summaryrefslogtreecommitdiffstats
path: root/libtommath
diff options
context:
space:
mode:
Diffstat (limited to 'libtommath')
-rw-r--r--libtommath/LICENSE4
-rw-r--r--libtommath/TODO16
-rw-r--r--libtommath/bn.ilg6
-rw-r--r--libtommath/bn.ind82
-rw-r--r--libtommath/bn.pdfbin0 -> 335112 bytes
-rw-r--r--libtommath/bn.tex1830
-rw-r--r--libtommath/bn_error.c43
-rw-r--r--libtommath/bn_fast_mp_invmod.c145
-rw-r--r--libtommath/bn_fast_mp_montgomery_reduce.c169
-rw-r--r--libtommath/bn_fast_s_mp_mul_digs.c106
-rw-r--r--libtommath/bn_fast_s_mp_mul_high_digs.c98
-rw-r--r--libtommath/bn_fast_s_mp_sqr.c129
-rw-r--r--libtommath/bn_mp_2expt.c44
-rw-r--r--libtommath/bn_mp_abs.c39
-rw-r--r--libtommath/bn_mp_add.c49
-rw-r--r--libtommath/bn_mp_add_d.c105
-rw-r--r--libtommath/bn_mp_addmod.c37
-rw-r--r--libtommath/bn_mp_and.c53
-rw-r--r--libtommath/bn_mp_clamp.c40
-rw-r--r--libtommath/bn_mp_clear.c40
-rw-r--r--libtommath/bn_mp_clear_multi.c30
-rw-r--r--libtommath/bn_mp_cmp.c39
-rw-r--r--libtommath/bn_mp_cmp_d.c40
-rw-r--r--libtommath/bn_mp_cmp_mag.c51
-rw-r--r--libtommath/bn_mp_cnt_lsb.c49
-rw-r--r--libtommath/bn_mp_copy.c64
-rw-r--r--libtommath/bn_mp_count_bits.c41
-rw-r--r--libtommath/bn_mp_div.c288
-rw-r--r--libtommath/bn_mp_div_2.c64
-rw-r--r--libtommath/bn_mp_div_2d.c93
-rw-r--r--libtommath/bn_mp_div_3.c75
-rw-r--r--libtommath/bn_mp_div_d.c106
-rw-r--r--libtommath/bn_mp_dr_is_modulus.c39
-rw-r--r--libtommath/bn_mp_dr_reduce.c90
-rw-r--r--libtommath/bn_mp_dr_setup.c28
-rw-r--r--libtommath/bn_mp_exch.c30
-rw-r--r--libtommath/bn_mp_expt_d.c53
-rw-r--r--libtommath/bn_mp_exptmod.c100
-rw-r--r--libtommath/bn_mp_exptmod_fast.c318
-rw-r--r--libtommath/bn_mp_exteuclid.c71
-rw-r--r--libtommath/bn_mp_fread.c63
-rw-r--r--libtommath/bn_mp_fwrite.c48
-rw-r--r--libtommath/bn_mp_gcd.c109
-rw-r--r--libtommath/bn_mp_get_int.c41
-rw-r--r--libtommath/bn_mp_grow.c53
-rw-r--r--libtommath/bn_mp_init.c42
-rw-r--r--libtommath/bn_mp_init_copy.c28
-rw-r--r--libtommath/bn_mp_init_multi.c55
-rw-r--r--libtommath/bn_mp_init_set.c28
-rw-r--r--libtommath/bn_mp_init_set_int.c27
-rw-r--r--libtommath/bn_mp_init_size.c44
-rw-r--r--libtommath/bn_mp_invmod.c39
-rw-r--r--libtommath/bn_mp_invmod_slow.c171
-rw-r--r--libtommath/bn_mp_is_square.c105
-rw-r--r--libtommath/bn_mp_jacobi.c101
-rw-r--r--libtommath/bn_mp_karatsuba_mul.c163
-rw-r--r--libtommath/bn_mp_karatsuba_sqr.c117
-rw-r--r--libtommath/bn_mp_lcm.c56
-rw-r--r--libtommath/bn_mp_lshd.c63
-rw-r--r--libtommath/bn_mp_mod.c44
-rw-r--r--libtommath/bn_mp_mod_2d.c51
-rw-r--r--libtommath/bn_mp_mod_d.c23
-rw-r--r--libtommath/bn_mp_montgomery_calc_normalization.c56
-rw-r--r--libtommath/bn_mp_montgomery_reduce.c114
-rw-r--r--libtommath/bn_mp_montgomery_setup.c55
-rw-r--r--libtommath/bn_mp_mul.c62
-rw-r--r--libtommath/bn_mp_mul_2.c78
-rw-r--r--libtommath/bn_mp_mul_2d.c81
-rw-r--r--libtommath/bn_mp_mul_d.c74
-rw-r--r--libtommath/bn_mp_mulmod.c37
-rw-r--r--libtommath/bn_mp_n_root.c128
-rw-r--r--libtommath/bn_mp_neg.c30
-rw-r--r--libtommath/bn_mp_or.c46
-rw-r--r--libtommath/bn_mp_prime_fermat.c58
-rw-r--r--libtommath/bn_mp_prime_is_divisible.c46
-rw-r--r--libtommath/bn_mp_prime_is_prime.c79
-rw-r--r--libtommath/bn_mp_prime_miller_rabin.c99
-rw-r--r--libtommath/bn_mp_prime_next_prime.c166
-rw-r--r--libtommath/bn_mp_prime_rabin_miller_trials.c48
-rw-r--r--libtommath/bn_mp_prime_random_ex.c123
-rw-r--r--libtommath/bn_mp_radix_size.c67
-rw-r--r--libtommath/bn_mp_radix_smap.c20
-rw-r--r--libtommath/bn_mp_rand.c51
-rw-r--r--libtommath/bn_mp_read_radix.c78
-rw-r--r--libtommath/bn_mp_read_signed_bin.c38
-rw-r--r--libtommath/bn_mp_read_unsigned_bin.c52
-rw-r--r--libtommath/bn_mp_reduce.c97
-rw-r--r--libtommath/bn_mp_reduce_2k.c58
-rw-r--r--libtommath/bn_mp_reduce_2k_setup.c44
-rw-r--r--libtommath/bn_mp_reduce_is_2k.c48
-rw-r--r--libtommath/bn_mp_reduce_setup.c30
-rw-r--r--libtommath/bn_mp_rshd.c68
-rw-r--r--libtommath/bn_mp_set.c25
-rw-r--r--libtommath/bn_mp_set_int.c44
-rw-r--r--libtommath/bn_mp_shrink.c31
-rw-r--r--libtommath/bn_mp_signed_bin_size.c23
-rw-r--r--libtommath/bn_mp_sqr.c54
-rw-r--r--libtommath/bn_mp_sqrmod.c37
