ +      *tmpc++ = W[ix]; +    } + +    /* clear unused digits [that existed in the old copy of c] */ +    for (; ix < olduse; ix++) { +      *tmpc++ = 0; +    } +  } +  mp_clamp (c); +  return MP_OKAY; +} +#endif + +/* End: bn_fast_s_mp_mul_digs.c */ + +/* Start: bn_fast_s_mp_mul_high_digs.c */ +#include <tommath.h> +#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* this is a modified version of fast_s_mul_digs that only produces + * output digits *above* digs.  See the comments for fast_s_mul_digs + * to see how it works. + * + * This is used in the Barrett reduction since for one of the multiplications + * only the higher digits were needed.  This essentially halves the work. + * + * Based on Algorithm 14.12 on pp.595 of HAC. + */ +int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ +  int     olduse, res, pa, ix, iz; +  mp_digit W[MP_WARRAY]; +  mp_word  _W; + +  /* grow the destination as required */ +  pa = a->used + b->used; +  if (c->alloc < pa) { +    if ((res = mp_grow (c, pa)) != MP_OKAY) { +      return res; +    } +  } + +  /* number of output digits to produce */ +  pa = a->used + b->used; +  _W = 0; +  for (ix = digs; ix < pa; ix++) {  +      int      tx, ty, iy; +      mp_digit *tmpx, *tmpy; + +      /* get offsets into the two bignums */ +      ty = MIN(b->used-1, ix); +      tx = ix - ty; + +      /* setup temp aliases */ +      tmpx = a->dp + tx; +      tmpy = b->dp + ty; + +      /* this is the number of times the loop will iterrate, essentially its  +         while (tx++ < a->used && ty-- >= 0) { ... } +       */ +      iy = MIN(a->used-tx, ty+1); + +      /* execute loop */ +      for (iz = 0; iz < iy; iz++) { +         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); +      } + +      /* store term */ +      W[ix] = ((mp_digit)_W) & MP_MASK; + +      /* make next carry */ +      _W = _W >> ((mp_word)DIGIT_BIT); +  } +   +  /* setup dest */ +  olduse  = c->used; +  c->used = pa; + +  { +    register mp_digit *tmpc; + +    tmpc = c->dp + digs; +    for (ix = digs; ix < pa; ix++) { +      /* now extract the previous digit [below the carry] */ +      *tmpc++ = W[ix]; +    } + +    /* clear unused digits [that existed in the old copy of c] */ +    for (; ix < olduse; ix++) { +      *tmpc++ = 0; +    } +  } +  mp_clamp (c); +  return MP_OKAY; +} +#endif + +/* End: bn_fast_s_mp_mul_high_digs.c */ + +/* Start: bn_fast_s_mp_sqr.c */ +#include <tommath.h> +#ifdef BN_FAST_S_MP_SQR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* the jist of squaring... + * you do like mult except the offset of the tmpx [one that  + * starts closer to zero] can't equal the offset of tmpy.   + * So basically you set up iy like before then you min it with + * (ty-tx) so that it never happens.  You double all those  + * you add in the inner loop + +After that loop you do the squares and add them in. +*/ + +int fast_s_mp_sqr (mp_int * a, mp_int * b) +{ +  int       olduse, res, pa, ix, iz; +  mp_digit   W[MP_WARRAY], *tmpx; +  mp_word   W1; + +  /* grow the destination as required */ +  pa = a->used + a->used; +  if (b->alloc < pa) { +    if ((res = mp_grow (b, pa)) != MP_OKAY) { +      return res; +    } +  } + +  /* number of output digits to produce */ +  W1 = 0; +  for (ix = 0; ix < pa; ix++) {  +      int      tx, ty, iy; +      mp_word  _W; +      mp_digit *tmpy; + +      /* clear counter */ +      _W = 0; + +      /* get offsets into the two bignums */ +      ty = MIN(a->used-1, ix); +      tx = ix - ty; + +      /* setup temp aliases */ +      tmpx = a->dp + tx; +      tmpy = a->dp + ty; + +      /* this is the number of times the loop will iterrate, essentially +         while (tx++ < a->used && ty-- >= 0) { ... } +       */ +      iy = MIN(a->used-tx, ty+1); + +      /* now for squaring tx can never equal ty  +       * we halve the distance since they approach at a rate of 2x +       * and we have to round because odd cases need to be executed +       */ +      iy = MIN(iy, (ty-tx+1)>>1); + +      /* execute loop */ +      for (iz = 0; iz < iy; iz++) { +         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); +      } + +      /* double the inner product and add carry */ +      _W = _W + _W + W1; + +      /* even columns have the square term in them */ +      if ((ix&1) == 0) { +         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); +      } + +      /* store it */ +      W[ix] = (mp_digit)(_W & MP_MASK); + +      /* make next carry */ +      W1 = _W >> ((mp_word)DIGIT_BIT); +  } + +  /* setup dest */ +  olduse  = b->used; +  b->used = a->used+a->used; + +  { +    mp_digit *tmpb; +    tmpb = b->dp; +    for (ix = 0; ix < pa; ix++) { +      *tmpb++ = W[ix] & MP_MASK; +    } + +    /* clear unused digits [that existed in the old copy of c] */ +    for (; ix < olduse; ix++) { +      *tmpb++ = 0; +    } +  } +  mp_clamp (b); +  return MP_OKAY; +} +#endif + +/* End: bn_fast_s_mp_sqr.c */ + +/* Start: bn_mp_2expt.c */ +#include <tommath.h> +#ifdef BN_MP_2EXPT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes a = 2**b  + * + * Simple algorithm which zeroes the int, grows it then just sets one bit + * as required. + */ +int +mp_2expt (mp_int * a, int b) +{ +  int     res; + +  /* zero a as per default */ +  mp_zero (a); + +  /* grow a to accomodate the single bit */ +  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { +    return res; +  } + +  /* set the used count of where the bit will go */ +  a->used = b / DIGIT_BIT + 1; + +  /* put the single bit in its place */ +  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_2expt.c */ + +/* Start: bn_mp_abs.c */ +#include <tommath.h> +#ifdef BN_MP_ABS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* b = |a|  + * + * Simple function copies the input and fixes the sign to positive + */ +int +mp_abs (mp_int * a, mp_int * b) +{ +  int     res; + +  /* copy a to b */ +  if (a != b) { +     if ((res = mp_copy (a, b)) != MP_OKAY) { +       return res; +     } +  } + +  /* force the sign of b to positive */ +  b->sign = MP_ZPOS; + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_abs.c */ + +/* Start: bn_mp_add.c */ +#include <tommath.h> +#ifdef BN_MP_ADD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* high level addition (handles signs) */ +int mp_add (mp_int * a, mp_int * b, mp_int * c) +{ +  int     sa, sb, res; + +  /* get sign of both inputs */ +  sa = a->sign; +  sb = b->sign; + +  /* handle two cases, not four */ +  if (sa == sb) { +    /* both positive or both negative */ +    /* add their magnitudes, copy the sign */ +    c->sign = sa; +    res = s_mp_add (a, b, c); +  } else { +    /* one positive, the other negative */ +    /* subtract the one with the greater magnitude from */ +    /* the one of the lesser magnitude.  The result gets */ +    /* the sign of the one with the greater magnitude. */ +    if (mp_cmp_mag (a, b) == MP_LT) { +      c->sign = sb; +      res = s_mp_sub (b, a, c); +    } else { +      c->sign = sa; +      res = s_mp_sub (a, b, c); +    } +  } +  return res; +} + +#endif + +/* End: bn_mp_add.c */ + +/* Start: bn_mp_add_d.c */ +#include <tommath.h> +#ifdef BN_MP_ADD_D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* single digit addition */ +int +mp_add_d (mp_int * a, mp_digit b, mp_int * c) +{ +  int     res, ix, oldused; +  mp_digit *tmpa, *tmpc, mu; + +  /* grow c as required */ +  if (c->alloc < a->used + 1) { +     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { +        return res; +     } +  } + +  /* if a is negative and |a| >= b, call c = |a| - b */ +  if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { +     /* temporarily fix sign of a */ +     a->sign = MP_ZPOS; + +     /* c = |a| - b */ +     res = mp_sub_d(a, b, c); + +     /* fix sign  */ +     a->sign = c->sign = MP_NEG; + +     /* clamp */ +     mp_clamp(c); + +     return res; +  } + +  /* old number of used digits in c */ +  oldused = c->used; + +  /* sign always positive */ +  c->sign = MP_ZPOS; + +  /* source alias */ +  tmpa    = a->dp; + +  /* destination alias */ +  tmpc    = c->dp; + +  /* if a is positive */ +  if (a->sign == MP_ZPOS) { +     /* add digit, after this we're propagating +      * the carry. +      */ +     *tmpc   = *tmpa++ + b; +     mu      = *tmpc >> DIGIT_BIT; +     *tmpc++ &= MP_MASK; + +     /* now handle rest of the digits */ +     for (ix = 1; ix < a->used; ix++) { +        *tmpc   = *tmpa++ + mu; +        mu      = *tmpc >> DIGIT_BIT; +        *tmpc++ &= MP_MASK; +     } +     /* set final carry */ +     ix++; +     *tmpc++  = mu; + +     /* setup size */ +     c->used = a->used + 1; +  } else { +     /* a was negative and |a| < b */ +     c->used  = 1; + +     /* the result is a single digit */ +     if (a->used == 1) { +        *tmpc++  =  b - a->dp[0]; +     } else { +        *tmpc++  =  b; +     } + +     /* setup count so the clearing of oldused +      * can fall through correctly +      */ +     ix       = 1; +  } + +  /* now zero to oldused */ +  while (ix++ < oldused) { +     *tmpc++ = 0; +  } +  mp_clamp(c); + +  return MP_OKAY; +} + +#endif + +/* End: bn_mp_add_d.c */ + +/* Start: bn_mp_addmod.c */ +#include <tommath.h> +#ifdef BN_MP_ADDMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* d = a + b (mod c) */ +int +mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ +  int     res; +  mp_int  t; + +  if ((res = mp_init (&t)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_add (a, b, &t)) != MP_OKAY) { +    mp_clear (&t); +    return res; +  } +  res = mp_mod (&t, c, d); +  mp_clear (&t); +  return res; +} +#endif + +/* End: bn_mp_addmod.c */ + +/* Start: bn_mp_and.c */ +#include <tommath.h> +#ifdef BN_MP_AND_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* AND two ints together */ +int +mp_and (mp_int * a, mp_int * b, mp_int * c) +{ +  int     res, ix, px; +  mp_int  t, *x; + +  if (a->used > b->used) { +    if ((res = mp_init_copy (&t, a)) != MP_OKAY) { +      return res; +    } +    px = b->used; +    x = b; +  } else { +    if ((res = mp_init_copy (&t, b)) != MP_OKAY) { +      return res; +    } +    px = a->used; +    x = a; +  } + +  for (ix = 0; ix < px; ix++) { +    t.dp[ix] &= x->dp[ix]; +  } + +  /* zero digits above the last from the smallest mp_int */ +  for (; ix < t.used; ix++) { +    t.dp[ix] = 0; +  } + +  mp_clamp (&t); +  mp_exch (c, &t); +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_and.c */ + +/* Start: bn_mp_clamp.c */ +#include <tommath.h> +#ifdef BN_MP_CLAMP_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* trim unused digits  + * + * This is used to ensure that leading zero digits are + * trimed and the leading "used" digit will be non-zero + * Typically very fast.  Also fixes the sign if there + * are no more leading digits + */ +void +mp_clamp (mp_int * a) +{ +  /* decrease used while the most significant digit is +   * zero. +   */ +  while (a->used > 0 && a->dp[a->used - 1] == 0) { +    --(a->used); +  } + +  /* reset the sign flag if used == 0 */ +  if (a->used == 0) { +    a->sign = MP_ZPOS; +  } +} +#endif + +/* End: bn_mp_clamp.c */ + +/* Start: bn_mp_clear.c */ +#include <tommath.h> +#ifdef BN_MP_CLEAR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* clear one (frees)  */ +void +mp_clear (mp_int * a) +{ +  int i; + +  /* only do anything if a hasn't been freed previously */ +  if (a->dp != NULL) { +    /* first zero the digits */ +    for (i = 0; i < a->used; i++) { +        a->dp[i] = 0; +    } + +    /* free ram */ +    XFREE(a->dp); + +    /* reset members to make debugging easier */ +    a->dp    = NULL; +    a->alloc = a->used = 0; +    a->sign  = MP_ZPOS; +  } +} +#endif + +/* End: bn_mp_clear.c */ + +/* Start: bn_mp_clear_multi.c */ +#include <tommath.h> +#ifdef BN_MP_CLEAR_MULTI_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ +#include <stdarg.h> + +void mp_clear_multi(mp_int *mp, ...)  +{ +    mp_int* next_mp = mp; +    va_list args; +    va_start(args, mp); +    while (next_mp != NULL) { +        mp_clear(next_mp); +        next_mp = va_arg(args, mp_int*); +    } +    va_end(args); +} +#endif + +/* End: bn_mp_clear_multi.c */ + +/* Start: bn_mp_cmp.c */ +#include <tommath.h> +#ifdef BN_MP_CMP_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* compare two ints (signed)*/ +int +mp_cmp (mp_int * a, mp_int * b) +{ +  /* compare based on sign */ +  if (a->sign != b->sign) { +     if (a->sign == MP_NEG) { +        return MP_LT; +     } else { +        return MP_GT; +     } +  } +   +  /* compare digits */ +  if (a->sign == MP_NEG) { +     /* if negative compare opposite direction */ +     return mp_cmp_mag(b, a); +  } else { +     return mp_cmp_mag(a, b); +  } +} +#endif + +/* End: bn_mp_cmp.c */ + +/* Start: bn_mp_cmp_d.c */ +#include <tommath.h> +#ifdef BN_MP_CMP_D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* compare a digit */ +int mp_cmp_d(mp_int * a, mp_digit b) +{ +  /* compare based on sign */ +  if (a->sign == MP_NEG) { +    return MP_LT; +  } + +  /* compare based on magnitude */ +  if (a->used > 1) { +    return MP_GT; +  } + +  /* compare the only digit of a to b */ +  if (a->dp[0] > b) { +    return MP_GT; +  } else if (a->dp[0] < b) { +    return MP_LT; +  } else { +    return MP_EQ; +  } +} +#endif + +/* End: bn_mp_cmp_d.c */ + +/* Start: bn_mp_cmp_mag.c */ +#include <tommath.h> +#ifdef BN_MP_CMP_MAG_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* compare maginitude of two ints (unsigned) */ +int mp_cmp_mag (mp_int * a, mp_int * b) +{ +  int     n; +  mp_digit *tmpa, *tmpb; + +  /* compare based on # of non-zero digits */ +  if (a->used > b->used) { +    return MP_GT; +  } +   +  if (a->used < b->used) { +    return MP_LT; +  } + +  /* alias for a */ +  tmpa = a->dp + (a->used - 1); + +  /* alias for b */ +  tmpb = b->dp + (a->used - 1); + +  /* compare based on digits  */ +  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { +    if (*tmpa > *tmpb) { +      return MP_GT; +    } + +    if (*tmpa < *tmpb) { +      return MP_LT; +    } +  } +  return MP_EQ; +} +#endif + +/* End: bn_mp_cmp_mag.c */ + +/* Start: bn_mp_cnt_lsb.c */ +#include <tommath.h> +#ifdef BN_MP_CNT_LSB_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +static const int lnz[16] = {  +   4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 +}; + +/* Counts the number of lsbs which are zero before the first zero bit */ +int mp_cnt_lsb(mp_int *a) +{ +   int x; +   mp_digit q, qq; + +   /* easy out */ +   if (mp_iszero(a) == 1) { +      return 0; +   } + +   /* scan lower digits until non-zero */ +   for (x = 0; x < a->used && a->dp[x] == 0; x++); +   q = a->dp[x]; +   x *= DIGIT_BIT; + +   /* now scan this digit until a 1 is found */ +   if ((q & 1) == 0) { +      do { +         qq  = q & 15; +         x  += lnz[qq]; +         q >>= 4; +      } while (qq == 0); +   } +   return x; +} + +#endif + +/* End: bn_mp_cnt_lsb.c */ + +/* Start: bn_mp_copy.c */ +#include <tommath.h> +#ifdef BN_MP_COPY_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* copy, b = a */ +int +mp_copy (mp_int * a, mp_int * b) +{ +  int     res, n; + +  /* if dst == src do nothing */ +  if (a == b) { +    return MP_OKAY; +  } + +  /* grow dest */ +  if (b->alloc < a->used) { +     if ((res = mp_grow (b, a->used)) != MP_OKAY) { +        return res; +     } +  } + +  /* zero b and copy the parameters over */ +  { +    register mp_digit *tmpa, *tmpb; + +    /* pointer aliases */ + +    /* source */ +    tmpa = a->dp; + +    /* destination */ +    tmpb = b->dp; + +    /* copy all the digits */ +    for (n = 0; n < a->used; n++) { +      *tmpb++ = *tmpa++; +    } + +    /* clear high digits */ +    for (; n < b->used; n++) { +      *tmpb++ = 0; +    } +  } + +  /* copy used count and sign */ +  b->used = a->used; +  b->sign = a->sign; +  return MP_OKAY; +} +#endif + +/* End: bn_mp_copy.c */ + +/* Start: bn_mp_count_bits.c */ +#include <tommath.h> +#ifdef BN_MP_COUNT_BITS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* returns the number of bits in an int */ +int +mp_count_bits (mp_int * a) +{ +  int     r; +  mp_digit q; + +  /* shortcut */ +  if (a->used == 0) { +    return 0; +  } + +  /* get number of digits and add that */ +  r = (a->used - 1) * DIGIT_BIT; +   +  /* take the last digit and count the bits in it */ +  q = a->dp[a->used - 1]; +  while (q > ((mp_digit) 0)) { +    ++r; +    q >>= ((mp_digit) 1); +  } +  return r; +} +#endif + +/* End: bn_mp_count_bits.c */ + +/* Start: bn_mp_div.c */ +#include <tommath.h> +#ifdef BN_MP_DIV_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +#ifdef BN_MP_DIV_SMALL + +/* slower bit-bang division... also smaller */ +int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ +   mp_int ta, tb, tq, q; +   int    res, n, n2; + +  /* is divisor zero ? */ +  if (mp_iszero (b) == 1) { +    return MP_VAL; +  } + +  /* if a < b then q=0, r = a */ +  if (mp_cmp_mag (a, b) == MP_LT) { +    if (d != NULL) { +      res = mp_copy (a, d); +    } else { +      res = MP_OKAY; +    } +    if (c != NULL) { +      mp_zero (c); +    } +    return res; +  } +	 +  /* init our temps */ +  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { +     return res; +  } + + +  mp_set(&tq, 1); +  n = mp_count_bits(a) - mp_count_bits(b); +  if (((res = mp_abs(a, &ta)) != MP_OKAY) || +      ((res = mp_abs(b, &tb)) != MP_OKAY) ||  +      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || +      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { +      goto LBL_ERR; +  } + +  while (n-- >= 0) { +     if (mp_cmp(&tb, &ta) != MP_GT) { +        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || +            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { +           goto LBL_ERR; +        } +     } +     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || +         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { +           goto LBL_ERR; +     } +  } + +  /* now q == quotient and ta == remainder */ +  n  = a->sign; +  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); +  if (c != NULL) { +     mp_exch(c, &q); +     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; +  } +  if (d != NULL) { +     mp_exch(d, &ta); +     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; +  } +LBL_ERR: +   mp_clear_multi(&ta, &tb, &tq, &q, NULL); +   return res; +} + +#else + +/* integer signed division.  + * c*b + d == a [e.g. a/b, c=quotient, d=remainder] + * HAC pp.598 Algorithm 14.20 + * + * Note that the description in HAC is horribly  + * incomplete.  For example, it doesn't consider  + * the case where digits are removed from 'x' in  + * the inner loop.  