-rw-r--r--libtommath/bn_mp_sqrt.c77
-rw-r--r--libtommath/bn_mp_sub.c55
-rw-r--r--libtommath/bn_mp_sub_d.c85
-rw-r--r--libtommath/bn_mp_submod.c38
-rw-r--r--libtommath/bn_mp_to_signed_bin.c30
-rw-r--r--libtommath/bn_mp_to_unsigned_bin.c45
-rw-r--r--libtommath/bn_mp_toom_mul.c279
-rw-r--r--libtommath/bn_mp_toom_sqr.c222
-rw-r--r--libtommath/bn_mp_toradix.c71
-rw-r--r--libtommath/bn_mp_toradix_n.c85
-rw-r--r--libtommath/bn_mp_unsigned_bin_size.c25
-rw-r--r--libtommath/bn_mp_xor.c47
-rw-r--r--libtommath/bn_mp_zero.c26
-rw-r--r--libtommath/bn_prime_tab.c57
-rw-r--r--libtommath/bn_reverse.c35
-rw-r--r--libtommath/bn_s_mp_add.c105
-rw-r--r--libtommath/bn_s_mp_exptmod.c236
-rw-r--r--libtommath/bn_s_mp_mul_digs.c87
-rw-r--r--libtommath/bn_s_mp_mul_high_digs.c77
-rw-r--r--libtommath/bn_s_mp_sqr.c81
-rw-r--r--libtommath/bn_s_mp_sub.c85
-rw-r--r--libtommath/bncore.c31
-rw-r--r--libtommath/booker.pl262
-rw-r--r--libtommath/callgraph.txt10193
-rw-r--r--libtommath/changes.txt337
-rw-r--r--libtommath/demo/demo.c515
-rw-r--r--libtommath/demo/timing.c287
-rw-r--r--libtommath/dep.pl121
-rw-r--r--libtommath/etc/2kprime.12
-rw-r--r--libtommath/etc/2kprime.c80
-rw-r--r--libtommath/etc/drprime.c60
-rw-r--r--libtommath/etc/drprimes.2825
-rw-r--r--libtommath/etc/drprimes.txt6
-rw-r--r--libtommath/etc/makefile50
-rw-r--r--libtommath/etc/makefile.icc67
-rw-r--r--libtommath/etc/makefile.msvc23
-rw-r--r--libtommath/etc/mersenne.c140
-rw-r--r--libtommath/etc/mont.c46
-rw-r--r--libtommath/etc/pprime.c396
-rw-r--r--libtommath/etc/prime.1024414
-rw-r--r--libtommath/etc/prime.512205
-rw-r--r--libtommath/etc/timer.asm37
-rw-r--r--libtommath/etc/tune.c107
-rw-r--r--libtommath/gen.pl17
-rw-r--r--libtommath/logs/README13
-rw-r--r--libtommath/logs/add.log16
-rw-r--r--libtommath/logs/addsub.pngbin0 -> 6254 bytes
-rw-r--r--libtommath/logs/expt.log7
-rw-r--r--libtommath/logs/expt.pngbin0 -> 6605 bytes
-rw-r--r--libtommath/logs/expt_2k.log6
-rw-r--r--libtommath/logs/expt_dr.log7
-rw-r--r--libtommath/logs/graphs.dem17
-rw-r--r--libtommath/logs/index.html24
-rw-r--r--libtommath/logs/invmod.log0
-rw-r--r--libtommath/logs/invmod.pngbin0 -> 4918 bytes
-rw-r--r--libtommath/logs/mult.log143
-rw-r--r--libtommath/logs/mult.pngbin0 -> 6770 bytes
-rw-r--r--libtommath/logs/mult_kara.log33
-rw-r--r--libtommath/logs/sqr.log143
-rw-r--r--libtommath/logs/sqr_kara.log33
-rw-r--r--libtommath/logs/sub.log16
-rw-r--r--libtommath/makefile157
-rw-r--r--libtommath/makefile.bcc42
-rw-r--r--libtommath/makefile.cygwin_dll49
-rw-r--r--libtommath/makefile.icc114
-rw-r--r--libtommath/makefile.msvc36
-rw-r--r--libtommath/makefile.shared77
-rw-r--r--libtommath/mtest/logtab.h20
-rw-r--r--libtommath/mtest/mpi-config.h86
-rw-r--r--libtommath/mtest/mpi-types.h16
-rw-r--r--libtommath/mtest/mpi.c3981
-rw-r--r--libtommath/mtest/mpi.h227
-rw-r--r--libtommath/mtest/mtest.c304
-rw-r--r--libtommath/pics/design_process.sxdbin0 -> 6950 bytes
-rw-r--r--libtommath/pics/design_process.tifbin0 -> 79042 bytes
-rw-r--r--libtommath/pics/expt_state.sxdbin0 -> 6869 bytes
-rw-r--r--libtommath/pics/expt_state.tifbin0 -> 87542 bytes
-rw-r--r--libtommath/pics/makefile35
-rw-r--r--libtommath/pics/primality.tifbin0 -> 85514 bytes
-rw-r--r--libtommath/pics/radix.sxdbin0 -> 6181 bytes
-rw-r--r--libtommath/pics/sliding_window.sxdbin0 -> 6787 bytes
-rw-r--r--libtommath/pics/sliding_window.tifbin0 -> 53880 bytes
-rw-r--r--libtommath/poster.out0
-rw-r--r--libtommath/poster.pdfbin0 -> 40821 bytes
-rw-r--r--libtommath/poster.tex35
-rw-r--r--libtommath/pre_gen/mpi.c8819
-rw-r--r--libtommath/pretty.build66
-rw-r--r--libtommath/tommath.h567
-rw-r--r--libtommath/tommath.out139
-rw-r--r--libtommath/tommath.pdfbin0 -> 1159120 bytes
-rw-r--r--libtommath/tommath.src6314
-rw-r--r--libtommath/tommath.tex10771
-rw-r--r--libtommath/tommath_class.h952
-rw-r--r--libtommath/tommath_superclass.h72
192 files changed, 57026 insertions, 0 deletions
diff --git a/libtommath/LICENSE b/libtommath/LICENSE
new file mode 100644
index 0000000..5baa792
--- /dev/null
+++ b/libtommath/LICENSE
@@ -0,0 +1,4 @@
+LibTomMath is hereby released into the Public Domain.
+
+-- Tom St Denis
+
diff --git a/libtommath/TODO b/libtommath/TODO
new file mode 100644
index 0000000..deffba1
--- /dev/null
+++ b/libtommath/TODO
@@ -0,0 +1,16 @@
+things for book in order of importance...
+
+- Fix up pseudo-code [only] for combas that are not consistent with source
+- Start in chapter 3 [basics] and work up...
+ - re-write to prose [less abrupt]
+ - clean up pseudo code [spacing]
+ - more examples where appropriate and figures
+
+Goal:
+ - Get sync done by mid January [roughly 8-12 hours work]
+ - Finish ch3-6 by end of January [roughly 12-16 hours of work]
+ - Finish ch7-end by mid Feb [roughly 20-24 hours of work].
+
+Goal isn't "first edition" but merely cleaner to read.
+
+
diff --git a/libtommath/bn.ilg b/libtommath/bn.ilg
new file mode 100644
index 0000000..3c859f0
--- /dev/null
+++ b/libtommath/bn.ilg
@@ -0,0 +1,6 @@
+This is makeindex, version 2.14 [02-Oct-2002] (kpathsea + Thai support).
+Scanning input file bn.idx....done (79 entries accepted, 0 rejected).
+Sorting entries....done (511 comparisons).
+Generating output file bn.ind....done (82 lines written, 0 warnings).
+Output written in bn.ind.
+Transcript written in bn.ilg.
diff --git a/libtommath/bn.ind b/libtommath/bn.ind
new file mode 100644
index 0000000..e5f7d4a
--- /dev/null
+++ b/libtommath/bn.ind
@@ -0,0 +1,82 @@
+\begin{theindex}
+
+ \item mp\_add, \hyperpage{29}
+ \item mp\_add\_d, \hyperpage{52}
+ \item mp\_and, \hyperpage{29}
+ \item mp\_clear, \hyperpage{11}
+ \item mp\_clear\_multi, \hyperpage{12}
+ \item mp\_cmp, \hyperpage{24}
+ \item mp\_cmp\_d, \hyperpage{25}
+ \item mp\_cmp\_mag, \hyperpage{23}
+ \item mp\_div, \hyperpage{30}
+ \item mp\_div\_2, \hyperpage{26}
+ \item mp\_div\_2d, \hyperpage{28}
+ \item mp\_div\_d, \hyperpage{52}
+ \item mp\_dr\_reduce, \hyperpage{40}
+ \item mp\_dr\_setup, \hyperpage{40}
+ \item MP\_EQ, \hyperpage{22}
+ \item mp\_error\_to\_string, \hyperpage{10}
+ \item mp\_expt\_d, \hyperpage{43}
+ \item mp\_exptmod, \hyperpage{43}
+ \item mp\_exteuclid, \hyperpage{51}
+ \item mp\_gcd, \hyperpage{51}
+ \item mp\_get\_int, \hyperpage{20}
+ \item mp\_grow, \hyperpage{16}
+ \item MP\_GT, \hyperpage{22}
+ \item mp\_init, \hyperpage{11}
+ \item mp\_init\_copy, \hyperpage{13}
+ \item mp\_init\_multi, \hyperpage{12}
+ \item mp\_init\_set, \hyperpage{21}
+ \item mp\_init\_set\_int, \hyperpage{21}
+ \item mp\_init\_size, \hyperpage{14}
+ \item mp\_int, \hyperpage{10}
+ \item mp\_invmod, \hyperpage{52}
+ \item mp\_jacobi, \hyperpage{52}
+ \item mp\_lcm, \hyperpage{51}
+ \item mp\_lshd, \hyperpage{28}
+ \item MP\_LT, \hyperpage{22}
+ \item MP\_MEM, \hyperpage{9}
+ \item mp\_mod, \hyperpage{35}
+ \item mp\_mod\_d, \hyperpage{52}
+ \item mp\_montgomery\_calc\_normalization, \hyperpage{38}
+ \item mp\_montgomery\_reduce, \hyperpage{37}
+ \item mp\_montgomery\_setup, \hyperpage{37}
+ \item mp\_mul, \hyperpage{31}
+ \item mp\_mul\_2, \hyperpage{26}
+ \item mp\_mul\_2d, \hyperpage{28}
+ \item mp\_mul\_d, \hyperpage{52}
+ \item mp\_n\_root, \hyperpage{44}
+ \item mp\_neg, \hyperpage{29}
+ \item MP\_NO, \hyperpage{9}
+ \item MP\_OKAY, \hyperpage{9}
+ \item mp\_or, \hyperpage{29}
+ \item mp\_prime\_fermat, \hyperpage{45}
+ \item mp\_prime\_is\_divisible, \hyperpage{45}
+ \item mp\_prime\_is\_prime, \hyperpage{46}
+ \item mp\_prime\_miller\_rabin, \hyperpage{45}
+ \item mp\_prime\_next\_prime, \hyperpage{46}
+ \item mp\_prime\_rabin\_miller\_trials, \hyperpage{46}
+ \item mp\_prime\_random, \hyperpage{47}
+ \item mp\_prime\_random\_ex, \hyperpage{47}
+ \item mp\_radix\_size, \hyperpage{49}
+ \item mp\_read\_radix, \hyperpage{49}
+ \item mp\_read\_unsigned\_bin, \hyperpage{50}
+ \item mp\_reduce, \hyperpage{36}
+ \item mp\_reduce\_2k, \hyperpage{41}
+ \item mp\_reduce\_2k\_setup, \hyperpage{41}
+ \item mp\_reduce\_setup, \hyperpage{36}
+ \item mp\_rshd, \hyperpage{28}
+ \item mp\_set, \hyperpage{19}
+ \item mp\_set\_int, \hyperpage{20}
+ \item mp\_shrink, \hyperpage{15}
+ \item mp\_sqr, \hyperpage{33}
+ \item mp\_sub, \hyperpage{29}
+ \item mp\_sub\_d, \hyperpage{52}
+ \item mp\_to\_unsigned\_bin, \hyperpage{50}
+ \item mp\_toradix, \hyperpage{49}
+ \item mp\_unsigned\_bin\_size, \hyperpage{50}
+ \item MP\_VAL, \hyperpage{9}
+ \item mp\_xor, \hyperpage{29}
+ \item MP\_YES, \hyperpage{9}
+
+\end{theindex}
diff --git a/libtommath/bn.pdf b/libtommath/bn.pdf
new file mode 100644
index 0000000..9b873e1
--- /dev/null
+++ b/libtommath/bn.pdf
Binary files differ
diff --git a/libtommath/bn.tex b/libtommath/bn.tex
new file mode 100644
index 0000000..962d6ea
--- /dev/null
+++ b/libtommath/bn.tex
@@ -0,0 +1,1830 @@
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{LibTomMath User Manual \\ v0.33}
+\author{Tom St Denis \\ tomstdenis@iahu.ca}
+\maketitle
+This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been
+formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
+
+\vspace{10cm}
+
+\begin{flushright}Open Source. Open Academia. Open Minds.