It also doesn't consider the  + * case that y has fewer than three digits, etc.. + * + * The overall algorithm is as described as  + * 14.20 from HAC but fixed to treat these cases. +*/ +int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ +  mp_int  q, x, y, t1, t2; +  int     res, n, t, i, norm, neg; + +  /* is divisor zero ? */ +  if (mp_iszero (b) == 1) { +    return MP_VAL; +  } + +  /* if a < b then q=0, r = a */ +  if (mp_cmp_mag (a, b) == MP_LT) { +    if (d != NULL) { +      res = mp_copy (a, d); +    } else { +      res = MP_OKAY; +    } +    if (c != NULL) { +      mp_zero (c); +    } +    return res; +  } + +  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { +    return res; +  } +  q.used = a->used + 2; + +  if ((res = mp_init (&t1)) != MP_OKAY) { +    goto LBL_Q; +  } + +  if ((res = mp_init (&t2)) != MP_OKAY) { +    goto LBL_T1; +  } + +  if ((res = mp_init_copy (&x, a)) != MP_OKAY) { +    goto LBL_T2; +  } + +  if ((res = mp_init_copy (&y, b)) != MP_OKAY) { +    goto LBL_X; +  } + +  /* fix the sign */ +  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; +  x.sign = y.sign = MP_ZPOS; + +  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ +  norm = mp_count_bits(&y) % DIGIT_BIT; +  if (norm < (int)(DIGIT_BIT-1)) { +     norm = (DIGIT_BIT-1) - norm; +     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { +       goto LBL_Y; +     } +     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { +       goto LBL_Y; +     } +  } else { +     norm = 0; +  } + +  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ +  n = x.used - 1; +  t = y.used - 1; + +  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ +  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ +    goto LBL_Y; +  } + +  while (mp_cmp (&x, &y) != MP_LT) { +    ++(q.dp[n - t]); +    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { +      goto LBL_Y; +    } +  } + +  /* reset y by shifting it back down */ +  mp_rshd (&y, n - t); + +  /* step 3. for i from n down to (t + 1) */ +  for (i = n; i >= (t + 1); i--) { +    if (i > x.used) { +      continue; +    } + +    /* step 3.1 if xi == yt then set q{i-t-1} to b-1,  +     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ +    if (x.dp[i] == y.dp[t]) { +      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); +    } else { +      mp_word tmp; +      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); +      tmp |= ((mp_word) x.dp[i - 1]); +      tmp /= ((mp_word) y.dp[t]); +      if (tmp > (mp_word) MP_MASK) +        tmp = MP_MASK; +      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); +    } + +    /* while (q{i-t-1} * (yt * b + y{t-1})) >  +             xi * b**2 + xi-1 * b + xi-2  +      +       do q{i-t-1} -= 1;  +    */ +    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; +    do { +      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; + +      /* find left hand */ +      mp_zero (&t1); +      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; +      t1.dp[1] = y.dp[t]; +      t1.used = 2; +      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { +        goto LBL_Y; +      } + +      /* find right hand */ +      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; +      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; +      t2.dp[2] = x.dp[i]; +      t2.used = 3; +    } while (mp_cmp_mag(&t1, &t2) == MP_GT); + +    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ +    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { +      goto LBL_Y; +    } + +    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { +      goto LBL_Y; +    } + +    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { +      goto LBL_Y; +    } + +    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ +    if (x.sign == MP_NEG) { +      if ((res = mp_copy (&y, &t1)) != MP_OKAY) { +        goto LBL_Y; +      } +      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { +        goto LBL_Y; +      } +      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { +        goto LBL_Y; +      } + +      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; +    } +  } + +  /* now q is the quotient and x is the remainder  +   * [which we have to normalize]  +   */ +   +  /* get sign before writing to c */ +  x.sign = x.used == 0 ? MP_ZPOS : a->sign; + +  if (c != NULL) { +    mp_clamp (&q); +    mp_exch (&q, c); +    c->sign = neg; +  } + +  if (d != NULL) { +    mp_div_2d (&x, norm, &x, NULL); +    mp_exch (&x, d); +  } + +  res = MP_OKAY; + +LBL_Y:mp_clear (&y); +LBL_X:mp_clear (&x); +LBL_T2:mp_clear (&t2); +LBL_T1:mp_clear (&t1); +LBL_Q:mp_clear (&q); +  return res; +} + +#endif + +#endif + +/* End: bn_mp_div.c */ + +/* Start: bn_mp_div_2.c */ +#include <tommath.h> +#ifdef BN_MP_DIV_2_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* b = a/2 */ +int mp_div_2(mp_int * a, mp_int * b) +{ +  int     x, res, oldused; + +  /* copy */ +  if (b->alloc < a->used) { +    if ((res = mp_grow (b, a->used)) != MP_OKAY) { +      return res; +    } +  } + +  oldused = b->used; +  b->used = a->used; +  { +    register mp_digit r, rr, *tmpa, *tmpb; + +    /* source alias */ +    tmpa = a->dp + b->used - 1; + +    /* dest alias */ +    tmpb = b->dp + b->used - 1; + +    /* carry */ +    r = 0; +    for (x = b->used - 1; x >= 0; x--) { +      /* get the carry for the next iteration */ +      rr = *tmpa & 1; + +      /* shift the current digit, add in carry and store */ +      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); + +      /* forward carry to next iteration */ +      r = rr; +    } + +    /* zero excess digits */ +    tmpb = b->dp + b->used; +    for (x = b->used; x < oldused; x++) { +      *tmpb++ = 0; +    } +  } +  b->sign = a->sign; +  mp_clamp (b); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_div_2.c */ + +/* Start: bn_mp_div_2d.c */ +#include <tommath.h> +#ifdef BN_MP_DIV_2D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* shift right by a certain bit count (store quotient in c, optional remainder in d) */ +int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) +{ +  mp_digit D, r, rr; +  int     x, res; +  mp_int  t; + + +  /* if the shift count is <= 0 then we do no work */ +  if (b <= 0) { +    res = mp_copy (a, c); +    if (d != NULL) { +      mp_zero (d); +    } +    return res; +  } + +  if ((res = mp_init (&t)) != MP_OKAY) { +    return res; +  } + +  /* get the remainder */ +  if (d != NULL) { +    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { +      mp_clear (&t); +      return res; +    } +  } + +  /* copy */ +  if ((res = mp_copy (a, c)) != MP_OKAY) { +    mp_clear (&t); +    return res; +  } + +  /* shift by as many digits in the bit count */ +  if (b >= (int)DIGIT_BIT) { +    mp_rshd (c, b / DIGIT_BIT); +  } + +  /* shift any bit count < DIGIT_BIT */ +  D = (mp_digit) (b % DIGIT_BIT); +  if (D != 0) { +    register mp_digit *tmpc, mask, shift; + +    /* mask */ +    mask = (((mp_digit)1) << D) - 1; + +    /* shift for lsb */ +    shift = DIGIT_BIT - D; + +    /* alias */ +    tmpc = c->dp + (c->used - 1); + +    /* carry */ +    r = 0; +    for (x = c->used - 1; x >= 0; x--) { +      /* get the lower  bits of this word in a temp */ +      rr = *tmpc & mask; + +      /* shift the current word and mix in the carry bits from the previous word */ +      *tmpc = (*tmpc >> D) | (r << shift); +      --tmpc; + +      /* set the carry to the carry bits of the current word found above */ +      r = rr; +    } +  } +  mp_clamp (c); +  if (d != NULL) { +    mp_exch (&t, d); +  } +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_div_2d.c */ + +/* Start: bn_mp_div_3.c */ +#include <tommath.h> +#ifdef BN_MP_DIV_3_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* divide by three (based on routine from MPI and the GMP manual) */ +int +mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) +{ +  mp_int   q; +  mp_word  w, t; +  mp_digit b; +  int      res, ix; +   +  /* b = 2**DIGIT_BIT / 3 */ +  b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3); + +  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { +     return res; +  } +   +  q.used = a->used; +  q.sign = a->sign; +  w = 0; +  for (ix = a->used - 1; ix >= 0; ix--) { +     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); + +     if (w >= 3) { +        /* multiply w by [1/3] */ +        t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT); + +        /* now subtract 3 * [w/3] from w, to get the remainder */ +        w -= t+t+t; + +        /* fixup the remainder as required since +         * the optimization is not exact. +         */ +        while (w >= 3) { +           t += 1; +           w -= 3; +        } +      } else { +        t = 0; +      } +      q.dp[ix] = (mp_digit)t; +  } + +  /* [optional] store the remainder */ +  if (d != NULL) { +     *d = (mp_digit)w; +  } + +  /* [optional] store the quotient */ +  if (c != NULL) { +     mp_clamp(&q); +     mp_exch(&q, c); +  } +  mp_clear(&q); +   +  return res; +} + +#endif + +/* End: bn_mp_div_3.c */ + +/* Start: bn_mp_div_d.c */ +#include <tommath.h> +#ifdef BN_MP_DIV_D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +static int s_is_power_of_two(mp_digit b, int *p) +{ +   int x; + +   /* fast return if no power of two */ +   if ((b==0) || (b & (b-1))) { +      return 0; +   } + +   for (x = 0; x < DIGIT_BIT; x++) { +      if (b == (((mp_digit)1)<<x)) { +         *p = x; +         return 1; +      } +   } +   return 0; +} + +/* single digit division (based on routine from MPI) */ +int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) +{ +  mp_int  q; +  mp_word w; +  mp_digit t; +  int     res, ix; + +  /* cannot divide by zero */ +  if (b == 0) { +     return MP_VAL; +  } + +  /* quick outs */ +  if (b == 1 || mp_iszero(a) == 1) { +     if (d != NULL) { +        *d = 0; +     } +     if (c != NULL) { +        return mp_copy(a, c); +     } +     return MP_OKAY; +  } + +  /* power of two ? */ +  if (s_is_power_of_two(b, &ix) == 1) { +     if (d != NULL) { +        *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1); +     } +     if (c != NULL) { +        return mp_div_2d(a, ix, c, NULL); +     } +     return MP_OKAY; +  } + +#ifdef BN_MP_DIV_3_C +  /* three? */ +  if (b == 3) { +     return mp_div_3(a, c, d); +  } +#endif + +  /* no easy answer [c'est la vie].  Just division */ +  if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { +     return res; +  } +   +  q.used = a->used; +  q.sign = a->sign; +  w = 0; +  for (ix = a->used - 1; ix >= 0; ix--) { +     w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); +      +     if (w >= b) { +        t = (mp_digit)(w / b); +        w -= ((mp_word)t) * ((mp_word)b); +      } else { +        t = 0; +      } +      q.dp[ix] = (mp_digit)t; +  } +   +  if (d != NULL) { +     *d = (mp_digit)w; +  } +   +  if (c != NULL) { +     mp_clamp(&q); +     mp_exch(&q, c); +  } +  mp_clear(&q); +   +  return res; +} + +#endif + +/* End: bn_mp_div_d.c */ + +/* Start: bn_mp_dr_is_modulus.c */ +#include <tommath.h> +#ifdef BN_MP_DR_IS_MODULUS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* determines if a number is a valid DR modulus */ +int mp_dr_is_modulus(mp_int *a) +{ +   int ix; + +   /* must be at least two digits */ +   if (a->used < 2) { +      return 0; +   } + +   /* must be of the form b**k - a [a <= b] so all +    * but the first digit must be equal to -1 (mod b). +    */ +   for (ix = 1; ix < a->used; ix++) { +       if (a->dp[ix] != MP_MASK) { +          return 0; +       } +   } +   return 1; +} + +#endif + +/* End: bn_mp_dr_is_modulus.c */ + +/* Start: bn_mp_dr_reduce.c */ +#include <tommath.h> +#ifdef BN_MP_DR_REDUCE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* reduce "x" in place modulo "n" using the Diminished Radix algorithm. + * + * Based on algorithm from the paper + * + * "Generating Efficient Primes for Discrete Log Cryptosystems" + *                 Chae Hoon Lim, Pil Joong Lee, + *          POSTECH Information Research Laboratories + * + * The modulus must be of a special format [see manual] + * + * Has been modified to use algorithm 7.10 from the LTM book instead + * + * Input x must be in the range 0 <= x <= (n-1)**2 + */ +int +mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k) +{ +  int      err, i, m; +  mp_word  r; +  mp_digit mu, *tmpx1, *tmpx2; + +  /* m = digits in modulus */ +  m = n->used; + +  /* ensure that "x" has at least 2m digits */ +  if (x->alloc < m + m) { +    if ((err = mp_grow (x, m + m)) != MP_OKAY) { +      return err; +    } +  } + +/* top of loop, this is where the code resumes if + * another reduction pass is required. + */ +top: +  /* aliases for digits */ +  /* alias for lower half of x */ +  tmpx1 = x->dp; + +  /* alias for upper half of x, or x/B**m */ +  tmpx2 = x->dp + m; + +  /* set carry to zero */ +  mu = 0; + +  /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ +  for (i = 0; i < m; i++) { +      r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; +      *tmpx1++  = (mp_digit)(r & MP_MASK); +      mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); +  } + +  /* set final carry */ +  *tmpx1++ = mu; + +  /* zero words above m */ +  for (i = m + 1; i < x->used; i++) { +      *tmpx1++ = 0; +  } + +  /* clamp, sub and return */ +  mp_clamp (x); + +  /* if x >= n then subtract and reduce again +   * Each successive "recursion" makes the input smaller and smaller. +   */ +  if (mp_cmp_mag (x, n) != MP_LT) { +    s_mp_sub(x, n, x); +    goto top; +  } +  return MP_OKAY; +} +#endif + +/* End: bn_mp_dr_reduce.c */ + +/* Start: bn_mp_dr_setup.c */ +#include <tommath.h> +#ifdef BN_MP_DR_SETUP_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* determines the setup value */ +void mp_dr_setup(mp_int *a, mp_digit *d) +{ +   /* the casts are required if DIGIT_BIT is one less than +    * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] +    */ +   *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -  +        ((mp_word)a->dp[0])); +} + +#endif + +/* End: bn_mp_dr_setup.c */ + +/* Start: bn_mp_exch.c */ +#include <tommath.h> +#ifdef BN_MP_EXCH_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* swap the elements of two integers, for cases where you can't simply swap the  + * mp_int pointers around + */ +void +mp_exch (mp_int * a, mp_int * b) +{ +  mp_int  t; + +  t  = *a; +  *a = *b; +  *b = t; +} +#endif + +/* End: bn_mp_exch.c */ + +/* Start: bn_mp_expt_d.c */ +#include <tommath.h> +#ifdef BN_MP_EXPT_D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* calculate c = a**b  using a square-multiply algorithm */ +int mp_expt_d (mp_int * a, mp_digit b, mp_int * c) +{ +  int     res, x; +  mp_int  g; + +  if ((res = mp_init_copy (&g, a)) != MP_OKAY) { +    return res; +  } + +  /* set initial result */ +  mp_set (c, 1); + +  for (x = 0; x < (int) DIGIT_BIT; x++) { +    /* square */ +    if ((res = mp_sqr (c, c)) != MP_OKAY) { +      mp_clear (&g); +      return res; +    } + +    /* if the bit is set multiply */ +    if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) { +      if ((res = mp_mul (c, &g, c)) != MP_OKAY) { +         mp_clear (&g); +         return res; +      } +    } + +    /* shift to next bit */ +    b <<= 1; +  } + +  mp_clear (&g); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_expt_d.c */ + +/* Start: bn_mp_exptmod.c */ +#include <tommath.h> +#ifdef BN_MP_EXPTMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + + +/* this is a shell function that calls either the normal or Montgomery + * exptmod functions.  Originally the call to the montgomery code was + * embedded in the normal function but that wasted alot of stack space + * for nothing (since 99% of the time the Montgomery code would be called) + */ +int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) +{ +  int dr; + +  /* modulus P must be positive */ +  if (P->sign == MP_NEG) { +     return MP_VAL; +  } + +  /* if exponent X is negative we have to recurse */ +  if (X->sign == MP_NEG) { +#ifdef BN_MP_INVMOD_C +     mp_int tmpG, tmpX; +     int err; + +     /* first compute 1/G mod P */ +     if ((err = mp_init(&tmpG)) != MP_OKAY) { +        return err; +     } +     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { +        mp_clear(&tmpG); +        return err; +     } + +     /* now get |X| */ +     if ((err = mp_init(&tmpX)) != MP_OKAY) { +        mp_clear(&tmpG); +        return err; +     } +     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { +        mp_clear_multi(&tmpG, &tmpX, NULL); +        return err; +     } + +     /* and now compute (1/G)**|X| instead of G**X [X < 0] */ +     err = mp_exptmod(&tmpG, &tmpX, P, Y); +     mp_clear_multi(&tmpG, &tmpX, NULL); +     return err; +#else  +     /* no invmod */ +     return MP_VAL; +#endif +  } + +/* modified diminished radix reduction */ +#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) +  if (mp_reduce_is_2k_l(P) == MP_YES) { +     return s_mp_exptmod(G, X, P, Y, 1); +  } +#endif + +#ifdef BN_MP_DR_IS_MODULUS_C +  /* is it a DR modulus? */ +  dr = mp_dr_is_modulus(P); +#else +  /* default to no */ +  dr = 0; +#endif + +#ifdef BN_MP_REDUCE_IS_2K_C +  /* if not, is it a unrestricted DR modulus? */ +  if (dr == 0) { +     dr = mp_reduce_is_2k(P) << 1; +  } +#endif +     +  /* if the modulus is odd or dr != 0 use the montgomery method */ +#ifdef BN_MP_EXPTMOD_FAST_C +  if (mp_isodd (P) == 1 || dr !=  0) { +    return mp_exptmod_fast (G, X, P, Y, dr); +  } else { +#endif +#ifdef BN_S_MP_EXPTMOD_C +    /* otherwise use the generic Barrett reduction technique */ +    return s_mp_exptmod (G, X, P, Y, 0); +#else +    /* no exptmod for evens */ +    return MP_VAL; +#endif +#ifdef BN_MP_EXPTMOD_FAST_C +  } +#endif +} + +#endif + +/* End: bn_mp_exptmod.c */ + +/* Start: bn_mp_exptmod_fast.c */ +#include <tommath.h> +#ifdef BN_MP_EXPTMOD_FAST_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 + * + * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. + * The value of k changes based on the size of the exponent. + * + * Uses Montgomery or Diminished Radix reduction [whichever appropriate] + */ + +#ifdef MP_LOW_MEM +   #define TAB_SIZE 32 +#else +   #define TAB_SIZE 256 +#endif + +int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) +{ +  mp_int  M[TAB_SIZE], res; +  mp_digit buf, mp; +  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; + +  /* use a pointer to the reduction algorithm.  This allows us to use +   * one of many reduction algorithms without modding the guts of +   * the code with if statements everywhere. +   */ +  int     (*redux)(mp_int*,mp_int*,mp_digit); + +  /* find window size */ +  x = mp_count_bits (X); +  if (x <= 7) { +    winsize = 2; +  } else if (x <= 36) { +    winsize = 3; +  } else if (x <= 140) { +    winsize = 4; +  } else if (x <= 450) { +    winsize = 5; +  } else if (x <= 1303) { +    winsize = 6; +  } else if (x <= 3529) { +    winsize = 7; +  } else { +    winsize = 8; +  } + +#ifdef MP_LOW_MEM +  if (winsize > 5) { +     winsize = 5; +  } +#endif + +  /* init M array */ +  /* init first cell */ +  if ((err = mp_init(&M[1])) != MP_OKAY) { +     return err; +  } + +  /* now init the second half of the array */ +  for (x = 1<<(winsize-1); x < (1 << winsize); x++) { +    if ((err = mp_init(&M[x])) != MP_OKAY) { +      for (y = 1<<(winsize-1); y < x; y++) { +        mp_clear (&M[y]); +      } +      mp_clear(&M[1]); +      return err; +    } +  } + +  /* determine and setup reduction code */ +  if (redmode == 0) { +#ifdef BN_MP_MONTGOMERY_SETUP_C      +     /* now setup montgomery  */ +     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { +        goto LBL_M; +     } +#else +     err = MP_VAL; +     goto LBL_M; +#endif + +     /* automatically pick the comba one if available (saves quite a few calls/ifs) */ +#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C +     if (((P->used * 2 + 1) < MP_WARRAY) && +          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { +        redux = fast_mp_montgomery_reduce; +     } else  +#endif +     { +#ifdef BN_MP_MONTGOMERY_REDUCE_C +        /* use slower baseline Montgomery method */ +        redux = mp_montgomery_reduce; +#else +        err = MP_VAL; +        goto LBL_M; +#endif +     } +  } else if (redmode == 1) { +#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) +     /* setup DR reduction for moduli of the form B**k - b */ +     mp_dr_setup(P, &mp); +     redux = mp_dr_reduce; +#else +     err = MP_VAL; +     goto LBL_M; +#endif +  } else { +#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) +     /* setup DR reduction for moduli of the form 2**k - b */ +     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { +        goto LBL_M; +     } +     redux = mp_reduce_2k; +#else +     err = MP_VAL; +     goto LBL_M; +#endif +  } + +  /* setup result */ +  if ((err = mp_init (&res)) != MP_OKAY) { +    goto LBL_M; +  } + +  /* create M table +   * + +   * +   * The first half of the table is not computed though accept for M[0] and M[1] +   */ + +  if (redmode == 0) { +#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C +     /* now we need R mod m */ +     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { +       goto LBL_RES; +     } +#else  +     err = MP_VAL; +     goto LBL_RES; +#endif + +     /* now set M[1] to G * R mod m */ +     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { +       goto LBL_RES; +     } +  } else { +     mp_set(&res, 1); +     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { +        goto LBL_RES; +     } +  } + +  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ +  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { +    goto LBL_RES; +  } + +  for (x = 0; x < (winsize - 1); x++) { +    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { +      goto LBL_RES; +    } +    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { +      goto LBL_RES; +    } +  } + +  /* create upper table */ +  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { +    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { +      goto LBL_RES; +    } +    if ((err = redux (&M[x], P, mp)) != MP_OKAY) { +      goto LBL_RES; +    } +  } + +  /* set initial mode and bit cnt */ +  mode   = 0; +  bitcnt = 1; +  buf    = 0; +  digidx = X->used - 1; +  bitcpy = 0; +  bitbuf = 0; + +  for (;;) { +    /* grab next digit as required */ +    if (--bitcnt == 0) { +      /* if digidx == -1 we are out of digits so break */ +      if (digidx == -1) { +        break; +      } +      /* read next digit and reset bitcnt */ +      buf    = X->dp[digidx--]; +      bitcnt = (int)DIGIT_BIT; +    } + +    /* grab the next msb from the exponent */ +    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; +    buf <<= (mp_digit)1; + +    /* if the bit is zero and mode == 0 then we ignore it +     * These represent the leading zero bits before the first 1 bit +     * in the exponent.  