+
+\mbox{ }
+
+Tom St Denis,
+
+Ontario, Canada
+\end{flushright}
+
+\tableofcontents
+\listoffigures
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{What is LibTomMath?}
+LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
+large integer numbers. It was written in portable ISO C source code so that it will build on any platform with a conforming
+C compiler.
+
+In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
+to implement ``bignum'' math. However, the resulting code has proven to be very useful. It has been used by numerous
+universities, commercial and open source software developers. It has been used on a variety of platforms ranging from
+Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.
+
+\section{License}
+As of the v0.25 the library source code has been placed in the public domain with every new release. As of the v0.28
+release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
+release as well. This textbook is meant to compliment the project by providing a more solid walkthrough of the development
+algorithms used in the library.
+
+Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are not required to use LibTomMath.} are in the
+public domain everyone is entitled to do with them as they see fit.
+
+\section{Building LibTomMath}
+
+LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC. However, the library will
+also build in MSVC, Borland C out of the box. For any other ISO C compiler a makefile will have to be made by the end
+developer.
+
+\subsection{Static Libraries}
+To build as a static library for GCC issue the following
+\begin{alltt}
+make
+\end{alltt}
+
+command. This will build the library and archive the object files in ``libtommath.a''. Now you link against
+that and include ``tommath.h'' within your programs. Alternatively to build with MSVC issue the following
+\begin{alltt}
+nmake -f makefile.msvc
+\end{alltt}
+
+This will build the library and archive the object files in ``tommath.lib''. This has been tested with MSVC
+version 6.00 with service pack 5.
+
+\subsection{Shared Libraries}
+To build as a shared library for GCC issue the following
+\begin{alltt}
+make -f makefile.shared
+\end{alltt}
+This requires the ``libtool'' package (common on most Linux/BSD systems). It will build LibTomMath as both shared
+and static then install (by default) into /usr/lib as well as install the header files in /usr/include. The shared
+library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''. Generally
+you use libtool to link your application against the shared object.
+
+There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires
+Cygwin to work with since it requires the auto-export/import functionality. The resulting DLL and import library
+``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.
+
+\subsection{Testing}
+To build the library and the test harness type
+
+\begin{alltt}
+make test
+\end{alltt}
+
+This will build the library, ``test'' and ``mtest/mtest''. The ``test'' program will accept test vectors and verify the
+results. ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
+is included in the package}. Simply pipe mtest into test using
+
+\begin{alltt}
+mtest/mtest | test
+\end{alltt}
+
+If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into
+mtest. For example, if your PRNG program is called ``myprng'' simply invoke
+
+\begin{alltt}
+myprng | mtest/mtest | test
+\end{alltt}
+
+This will output a row of numbers that are increasing. Each column is a different test (such as addition, multiplication, etc)
+that is being performed. The numbers represent how many times the test was invoked. If an error is detected the program
+will exit with a dump of the relevent numbers it was working with.
+
+\section{Build Configuration}
+LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.
+Each phase changes how the library is built and they are applied one after another respectively.
+
+To make the system more powerful you can tweak the build process. Classes are defined in the file
+``tommath\_superclass.h''. By default, the symbol ``LTM\_ALL'' shall be defined which simply
+instructs the system to build all of the functions. This is how LibTomMath used to be packaged. This will give you
+access to every function LibTomMath offers.
+
+However, there are cases where such a build is not optional. For instance, you want to perform RSA operations. You
+don't need the vast majority of the library to perform these operations. Aside from LTM\_ALL there is
+another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt. Additional
+classes can be defined base on the need of the user.
+
+\subsection{Build Depends}
+In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
+which further define symbols. All of the symbols (technically they're macros $\ldots$) represent a given C source
+file. For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''. When a define has been enabled the
+function in the respective file will be compiled and linked into the library. Accordingly when the define
+is absent the file will not be compiled and not contribute any size to the library.
+
+You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).
+This is to help resolve as many dependencies as possible. In the last pass the symbol LTM\_LAST will be defined.
+This is useful for ``trims''.
+
+\subsection{Build Tweaks}
+A tweak is an algorithm ``alternative''. For example, to provide tradeoffs (usually between size and space).
+They can be enabled at any pass of the configuration phase.
+
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Define} & \textbf{Purpose} \\
+\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
+ & functional mp\_div() function \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+\subsection{Build Trims}
+A trim is a manner of removing functionality from a function that is not required. For instance, to perform
+RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.
+Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
+only if LTM\_LAST has been defined.
+
+\subsubsection{Moduli Related}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Restriction} & \textbf{Undefine} \\
+\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
+ & BN\_MP\_REDUCE\_C \\
+ & BN\_MP\_REDUCE\_SETUP\_C \\
+ & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+ & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+\hline Exponentiation with random odd moduli & (The above plus the following) \\
+ & BN\_MP\_REDUCE\_2K\_C \\
+ & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
+ & BN\_MP\_REDUCE\_IS\_2K\_C \\
+ & BN\_MP\_DR\_IS\_MODULUS\_C \\
+ & BN\_MP\_DR\_REDUCE\_C \\
+ & BN\_MP\_DR\_SETUP\_C \\
+\hline Modular inverse odd moduli only & BN\_MP\_INVMOD\_SLOW\_C \\
+\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+\subsubsection{Operand Size Related}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Restriction} & \textbf{Undefine} \\
+\hline Moduli $\le 2560$ bits & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
+ & BN\_S\_MP\_MUL\_DIGS\_C \\
+ & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+ & BN\_S\_MP\_SQR\_C \\
+\hline Polynomial Schmolynomial & BN\_MP\_KARATSUBA\_MUL\_C \\
+ & BN\_MP\_KARATSUBA\_SQR\_C \\
+ & BN\_MP\_TOOM\_MUL\_C \\
+ & BN\_MP\_TOOM\_SQR\_C \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+
+\section{Purpose of LibTomMath}
+Unlike GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with
+bleeding edge performance in mind. First and foremost LibTomMath was written to be entirely open. Not only is the
+source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
+source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
+arithmetic techniques.
+
+LibTomMath was written to be an instructive collection of source code. This is why there are many comments, only one
+function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
+increase.
+
+Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
+the library (beat that!).
+
+So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe. Let me tabulate what I think
+are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
+
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|c|c|l|}
+\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
+\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 76.04$ \\
+\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
+\hline Speed && X & LibTomMath is slower. \\
+\hline Totally free & X & & GPL has unfavourable restrictions.\\
+\hline Large function base & X & & GnuPG is barebones. \\
+\hline Four modular reduction algorithms & X & & Faster modular exponentiation. \\
+\hline Portable & X & & GnuPG requires configuration to build. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{LibTomMath Valuation}
+\end{figure}
+
+It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application.
+However, LibTomMath was written with cryptography in mind. It provides essentially all of the functions a cryptosystem
+would require when working with large integers.
+
+So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
+own application but I think there are reasons not to. While LibTomMath is slower than libraries such as GnuMP it is
+not normally significantly slower. On x86 machines the difference is normally a factor of two when performing modular
+exponentiations.
+
+Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.
+
+\chapter{Getting Started with LibTomMath}
+\section{Building Programs}
+In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically
+libtommath.a). There is no library initialization required and the entire library is thread safe.
+
+\section{Return Codes}
+There are three possible return codes a function may return.
+
+\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
+\begin{figure}[here!]
+\begin{center}
+\begin{small}
+\begin{tabular}{|l|l|}
+\hline \textbf{Code} & \textbf{Meaning} \\
+\hline MP\_OKAY & The function succeeded. \\
+\hline MP\_VAL & The function input was invalid. \\
+\hline MP\_MEM & Heap memory exhausted. \\
+\hline &\\
+\hline MP\_YES & Response is yes. \\
+\hline MP\_NO & Response is no. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Return Codes}
+\end{figure}
+
+The last two codes listed are not actually ``return'ed'' by a function. They are placed in an integer (the caller must
+provide the address of an integer it can store to) which the caller can access. To convert one of the three return codes
+to a string use the following function.
+
+\index{mp\_error\_to\_string}
+\begin{alltt}
+char *mp_error_to_string(int code);
+\end{alltt}
+
+This will return a pointer to a string which describes the given error code. It will not work for the return codes
+MP\_YES and MP\_NO.
+
+\section{Data Types}
+The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath. This data type is used to
+organize all of the data required to manipulate the integer it represents. Within LibTomMath it has been prototyped
+as the following.
+
+\index{mp\_int}
+\begin{alltt}
+typedef struct \{
+ int used, alloc, sign;
+ mp_digit *dp;
+\} mp_int;
+\end{alltt}
+
+Where ``mp\_digit'' is a data type that represents individual digits of the integer. By default, an mp\_digit is the
+ISO C ``unsigned long'' data type and each digit is $28-$bits long. The mp\_digit type can be configured to suit other
+platforms by defining the appropriate macros.
+
+All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure. You must allocate memory to
+hold the structure itself by yourself (whether off stack or heap it doesn't matter). The very first thing that must be
+done to use an mp\_int is that it must be initialized.
+
+\section{Function Organization}
+
+The arithmetic functions of the library are all organized to have the same style prototype. That is source operands
+are passed on the left and the destination is on the right. For instance,
+
+\begin{alltt}
+mp_add(&a, &b, &c); /* c = a + b */
+mp_mul(&a, &a, &c); /* c = a * a */
+mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */
+\end{alltt}
+
+Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
+For instance,
+
+\begin{alltt}
+mp_add(&a, &b, &b); /* b = a + b */
+mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */
+\end{alltt}
+
+This allows operands to be re-used which can make programming simpler.
+
+\section{Initialization}
+\subsection{Single Initialization}
+A single mp\_int can be initialized with the ``mp\_init'' function.
+
+\index{mp\_init}
+\begin{alltt}
+int mp_init (mp_int * a);
+\end{alltt}
+
+This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
+represents the default integer which is zero. If the functions returns MP\_OKAY then the mp\_int is ready to be used
+by the other LibTomMath functions.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Single Free}
+When you are finished with an mp\_int it is ideal to return the heap it used back to the system. The following function
+provides this functionality.
+
+\index{mp\_clear}
+\begin{alltt}
+void mp_clear (mp_int * a);
+\end{alltt}
+
+The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses. It sets the
+pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations.
+Is is legal to call mp\_clear() twice on the same mp\_int in a row.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ /* We're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Multiple Initializations}
+Certain algorithms require more than one large integer. In these instances it is ideal to initialize all of the mp\_int
+variables in an ``all or nothing'' fashion. That is, they are either all initialized successfully or they are all
+not initialized.
+
+The mp\_init\_multi() function provides this functionality.
+
+\index{mp\_init\_multi} \index{mp\_clear\_multi}
+\begin{alltt}
+int mp_init_multi(mp_int *mp, ...);
+\end{alltt}
+
+It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures. It will attempt to initialize them all
+at once. If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
+are available for use. A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd
+from the heap at the same time.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int num1, num2, num3;
+ int result;
+
+ if ((result = mp_init_multi(&num1,
+ &num2,
+ &num3, NULL)) != MP\_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the numbers */
+
+ /* We're done with them. */
+ mp_clear_multi(&num1, &num2, &num3, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Other Initializers}
+To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.
+
+\index{mp\_init\_copy}
+\begin{alltt}
+int mp_init_copy (mp_int * a, mp_int * b);
+\end{alltt}
+
+This function will initialize $a$ and make it a copy of $b$ if all goes well.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int num1, num2;
+ int result;
+
+ /* initialize and do work on num1 ... */
+
+ /* We want a copy of num1 in num2 now */
+ if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
+ printf("Error initializing the copy. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now num2 is ready and contains a copy of num1 */
+
+ /* We're done with them. */
+ mp_clear_multi(&num1, &num2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
+default number of digits. By default, all initializers allocate \textbf{MP\_PREC} digits. This function lets
+you override this behaviour.
+
+\index{mp\_init\_size}
+\begin{alltt}
+int mp_init_size (mp_int * a, int size);
+\end{alltt}
+
+The $size$ parameter must be greater than zero. If the function succeeds the mp\_int $a$ will be initialized
+to have $size$ digits (which are all initially zero).