Technically this opt is not required but it +     * does lower the # of trivial squaring/reductions used +     */ +    if (mode == 0 && y == 0) { +      continue; +    } + +    /* if the bit is zero and mode == 1 then we square */ +    if (mode == 1 && y == 0) { +      if ((err = mp_sqr (&res, &res)) != MP_OKAY) { +        goto LBL_RES; +      } +      if ((err = redux (&res, P, mp)) != MP_OKAY) { +        goto LBL_RES; +      } +      continue; +    } + +    /* else we add it to the window */ +    bitbuf |= (y << (winsize - ++bitcpy)); +    mode    = 2; + +    if (bitcpy == winsize) { +      /* ok window is filled so square as required and multiply  */ +      /* square first */ +      for (x = 0; x < winsize; x++) { +        if ((err = mp_sqr (&res, &res)) != MP_OKAY) { +          goto LBL_RES; +        } +        if ((err = redux (&res, P, mp)) != MP_OKAY) { +          goto LBL_RES; +        } +      } + +      /* then multiply */ +      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { +        goto LBL_RES; +      } +      if ((err = redux (&res, P, mp)) != MP_OKAY) { +        goto LBL_RES; +      } + +      /* empty window and reset */ +      bitcpy = 0; +      bitbuf = 0; +      mode   = 1; +    } +  } + +  /* if bits remain then square/multiply */ +  if (mode == 2 && bitcpy > 0) { +    /* square then multiply if the bit is set */ +    for (x = 0; x < bitcpy; x++) { +      if ((err = mp_sqr (&res, &res)) != MP_OKAY) { +        goto LBL_RES; +      } +      if ((err = redux (&res, P, mp)) != MP_OKAY) { +        goto LBL_RES; +      } + +      /* get next bit of the window */ +      bitbuf <<= 1; +      if ((bitbuf & (1 << winsize)) != 0) { +        /* then multiply */ +        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { +          goto LBL_RES; +        } +        if ((err = redux (&res, P, mp)) != MP_OKAY) { +          goto LBL_RES; +        } +      } +    } +  } + +  if (redmode == 0) { +     /* fixup result if Montgomery reduction is used +      * recall that any value in a Montgomery system is +      * actually multiplied by R mod n.  So we have +      * to reduce one more time to cancel out the factor +      * of R. +      */ +     if ((err = redux(&res, P, mp)) != MP_OKAY) { +       goto LBL_RES; +     } +  } + +  /* swap res with Y */ +  mp_exch (&res, Y); +  err = MP_OKAY; +LBL_RES:mp_clear (&res); +LBL_M: +  mp_clear(&M[1]); +  for (x = 1<<(winsize-1); x < (1 << winsize); x++) { +    mp_clear (&M[x]); +  } +  return err; +} +#endif + +/* End: bn_mp_exptmod_fast.c */ + +/* Start: bn_mp_exteuclid.c */ +#include <tommath.h> +#ifdef BN_MP_EXTEUCLID_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* Extended euclidean algorithm of (a, b) produces  +   a*u1 + b*u2 = u3 + */ +int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) +{ +   mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp; +   int err; + +   if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) { +      return err; +   } + +   /* initialize, (u1,u2,u3) = (1,0,a) */ +   mp_set(&u1, 1); +   if ((err = mp_copy(a, &u3)) != MP_OKAY)                                        { goto _ERR; } + +   /* initialize, (v1,v2,v3) = (0,1,b) */ +   mp_set(&v2, 1); +   if ((err = mp_copy(b, &v3)) != MP_OKAY)                                        { goto _ERR; } + +   /* loop while v3 != 0 */ +   while (mp_iszero(&v3) == MP_NO) { +       /* q = u3/v3 */ +       if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY)                         { goto _ERR; } + +       /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */ +       if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY)                              { goto _ERR; } +       if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY)                             { goto _ERR; } +       if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY)                              { goto _ERR; } +       if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY)                             { goto _ERR; } +       if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY)                              { goto _ERR; } +       if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY)                             { goto _ERR; } + +       /* (u1,u2,u3) = (v1,v2,v3) */ +       if ((err = mp_copy(&v1, &u1)) != MP_OKAY)                                  { goto _ERR; } +       if ((err = mp_copy(&v2, &u2)) != MP_OKAY)                                  { goto _ERR; } +       if ((err = mp_copy(&v3, &u3)) != MP_OKAY)                                  { goto _ERR; } + +       /* (v1,v2,v3) = (t1,t2,t3) */ +       if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  { goto _ERR; } +       if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  { goto _ERR; } +       if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  { goto _ERR; } +   } + +   /* make sure U3 >= 0 */ +   if (u3.sign == MP_NEG) { +      mp_neg(&u1, &u1); +      mp_neg(&u2, &u2); +      mp_neg(&u3, &u3); +   } + +   /* copy result out */ +   if (U1 != NULL) { mp_exch(U1, &u1); } +   if (U2 != NULL) { mp_exch(U2, &u2); } +   if (U3 != NULL) { mp_exch(U3, &u3); } + +   err = MP_OKAY; +_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL); +   return err; +} +#endif + +/* End: bn_mp_exteuclid.c */ + +/* Start: bn_mp_fread.c */ +#include <tommath.h> +#ifdef BN_MP_FREAD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* read a bigint from a file stream in ASCII */ +int mp_fread(mp_int *a, int radix, FILE *stream) +{ +   int err, ch, neg, y; +    +   /* clear a */ +   mp_zero(a); +    +   /* if first digit is - then set negative */ +   ch = fgetc(stream); +   if (ch == '-') { +      neg = MP_NEG; +      ch = fgetc(stream); +   } else { +      neg = MP_ZPOS; +   } +    +   for (;;) { +      /* find y in the radix map */ +      for (y = 0; y < radix; y++) { +          if (mp_s_rmap[y] == ch) { +             break; +          } +      } +      if (y == radix) { +         break; +      } +       +      /* shift up and add */ +      if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) { +         return err; +      } +      if ((err = mp_add_d(a, y, a)) != MP_OKAY) { +         return err; +      } +       +      ch = fgetc(stream); +   } +   if (mp_cmp_d(a, 0) != MP_EQ) { +      a->sign = neg; +   } +    +   return MP_OKAY; +} + +#endif + +/* End: bn_mp_fread.c */ + +/* Start: bn_mp_fwrite.c */ +#include <tommath.h> +#ifdef BN_MP_FWRITE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +int mp_fwrite(mp_int *a, int radix, FILE *stream) +{ +   char *buf; +   int err, len, x; +    +   if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { +      return err; +   } + +   buf = OPT_CAST(char) XMALLOC (len); +   if (buf == NULL) { +      return MP_MEM; +   } +    +   if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { +      XFREE (buf); +      return err; +   } +    +   for (x = 0; x < len; x++) { +       if (fputc(buf[x], stream) == EOF) { +          XFREE (buf); +          return MP_VAL; +       } +   } +    +   XFREE (buf); +   return MP_OKAY; +} + +#endif + +/* End: bn_mp_fwrite.c */ + +/* Start: bn_mp_gcd.c */ +#include <tommath.h> +#ifdef BN_MP_GCD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* Greatest Common Divisor using the binary method */ +int mp_gcd (mp_int * a, mp_int * b, mp_int * c) +{ +  mp_int  u, v; +  int     k, u_lsb, v_lsb, res; + +  /* either zero than gcd is the largest */ +  if (mp_iszero (a) == MP_YES) { +    return mp_abs (b, c); +  } +  if (mp_iszero (b) == MP_YES) { +    return mp_abs (a, c); +  } + +  /* get copies of a and b we can modify */ +  if ((res = mp_init_copy (&u, a)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_init_copy (&v, b)) != MP_OKAY) { +    goto LBL_U; +  } + +  /* must be positive for the remainder of the algorithm */ +  u.sign = v.sign = MP_ZPOS; + +  /* B1.  Find the common power of two for u and v */ +  u_lsb = mp_cnt_lsb(&u); +  v_lsb = mp_cnt_lsb(&v); +  k     = MIN(u_lsb, v_lsb); + +  if (k > 0) { +     /* divide the power of two out */ +     if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { +        goto LBL_V; +     } + +     if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { +        goto LBL_V; +     } +  } + +  /* divide any remaining factors of two out */ +  if (u_lsb != k) { +     if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { +        goto LBL_V; +     } +  } + +  if (v_lsb != k) { +     if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { +        goto LBL_V; +     } +  } + +  while (mp_iszero(&v) == 0) { +     /* make sure v is the largest */ +     if (mp_cmp_mag(&u, &v) == MP_GT) { +        /* swap u and v to make sure v is >= u */ +        mp_exch(&u, &v); +     } +      +     /* subtract smallest from largest */ +     if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { +        goto LBL_V; +     } +      +     /* Divide out all factors of two */ +     if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { +        goto LBL_V; +     }  +  }  + +  /* multiply by 2**k which we divided out at the beginning */ +  if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { +     goto LBL_V; +  } +  c->sign = MP_ZPOS; +  res = MP_OKAY; +LBL_V:mp_clear (&u); +LBL_U:mp_clear (&v); +  return res; +} +#endif + +/* End: bn_mp_gcd.c */ + +/* Start: bn_mp_get_int.c */ +#include <tommath.h> +#ifdef BN_MP_GET_INT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* get the lower 32-bits of an mp_int */ +unsigned long mp_get_int(mp_int * a)  +{ +  int i; +  unsigned long res; + +  if (a->used == 0) { +     return 0; +  } + +  /* get number of digits of the lsb we have to read */ +  i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1; + +  /* get most significant digit of result */ +  res = DIGIT(a,i); +    +  while (--i >= 0) { +    res = (res << DIGIT_BIT) | DIGIT(a,i); +  } + +  /* force result to 32-bits always so it is consistent on non 32-bit platforms */ +  return res & 0xFFFFFFFFUL; +} +#endif + +/* End: bn_mp_get_int.c */ + +/* Start: bn_mp_grow.c */ +#include <tommath.h> +#ifdef BN_MP_GROW_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* grow as required */ +int mp_grow (mp_int * a, int size) +{ +  int     i; +  mp_digit *tmp; + +  /* if the alloc size is smaller alloc more ram */ +  if (a->alloc < size) { +    /* ensure there are always at least MP_PREC digits extra on top */ +    size += (MP_PREC * 2) - (size % MP_PREC); + +    /* reallocate the array a->dp +     * +     * We store the return in a temporary variable +     * in case the operation failed we don't want +     * to overwrite the dp member of a. +     */ +    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); +    if (tmp == NULL) { +      /* reallocation failed but "a" is still valid [can be freed] */ +      return MP_MEM; +    } + +    /* reallocation succeeded so set a->dp */ +    a->dp = tmp; + +    /* zero excess digits */ +    i        = a->alloc; +    a->alloc = size; +    for (; i < a->alloc; i++) { +      a->dp[i] = 0; +    } +  } +  return MP_OKAY; +} +#endif + +/* End: bn_mp_grow.c */ + +/* Start: bn_mp_init.c */ +#include <tommath.h> +#ifdef BN_MP_INIT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* init a new mp_int */ +int mp_init (mp_int * a) +{ +  int i; + +  /* allocate memory required and clear it */ +  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC); +  if (a->dp == NULL) { +    return MP_MEM; +  } + +  /* set the digits to zero */ +  for (i = 0; i < MP_PREC; i++) { +      a->dp[i] = 0; +  } + +  /* set the used to zero, allocated digits to the default precision +   * and sign to positive */ +  a->used  = 0; +  a->alloc = MP_PREC; +  a->sign  = MP_ZPOS; + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_init.c */ + +/* Start: bn_mp_init_copy.c */ +#include <tommath.h> +#ifdef BN_MP_INIT_COPY_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* creates "a" then copies b into it */ +int mp_init_copy (mp_int * a, mp_int * b) +{ +  int     res; + +  if ((res = mp_init (a)) != MP_OKAY) { +    return res; +  } +  return mp_copy (b, a); +} +#endif + +/* End: bn_mp_init_copy.c */ + +/* Start: bn_mp_init_multi.c */ +#include <tommath.h> +#ifdef BN_MP_INIT_MULTI_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ +#include <stdarg.h> + +int mp_init_multi(mp_int *mp, ...)  +{ +    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */ +    int n = 0;                 /* Number of ok inits */ +    mp_int* cur_arg = mp; +    va_list args; + +    va_start(args, mp);        /* init args to next argument from caller */ +    while (cur_arg != NULL) { +        if (mp_init(cur_arg) != MP_OKAY) { +            /* Oops - error! Back-track and mp_clear what we already +               succeeded in init-ing, then return error. +            */ +            va_list clean_args; +             +            /* end the current list */ +            va_end(args); +             +            /* now start cleaning up */             +            cur_arg = mp; +            va_start(clean_args, mp); +            while (n--) { +                mp_clear(cur_arg); +                cur_arg = va_arg(clean_args, mp_int*); +            } +            va_end(clean_args); +            res = MP_MEM; +            break; +        } +        n++; +        cur_arg = va_arg(args, mp_int*); +    } +    va_end(args); +    return res;                /* Assumed ok, if error flagged above. */ +} + +#endif + +/* End: bn_mp_init_multi.c */ + +/* Start: bn_mp_init_set.c */ +#include <tommath.h> +#ifdef BN_MP_INIT_SET_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* initialize and set a digit */ +int mp_init_set (mp_int * a, mp_digit b) +{ +  int err; +  if ((err = mp_init(a)) != MP_OKAY) { +     return err; +  } +  mp_set(a, b); +  return err; +} +#endif + +/* End: bn_mp_init_set.c */ + +/* Start: bn_mp_init_set_int.c */ +#include <tommath.h> +#ifdef BN_MP_INIT_SET_INT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* initialize and set a digit */ +int mp_init_set_int (mp_int * a, unsigned long b) +{ +  int err; +  if ((err = mp_init(a)) != MP_OKAY) { +     return err; +  } +  return mp_set_int(a, b); +} +#endif + +/* End: bn_mp_init_set_int.c */ + +/* Start: bn_mp_init_size.c */ +#include <tommath.h> +#ifdef BN_MP_INIT_SIZE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* init an mp_init for a given size */ +int mp_init_size (mp_int * a, int size) +{ +  int x; + +  /* pad size so there are always extra digits */ +  size += (MP_PREC * 2) - (size % MP_PREC);	 +   +  /* alloc mem */ +  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size); +  if (a->dp == NULL) { +    return MP_MEM; +  } + +  /* set the members */ +  a->used  = 0; +  a->alloc = size; +  a->sign  = MP_ZPOS; + +  /* zero the digits */ +  for (x = 0; x < size; x++) { +      a->dp[x] = 0; +  } + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_init_size.c */ + +/* Start: bn_mp_invmod.c */ +#include <tommath.h> +#ifdef BN_MP_INVMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* hac 14.61, pp608 */ +int mp_invmod (mp_int * a, mp_int * b, mp_int * c) +{ +  /* b cannot be negative */ +  if (b->sign == MP_NEG || mp_iszero(b) == 1) { +    return MP_VAL; +  } + +#ifdef BN_FAST_MP_INVMOD_C +  /* if the modulus is odd we can use a faster routine instead */ +  if (mp_isodd (b) == 1) { +    return fast_mp_invmod (a, b, c); +  } +#endif + +#ifdef BN_MP_INVMOD_SLOW_C +  return mp_invmod_slow(a, b, c); +#endif + +  return MP_VAL; +} +#endif + +/* End: bn_mp_invmod.c */ + +/* Start: bn_mp_invmod_slow.c */ +#include <tommath.h> +#ifdef BN_MP_INVMOD_SLOW_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* hac 14.61, pp608 */ +int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) +{ +  mp_int  x, y, u, v, A, B, C, D; +  int     res; + +  /* b cannot be negative */ +  if (b->sign == MP_NEG || mp_iszero(b) == 1) { +    return MP_VAL; +  } + +  /* init temps */ +  if ((res = mp_init_multi(&x, &y, &u, &v,  +                           &A, &B, &C, &D, NULL)) != MP_OKAY) { +     return res; +  } + +  /* x = a, y = b */ +  if ((res = mp_mod(a, b, &x)) != MP_OKAY) { +      goto LBL_ERR; +  } +  if ((res = mp_copy (b, &y)) != MP_OKAY) { +    goto LBL_ERR; +  } + +  /* 2. [modified] if x,y are both even then return an error! */ +  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { +    res = MP_VAL; +    goto LBL_ERR; +  } + +  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ +  if ((res = mp_copy (&x, &u)) != MP_OKAY) { +    goto LBL_ERR; +  } +  if ((res = mp_copy (&y, &v)) != MP_OKAY) { +    goto LBL_ERR; +  } +  mp_set (&A, 1); +  mp_set (&D, 1); + +top: +  /* 4.  while u is even do */ +  while (mp_iseven (&u) == 1) { +    /* 4.1 u = u/2 */ +    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { +      goto LBL_ERR; +    } +    /* 4.2 if A or B is odd then */ +    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { +      /* A = (A+y)/2, B = (B-x)/2 */ +      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { +         goto LBL_ERR; +      } +      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { +         goto LBL_ERR; +      } +    } +    /* A = A/2, B = B/2 */ +    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { +      goto LBL_ERR; +    } +    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } + +  /* 5.  while v is even do */ +  while (mp_iseven (&v) == 1) { +    /* 5.1 v = v/2 */ +    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { +      goto LBL_ERR; +    } +    /* 5.2 if C or D is odd then */ +    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { +      /* C = (C+y)/2, D = (D-x)/2 */ +      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { +         goto LBL_ERR; +      } +      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { +         goto LBL_ERR; +      } +    } +    /* C = C/2, D = D/2 */ +    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { +      goto LBL_ERR; +    } +    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } + +  /* 6.  