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ /* we need a 60-digit number */
+ if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\section{Maintenance Functions}
+
+\subsection{Reducing Memory Usage}
+When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
+digits can be removed to return memory to the heap with the mp\_shrink() function.
+
+\index{mp\_shrink}
+\begin{alltt}
+int mp_shrink (mp_int * a);
+\end{alltt}
+
+This will remove excess digits of the mp\_int $a$. If the operation fails the mp\_int should be intact without the
+excess digits being removed. Note that you can use a shrunk mp\_int in further computations, however, such operations
+will require heap operations which can be slow. It is not ideal to shrink mp\_int variables that you will further
+modify in the system (unless you are seriously low on memory).
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number [e.g. pre-computation] */
+
+ /* We're done with it for now. */
+ if ((result = mp_shrink(&number)) != MP_OKAY) \{
+ printf("Error shrinking the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use it .... */
+
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Adding additional digits}
+
+Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
+the integer the mp\_int is meant to equal. The \textit{used} parameter dictates how many digits are significant, that is,
+contribute to the value of the mp\_int. The \textit{alloc} parameter dictates how many digits are currently available in
+the array. If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
+your desired size.
+
+\index{mp\_grow}
+\begin{alltt}
+int mp_grow (mp_int * a, int size);
+\end{alltt}
+
+This will grow the array of digits of $a$ to $size$. If the \textit{alloc} parameter is already bigger than
+$size$ the function will not do anything.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ /* We need to add 20 digits to the number */
+ if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
+ printf("Error growing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+
+ /* use the number */
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\chapter{Basic Operations}
+\section{Small Constants}
+Setting mp\_ints to small constants is a relatively common operation. To accomodate these instances there are two
+small constant assignment functions. The first function is used to set a single digit constant while the second sets
+an ISO C style ``unsigned long'' constant. The reason for both functions is efficiency. Setting a single digit is quick but the
+domain of a digit can change (it's always at least $0 \ldots 127$).
+
+\subsection{Single Digit}
+
+Setting a single digit can be accomplished with the following function.
+
+\index{mp\_set}
+\begin{alltt}
+void mp_set (mp_int * a, mp_digit b);
+\end{alltt}
+
+This will zero the contents of $a$ and make it represent an integer equal to the value of $b$. Note that this
+function has a return type of \textbf{void}. It cannot cause an error so it is safe to assume the function
+succeeded.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 5 */
+ mp_set(&number, 5);
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Long Constants}
+
+To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function
+can be used.
+
+\index{mp\_set\_int}
+\begin{alltt}
+int mp_set_int (mp_int * a, unsigned long b);
+\end{alltt}
+
+This will assign the value of the 32-bit variable $b$ to the mp\_int $a$. Unlike mp\_set() this function will always
+accept a 32-bit input regardless of the size of a single digit. However, since the value may span several digits
+this function can fail if it runs out of heap memory.
+
+To get the ``unsigned long'' copy of an mp\_int the following function can be used.
+
+\index{mp\_get\_int}
+\begin{alltt}
+unsigned long mp_get_int (mp_int * a);
+\end{alltt}
+
+This will return the 32 least significant bits of the mp\_int $a$.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 654321 (note this is bigger than 127) */
+ if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
+ printf("Error setting the value of the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ printf("number == \%lu", mp_get_int(&number));
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+This should output the following if the program succeeds.
+
+\begin{alltt}
+number == 654321
+\end{alltt}
+
+\subsection{Initialize and Setting Constants}
+To both initialize and set small constants the following two functions are available.
+\index{mp\_init\_set} \index{mp\_init\_set\_int}
+\begin{alltt}
+int mp_init_set (mp_int * a, mp_digit b);
+int mp_init_set_int (mp_int * a, unsigned long b);
+\end{alltt}
+
+Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ /* initialize and set a single digit */
+ if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
+ printf("Error setting number1: \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* initialize and set a long */
+ if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
+ printf("Error setting number2: \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* display */
+ printf("Number1, Number2 == \%lu, \%lu",
+ mp_get_int(&number1), mp_get_int(&number2));
+
+ /* clear */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+If this program succeeds it shall output.
+\begin{alltt}
+Number1, Number2 == 100, 1023
+\end{alltt}
+
+\section{Comparisons}
+
+Comparisons in LibTomMath are always performed in a ``left to right'' fashion. There are three possible return codes
+for any comparison.
+
+\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Result Code} & \textbf{Meaning} \\
+\hline MP\_GT & $a > b$ \\
+\hline MP\_EQ & $a = b$ \\
+\hline MP\_LT & $a < b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Codes for $a, b$}
+\label{fig:CMP}
+\end{figure}
+
+In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared. In this case $a$ is said to be ``to the left'' of
+$b$.
+
+\subsection{Unsigned comparison}
+
+An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the
+mp\_int structures. This is analogous to an absolute comparison. The function mp\_cmp\_mag() will compare two
+mp\_int variables based on their digits only.
+
+\index{mp\_cmp\_mag}
+\begin{alltt}
+int mp_cmp(mp_int * a, mp_int * b);
+\end{alltt}
+This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the
+three compare codes listed in figure \ref{fig:CMP}.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number1 to 5 */
+ mp_set(&number1, 5);
+
+ /* set the number2 to -6 */
+ mp_set(&number2, 6);
+ if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+ printf("Error negating number2. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ switch(mp_cmp_mag(&number1, &number2)) \{
+ case MP_GT: printf("|number1| > |number2|"); break;
+ case MP_EQ: printf("|number1| = |number2|"); break;
+ case MP_LT: printf("|number1| < |number2|"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
+successfully it should print the following.
+
+\begin{alltt}
+|number1| < |number2|
+\end{alltt}
+
+This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
+
+\subsection{Signed comparison}
+
+To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
+
+\index{mp\_cmp}
+\begin{alltt}
+int mp_cmp(mp_int * a, mp_int * b);
+\end{alltt}
+
+This will compare $a$ to the left of $b$. It will first compare the signs of the two mp\_int variables. If they
+differ it will return immediately based on their signs. If the signs are equal then it will compare the digits
+individually. This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number1 to 5 */
+ mp_set(&number1, 5);
+
+ /* set the number2 to -6 */
+ mp_set(&number2, 6);
+ if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+ printf("Error negating number2. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ switch(mp_cmp(&number1, &number2)) \{
+ case MP_GT: printf("number1 > number2"); break;
+ case MP_EQ: printf("number1 = number2"); break;
+ case MP_LT: printf("number1 < number2"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
+successfully it should print the following.
+
+\begin{alltt}
+number1 > number2
+\end{alltt}
+
+\subsection{Single Digit}
+
+To compare a single digit against an mp\_int the following function has been provided.
+
+\index{mp\_cmp\_d}
+\begin{alltt}
+int mp_cmp_d(mp_int * a, mp_digit b);
+\end{alltt}
+
+This will compare $a$ to the left of $b$ using a signed comparison. Note that it will always treat $b$ as
+positive. This function is rather handy when you have to compare against small values such as $1$ (which often
+comes up in cryptography). The function cannot fail and will return one of the tree compare condition codes
+listed in figure \ref{fig:CMP}.
+
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 5 */
+ mp_set(&number, 5);
+
+ switch(mp_cmp_d(&number, 7)) \{
+ case MP_GT: printf("number > 7"); break;
+ case MP_EQ: printf("number = 7"); break;
+ case MP_LT: printf("number < 7"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program functions properly it will print out the following.
+
+\begin{alltt}
+number < 7
+\end{alltt}
+
+\section{Logical Operations}
+
+Logical operations are operations that can be performed either with simple shifts or boolean operators such as
+AND, XOR and OR directly. These operations are very quick.
+
+\subsection{Multiplication by two}
+
+Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
+right depending on the operation.
+
+When multiplying or dividing by two a special case routine can be used which are as follows.
+\index{mp\_mul\_2} \index{mp\_div\_2}
+\begin{alltt}
+int mp_mul_2(mp_int * a, mp_int * b);
+int mp_div_2(mp_int * a, mp_int * b);
+\end{alltt}
+
+The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$. These functions are fast
+since the shift counts and maskes are hardcoded into the routines.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 5 */
+ mp_set(&number, 5);
+
+ /* multiply by two */
+ if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
+ printf("Error multiplying the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+ switch(mp_cmp_d(&number, 7)) \{
+ case MP_GT: printf("2*number > 7"); break;
+ case MP_EQ: printf("2*number = 7"); break;
+ case MP_LT: printf("2*number < 7"); break;
+ \}
+
+ /* now divide by two */
+ if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
+ printf("Error dividing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+ switch(mp_cmp_d(&number, 7)) \{
+ case MP_GT: printf("2*number/2 > 7"); break;
+ case MP_EQ: printf("2*number/2 = 7"); break;
+ case MP_LT: printf("2*number/2 < 7"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program is successful it will print out the following text.
+
+\begin{alltt}
+2*number > 7
+2*number/2 < 7
+\end{alltt}
+
+Since $10 > 7$ and $5 < 7$. To multiply by a power of two the following function can be used.
+
+\index{mp\_mul\_2d}
+\begin{alltt}
+int mp_mul_2d(mp_int * a, int b, mp_int * c);
+\end{alltt}
+
+This will multiply $a$ by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to
+zero the function will copy $a$ to ``c'' without performing any further actions.
+
+To divide by a power of two use the following.
+
+\index{mp\_div\_2d}
+\begin{alltt}
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
+\end{alltt}
+Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the
+function simply copies $a$ over to ``c'' and zeroes $d$. The variable $d$ may be passed as a \textbf{NULL}
+value to signal that the remainder is not desired.
+
+\subsection{Polynomial Basis Operations}
+
+Strictly speaking the organization of the integers within the mp\_int structures is what is known as a
+``polynomial basis''. This simply means a field element is stored by divisions of a radix. For example, if
+$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be
+the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.
+
+To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place. The
+following function provides this operation.
+
+\index{mp\_lshd}
+\begin{alltt}
+int mp_lshd (mp_int * a, int b);
+\end{alltt}
+
+This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
+in the least significant digits. Similarly to divide by a power of $x$ the following function is provided.
+
+\index{mp\_rshd}
+\begin{alltt}
+void mp_rshd (mp_int * a, int b)
+\end{alltt}
+This will divide $a$ in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations
+in place and no new digits are required to complete it.
+
+\subsection{AND, OR and XOR Operations}
+
+While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances. The
+three functions are prototyped as follows.
+
+\index{mp\_or} \index{mp\_and} \index{mp\_xor}
+\begin{alltt}
+int mp_or (mp_int * a, mp_int * b, mp_int * c);
+int mp_and (mp_int * a, mp_int * b, mp_int * c);
+int mp_xor (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+
+Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.
+
+\section{Addition and Subtraction}
+
+To compute an addition or subtraction the following two functions can be used.
+
+\index{mp\_add} \index{mp\_sub}
+\begin{alltt}
+int mp_add (mp_int * a, mp_int * b, mp_int * c);
+int mp_sub (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+
+Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction. The operations are fully sign
+aware.
+
+\section{Sign Manipulation}
+\subsection{Negation}
+\label{sec:NEG}
+Simple integer negation can be performed with the following.
+
+\index{mp\_neg}
+\begin{alltt}
+int mp_neg (mp_int * a, mp_int * b);
+\end{alltt}
+
+Which assigns $-a$ to $b$.
+
+\subsection{Absolute}
+Simple integer absolutes can be performed with the following.
+
+\index{mp\_neg}
+\begin{alltt}
+int mp_abs (mp_int * a, mp_int * b);
+\end{alltt}
+
+Which assigns $\vert a \vert$ to $b$.
+
+\section{Integer Division and Remainder}
+To perform a complete and general integer division with remainder use the following function.
+
+\index{mp\_div}
+\begin{alltt}
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
+\end{alltt}
+
+This divides $a$ by $b$ and stores the quotient in $c$ and $d$. The signed quotient is computed such that
+$bc + d = a$. Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required. If
+$b$ is zero the function returns \textbf{MP\_VAL}.
+
+
+\chapter{Multiplication and Squaring}
+\section{Multiplication}
+A full signed integer multiplication can be performed with the following.
+\index{mp\_mul}
+\begin{alltt}
+int mp_mul (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+Which assigns the full signed product $ab$ to $c$. This function actually breaks into one of four cases which are
+specific multiplication routines optimized for given parameters. First there are the Toom-Cook multiplications which
+should only be used with very large inputs. This is followed by the Karatsuba multiplications which are for moderate
+sized inputs. Then followed by the Comba and baseline multipliers.