if u >= v then */ +  if (mp_cmp (&u, &v) != MP_LT) { +    /* u = u - v, A = A - C, B = B - D */ +    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { +      goto LBL_ERR; +    } + +    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { +      goto LBL_ERR; +    } + +    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } else { +    /* v - v - u, C = C - A, D = D - B */ +    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { +      goto LBL_ERR; +    } + +    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { +      goto LBL_ERR; +    } + +    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { +      goto LBL_ERR; +    } +  } + +  /* if not zero goto step 4 */ +  if (mp_iszero (&u) == 0) +    goto top; + +  /* now a = C, b = D, gcd == g*v */ + +  /* if v != 1 then there is no inverse */ +  if (mp_cmp_d (&v, 1) != MP_EQ) { +    res = MP_VAL; +    goto LBL_ERR; +  } + +  /* if its too low */ +  while (mp_cmp_d(&C, 0) == MP_LT) { +      if ((res = mp_add(&C, b, &C)) != MP_OKAY) { +         goto LBL_ERR; +      } +  } +   +  /* too big */ +  while (mp_cmp_mag(&C, b) != MP_LT) { +      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { +         goto LBL_ERR; +      } +  } +   +  /* C is now the inverse */ +  mp_exch (&C, c); +  res = MP_OKAY; +LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); +  return res; +} +#endif + +/* End: bn_mp_invmod_slow.c */ + +/* Start: bn_mp_is_square.c */ +#include <tommath.h> +#ifdef BN_MP_IS_SQUARE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* Check if remainders are possible squares - fast exclude non-squares */ +static const char rem_128[128] = { + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 +}; + +static const char rem_105[105] = { + 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, + 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, + 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, + 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, + 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, + 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, + 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1 +}; + +/* Store non-zero to ret if arg is square, and zero if not */ +int mp_is_square(mp_int *arg,int *ret)  +{ +  int           res; +  mp_digit      c; +  mp_int        t; +  unsigned long r; + +  /* Default to Non-square :) */ +  *ret = MP_NO;  + +  if (arg->sign == MP_NEG) { +    return MP_VAL; +  } + +  /* digits used?  (TSD) */ +  if (arg->used == 0) { +     return MP_OKAY; +  } + +  /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */ +  if (rem_128[127 & DIGIT(arg,0)] == 1) { +     return MP_OKAY; +  } + +  /* Next check mod 105 (3*5*7) */ +  if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) { +     return res; +  } +  if (rem_105[c] == 1) { +     return MP_OKAY; +  } + + +  if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) { +     return res; +  } +  if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) { +     goto ERR; +  } +  r = mp_get_int(&t); +  /* Check for other prime modules, note it's not an ERROR but we must +   * free "t" so the easiest way is to goto ERR.  We know that res +   * is already equal to MP_OKAY from the mp_mod call  +   */  +  if ( (1L<<(r%11)) & 0x5C4L )             goto ERR; +  if ( (1L<<(r%13)) & 0x9E4L )             goto ERR; +  if ( (1L<<(r%17)) & 0x5CE8L )            goto ERR; +  if ( (1L<<(r%19)) & 0x4F50CL )           goto ERR; +  if ( (1L<<(r%23)) & 0x7ACCA0L )          goto ERR; +  if ( (1L<<(r%29)) & 0xC2EDD0CL )         goto ERR; +  if ( (1L<<(r%31)) & 0x6DE2B848L )        goto ERR; + +  /* Final check - is sqr(sqrt(arg)) == arg ? */ +  if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { +     goto ERR; +  } +  if ((res = mp_sqr(&t,&t)) != MP_OKAY) { +     goto ERR; +  } + +  *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO; +ERR:mp_clear(&t); +  return res; +} +#endif + +/* End: bn_mp_is_square.c */ + +/* Start: bn_mp_jacobi.c */ +#include <tommath.h> +#ifdef BN_MP_JACOBI_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes the jacobi c = (a | n) (or Legendre if n is prime) + * HAC pp. 73 Algorithm 2.149 + */ +int mp_jacobi (mp_int * a, mp_int * p, int *c) +{ +  mp_int  a1, p1; +  int     k, s, r, res; +  mp_digit residue; + +  /* if p <= 0 return MP_VAL */ +  if (mp_cmp_d(p, 0) != MP_GT) { +     return MP_VAL; +  } + +  /* step 1.  if a == 0, return 0 */ +  if (mp_iszero (a) == 1) { +    *c = 0; +    return MP_OKAY; +  } + +  /* step 2.  if a == 1, return 1 */ +  if (mp_cmp_d (a, 1) == MP_EQ) { +    *c = 1; +    return MP_OKAY; +  } + +  /* default */ +  s = 0; + +  /* step 3.  write a = a1 * 2**k  */ +  if ((res = mp_init_copy (&a1, a)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_init (&p1)) != MP_OKAY) { +    goto LBL_A1; +  } + +  /* divide out larger power of two */ +  k = mp_cnt_lsb(&a1); +  if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) { +     goto LBL_P1; +  } + +  /* step 4.  if e is even set s=1 */ +  if ((k & 1) == 0) { +    s = 1; +  } else { +    /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ +    residue = p->dp[0] & 7; + +    if (residue == 1 || residue == 7) { +      s = 1; +    } else if (residue == 3 || residue == 5) { +      s = -1; +    } +  } + +  /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ +  if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { +    s = -s; +  } + +  /* if a1 == 1 we're done */ +  if (mp_cmp_d (&a1, 1) == MP_EQ) { +    *c = s; +  } else { +    /* n1 = n mod a1 */ +    if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) { +      goto LBL_P1; +    } +    if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { +      goto LBL_P1; +    } +    *c = s * r; +  } + +  /* done */ +  res = MP_OKAY; +LBL_P1:mp_clear (&p1); +LBL_A1:mp_clear (&a1); +  return res; +} +#endif + +/* End: bn_mp_jacobi.c */ + +/* Start: bn_mp_karatsuba_mul.c */ +#include <tommath.h> +#ifdef BN_MP_KARATSUBA_MUL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* c = |a| * |b| using Karatsuba Multiplication using  + * three half size multiplications + * + * Let B represent the radix [e.g. 2**DIGIT_BIT] and  + * let n represent half of the number of digits in  + * the min(a,b) + * + * a = a1 * B**n + a0 + * b = b1 * B**n + b0 + * + * Then, a * b =>  +   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 + * + * Note that a1b1 and a0b0 are used twice and only need to be  + * computed once.  So in total three half size (half # of  + * digit) multiplications are performed, a0b0, a1b1 and  + * (a1+b1)(a0+b0) + * + * Note that a multiplication of half the digits requires + * 1/4th the number of single precision multiplications so in  + * total after one call 25% of the single precision multiplications  + * are saved.  Note also that the call to mp_mul can end up back  + * in this function if the a0, a1, b0, or b1 are above the threshold.   + * This is known as divide-and-conquer and leads to the famous  + * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than  + * the standard O(N**2) that the baseline/comba methods use.   + * Generally though the overhead of this method doesn't pay off  + * until a certain size (N ~ 80) is reached. + */ +int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) +{ +  mp_int  x0, x1, y0, y1, t1, x0y0, x1y1; +  int     B, err; + +  /* default the return code to an error */ +  err = MP_MEM; + +  /* min # of digits */ +  B = MIN (a->used, b->used); + +  /* now divide in two */ +  B = B >> 1; + +  /* init copy all the temps */ +  if (mp_init_size (&x0, B) != MP_OKAY) +    goto ERR; +  if (mp_init_size (&x1, a->used - B) != MP_OKAY) +    goto X0; +  if (mp_init_size (&y0, B) != MP_OKAY) +    goto X1; +  if (mp_init_size (&y1, b->used - B) != MP_OKAY) +    goto Y0; + +  /* init temps */ +  if (mp_init_size (&t1, B * 2) != MP_OKAY) +    goto Y1; +  if (mp_init_size (&x0y0, B * 2) != MP_OKAY) +    goto T1; +  if (mp_init_size (&x1y1, B * 2) != MP_OKAY) +    goto X0Y0; + +  /* now shift the digits */ +  x0.used = y0.used = B; +  x1.used = a->used - B; +  y1.used = b->used - B; + +  { +    register int x; +    register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; + +    /* we copy the digits directly instead of using higher level functions +     * since we also need to shift the digits +     */ +    tmpa = a->dp; +    tmpb = b->dp; + +    tmpx = x0.dp; +    tmpy = y0.dp; +    for (x = 0; x < B; x++) { +      *tmpx++ = *tmpa++; +      *tmpy++ = *tmpb++; +    } + +    tmpx = x1.dp; +    for (x = B; x < a->used; x++) { +      *tmpx++ = *tmpa++; +    } + +    tmpy = y1.dp; +    for (x = B; x < b->used; x++) { +      *tmpy++ = *tmpb++; +    } +  } + +  /* only need to clamp the lower words since by definition the  +   * upper words x1/y1 must have a known number of digits +   */ +  mp_clamp (&x0); +  mp_clamp (&y0); + +  /* now calc the products x0y0 and x1y1 */ +  /* after this x0 is no longer required, free temp [x0==t2]! */ +  if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)   +    goto X1Y1;          /* x0y0 = x0*y0 */ +  if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) +    goto X1Y1;          /* x1y1 = x1*y1 */ + +  /* now calc x1+x0 and y1+y0 */ +  if (s_mp_add (&x1, &x0, &t1) != MP_OKAY) +    goto X1Y1;          /* t1 = x1 - x0 */ +  if (s_mp_add (&y1, &y0, &x0) != MP_OKAY) +    goto X1Y1;          /* t2 = y1 - y0 */ +  if (mp_mul (&t1, &x0, &t1) != MP_OKAY) +    goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */ + +  /* add x0y0 */ +  if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) +    goto X1Y1;          /* t2 = x0y0 + x1y1 */ +  if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY) +    goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ + +  /* shift by B */ +  if (mp_lshd (&t1, B) != MP_OKAY) +    goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ +  if (mp_lshd (&x1y1, B * 2) != MP_OKAY) +    goto X1Y1;          /* x1y1 = x1y1 << 2*B */ + +  if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) +    goto X1Y1;          /* t1 = x0y0 + t1 */ +  if (mp_add (&t1, &x1y1, c) != MP_OKAY) +    goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */ + +  /* Algorithm succeeded set the return code to MP_OKAY */ +  err = MP_OKAY; + +X1Y1:mp_clear (&x1y1); +X0Y0:mp_clear (&x0y0); +T1:mp_clear (&t1); +Y1:mp_clear (&y1); +Y0:mp_clear (&y0); +X1:mp_clear (&x1); +X0:mp_clear (&x0); +ERR: +  return err; +} +#endif + +/* End: bn_mp_karatsuba_mul.c */ + +/* Start: bn_mp_karatsuba_sqr.c */ +#include <tommath.h> +#ifdef BN_MP_KARATSUBA_SQR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* Karatsuba squaring, computes b = a*a using three  + * half size squarings + * + * See comments of karatsuba_mul for details.  It  + * is essentially the same algorithm but merely  + * tuned to perform recursive squarings. + */ +int mp_karatsuba_sqr (mp_int * a, mp_int * b) +{ +  mp_int  x0, x1, t1, t2, x0x0, x1x1; +  int     B, err; + +  err = MP_MEM; + +  /* min # of digits */ +  B = a->used; + +  /* now divide in two */ +  B = B >> 1; + +  /* init copy all the temps */ +  if (mp_init_size (&x0, B) != MP_OKAY) +    goto ERR; +  if (mp_init_size (&x1, a->used - B) != MP_OKAY) +    goto X0; + +  /* init temps */ +  if (mp_init_size (&t1, a->used * 2) != MP_OKAY) +    goto X1; +  if (mp_init_size (&t2, a->used * 2) != MP_OKAY) +    goto T1; +  if (mp_init_size (&x0x0, B * 2) != MP_OKAY) +    goto T2; +  if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY) +    goto X0X0; + +  { +    register int x; +    register mp_digit *dst, *src; + +    src = a->dp; + +    /* now shift the digits */ +    dst = x0.dp; +    for (x = 0; x < B; x++) { +      *dst++ = *src++; +    } + +    dst = x1.dp; +    for (x = B; x < a->used; x++) { +      *dst++ = *src++; +    } +  } + +  x0.used = B; +  x1.used = a->used - B; + +  mp_clamp (&x0); + +  /* now calc the products x0*x0 and x1*x1 */ +  if (mp_sqr (&x0, &x0x0) != MP_OKAY) +    goto X1X1;           /* x0x0 = x0*x0 */ +  if (mp_sqr (&x1, &x1x1) != MP_OKAY) +    goto X1X1;           /* x1x1 = x1*x1 */ + +  /* now calc (x1+x0)**2 */ +  if (s_mp_add (&x1, &x0, &t1) != MP_OKAY) +    goto X1X1;           /* t1 = x1 - x0 */ +  if (mp_sqr (&t1, &t1) != MP_OKAY) +    goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */ + +  /* add x0y0 */ +  if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY) +    goto X1X1;           /* t2 = x0x0 + x1x1 */ +  if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY) +    goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */ + +  /* shift by B */ +  if (mp_lshd (&t1, B) != MP_OKAY) +    goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ +  if (mp_lshd (&x1x1, B * 2) != MP_OKAY) +    goto X1X1;           /* x1x1 = x1x1 << 2*B */ + +  if (mp_add (&x0x0, &t1, &t1) != MP_OKAY) +    goto X1X1;           /* t1 = x0x0 + t1 */ +  if (mp_add (&t1, &x1x1, b) != MP_OKAY) +    goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */ + +  err = MP_OKAY; + +X1X1:mp_clear (&x1x1); +X0X0:mp_clear (&x0x0); +T2:mp_clear (&t2); +T1:mp_clear (&t1); +X1:mp_clear (&x1); +X0:mp_clear (&x0); +ERR: +  return err; +} +#endif + +/* End: bn_mp_karatsuba_sqr.c */ + +/* Start: bn_mp_lcm.c */ +#include <tommath.h> +#ifdef BN_MP_LCM_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes least common multiple as |a*b|/(a, b) */ +int mp_lcm (mp_int * a, mp_int * b, mp_int * c) +{ +  int     res; +  mp_int  t1, t2; + + +  if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) { +    return res; +  } + +  /* t1 = get the GCD of the two inputs */ +  if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) { +    goto LBL_T; +  } + +  /* divide the smallest by the GCD */ +  if (mp_cmp_mag(a, b) == MP_LT) { +     /* store quotient in t2 such that t2 * b is the LCM */ +     if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) { +        goto LBL_T; +     } +     res = mp_mul(b, &t2, c); +  } else { +     /* store quotient in t2 such that t2 * a is the LCM */ +     if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) { +        goto LBL_T; +     } +     res = mp_mul(a, &t2, c); +  } + +  /* fix the sign to positive */ +  c->sign = MP_ZPOS; + +LBL_T: +  mp_clear_multi (&t1, &t2, NULL); +  return res; +} +#endif + +/* End: bn_mp_lcm.c */ + +/* Start: bn_mp_lshd.c */ +#include <tommath.h> +#ifdef BN_MP_LSHD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* shift left a certain amount of digits */ +int mp_lshd (mp_int * a, int b) +{ +  int     x, res; + +  /* if its less than zero return */ +  if (b <= 0) { +    return MP_OKAY; +  } + +  /* grow to fit the new digits */ +  if (a->alloc < a->used + b) { +     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { +       return res; +     } +  } + +  { +    register mp_digit *top, *bottom; + +    /* increment the used by the shift amount then copy upwards */ +    a->used += b; + +    /* top */ +    top = a->dp + a->used - 1; + +    /* base */ +    bottom = a->dp + a->used - 1 - b; + +    /* much like mp_rshd this is implemented using a sliding window +     * except the window goes the otherway around.  Copying from +     * the bottom to the top.  see bn_mp_rshd.c for more info. +     */ +    for (x = a->used - 1; x >= b; x--) { +      *top-- = *bottom--; +    } + +    /* zero the lower digits */ +    top = a->dp; +    for (x = 0; x < b; x++) { +      *top++ = 0; +    } +  } +  return MP_OKAY; +} +#endif + +/* End: bn_mp_lshd.c */ + +/* Start: bn_mp_mod.c */ +#include <tommath.h> +#ifdef BN_MP_MOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* c = a mod b, 0 <= c < b */ +int +mp_mod (mp_int * a, mp_int * b, mp_int * c) +{ +  mp_int  t; +  int     res; + +  if ((res = mp_init (&t)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { +    mp_clear (&t); +    return res; +  } + +  if (t.sign != b->sign) { +    res = mp_add (b, &t, c); +  } else { +    res = MP_OKAY; +    mp_exch (&t, c); +  } + +  mp_clear (&t); +  return res; +} +#endif + +/* End: bn_mp_mod.c */ + +/* Start: bn_mp_mod_2d.c */ +#include <tommath.h> +#ifdef BN_MP_MOD_2D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* calc a value mod 2**b */ +int +mp_mod_2d (mp_int * a, int b, mp_int * c) +{ +  int     x, res; + +  /* if b is <= 0 then zero the int */ +  if (b <= 0) { +    mp_zero (c); +    return MP_OKAY; +  } + +  /* if the modulus is larger than the value than return */ +  if (b >= (int) (a->used * DIGIT_BIT)) { +    res = mp_copy (a, c); +    return res; +  } + +  /* copy */ +  if ((res = mp_copy (a, c)) != MP_OKAY) { +    return res; +  } + +  /* zero digits above the last digit of the modulus */ +  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { +    c->dp[x] = 0; +  } +  /* clear the digit that is not completely outside/inside the modulus */ +  c->dp[b / DIGIT_BIT] &= +    (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); +  mp_clamp (c); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_mod_2d.c */ + +/* Start: bn_mp_mod_d.c */ +#include <tommath.h> +#ifdef BN_MP_MOD_D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +int +mp_mod_d (mp_int * a, mp_digit b, mp_digit * c) +{ +  return mp_div_d(a, b, NULL, c); +} +#endif + +/* End: bn_mp_mod_d.c */ + +/* Start: bn_mp_montgomery_calc_normalization.c */ +#include <tommath.h> +#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* + * shifts with subtractions when the result is greater than b. + * + * The method is slightly modified to shift B unconditionally upto just under + * the leading bit of b.  This saves alot of multiple precision shifting. + */ +int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) +{ +  int     x, bits, res; + +  /* how many bits of last digit does b use */ +  bits = mp_count_bits (b) % DIGIT_BIT; + +  if (b->used > 1) { +     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { +        return res; +     } +  } else { +     mp_set(a, 1); +     bits = 1; +  } + + +  /* now compute C = A * B mod b */ +  for (x = bits - 1; x < (int)DIGIT_BIT; x++) { +    if ((res = mp_mul_2 (a, a)) != MP_OKAY) { +      return res; +    } +    if (mp_cmp_mag (a, b) != MP_LT) { +      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { +        return res; +      } +    } +  } + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_montgomery_calc_normalization.c */ + +/* Start: bn_mp_montgomery_reduce.c */ +#include <tommath.h> +#ifdef BN_MP_MONTGOMERY_REDUCE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes xR**-1 == x (mod N) via Montgomery Reduction */ +int +mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) +{ +  int     ix, res, digs; +  mp_digit mu; + +  /* can the fast reduction [comba] method be used? +   * +   * Note that unlike in mul you're safely allowed *less* +   * than the available columns [255 per default] since carries +   * are fixed up in the inner loop. +   */ +  digs = n->used * 2 + 1; +  if ((digs < MP_WARRAY) && +      n->used < +      (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { +    return fast_mp_montgomery_reduce (x, n, rho); +  } + +  /* grow the input as required */ +  if (x->alloc < digs) { +    if ((res = mp_grow (x, digs)) != MP_OKAY) { +      return res; +    } +  } +  x->used = digs; + +  for (ix = 0; ix < n->used; ix++) { +    /* mu = ai * rho mod b +     * +     * The value of rho must be precalculated via +     * montgomery_setup() such that +     * it equals -1/n0 mod b this allows the +     * following inner loop to reduce the +     * input one digit at a time +     */ +    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); + +    /* a = a + mu * m * b**i */ +    { +      register int iy; +      register mp_digit *tmpn, *tmpx, u; +      register mp_word r; + +      /* alias for digits of the modulus */ +      tmpn = n->dp; + +      /* alias for the digits of x [the input] */ +      tmpx = x->dp + ix; + +      /* set the carry to zero */ +      u = 0; + +      /* Multiply and add in place */ +      for (iy = 0; iy < n->used; iy++) { +        /* compute product and sum */ +        r       = ((mp_word)mu) * ((mp_word)*tmpn++) + +                  ((mp_word) u) + ((mp_word) * tmpx); + +        /* get carry */ +        u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); + +        /* fix digit */ +        *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK)); +      } +      /* At this point the ix'th digit of x should be zero */ + + +      /* propagate carries upwards as required*/ +      while (u) { +        *tmpx   += u; +        u        = *tmpx >> DIGIT_BIT; +        *tmpx++ &= MP_MASK; +      } +    } +  } + +  /* at this point the n.used'th least +   * significant digits of x are all zero +   * which means we can shift x to the +   * right by n.used digits and the +   * residue is unchanged. +   */ + +  /* x = x/b**n.used */ +  mp_clamp(x); +  mp_rshd (x, n->used); + +  /* if x >= n then x = x - n */ +  if (mp_cmp_mag (x, n) != MP_LT) { +    return s_mp_sub (x, n, x); +  } + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_montgomery_reduce.c */ + +/* Start: bn_mp_montgomery_setup.c */ +#include <tommath.h> +#ifdef BN_MP_MONTGOMERY_SETUP_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* setups the montgomery reduction stuff */ +int +mp_montgomery_setup (mp_int * n, mp_digit * rho) +{ +  mp_digit x, b; + +/* fast inversion mod 2**k + * + * Based on the fact that + * + * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n) + *                    =>  2*X*A - X*X*A*A = 1 + *                    =>  2*(1) - (1)     = 1 + */ +  b = n->dp[0]; + +  if ((b & 1) == 0) { +    return MP_VAL; +  } + +  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ +  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */ +#if !defined(MP_8BIT) +  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */ +#endif +#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) +  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */ +#endif +#ifdef MP_64BIT +  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */ +#endif + +  /* rho = -1/m mod b */ +  *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_montgomery_setup.c */ + +/* Start: bn_mp_mul.c */ +#include <tommath.h> +#ifdef BN_MP_MUL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* high level multiplication (handles sign) */ +int mp_mul (mp_int * a, mp_int * b, mp_int * c) +{ +  int     res, neg; +  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; + +  /* use Toom-Cook? */ +#ifdef BN_MP_TOOM_MUL_C +  if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { +    res = mp_toom_mul(a, b, c); +  } else  +#endif +#ifdef BN_MP_KARATSUBA_MUL_C +  /* use Karatsuba? */ +  if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { +    res = mp_karatsuba_mul (a, b, c); +  } else  +#endif +  { +    /* can we use the fast multiplier? +     * +     * The fast multiplier can be used if the output will  +     * have less than MP_WARRAY digits and the number of  +     * digits won't affect carry propagation +     */ +    int     digs = a->used + b->used + 1; + +#ifdef BN_FAST_S_MP_MUL_DIGS_C +    if ((digs < MP_WARRAY) && +        MIN(a->used, b->used) <=  +        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { +      res = fast_s_mp_mul_digs (a, b, c, digs); +    } else  +#endif +#ifdef BN_S_MP_MUL_DIGS_C +      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ +#else +      res = MP_VAL; +#endif + +  } +  c->sign = (c->used > 0) ? neg : MP_ZPOS; +  return res; +} +#endif + +/* End: bn_mp_mul.c */ + +/* Start: bn_mp_mul_2.c */ +#include <tommath.h> +#ifdef BN_MP_MUL_2_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* b = a*2 */ +int mp_mul_2(mp_int * a, mp_int * b) +{ +  int     x, res, oldused; + +  /* grow to accomodate result */ +  if (b->alloc < a->used + 1) { +    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { +      return res; +    } +  } + +  oldused = b->used; +  b->used = a->used; + +  { +    register mp_digit r, rr, *tmpa, *tmpb; + +    /* alias for source */ +    tmpa = a->dp; +     +    /* alias for dest */ +    tmpb = b->dp; + +    /* carry */ +    r = 0; +    for (x = 0; x < a->used; x++) { +     +      /* get what will be the *next* carry bit from the  +       * MSB of the current digit  +       */ +      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); +       +      /* now shift up this digit, add in the carry [from the previous] */ +      *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; +       +      /* copy the carry that would be from the source  +       * digit into the next iteration  +       */ +      r = rr; +    } + +    /* new leading digit? */ +    if (r != 0) { +      /* add a MSB which is always 1 at this point */ +      *tmpb = 1; +      ++(b->used); +    } + +    /* now zero any excess digits on the destination  +     * that we didn't write to  +     */ +    tmpb = b->dp + b->used; +    for (x = b->used; x < oldused; x++) { +      *tmpb++ = 0; +    } +  } +  b->sign = a->sign; +  return MP_OKAY; +} +#endif + +/* End: bn_mp_mul_2.c */ + +/* Start: bn_mp_mul_2d.c */ +#include <tommath.h> +#ifdef BN_MP_MUL_2D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* shift left by a certain bit count */ +int mp_mul_2d (mp_int * a, int b, mp_int * c) +{ +  mp_digit d; +  int      res; + +  /* copy */ +  if (a != c) { +     if ((res = mp_copy (a, c)) != MP_OKAY) { +       return res; +     } +  } + +  if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { +     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { +       return res; +     } +  } + +  /* shift by as many digits in the bit count */ +  if (b >= (int)DIGIT_BIT) { +    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { +      return res; +    } +  } + +  /* shift any bit count < DIGIT_BIT */ +  d = (mp_digit) (b % DIGIT_BIT); +  if (d != 0) { +    register mp_digit *tmpc, shift, mask, r, rr; +    register int x; + +    /* bitmask for carries */ +    mask = (((mp_digit)1) << d) - 1; + +    /* shift for msbs */ +    shift = DIGIT_BIT - d; + +    /* alias */ +    tmpc = c->dp; + +    /* carry */ +    r    = 0; +    for (x = 0; x < c->used; x++) { +      /* get the higher bits of the current word */ +      rr = (*tmpc >> shift) & mask; + +      /* shift the current word and OR in the carry */ +      *tmpc = ((*tmpc << d) | r) & MP_MASK; +      ++tmpc; + +      /* set the carry to the carry bits of the current word */ +      r = rr; +    } +     +    /* set final carry */ +    if (r != 0) { +       c->dp[(c->used)++] = r; +    } +  } +  mp_clamp (c); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_mul_2d.c */ + +/* Start: bn_mp_mul_d.c */ +#include <tommath.h> +#ifdef BN_MP_MUL_D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* multiply by a digit */ +int +mp_mul_d (mp_int * a, mp_digit b, mp_int * c) +{ +  mp_digit u, *tmpa, *tmpc; +  mp_word  r; +  int      ix, res, olduse; + +  /* make sure c is big enough to hold a*b */ +  if (c->alloc < a->used + 1) { +    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { +      return res; +    } +  } + +  /* get the original destinations used count */ +  olduse = c->used; + +  /* set the sign */ +  c->sign = a->sign; + +  /* alias for a->dp [source] */ +  tmpa = a->dp; + +  /* alias for c->dp [dest] */ +  tmpc = c->dp; + +  /* zero carry */ +  u = 0; + +  /* compute columns */ +  for (ix = 0; ix < a->used; ix++) { +    /* compute product and carry sum for this term */ +    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); + +    /* mask off higher bits to get a single digit */ +    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); + +    /* send carry into next iteration */ +    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); +  } + +  /* store final carry [if any] and increment ix offset  */ +  *tmpc++ = u; +  ++ix; + +  /* now zero digits above the top */ +  while (ix++ < olduse) { +     *tmpc++ = 0; +  } + +  /* set used count */ +  c->used = a->used + 1; +  mp_clamp(c); + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_mul_d.c */ + +/* Start: bn_mp_mulmod.c */ +#include <tommath.h> +#ifdef BN_MP_MULMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* d = a * b (mod c) */ +int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ +  int     res; +  mp_int  t; + +  if ((res = mp_init (&t)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_mul (a, b, &t)) != MP_OKAY) { +    mp_clear (&t); +    return res; +  } +  res = mp_mod (&t, c, d); +  mp_clear (&t); +  return res; +} +#endif + +/* End: bn_mp_mulmod.c */ + +/* Start: bn_mp_n_root.c */ +#include <tommath.h> +#ifdef BN_MP_N_ROOT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* find the n'th root of an integer  + * + * Result found such that (c)**b <= a and (c+1)**b > a  + * + * This algorithm uses Newton's approximation  + * x[i+1] = x[i] - f(x[i])/f'(x[i])  + * which will find the root in log(N) time where  + * each step involves a fair bit.  This is not meant to  + * find huge roots [square and cube, etc]. + */ +int mp_n_root (mp_int * a, mp_digit b, mp_int * c) +{ +  mp_int  t1, t2, t3; +  int     res, neg; + +  /* input must be positive if b is even */ +  if ((b & 1) == 0 && a->sign == MP_NEG) { +    return MP_VAL; +  } + +  if ((res = mp_init (&t1)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_init (&t2)) != MP_OKAY) { +    goto LBL_T1; +  } + +  if ((res = mp_init (&t3)) != MP_OKAY) { +    goto LBL_T2; +  } + +  /* if a is negative fudge the sign but keep track */ +  neg     = a->sign; +  a->sign = MP_ZPOS; + +  /* t2 = 2 */ +  mp_set (&t2, 2); + +  do { +    /* t1 = t2 */ +    if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { +      goto LBL_T3; +    } + +    /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ +     +    /* t3 = t1**(b-1) */ +    if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {    +      goto LBL_T3; +    } + +    /* numerator */ +    /* t2 = t1**b */ +    if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {     +      goto LBL_T3; +    } + +    /* t2 = t1**b - a */ +    if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {   +      goto LBL_T3; +    } + +    /* denominator */ +    /* t3 = t1**(b-1) * b  */ +    if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {     +      goto LBL_T3; +    } + +    /* t3 = (t1**b - a)/(b * t1**(b-1)) */ +    if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {   +      goto LBL_T3; +    } + +    if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { +      goto LBL_T3; +    } +  }  while (mp_cmp (&t1, &t2) != MP_EQ); + +  /* result can be off by a few so check */ +  for (;;) { +    if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { +      goto LBL_T3; +    } + +    if (mp_cmp (&t2, a) == MP_GT) { +      if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { +         goto LBL_T3; +      } +    } else { +      break; +    } +  } + +  /* reset the sign of a first */ +  a->sign = neg; + +  /* set the result */ +  mp_exch (&t1, c); + +  /* set the sign of the result */ +  c->sign = neg; + +  res = MP_OKAY; + +LBL_T3:mp_clear (&t3); +LBL_T2:mp_clear (&t2); +LBL_T1:mp_clear (&t1); +  return res; +} +#endif + +/* End: bn_mp_n_root.c */ + +/* Start: bn_mp_neg.c */ +#include <tommath.h> +#ifdef BN_MP_NEG_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* b = -a */ +int mp_neg (mp_int * a, mp_int * b) +{ +  int     res; +  if (a != b) { +     if ((res = mp_copy (a, b)) != MP_OKAY) { +        return res; +     } +  } + +  if (mp_iszero(b) != MP_YES) { +     b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS; +  } else { +     b->sign = MP_ZPOS; +  } + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_neg.c */ + +/* Start: bn_mp_or.c */ +#include <tommath.h> +#ifdef BN_MP_OR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* OR two ints together */ +int mp_or (mp_int * a, mp_int * b, mp_int * c) +{ +  int     res, ix, px; +  mp_int  t, *x; + +  if (a->used > b->used) { +    if ((res = mp_init_copy (&t, a)) != MP_OKAY) { +      return res; +    } +    px = b->used; +    x = b; +  } else { +    if ((res = mp_init_copy (&t, b)) != MP_OKAY) { +      return res; +    } +    px = a->used; +    x = a; +  } + +  for (ix = 0; ix < px; ix++) { +    t.dp[ix] |= x->dp[ix]; +  } +  mp_clamp (&t); +  mp_exch (c, &t); +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_or.c */ + +/* Start: bn_mp_prime_fermat.c */ +#include <tommath.h> +#ifdef BN_MP_PRIME_FERMAT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* performs one Fermat test. + *  + * If "a" were prime then b**a == b (mod a) since the order of + * the multiplicative sub-group would be phi(a) = a-1.  That means + * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). + * + * Sets result to 1 if the congruence holds, or zero otherwise. + */ +int mp_prime_fermat (mp_int * a, mp_int * b, int *result) +{ +  mp_int  t; +  int     err; + +  /* default to composite  */ +  *result = MP_NO; + +  /* ensure b > 1 */ +  if (mp_cmp_d(b, 1) != MP_GT) { +     return MP_VAL; +  } + +  /* init t */ +  if ((err = mp_init (&t)) != MP_OKAY) { +    return err; +  } + +  /* compute t = b**a mod a */ +  if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) { +    goto LBL_T; +  } + +  /* is it equal to b? */ +  if (mp_cmp (&t, b) == MP_EQ) { +    *result = MP_YES; +  } + +  err = MP_OKAY; +LBL_T:mp_clear (&t); +  return err; +} +#endif + +/* End: bn_mp_prime_fermat.c */ + +/* Start: bn_mp_prime_is_divisible.c */ +#include <tommath.h> +#ifdef BN_MP_PRIME_IS_DIVISIBLE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* determines if an integers is divisible by one  + * of the first PRIME_SIZE primes or not + * + * sets result to 0 if not, 1 if yes + */ +int mp_prime_is_divisible (mp_int * a, int *result) +{ +  int     err, ix; +  mp_digit res; + +  /* default to not */ +  *result = MP_NO; + +  for (ix = 0; ix < PRIME_SIZE; ix++) { +    /* what is a mod LBL_prime_tab[ix] */ +    if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) { +      return err; +    } + +    /* is the residue zero? */ +    if (res == 0) { +      *result = MP_YES; +      return MP_OKAY; +    } +  } + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_prime_is_divisible.c */ + +/* Start: bn_mp_prime_is_prime.c */ +#include <tommath.h> +#ifdef BN_MP_PRIME_IS_PRIME_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* performs a variable number of rounds of Miller-Rabin + * + * Probability of error after t rounds is no more than + + * + * Sets result to 1 if probably prime, 0 otherwise + */ +int mp_prime_is_prime (mp_int * a, int t, int *result) +{ +  mp_int  b; +  int     ix, err, res; + +  /* default to no */ +  *result = MP_NO; + +  /* valid value of t? */ +  if (t <= 0 || t > PRIME_SIZE) { +    return MP_VAL; +  } + +  /* is the input equal to one of the primes in the table? */ +  for (ix = 0; ix < PRIME_SIZE; ix++) { +      if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { +         *result = 1; +         return MP_OKAY; +      } +  } + +  /* first perform trial division */ +  if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { +    return err; +  } + +  /* return if it was trivially divisible */ +  if (res == MP_YES) { +    return MP_OKAY; +  } + +  /* now perform the miller-rabin rounds */ +  if ((err = mp_init (&b)) != MP_OKAY) { +    return err; +  } + +  for (ix = 0; ix < t; ix++) { +    /* set the prime */ +    mp_set (&b, ltm_prime_tab[ix]); + +    if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { +      goto LBL_B; +    } + +    if (res == MP_NO) { +      goto LBL_B; +    } +  } + +  /* passed the test */ +  *result = MP_YES; +LBL_B:mp_clear (&b); +  return err; +} +#endif + +/* End: bn_mp_prime_is_prime.c */ + +/* Start: bn_mp_prime_miller_rabin.c */ +#include <tommath.h> +#ifdef BN_MP_PRIME_MILLER_RABIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* Miller-Rabin test of "a" to the base of "b" as described in  + * HAC pp. 139 Algorithm 4.24 + * + * Sets result to 0 if definitely composite or 1 if probably prime. + * Randomly the chance of error is no more than 1/4 and often  + * very much lower. + */ +int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) +{ +  mp_int  n1, y, r; +  int     s, j, err; + +  /* default */ +  *result = MP_NO; + +  /* ensure b > 1 */ +  if (mp_cmp_d(b, 1) != MP_GT) { +     return MP_VAL; +  }      + +  /* get n1 = a - 1 */ +  if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { +    return err; +  } +  if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { +    goto LBL_N1; +  } + +  /* set 2**s * r = n1 */ +  if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { +    goto LBL_N1; +  } + +  /* count the number of least significant bits +   * which are zero +   */ +  s = mp_cnt_lsb(&r); + +  /* now divide n - 1 by 2**s */ +  if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { +    goto LBL_R; +  } + +  /* compute y = b**r mod a */ +  if ((err = mp_init (&y)) != MP_OKAY) { +    goto LBL_R; +  } +  if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { +    goto LBL_Y; +  } + +  /* if y != 1 and y != n1 do */ +  if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { +    j = 1; +    /* while j <= s-1 and y != n1 */ +    while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { +      if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { +         goto LBL_Y; +      } + +      /* if y == 1 then composite */ +      if (mp_cmp_d (&y, 1) == MP_EQ) { +         goto LBL_Y; +      } + +      ++j; +    } + +    /* if y != n1 then composite */ +    if (mp_cmp (&y, &n1) != MP_EQ) { +      goto LBL_Y; +    } +  } + +  /* probably prime now */ +  *result = MP_YES; +LBL_Y:mp_clear (&y); +LBL_R:mp_clear (&r); +LBL_N1:mp_clear (&n1); +  return err; +} +#endif + +/* End: bn_mp_prime_miller_rabin.c */ + +/* Start: bn_mp_prime_next_prime.c */ +#include <tommath.h> +#ifdef BN_MP_PRIME_NEXT_PRIME_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* finds the next prime after the number "a" using "t" trials + * of Miller-Rabin. + * + * bbs_style = 1 means the prime must be congruent to 3 mod 4 + */ +int mp_prime_next_prime(mp_int *a, int t, int bbs_style) +{ +   int      err, res, x, y; +   mp_digit res_tab[PRIME_SIZE], step, kstep; +   mp_int   b; + +   /* ensure t is valid */ +   if (t <= 0 || t > PRIME_SIZE) { +      return MP_VAL; +   } + +   /* force positive */ +   a->sign = MP_ZPOS; + +   /* simple algo if a is less than the largest prime in the table */ +   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) { +      /* find which prime it is bigger than */ +      for (x = PRIME_SIZE - 2; x >= 0; x--) { +          if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) { +             if (bbs_style == 1) { +                /* ok we found a prime smaller or +                 * equal [so the next is larger] +                 * +                 * however, the prime must be +                 * congruent to 3 mod 4 +                 */ +                if ((ltm_prime_tab[x + 1] & 3) != 3) { +                   /* scan upwards for a prime congruent to 3 mod 4 */ +                   for (y = x + 1; y < PRIME_SIZE; y++) { +                       if ((ltm_prime_tab[y] & 3) == 3) { +                          mp_set(a, ltm_prime_tab[y]); +                          return MP_OKAY; +                       } +                   } +                } +             } else { +                mp_set(a, ltm_prime_tab[x + 1]); +                return MP_OKAY; +             } +          } +      } +      /* at this point a maybe 1 */ +      if (mp_cmp_d(a, 1) == MP_EQ) { +         mp_set(a, 2); +         return MP_OKAY; +      } +      /* fall through to the sieve */ +   } + +   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */ +   if (bbs_style == 1) { +      kstep   = 4; +   } else { +      kstep   = 2; +   } + +   /* at this point we will use a combination of a sieve and Miller-Rabin */ + +   if (bbs_style == 1) { +      /* if a mod 4 != 3 subtract the correct value to make it so */ +      if ((a->dp[0] & 3) != 3) { +         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; +      } +   } else { +      if (mp_iseven(a) == 1) { +         /* force odd */ +         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { +            return err; +         } +      } +   } + +   /* generate the restable */ +   for (x = 1; x < PRIME_SIZE; x++) { +      if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) { +         return err; +      } +   } + +   /* init temp used for Miller-Rabin Testing */ +   if ((err = mp_init(&b)) != MP_OKAY) { +      return err; +   } + +   for (;;) { +      /* skip to the next non-trivially divisible candidate */ +      step = 0; +      do { +         /* y == 1 if any residue was zero [e.g. cannot be prime] */ +         y     =  0; + +         /* increase step to next candidate */ +         step += kstep; + +         /* compute the new residue without using division */ +         for (x = 1; x < PRIME_SIZE; x++) { +             /* add the step to each residue */ +             res_tab[x] += kstep; + +             /* subtract the modulus [instead of using division] */ +             if (res_tab[x] >= ltm_prime_tab[x]) { +                res_tab[x]  -= ltm_prime_tab[x]; +             } + +             /* set flag if zero */ +             if (res_tab[x] == 0) { +                y = 1; +             } +         } +      } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); + +      /* add the step */ +      if ((err = mp_add_d(a, step, a)) != MP_OKAY) { +         goto LBL_ERR; +      } + +      /* if didn't pass sieve and step == MAX then skip test */ +      if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { +         continue; +      } + +      /* is this prime? */ +      for (x = 0; x < t; x++) { +          mp_set(&b, ltm_prime_tab[x]); +          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { +             goto LBL_ERR; +          } +          if (res == MP_NO) { +             break; +          } +      } + +      if (res == MP_YES) { +         break; +      } +   } + +   err = MP_OKAY; +LBL_ERR: +   mp_clear(&b); +   return err; +} + +#endif + +/* End: bn_mp_prime_next_prime.c */ + +/* Start: bn_mp_prime_rabin_miller_trials.c */ +#include <tommath.h> +#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + + +static const struct { +   int k, t; +} sizes[] = { +{   128,    28 }, +{   256,    16 }, +{   384,    10 }, +{   512,     7 }, +{   640,     6 }, +{   768,     5 }, +{   896,     4 }, +{  1024,     4 } +}; + +/* returns # of RM trials required for a given bit size */ +int mp_prime_rabin_miller_trials(int size) +{ +   int x; + +   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) { +       if (sizes[x].k == size) { +          return sizes[x].t; +       } else if (sizes[x].k > size) { +          return (x == 0) ? sizes[0].t : sizes[x - 1].t; +       } +   } +   return sizes[x-1].t + 1; +} + + +#endif + +/* End: bn_mp_prime_rabin_miller_trials.c */ + +/* Start: bn_mp_prime_random_ex.c */ +#include <tommath.h> +#ifdef BN_MP_PRIME_RANDOM_EX_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* makes a truly random prime of a given size (bits), + * + * Flags are as follows: + *  + *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4 + *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) + *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero + *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one + * + * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can + * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself + * so it can be NULL + * + */ + +/* This is possibly the mother of all prime generation functions, muahahahahaha! */ +int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat) +{ +   unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb; +   int res, err, bsize, maskOR_msb_offset; + +   /* sanity check the input */ +   if (size <= 1 || t <= 0) { +      return MP_VAL; +   } + +   /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ +   if (flags & LTM_PRIME_SAFE) { +      flags |= LTM_PRIME_BBS; +   } + +   /* calc the byte size */ +   bsize = (size>>3) + ((size&7)?1:0); + +   /* we need a buffer of bsize bytes */ +   tmp = OPT_CAST(unsigned char) XMALLOC(bsize); +   if (tmp == NULL) { +      return MP_MEM; +   } + +   /* calc the maskAND value for the MSbyte*/ +   maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7))); + +   /* calc the maskOR_msb */ +   maskOR_msb        = 0; +   maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; +   if (flags & LTM_PRIME_2MSB_ON) { +      maskOR_msb       |= 0x80 >> ((9 - size) & 7); +   }   + +   /* get the maskOR_lsb */ +   maskOR_lsb         = 1; +   if (flags & LTM_PRIME_BBS) { +      maskOR_lsb     |= 3; +   } + +   do { +      /* read the bytes */ +      if (cb(tmp, bsize, dat) != bsize) { +         err = MP_VAL; +         goto error; +      } +  +      /* work over the MSbyte */ +      tmp[0]    &= maskAND; +      tmp[0]    |= 1 << ((size - 1) & 7); + +      /* mix in the maskORs */ +      tmp[maskOR_msb_offset]   |= maskOR_msb; +      tmp[bsize-1]             |= maskOR_lsb; + +      /* read it in */ +      if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY)     { goto error; } + +      /* is it prime? */ +      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; } +      if (res == MP_NO) {   +         continue; +      } + +      if (flags & LTM_PRIME_SAFE) { +         /* see if (a-1)/2 is prime */ +         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; } +         if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; } +  +         /* is it prime? */ +         if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; } +      } +   } while (res == MP_NO); + +   if (flags & LTM_PRIME_SAFE) { +      /* restore a to the original value */ +      if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; } +      if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; } +   } + +   err = MP_OKAY; +error: +   XFREE(tmp); +   return err; +} + + +#endif + +/* End: bn_mp_prime_random_ex.c */ + +/* Start: bn_mp_radix_size.c */ +#include <tommath.h> +#ifdef BN_MP_RADIX_SIZE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* returns size of ASCII reprensentation */ +int mp_radix_size (mp_int * a, int radix, int *size) +{ +  int     res, digs; +  mp_int  t; +  mp_digit d; + +  *size = 0; + +  /* special case for binary */ +  if (radix == 2) { +    *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1; +    return MP_OKAY; +  } + +  /* make sure the radix is in range */ +  if (radix < 2 || radix > 64) { +    return MP_VAL; +  } + +  if (mp_iszero(a) == MP_YES) { +    *size = 2; +    return MP_OKAY; +  } + +  /* digs is the digit count */ +  digs = 0; + +  /* if it's negative add one for the sign */ +  if (a->sign == MP_NEG) { +    ++digs; +  } + +  /* init a copy of the input */ +  if ((res = mp_init_copy (&t, a)) != MP_OKAY) { +    return res; +  } + +  /* force temp to positive */ +  t.sign = MP_ZPOS;  + +  /* fetch out all of the digits */ +  while (mp_iszero (&t) == MP_NO) { +    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { +      mp_clear (&t); +      return res; +    } +    ++digs; +  } +  mp_clear (&t); + +  /* return digs + 1, the 1 is for the NULL byte that would be required. */ +  *size = digs + 1; +  return MP_OKAY; +} + +#endif + +/* End: bn_mp_radix_size.c */ + +/* Start: bn_mp_radix_smap.c */ +#include <tommath.h> +#ifdef BN_MP_RADIX_SMAP_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* chars used in radix conversions */ +const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; +#endif + +/* End: bn_mp_radix_smap.c */ + +/* Start: bn_mp_rand.c */ +#include <tommath.h> +#ifdef BN_MP_RAND_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* makes a pseudo-random int of a given size */ +int +mp_rand (mp_int * a, int digits) +{ +  int     res; +  mp_digit d; + +  mp_zero (a); +  if (digits <= 0) { +    return MP_OKAY; +  } + +  /* first place a random non-zero digit */ +  do { +    d = ((mp_digit) abs (rand ())) & MP_MASK; +  } while (d == 0); + +  if ((res = mp_add_d (a, d, a)) != MP_OKAY) { +    return res; +  } + +  while (--digits > 0) { +    if ((res = mp_lshd (a, 1)) != MP_OKAY) { +      return res; +    } + +    if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) { +      return res; +    } +  } + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_rand.c */ + +/* Start: bn_mp_read_radix.c */ +#include <tommath.h> +#ifdef BN_MP_READ_RADIX_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* read a string [ASCII] in a given radix */ +int mp_read_radix (mp_int * a, const char *str, int radix) +{ +  int     y, res, neg; +  char    ch; + +  /* zero the digit bignum */ +  mp_zero(a); + +  /* make sure the radix is ok */ +  if (radix < 2 || radix > 64) { +    return MP_VAL; +  } + +  /* if the leading digit is a  +   * minus set the sign to negative.  +   */ +  if (*str == '-') { +    ++str; +    neg = MP_NEG; +  } else { +    neg = MP_ZPOS; +  } + +  /* set the integer to the default of zero */ +  mp_zero (a); +   +  /* process each digit of the string */ +  while (*str) { +    /* if the radix < 36 the conversion is case insensitive +     * this allows numbers like 1AB and 1ab to represent the same  value +     * [e.g. in hex] +     */ +    ch = (char) ((radix < 36) ? toupper (*str) : *str); +    for (y = 0; y < 64; y++) { +      if (ch == mp_s_rmap[y]) { +         break; +      } +    } + +    /* if the char was found in the map  +     * and is less than the given radix add it +     * to the number, otherwise exit the loop.  +     */ +    if (y < radix) { +      if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) { +         return res; +      } +      if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) { +         return res; +      } +    } else { +      break; +    } +    ++str; +  } +   +  /* set the sign only if a != 0 */ +  if (mp_iszero(a) != 1) { +     a->sign = neg; +  } +  return MP_OKAY; +} +#endif + +/* End: bn_mp_read_radix.c */ + +/* Start: bn_mp_read_signed_bin.c */ +#include <tommath.h> +#ifdef BN_MP_READ_SIGNED_BIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* read signed bin, big endian, first byte is 0==positive or 1==negative */ +int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c) +{ +  int     res; + +  /* read magnitude */ +  if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) { +    return res; +  } + +  /* first byte is 0 for positive, non-zero for negative */ +  if (b[0] == 0) { +     a->sign = MP_ZPOS; +  } else { +     a->sign = MP_NEG; +  } + +  return MP_OKAY; +} +#endif + +/* End: bn_mp_read_signed_bin.c */ + +/* Start: bn_mp_read_unsigned_bin.c */ +#include <tommath.h> +#ifdef BN_MP_READ_UNSIGNED_BIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* reads a unsigned char array, assumes the msb is stored first [big endian] */ +int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) +{ +  int     res; + +  /* make sure there are at least two digits */ +  if (a->alloc < 2) { +     if ((res = mp_grow(a, 2)) != MP_OKAY) { +        return res; +     } +  } + +  /* zero the int */ +  mp_zero (a); + +  /* read the bytes in */ +  while (c-- > 0) { +    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { +      return res; +    } + +#ifndef MP_8BIT +      a->dp[0] |= *b++; +      a->used += 1; +#else +      a->dp[0] = (*b & MP_MASK); +      a->dp[1] |= ((*b++ >> 7U) & 1); +      a->used += 2; +#endif +  } +  mp_clamp (a); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_read_unsigned_bin.c */ + +/* Start: bn_mp_reduce.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* reduces x mod m, assumes 0 < x < m**2, mu is  + * precomputed via mp_reduce_setup. + * From HAC pp.604 Algorithm 14.42 + */ +int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) +{ +  mp_int  q; +  int     res, um = m->used; + +  /* q = x */ +  if ((res = mp_init_copy (&q, x)) != MP_OKAY) { +    return res; +  } + +  /* q1 = x / b**(k-1)  */ +  mp_rshd (&q, um - 1);          + +  /* according to HAC this optimization is ok */ +  if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { +    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { +      goto CLEANUP; +    } +  } else { +#ifdef BN_S_MP_MUL_HIGH_DIGS_C +    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { +      goto CLEANUP; +    } +#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) +    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { +      goto CLEANUP; +    } +#else  +    {  +      res = MP_VAL; +      goto CLEANUP; +    } +#endif +  } + +  /* q3 = q2 / b**(k+1) */ +  mp_rshd (&q, um + 1);          + +  /* x = x mod b**(k+1), quick (no division) */ +  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { +    goto CLEANUP; +  } + +  /* q = q * m mod b**(k+1), quick (no division) */ +  if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { +    goto CLEANUP; +  } + +  /* x = x - q */ +  if ((res = mp_sub (x, &q, x)) != MP_OKAY) { +    goto CLEANUP; +  } + +  /* If x < 0, add b**(k+1) to it */ +  if (mp_cmp_d (x, 0) == MP_LT) { +    mp_set (&q, 1); +    if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) +      goto CLEANUP; +    if ((res = mp_add (x, &q, x)) != MP_OKAY) +      goto CLEANUP; +  } + +  /* Back off if it's too big */ +  while (mp_cmp (x, m) != MP_LT) { +    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { +      goto CLEANUP; +    } +  } +   +CLEANUP: +  mp_clear (&q); + +  return res; +} +#endif + +/* End: bn_mp_reduce.c */ + +/* Start: bn_mp_reduce_2k.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_2K_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* reduces a modulo n where n is of the form 2**p - d */ +int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) +{ +   mp_int q; +   int    p, res; +    +   if ((res = mp_init(&q)) != MP_OKAY) { +      return res; +   } +    +   p = mp_count_bits(n);     +top: +   /* q = a/2**p, a = a mod 2**p */ +   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { +      goto ERR; +   } +    +   if (d != 1) { +      /* q = q * d */ +      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {  +         goto ERR; +      } +   } +    +   /* a = a + q */ +   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { +      goto ERR; +   } +    +   if (mp_cmp_mag(a, n) != MP_LT) { +      s_mp_sub(a, n, a); +      goto top; +   } +    +ERR: +   mp_clear(&q); +   return res; +} + +#endif + +/* End: bn_mp_reduce_2k.c */ + +/* Start: bn_mp_reduce_2k_l.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_2K_L_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* reduces a modulo n where n is of the form 2**p - d  +   This differs from reduce_2k since "d" can be larger +   than a single digit. +*/ +int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) +{ +   mp_int q; +   int    p, res; +    +   if ((res = mp_init(&q)) != MP_OKAY) { +      return res; +   } +    +   p = mp_count_bits(n);     +top: +   /* q = a/2**p, a = a mod 2**p */ +   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { +      goto ERR; +   } +    +   /* q = q * d */ +   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {  +      goto ERR; +   } +    +   /* a = a + q */ +   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { +      goto ERR; +   } +    +   if (mp_cmp_mag(a, n) != MP_LT) { +      s_mp_sub(a, n, a); +      goto top; +   } +    +ERR: +   mp_clear(&q); +   return res; +} + +#endif + +/* End: bn_mp_reduce_2k_l.c */ + +/* Start: bn_mp_reduce_2k_setup.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_2K_SETUP_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* determines the setup value */ +int mp_reduce_2k_setup(mp_int *a, mp_digit *d) +{ +   int res, p; +   mp_int tmp; +    +   if ((res = mp_init(&tmp)) != MP_OKAY) { +      return res; +   } +    +   p = mp_count_bits(a); +   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { +      mp_clear(&tmp); +      return res; +   } +    +   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { +      mp_clear(&tmp); +      return res; +   } +    +   *d = tmp.dp[0]; +   mp_clear(&tmp); +   return MP_OKAY; +} +#endif + +/* End: bn_mp_reduce_2k_setup.c */ + +/* Start: bn_mp_reduce_2k_setup_l.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_2K_SETUP_L_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* determines the setup value */ +int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) +{ +   int    res; +   mp_int tmp; +    +   if ((res = mp_init(&tmp)) != MP_OKAY) { +      return res; +   } +    +   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { +      goto ERR; +   } +    +   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { +      goto ERR; +   } +    +ERR: +   mp_clear(&tmp); +   return res; +} +#endif + +/* End: bn_mp_reduce_2k_setup_l.c */ + +/* Start: bn_mp_reduce_is_2k.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_IS_2K_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* determines if mp_reduce_2k can be used */ +int mp_reduce_is_2k(mp_int *a) +{ +   int ix, iy, iw; +   mp_digit iz; +    +   if (a->used == 0) { +      return MP_NO; +   } else if (a->used == 1) { +      return MP_YES; +   } else if (a->used > 1) { +      iy = mp_count_bits(a); +      iz = 1; +      iw = 1; +     +      /* Test every bit from the second digit up, must be 1 */ +      for (ix = DIGIT_BIT; ix < iy; ix++) { +          if ((a->dp[iw] & iz) == 0) { +             return MP_NO; +          } +          iz <<= 1; +          if (iz > (mp_digit)MP_MASK) { +             ++iw; +             iz = 1; +          } +      } +   } +   return MP_YES; +} + +#endif + +/* End: bn_mp_reduce_is_2k.c */ + +/* Start: bn_mp_reduce_is_2k_l.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_IS_2K_L_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* determines if reduce_2k_l can be used */ +int mp_reduce_is_2k_l(mp_int *a) +{ +   int ix, iy; +    +   if (a->used == 0) { +      return MP_NO; +   } else if (a->used == 1) { +      return MP_YES; +   } else if (a->used > 1) { +      /* if more than half of the digits are -1 we're sold */ +      for (iy = ix = 0; ix < a->used; ix++) { +          if (a->dp[ix] == MP_MASK) { +              ++iy; +          } +      } +      return (iy >= (a->used/2)) ? MP_YES : MP_NO; +       +   } +   return MP_NO; +} + +#endif + +/* End: bn_mp_reduce_is_2k_l.c */ + +/* Start: bn_mp_reduce_setup.c */ +#include <tommath.h> +#ifdef BN_MP_REDUCE_SETUP_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* pre-calculate the value required for Barrett reduction + * For a given modulus "b" it calulates the value required in "a" + */ +int mp_reduce_setup (mp_int * a, mp_int * b) +{ +  int     res; +   +  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { +    return res; +  } +  return mp_div (a, b, a, NULL); +} +#endif + +/* End: bn_mp_reduce_setup.c */ + +/* Start: bn_mp_rshd.c */ +#include <tommath.h> +#ifdef BN_MP_RSHD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* shift right a certain amount of digits */ +void mp_rshd (mp_int * a, int b) +{ +  int     x; + +  /* if b <= 0 then ignore it */ +  if (b <= 0) { +    return; +  } + +  /* if b > used then simply zero it and return */ +  if (a->used <= b) { +    mp_zero (a); +    return; +  } + +  { +    register mp_digit *bottom, *top; + +    /* shift the digits down */ + +    /* bottom */ +    bottom = a->dp; + +    /* top [offset into digits] */ +    top = a->dp + b; + +    /* this is implemented as a sliding window where  +     * the window is b-digits long and digits from  +     * the top of the window are copied to the bottom +     * +     * e.g. + +     b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ----> +                 /\                   |      ----> +                  \-------------------/      ----> +     */ +    for (x = 0; x < (a->used - b); x++) { +      *bottom++ = *top++; +    } + +    /* zero the top digits */ +    for (; x < a->used; x++) { +      *bottom++ = 0; +    } +  } +   +  /* remove excess digits */ +  a->used -= b; +} +#endif + +/* End: bn_mp_rshd.c */ + +/* Start: bn_mp_set.c */ +#include <tommath.h> +#ifdef BN_MP_SET_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* set to a digit */ +void mp_set (mp_int * a, mp_digit b) +{ +  mp_zero (a); +  a->dp[0] = b & MP_MASK; +  a->used  = (a->dp[0] != 0) ? 1 : 0; +} +#endif + +/* End: bn_mp_set.c */ + +/* Start: bn_mp_set_int.c */ +#include <tommath.h> +#ifdef BN_MP_SET_INT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* set a 32-bit const */ +int mp_set_int (mp_int * a, unsigned long b) +{ +  int     x, res; + +  mp_zero (a); +   +  /* set four bits at a time */ +  for (x = 0; x < 8; x++) { +    /* shift the number up four bits */ +    if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { +      return res; +    } + +    /* OR in the top four bits of the source */ +    a->dp[0] |= (b >> 28) & 15; + +    /* shift the source up to the next four bits */ +    b <<= 4; + +    /* ensure that digits are not clamped off */ +    a->used += 1; +  } +  mp_clamp (a); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_set_int.c */ + +/* Start: bn_mp_shrink.c */ +#include <tommath.h> +#ifdef BN_MP_SHRINK_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* shrink a bignum */ +int mp_shrink (mp_int * a) +{ +  mp_digit *tmp; +  int used = 1; +   +  if(a->used > 0) +    used = a->used; +   +  if (a->alloc != used) { +    if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) { +      return MP_MEM; +    } +    a->dp    = tmp; +    a->alloc = used; +  } +  return MP_OKAY; +} +#endif + +/* End: bn_mp_shrink.c */ + +/* Start: bn_mp_signed_bin_size.c */ +#include <tommath.h> +#ifdef BN_MP_SIGNED_BIN_SIZE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* get the size for an signed equivalent */ +int mp_signed_bin_size (mp_int * a) +{ +  return 1 + mp_unsigned_bin_size (a); +} +#endif + +/* End: bn_mp_signed_bin_size.c */ + +/* Start: bn_mp_sqr.c */ +#include <tommath.h> +#ifdef BN_MP_SQR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* computes b = a*a */ +int +mp_sqr (mp_int * a, mp_int * b) +{ +  int     res; + +#ifdef BN_MP_TOOM_SQR_C +  /* use Toom-Cook? */ +  if (a->used >= TOOM_SQR_CUTOFF) { +    res = mp_toom_sqr(a, b); +  /* Karatsuba? */ +  } else  +#endif +#ifdef BN_MP_KARATSUBA_SQR_C +if (a->used >= KARATSUBA_SQR_CUTOFF) { +    res = mp_karatsuba_sqr (a, b); +  } else  +#endif +  { +#ifdef BN_FAST_S_MP_SQR_C +    /* can we use the fast comba multiplier? */ +    if ((a->used * 2 + 1) < MP_WARRAY &&  +         a->used <  +         (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { +      res = fast_s_mp_sqr (a, b); +    } else +#endif +#ifdef BN_S_MP_SQR_C +      res = s_mp_sqr (a, b); +#else +      res = MP_VAL; +#endif +  } +  b->sign = MP_ZPOS; +  return res; +} +#endif + +/* End: bn_mp_sqr.c */ + +/* Start: bn_mp_sqrmod.c */ +#include <tommath.h> +#ifdef BN_MP_SQRMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* c = a * a (mod b) */ +int +mp_sqrmod (mp_int * a, mp_int * b, mp_int * c) +{ +  int     res; +  mp_int  t; + +  if ((res = mp_init (&t)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_sqr (a, &t)) != MP_OKAY) { +    mp_clear (&t); +    return res; +  } +  res = mp_mod (&t, b, c); +  mp_clear (&t); +  return res; +} +#endif + +/* End: bn_mp_sqrmod.c */ + +/* Start: bn_mp_sqrt.c */ +#include <tommath.h> + +#ifdef BN_MP_SQRT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* this function is less generic than mp_n_root, simpler and faster */ +int mp_sqrt(mp_int *arg, mp_int *ret)  +{ +  int res; +  mp_int t1,t2; + +  /* must be positive */ +  if (arg->sign == MP_NEG) { +    return MP_VAL; +  } + +  /* easy out */ +  if (mp_iszero(arg) == MP_YES) { +    mp_zero(ret); +    return MP_OKAY; +  } + +  if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_init(&t2)) != MP_OKAY) { +    goto E2; +  } + +  /* First approx. (not very bad for large arg) */ +  mp_rshd (&t1,t1.used/2); + +  /* t1 > 0  */  +  if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { +    goto E1; +  } +  if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { +    goto E1; +  } +  if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { +    goto E1; +  } +  /* And now t1 > sqrt(arg) */ +  do {  +    if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { +      goto E1; +    } +    if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) { +      goto E1; +    } +    if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) { +      goto E1; +    } +    /* t1 >= sqrt(arg) >= t2 at this point */ +  } while (mp_cmp_mag(&t1,&t2) == MP_GT); + +  mp_exch(&t1,ret); + +E1: mp_clear(&t2); +E2: mp_clear(&t1); +  return res; +} + +#endif + +/* End: bn_mp_sqrt.c */ + +/* Start: bn_mp_sub.c */ +#include <tommath.h> +#ifdef BN_MP_SUB_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* high level subtraction (handles signs) */ +int +mp_sub (mp_int * a, mp_int * b, mp_int * c) +{ +  int     sa, sb, res; + +  sa = a->sign; +  sb = b->sign; + +  if (sa != sb) { +    /* subtract a negative from a positive, OR */ +    /* subtract a positive from a negative. */ +    /* In either case, ADD their magnitudes, */ +    /* and use the sign of the first number. */ +    c->sign = sa; +    res = s_mp_add (a, b, c); +  } else { +    /* subtract a positive from a positive, OR */ +    /* subtract a negative from a negative. */ +    /* First, take the difference between their */ +    /* magnitudes, then... */ +    if (mp_cmp_mag (a, b) != MP_LT) { +      /* Copy the sign from the first */ +      c->sign = sa; +      /* The first has a larger or equal magnitude */ +      res = s_mp_sub (a, b, c); +    } else { +      /* The result has the *opposite* sign from */ +      /* the first number. */ +      c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; +      /* The second has a larger magnitude */ +      res = s_mp_sub (b, a, c); +    } +  } +  return res; +} + +#endif + +/* End: bn_mp_sub.c */ + +/* Start: bn_mp_sub_d.c */ +#include <tommath.h> +#ifdef BN_MP_SUB_D_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* single digit subtraction */ +int +mp_sub_d (mp_int * a, mp_digit b, mp_int * c) +{ +  mp_digit *tmpa, *tmpc, mu; +  int       res, ix, oldused; + +  /* grow c as required */ +  if (c->alloc < a->used + 1) { +     if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { +        return res; +     } +  } + +  /* if a is negative just do an unsigned +   * addition [with fudged signs] +   */ +  if (a->sign == MP_NEG) { +     a->sign = MP_ZPOS; +     res     = mp_add_d(a, b, c); +     a->sign = c->sign = MP_NEG; + +     /* clamp */ +     mp_clamp(c); + +     return res; +  } + +  /* setup regs */ +  oldused = c->used; +  tmpa    = a->dp; +  tmpc    = c->dp; + +  /* if a <= b simply fix the single digit */ +  if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { +     if (a->used == 1) { +        *tmpc++ = b - *tmpa; +     } else { +        *tmpc++ = b; +     } +     ix      = 1; + +     /* negative/1digit */ +     c->sign = MP_NEG; +     c->used = 1; +  } else { +     /* positive/size */ +     c->sign = MP_ZPOS; +     c->used = a->used; + +     /* subtract first digit */ +     *tmpc    = *tmpa++ - b; +     mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); +     *tmpc++ &= MP_MASK; + +     /* handle rest of the digits */ +     for (ix = 1; ix < a->used; ix++) { +        *tmpc    = *tmpa++ - mu; +        mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); +        *tmpc++ &= MP_MASK; +     } +  } + +  /* zero excess digits */ +  while (ix++ < oldused) { +     *tmpc++ = 0; +  } +  mp_clamp(c); +  return MP_OKAY; +} + +#endif + +/* End: bn_mp_sub_d.c */ + +/* Start: bn_mp_submod.c */ +#include <tommath.h> +#ifdef BN_MP_SUBMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* d = a - b (mod c) */ +int +mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) +{ +  int     res; +  mp_int  t; + + +  if ((res = mp_init (&t)) != MP_OKAY) { +    return res; +  } + +  if ((res = mp_sub (a, b, &t)) != MP_OKAY) { +    mp_clear (&t); +    return res; +  } +  res = mp_mod (&t, c, d); +  mp_clear (&t); +  return res; +} +#endif + +/* End: bn_mp_submod.c */ + +/* Start: bn_mp_to_signed_bin.c */ +#include <tommath.h> +#ifdef BN_MP_TO_SIGNED_BIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* store in signed [big endian] format */ +int mp_to_signed_bin (mp_int * a, unsigned char *b) +{ +  int     res; + +  if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) { +    return res; +  } +  b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_to_signed_bin.c */ + +/* Start: bn_mp_to_signed_bin_n.c */ +#include <tommath.h> +#ifdef BN_MP_TO_SIGNED_BIN_N_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* store in signed [big endian] format */ +int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) +{ +   if (*outlen < (unsigned long)mp_signed_bin_size(a)) { +      return MP_VAL; +   } +   *outlen = mp_signed_bin_size(a); +   return mp_to_signed_bin(a, b); +} +#endif + +/* End: bn_mp_to_signed_bin_n.c */ + +/* Start: bn_mp_to_unsigned_bin.c */ +#include <tommath.h> +#ifdef BN_MP_TO_UNSIGNED_BIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* store in unsigned [big endian] format */ +int mp_to_unsigned_bin (mp_int * a, unsigned char *b) +{ +  int     x, res; +  mp_int  t; + +  if ((res = mp_init_copy (&t, a)) != MP_OKAY) { +    return res; +  } + +  x = 0; +  while (mp_iszero (&t) == 0) { +#ifndef MP_8BIT +      b[x++] = (unsigned char) (t.dp[0] & 255); +#else +      b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); +#endif +    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { +      mp_clear (&t); +      return res; +    } +  } +  bn_reverse (b, x); +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_to_unsigned_bin.c */ + +/* Start: bn_mp_to_unsigned_bin_n.c */ +#include <tommath.h> +#ifdef BN_MP_TO_UNSIGNED_BIN_N_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* store in unsigned [big endian] format */ +int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) +{ +   if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) { +      return MP_VAL; +   } +   *outlen = mp_unsigned_bin_size(a); +   return mp_to_unsigned_bin(a, b); +} +#endif + +/* End: bn_mp_to_unsigned_bin_n.c */ + +/* Start: bn_mp_toom_mul.c */ +#include <tommath.h> +#ifdef BN_MP_TOOM_MUL_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* multiplication using the Toom-Cook 3-way algorithm  + * + * Much more complicated than Karatsuba but has a lower  + * asymptotic running time of O(N**1.464).  This algorithm is  + * only particularly useful on VERY large inputs  + * (we're talking 1000s of digits here...). +*/ +int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) +{ +    mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; +    int res, B; +         +    /* init temps */ +    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,  +                             &a0, &a1, &a2, &b0, &b1,  +                             &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { +       return res; +    } +     +    /* B */ +    B = MIN(a->used, b->used) / 3; +     +    /* a = a2 * B**2 + a1 * B + a0 */ +    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { +       goto ERR; +    } + +    if ((res = mp_copy(a, &a1)) != MP_OKAY) { +       goto ERR; +    } +    mp_rshd(&a1, B); +    mp_mod_2d(&a1, DIGIT_BIT * B, &a1); + +    if ((res = mp_copy(a, &a2)) != MP_OKAY) { +       goto ERR; +    } +    mp_rshd(&a2, B*2); +     +    /* b = b2 * B**2 + b1 * B + b0 */ +    if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { +       goto ERR; +    } + +    if ((res = mp_copy(b, &b1)) != MP_OKAY) { +       goto ERR; +    } +    mp_rshd(&b1, B); +    mp_mod_2d(&b1, DIGIT_BIT * B, &b1); + +    if ((res = mp_copy(b, &b2)) != MP_OKAY) { +       goto ERR; +    } +    mp_rshd(&b2, B*2); +     +    /* w0 = a0*b0 */ +    if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { +       goto ERR; +    } +     +    /* w4 = a2 * b2 */ +    if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { +       goto ERR; +    } +     +    /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ +    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +     +    if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +     +    if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { +       goto ERR; +    } +     +    /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ +    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +     +    if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +     +    if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { +       goto ERR; +    } +     + +    /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ +    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { +       goto ERR; +    } +     +    /* now solve the matrix  +     +       0  0  0  0  1 +       1  2  4  8  16 +       1  1  1  1  1 +       16 8  4  2  1 +       1  0  0  0  0 +        +       using 12 subtractions, 4 shifts,  +              2 small divisions and 1 small multiplication  +     */ +      +     /* r1 - r4 */ +     if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - r0 */ +     if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r1/2 */ +     if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3/2 */ +     if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r2 - r0 - r4 */ +     if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { +        goto ERR; +     } +     /* r1 - r2 */ +     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - r2 */ +     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r1 - 8r0 */ +     if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - 8r4 */ +     if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* 3r2 - r1 - r3 */ +     if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { +        goto ERR; +     } +     /* r1 - r2 */ +     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - r2 */ +     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r1/3 */ +     if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { +        goto ERR; +     } +     /* r3/3 */ +     if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { +        goto ERR; +     } +      +     /* at this point shift W[n] by B*n */ +     if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { +        goto ERR; +     }      +      +     if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { +        goto ERR; +     }      +      +ERR: +     mp_clear_multi(&w0, &w1, &w2, &w3, &w4,  +                    &a0, &a1, &a2, &b0, &b1,  +                    &b2, &tmp1, &tmp2, NULL); +     return res; +}      +      +#endif + +/* End: bn_mp_toom_mul.c */ + +/* Start: bn_mp_toom_sqr.c */ +#include <tommath.h> +#ifdef BN_MP_TOOM_SQR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* squaring using Toom-Cook 3-way algorithm */ +int +mp_toom_sqr(mp_int *a, mp_int *b) +{ +    mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2; +    int res, B; + +    /* init temps */ +    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) { +       return res; +    } + +    /* B */ +    B = a->used / 3; + +    /* a = a2 * B**2 + a1 * B + a0 */ +    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { +       goto ERR; +    } + +    if ((res = mp_copy(a, &a1)) != MP_OKAY) { +       goto ERR; +    } +    mp_rshd(&a1, B); +    mp_mod_2d(&a1, DIGIT_BIT * B, &a1); + +    if ((res = mp_copy(a, &a2)) != MP_OKAY) { +       goto ERR; +    } +    mp_rshd(&a2, B*2); + +    /* w0 = a0*a0 */ +    if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) { +       goto ERR; +    } + +    /* w4 = a2 * a2 */ +    if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) { +       goto ERR; +    } + +    /* w1 = (a2 + 2(a1 + 2a0))**2 */ +    if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { +       goto ERR; +    } + +    if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) { +       goto ERR; +    } + +    /* w3 = (a0 + 2(a1 + 2a2))**2 */ +    if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { +       goto ERR; +    } + +    if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) { +       goto ERR; +    } + + +    /* w2 = (a2 + a1 + a0)**2 */ +    if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { +       goto ERR; +    } +    if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) { +       goto ERR; +    } + +    /* now solve the matrix + +       0  0  0  0  1 +       1  2  4  8  16 +       1  1  1  1  1 +       16 8  4  2  1 +       1  0  0  0  0 + +       using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. +     */ + +     /* r1 - r4 */ +     if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - r0 */ +     if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r1/2 */ +     if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3/2 */ +     if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r2 - r0 - r4 */ +     if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { +        goto ERR; +     } +     /* r1 - r2 */ +     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - r2 */ +     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r1 - 8r0 */ +     if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - 8r4 */ +     if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* 3r2 - r1 - r3 */ +     if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { +        goto ERR; +     } +     /* r1 - r2 */ +     if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { +        goto ERR; +     } +     /* r3 - r2 */ +     if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { +        goto ERR; +     } +     /* r1/3 */ +     if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { +        goto ERR; +     } +     /* r3/3 */ +     if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { +        goto ERR; +     } + +     /* at this point shift W[n] by B*n */ +     if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { +        goto ERR; +     } + +     if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { +        goto ERR; +     } +     if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { +        goto ERR; +     } + +ERR: +     mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); +     return res; +} + +#endif + +/* End: bn_mp_toom_sqr.c */ + +/* Start: bn_mp_toradix.c */ +#include <tommath.h> +#ifdef BN_MP_TORADIX_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* stores a bignum as a ASCII string in a given radix (2..64) */ +int mp_toradix (mp_int * a, char *str, int radix) +{ +  int     res, digs; +  mp_int  t; +  mp_digit d; +  char   *_s = str; + +  /* check range of the radix */ +  if (radix < 2 || radix > 64) { +    return MP_VAL; +  } + +  /* quick out if its zero */ +  if (mp_iszero(a) == 1) { +     *str++ = '0'; +     *str = '\0'; +     return MP_OKAY; +  } + +  if ((res = mp_init_copy (&t, a)) != MP_OKAY) { +    return res; +  } + +  /* if it is negative output a - */ +  if (t.sign == MP_NEG) { +    ++_s; +    *str++ = '-'; +    t.sign = MP_ZPOS; +  } + +  digs = 0; +  while (mp_iszero (&t) == 0) { +    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { +      mp_clear (&t); +      return res; +    } +    *str++ = mp_s_rmap[d]; +    ++digs; +  } + +  /* reverse the digits of the string.  In this case _s points +   * to the first digit [exluding the sign] of the number] +   */ +  bn_reverse ((unsigned char *)_s, digs); + +  /* append a NULL so the string is properly terminated */ +  *str = '\0'; + +  mp_clear (&t); +  return MP_OKAY; +} + +#endif + +/* End: bn_mp_toradix.c */ + +/* Start: bn_mp_toradix_n.c */ +#include <tommath.h> +#ifdef BN_MP_TORADIX_N_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* stores a bignum as a ASCII string in a given radix (2..64)  + * + * Stores upto maxlen-1 chars and always a NULL byte  + */ +int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) +{ +  int     res, digs; +  mp_int  t; +  mp_digit d; +  char   *_s = str; + +  /* check range of the maxlen, radix */ +  if (maxlen < 2 || radix < 2 || radix > 64) { +    return MP_VAL; +  } + +  /* quick out if its zero */ +  if (mp_iszero(a) == MP_YES) { +     *str++ = '0'; +     *str = '\0'; +     return MP_OKAY; +  } + +  if ((res = mp_init_copy (&t, a)) != MP_OKAY) { +    return res; +  } + +  /* if it is negative output a - */ +  if (t.sign == MP_NEG) { +    /* we have to reverse our digits later... but not the - sign!! */ +    ++_s; + +    /* store the flag and mark the number as positive */ +    *str++ = '-'; +    t.sign = MP_ZPOS; +  +    /* subtract a char */ +    --maxlen; +  } + +  digs = 0; +  while (mp_iszero (&t) == 0) { +    if (--maxlen < 1) { +       /* no more room */ +       break; +    } +    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { +      mp_clear (&t); +      return res; +    } +    *str++ = mp_s_rmap[d]; +    ++digs; +  } + +  /* reverse the digits of the string.  In this case _s points +   * to the first digit [exluding the sign] of the number +   */ +  bn_reverse ((unsigned char *)_s, digs); + +  /* append a NULL so the string is properly terminated */ +  *str = '\0'; + +  mp_clear (&t); +  return MP_OKAY; +} + +#endif + +/* End: bn_mp_toradix_n.c */ + +/* Start: bn_mp_unsigned_bin_size.c */ +#include <tommath.h> +#ifdef BN_MP_UNSIGNED_BIN_SIZE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* get the size for an unsigned equivalent */ +int mp_unsigned_bin_size (mp_int * a) +{ +  int     size = mp_count_bits (a); +  return (size / 8 + ((size & 7) != 0 ? 1 : 0)); +} +#endif + +/* End: bn_mp_unsigned_bin_size.c */ + +/* Start: bn_mp_xor.c */ +#include <tommath.h> +#ifdef BN_MP_XOR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* XOR two ints together */ +int +mp_xor (mp_int * a, mp_int * b, mp_int * c) +{ +  int     res, ix, px; +  mp_int  t, *x; + +  if (a->used > b->used) { +    if ((res = mp_init_copy (&t, a)) != MP_OKAY) { +      return res; +    } +    px = b->used; +    x = b; +  } else { +    if ((res = mp_init_copy (&t, b)) != MP_OKAY) { +      return res; +    } +    px = a->used; +    x = a; +  } + +  for (ix = 0; ix < px; ix++) { +     t.dp[ix] ^= x->dp[ix]; +  } +  mp_clamp (&t); +  mp_exch (c, &t); +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_mp_xor.c */ + +/* Start: bn_mp_zero.c */ +#include <tommath.h> +#ifdef BN_MP_ZERO_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* set to zero */ +void mp_zero (mp_int * a) +{ +  int       n; +  mp_digit *tmp; + +  a->sign = MP_ZPOS; +  a->used = 0; + +  tmp = a->dp; +  for (n = 0; n < a->alloc; n++) { +     *tmp++ = 0; +  } +} +#endif + +/* End: bn_mp_zero.c */ + +/* Start: bn_prime_tab.c */ +#include <tommath.h> +#ifdef BN_PRIME_TAB_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ +const mp_digit ltm_prime_tab[] = { +  0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, +  0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, +  0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, +  0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, +#ifndef MP_8BIT +  0x0083, +  0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, +  0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, +  0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, +  0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, + +  0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, +  0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, +  0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, +  0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, +  0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, +  0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, +  0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, +  0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, + +  0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, +  0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, +  0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, +  0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, +  0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, +  0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, +  0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, +  0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, + +  0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, +  0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, +  0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, +  0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, +  0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, +  0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, +  0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, +  0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 +#endif +}; +#endif + +/* End: bn_prime_tab.c */ + +/* Start: bn_reverse.c */ +#include <tommath.h> +#ifdef BN_REVERSE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* reverse an array, used for radix code */ +void +bn_reverse (unsigned char *s, int len) +{ +  int     ix, iy; +  unsigned char t; + +  ix = 0; +  iy = len - 1; +  while (ix < iy) { +    t     = s[ix]; +    s[ix] = s[iy]; +    s[iy] = t; +    ++ix; +    --iy; +  } +} +#endif + +/* End: bn_reverse.c */ + +/* Start: bn_s_mp_add.c */ +#include <tommath.h> +#ifdef BN_S_MP_ADD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* low level addition, based on HAC pp.594, Algorithm 14.7 */ +int +s_mp_add (mp_int * a, mp_int * b, mp_int * c) +{ +  mp_int *x; +  int     olduse, res, min, max; + +  /* find sizes, we let |a| <= |b| which means we have to sort +   * them.  "x" will point to the input with the most digits +   */ +  if (a->used > b->used) { +    min = b->used; +    max = a->used; +    x = a; +  } else { +    min = a->used; +    max = b->used; +    x = b; +  } + +  /* init result */ +  if (c->alloc < max + 1) { +    if ((res = mp_grow (c, max + 1)) != MP_OKAY) { +      return res; +    } +  } + +  /* get old used digit count and set new one */ +  olduse = c->used; +  c->used = max + 1; + +  { +    register mp_digit u, *tmpa, *tmpb, *tmpc; +    register int i; + +    /* alias for digit pointers */ + +    /* first input */ +    tmpa = a->dp; + +    /* second input */ +    tmpb = b->dp; + +    /* destination */ +    tmpc = c->dp; + +    /* zero the carry */ +    u = 0; +    for (i = 0; i < min; i++) { +      /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ +      *tmpc = *tmpa++ + *tmpb++ + u; + +      /* U = carry bit of T[i] */ +      u = *tmpc >> ((mp_digit)DIGIT_BIT); + +      /* take away carry bit from T[i] */ +      *tmpc++ &= MP_MASK; +    } + +    /* now copy higher words if any, that is in A+B  +     * if A or B has more digits add those in  +     */ +    if (min != max) { +      for (; i < max; i++) { +        /* T[i] = X[i] + U */ +        *tmpc = x->dp[i] + u; + +        /* U = carry bit of T[i] */ +        u = *tmpc >> ((mp_digit)DIGIT_BIT); + +        /* take away carry bit from T[i] */ +        *tmpc++ &= MP_MASK; +      } +    } + +    /* add carry */ +    *tmpc++ = u; + +    /* clear digits above oldused */ +    for (i = c->used; i < olduse; i++) { +      *tmpc++ = 0; +    } +  } + +  mp_clamp (c); +  return MP_OKAY; +} +#endif + +/* End: bn_s_mp_add.c */ + +/* Start: bn_s_mp_exptmod.c */ +#include <tommath.h> +#ifdef BN_S_MP_EXPTMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ +#ifdef MP_LOW_MEM +   #define TAB_SIZE 32 +#else +   #define TAB_SIZE 256 +#endif + +int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) +{ +  mp_int  M[TAB_SIZE], res, mu; +  mp_digit buf; +  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; +  int (*redux)(mp_int*,mp_int*,mp_int*); + +  /* find window size */ +  x = mp_count_bits (X); +  if (x <= 7) { +    winsize = 2; +  } else if (x <= 36) { +    winsize = 3; +  } else if (x <= 140) { +    winsize = 4; +  } else if (x <= 450) { +    winsize = 5; +  } else if (x <= 1303) { +    winsize = 6; +  } else if (x <= 3529) { +    winsize = 7; +  } else { +    winsize = 8; +  } + +#ifdef MP_LOW_MEM +    if (winsize > 5) { +       winsize = 5; +    } +#endif + +  /* init M array */ +  /* init first cell */ +  if ((err = mp_init(&M[1])) != MP_OKAY) { +     return err;  +  } + +  /* now init the second half of the array */ +  for (x = 1<<(winsize-1); x < (1 << winsize); x++) { +    if ((err = mp_init(&M[x])) != MP_OKAY) { +      for (y = 1<<(winsize-1); y < x; y++) { +        mp_clear (&M[y]); +      } +      mp_clear(&M[1]); +      return err; +    } +  } + +  /* create mu, used for Barrett reduction */ +  if ((err = mp_init (&mu)) != MP_OKAY) { +    goto LBL_M; +  } +   +  if (redmode == 0) { +     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { +        goto LBL_MU; +     } +     redux = mp_reduce; +  } else { +     if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { +        goto LBL_MU; +     } +     redux = mp_reduce_2k_l; +  }     + +  /* create M table +   * +   * The M table contains powers of the base,  +   * e.g. M[x] = G**x mod P +   * +   * The first half of the table is not  +   * computed though accept for M[0] and M[1] +   */ +  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { +    goto LBL_MU; +  } + +  /* compute the value at M[1<<(winsize-1)] by squaring  +   * M[1] (winsize-1) times  +   */ +  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { +    goto LBL_MU; +  } + +  for (x = 0; x < (winsize - 1); x++) { +    /* square it */ +    if ((err = mp_sqr (&M[1 << (winsize - 1)],  +                       &M[1 << (winsize - 1)])) != MP_OKAY) { +      goto LBL_MU; +    } + +    /* reduce modulo P */ +    if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { +      goto LBL_MU; +    } +  } + +  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) +   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) +   */ +  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { +    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { +      goto LBL_MU; +    } +    if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { +      goto LBL_MU; +    } +  } + +  /* setup result */ +  if ((err = mp_init (&res)) != MP_OKAY) { +    goto LBL_MU; +  } +  mp_set (&res, 1); + +  /* set initial mode and bit cnt */ +  mode   = 0; +  bitcnt = 1; +  buf    = 0; +  digidx = X->used - 1; +  bitcpy = 0; +  bitbuf = 0; + +  for (;;) { +    /* grab next digit as required */ +    if (--bitcnt == 0) { +      /* if digidx == -1 we are out of digits */ +      if (digidx == -1) { +        break; +      } +      /* read next digit and reset the bitcnt */ +      buf    = X->dp[digidx--]; +      bitcnt = (int) DIGIT_BIT; +    } + +    /* grab the next msb from the exponent */ +    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; +    buf <<= (mp_digit)1; + +    /* if the bit is zero and mode == 0 then we ignore it +     * These represent the leading zero bits before the first 1 bit +     * in the exponent.  Technically this opt is not required but it +     * does lower the # of trivial squaring/reductions used +     */ +    if (mode == 0 && y == 0) { +      continue; +    } + +    /* if the bit is zero and mode == 1 then we square */ +    if (mode == 1 && y == 0) { +      if ((err = mp_sqr (&res, &res)) != MP_OKAY) { +        goto LBL_RES; +      } +      if ((err = redux (&res, P, &mu)) != MP_OKAY) { +        goto LBL_RES; +      } +      continue; +    } + +    /* else we add it to the window */ +    bitbuf |= (y << (winsize - ++bitcpy)); +    mode    = 2; + +    if (bitcpy == winsize) { +      /* ok window is filled so square as required and multiply  */ +      /* square first */ +      for (x = 0; x < winsize; x++) { +        if ((err = mp_sqr (&res, &res)) != MP_OKAY) { +          goto LBL_RES; +        } +        if ((err = redux (&res, P, &mu)) != MP_OKAY) { +          goto LBL_RES; +        } +      } + +      /* then multiply */ +      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { +        goto LBL_RES; +      } +      if ((err = redux (&res, P, &mu)) != MP_OKAY) { +        goto LBL_RES; +      } + +      /* empty window and reset */ +      bitcpy = 0; +      bitbuf = 0; +      mode   = 1; +    } +  } + +  /* if bits remain then square/multiply */ +  if (mode == 2 && bitcpy > 0) { +    /* square then multiply if the bit is set */ +    for (x = 0; x < bitcpy; x++) { +      if ((err = mp_sqr (&res, &res)) != MP_OKAY) { +        goto LBL_RES; +      } +      if ((err = redux (&res, P, &mu)) != MP_OKAY) { +        goto LBL_RES; +      } + +      bitbuf <<= 1; +      if ((bitbuf & (1 << winsize)) != 0) { +        /* then multiply */ +        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { +          goto LBL_RES; +        } +        if ((err = redux (&res, P, &mu)) != MP_OKAY) { +          goto LBL_RES; +        } +      } +    } +  } + +  mp_exch (&res, Y); +  err = MP_OKAY; +LBL_RES:mp_clear (&res); +LBL_MU:mp_clear (&mu); +LBL_M: +  mp_clear(&M[1]); +  for (x = 1<<(winsize-1); x < (1 << winsize); x++) { +    mp_clear (&M[x]); +  } +  return err; +} +#endif + +/* End: bn_s_mp_exptmod.c */ + +/* Start: bn_s_mp_mul_digs.c */ +#include <tommath.h> +#ifdef BN_S_MP_MUL_DIGS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* multiplies |a| * |b| and only computes upto digs digits of result + * HAC pp. 595, Algorithm 14.12  Modified so you can control how  + * many digits of output are created. + */ +int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ +  mp_int  t; +  int     res, pa, pb, ix, iy; +  mp_digit u; +  mp_word r; +  mp_digit tmpx, *tmpt, *tmpy; + +  /* can we use the fast multiplier? */ +  if (((digs) < MP_WARRAY) && +      MIN (a->used, b->used) <  +          (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { +    return fast_s_mp_mul_digs (a, b, c, digs); +  } + +  if ((res = mp_init_size (&t, digs)) != MP_OKAY) { +    return res; +  } +  t.used = digs; + +  /* compute the digits of the product directly */ +  pa = a->used; +  for (ix = 0; ix < pa; ix++) { +    /* set the carry to zero */ +    u = 0; + +    /* limit ourselves to making digs digits of output */ +    pb = MIN (b->used, digs - ix); + +    /* setup some aliases */ +    /* copy of the digit from a used within the nested loop */ +    tmpx = a->dp[ix]; +     +    /* an alias for the destination shifted ix places */ +    tmpt = t.dp + ix; +     +    /* an alias for the digits of b */ +    tmpy = b->dp; + +    /* compute the columns of the output and propagate the carry */ +    for (iy = 0; iy < pb; iy++) { +      /* compute the column as a mp_word */ +      r       = ((mp_word)*tmpt) + +                ((mp_word)tmpx) * ((mp_word)*tmpy++) + +                ((mp_word) u); + +      /* the new column is the lower part of the result */ +      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); + +      /* get the carry word from the result */ +      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); +    } +    /* set carry if it is placed below digs */ +    if (ix + iy < digs) { +      *tmpt = u; +    } +  } + +  mp_clamp (&t); +  mp_exch (&t, c); + +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_s_mp_mul_digs.c */ + +/* Start: bn_s_mp_mul_high_digs.c */ +#include <tommath.h> +#ifdef BN_S_MP_MUL_HIGH_DIGS_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* multiplies |a| * |b| and does not compute the lower digs digits + * [meant to get the higher part of the product] + */ +int +s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) +{ +  mp_int  t; +  int     res, pa, pb, ix, iy; +  mp_digit u; +  mp_word r; +  mp_digit tmpx, *tmpt, *tmpy; + +  /* can we use the fast multiplier? */ +#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C +  if (((a->used + b->used + 1) < MP_WARRAY) +      && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { +    return fast_s_mp_mul_high_digs (a, b, c, digs); +  } +#endif + +  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { +    return res; +  } +  t.used = a->used + b->used + 1; + +  pa = a->used; +  pb = b->used; +  for (ix = 0; ix < pa; ix++) { +    /* clear the carry */ +    u = 0; + +    /* left hand side of A[ix] * B[iy] */ +    tmpx = a->dp[ix]; + +    /* alias to the address of where the digits will be stored */ +    tmpt = &(t.dp[digs]); + +    /* alias for where to read the right hand side from */ +    tmpy = b->dp + (digs - ix); + +    for (iy = digs - ix; iy < pb; iy++) { +      /* calculate the double precision result */ +      r       = ((mp_word)*tmpt) + +                ((mp_word)tmpx) * ((mp_word)*tmpy++) + +                ((mp_word) u); + +      /* get the lower part */ +      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); + +      /* carry the carry */ +      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); +    } +    *tmpt = u; +  } +  mp_clamp (&t); +  mp_exch (&t, c); +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_s_mp_mul_high_digs.c */ + +/* Start: bn_s_mp_sqr.c */ +#include <tommath.h> +#ifdef BN_S_MP_SQR_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ +int s_mp_sqr (mp_int * a, mp_int * b) +{ +  mp_int  t; +  int     res, ix, iy, pa; +  mp_word r; +  mp_digit u, tmpx, *tmpt; + +  pa = a->used; +  if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { +    return res; +  } + +  /* default used is maximum possible size */ +  t.used = 2*pa + 1; + +  for (ix = 0; ix < pa; ix++) { +    /* first calculate the digit at 2*ix */ +    /* calculate double precision result */ +    r = ((mp_word) t.dp[2*ix]) + +        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); + +    /* store lower part in result */ +    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); + +    /* get the carry */ +    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); + +    /* left hand side of A[ix] * A[iy] */ +    tmpx        = a->dp[ix]; + +    /* alias for where to store the results */ +    tmpt        = t.dp + (2*ix + 1); +     +    for (iy = ix + 1; iy < pa; iy++) { +      /* first calculate the product */ +      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); + +      /* now calculate the double precision result, note we use +       * addition instead of *2 since it's easier to optimize +       */ +      r       = ((mp_word) *tmpt) + r + r + ((mp_word) u); + +      /* store lower part */ +      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); + +      /* get carry */ +      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); +    } +    /* propagate upwards */ +    while (u != ((mp_digit) 0)) { +      r       = ((mp_word) *tmpt) + ((mp_word) u); +      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); +      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); +    } +  } + +  mp_clamp (&t); +  mp_exch (&t, b); +  mp_clear (&t); +  return MP_OKAY; +} +#endif + +/* End: bn_s_mp_sqr.c */ + +/* Start: bn_s_mp_sub.c */ +#include <tommath.h> +#ifdef BN_S_MP_SUB_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ +int +s_mp_sub (mp_int * a, mp_int * b, mp_int * c) +{ +  int     olduse, res, min, max; + +  /* find sizes */ +  min = b->used; +  max = a->used; + +  /* init result */ +  if (c->alloc < max) { +    if ((res = mp_grow (c, max)) != MP_OKAY) { +      return res; +    } +  } +  olduse = c->used; +  c->used = max; + +  { +    register mp_digit u, *tmpa, *tmpb, *tmpc; +    register int i; + +    /* alias for digit pointers */ +    tmpa = a->dp; +    tmpb = b->dp; +    tmpc = c->dp; + +    /* set carry to zero */ +    u = 0; +    for (i = 0; i < min; i++) { +      /* T[i] = A[i] - B[i] - U */ +      *tmpc = *tmpa++ - *tmpb++ - u; + +      /* U = carry bit of T[i] +       * Note this saves performing an AND operation since +       * if a carry does occur it will propagate all the way to the +       * MSB.  As a result a single shift is enough to get the carry +       */ +      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); + +      /* Clear carry from T[i] */ +      *tmpc++ &= MP_MASK; +    } + +    /* now copy higher words if any, e.g. if A has more digits than B  */ +    for (; i < max; i++) { +      /* T[i] = A[i] - U */ +      *tmpc = *tmpa++ - u; + +      /* U = carry bit of T[i] */ +      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); + +      /* Clear carry from T[i] */ +      *tmpc++ &= MP_MASK; +    } + +    /* clear digits above used (since we may not have grown result above) */ +    for (i = c->used; i < olduse; i++) { +      *tmpc++ = 0; +    } +  } + +  mp_clamp (c); +  return MP_OKAY; +} + +#endif + +/* End: bn_s_mp_sub.c */ + +/* Start: bncore.c */ +#include <tommath.h> +#ifdef BNCORE_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + */ + +/* Known optimal configurations + + CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF +------------------------------------------------------------- + Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-) + AMD Athlon64           /GCC v3.4.4   /        80/       120/LTM 0.35 +  +*/ + +int     KARATSUBA_MUL_CUTOFF = 80,      /* Min. number of digits before Karatsuba multiplication is used. */ +        KARATSUBA_SQR_CUTOFF = 120,     /* Min. number of digits before Karatsuba squaring is used. */ +         +        TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */ +        TOOM_SQR_CUTOFF      = 400;  +#endif + +/* End: bncore.c */ + + +/* EOF */ | 