+
+Fortunately for the developer you don't really need to know this unless you really want to fine tune the system. mp\_mul()
+will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ /* Initialize the numbers */
+ if ((result = mp_init_multi(&number1,
+ &number2, NULL)) != MP_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the terms */
+ if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
+ printf("Error setting number1. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
+ printf("Error setting number2. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* multiply them */
+ if ((result = mp_mul(&number1, &number2,
+ &number1)) != MP_OKAY) \{
+ printf("Error multiplying terms. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* display */
+ printf("number1 * number2 == \%lu", mp_get_int(&number1));
+
+ /* free terms and return */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+If this program succeeds it shall output the following.
+
+\begin{alltt}
+number1 * number2 == 262911
+\end{alltt}
+
+\section{Squaring}
+Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
+mp\_mul().
+
+\index{mp\_sqr}
+\begin{alltt}
+int mp_sqr (mp_int * a, mp_int * b);
+\end{alltt}
+
+Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring
+algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms.
+
+\section{Tuning Polynomial Basis Routines}
+
+Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
+the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectfully they require
+considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision
+multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
+of 138).
+
+So why not always use Karatsuba or Toom-Cook? The simple answer is that they have so much overhead that they're not
+actually faster than Comba until you hit distinct ``cutoff'' points. For Karatsuba with the default configuration,
+GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4). That is, at
+110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
+
+Toom-Cook has incredible overhead and is probably only useful for very large inputs. So far no known cutoff points
+exist and for the most part I just set the cutoff points very high to make sure they're not called.
+
+A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points. This
+can be built with GCC as follows
+
+\begin{alltt}
+make XXX
+\end{alltt}
+Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value of XXX} & \textbf{Meaning} \\
+\hline tune & Builds portable tuning application \\
+\hline tune86 & Builds x86 (pentium and up) program for COFF \\
+\hline tune86c & Builds x86 program for Cygwin \\
+\hline tune86l & Builds x86 program for Linux (ELF format) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Build Names for Tuning Programs}
+\label{fig:tuning}
+\end{figure}
+
+When the program is running it will output a series of measurements for different cutoff points. It will first find
+good Karatsuba squaring and multiplication points. Then it proceeds to find Toom-Cook points. Note that the Toom-Cook
+tuning takes a very long time as the cutoff points are likely to be very high.
+
+\chapter{Modular Reduction}
+
+Modular reduction is process of taking the remainder of one quantity divided by another. Expressed
+as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
+
+\begin{equation}
+a \equiv b \mbox{ (mod }c\mbox{)}
+\label{eqn:mod}
+\end{equation}
+
+Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly
+fast reduction algorithms can be written for the limited range.
+
+Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
+algorithm mp\_exptmod when an appropriate modulus is detected.
+
+\section{Straight Division}
+In order to effect an arbitrary modular reduction the following algorithm is provided.
+
+\index{mp\_mod}
+\begin{alltt}
+int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+\end{alltt}
+
+This reduces $a$ modulo $b$ and stores the result in $c$. The sign of $c$ shall agree with the sign
+of $b$. This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
+
+\section{Barrett Reduction}
+
+Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
+a decent speedup over straight division. First a $mu$ value must be precomputed with the following function.
+
+\index{mp\_reduce\_setup}
+\begin{alltt}
+int mp_reduce_setup(mp_int *a, mp_int *b);
+\end{alltt}
+
+Given a modulus in $b$ this produces the required $mu$ value in $a$. For any given modulus this only has to
+be computed once. Modular reduction can now be performed with the following.
+
+\index{mp\_reduce}
+\begin{alltt}
+int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+\end{alltt}
+
+This will reduce $a$ in place modulo $b$ with the precomputed $mu$ value in $c$. $a$ must be in the range
+$0 \le a < b^2$.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int a, b, c, mu;
+ int result;
+
+ /* initialize a,b to desired values, mp_init mu,
+ * c and set c to 1...we want to compute a^3 mod b
+ */
+
+ /* get mu value */
+ if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
+ printf("Error getting mu. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* square a to get c = a^2 */
+ if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
+ printf("Error squaring. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' modulo b */
+ if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* multiply a to get c = a^3 */
+ if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' modulo b */
+ if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* c now equals a^3 mod b */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
+
+\section{Montgomery Reduction}
+
+Montgomery is a specialized reduction algorithm for any odd moduli. Like Barrett reduction a pre--computation
+step is required. This is accomplished with the following.
+
+\index{mp\_montgomery\_setup}
+\begin{alltt}
+int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+\end{alltt}
+
+For the given odd moduli $a$ the precomputation value is placed in $mp$. The reduction is computed with the
+following.
+
+\index{mp\_montgomery\_reduce}
+\begin{alltt}
+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+\end{alltt}
+This reduces $a$ in place modulo $m$ with the pre--computed value $mp$. $a$ must be in the range
+$0 \le a < b^2$.
+
+Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit. With the default
+setup for instance, the limit is $127$ digits ($3556$--bits). Note that this function is not limited to
+$127$ digits just that it falls back to a baseline algorithm after that point.
+
+An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
+where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
+
+To quickly calculate $R$ the following function was provided.
+
+\index{mp\_montgomery\_calc\_normalization}
+\begin{alltt}
+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+\end{alltt}
+Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.
+
+The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system. For
+example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
+multiplying it by $R$. Consider the following code snippet.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int a, b, c, R;
+ mp_digit mp;
+ int result;
+
+ /* initialize a,b to desired values,
+ * mp_init R, c and set c to 1....
+ */
+
+ /* get normalization */
+ if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
+ printf("Error getting norm. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* get mp value */
+ if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
+ printf("Error setting up montgomery. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* normalize `a' so now a is equal to aR */
+ if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
+ printf("Error computing aR. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* square a to get c = a^2R^2 */
+ if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
+ printf("Error squaring. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
+ if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* multiply a to get c = a^3R^2 */
+ if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
+ if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
+ if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* c now equals a^3 mod b */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+This particular example does not look too efficient but it demonstrates the point of the algorithm. By
+normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$. This allows
+a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
+
+For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
+
+\section{Restricted Dimminished Radix}
+
+``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
+digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the
+form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
+
+As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
+
+\index{mp\_dr\_setup}
+\begin{alltt}
+void mp_dr_setup(mp_int *a, mp_digit *d);
+\end{alltt}
+
+This computes the value required for the modulus $a$ and stores it in $d$. This function cannot fail
+and does not return any error codes. After the pre--computation a reduction can be performed with the
+following.
+
+\index{mp\_dr\_reduce}
+\begin{alltt}
+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+\end{alltt}
+
+This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted
+dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are
+much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
+
+Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
+BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
+primes are acceptable.
+
+Note that unlike Montgomery reduction there is no normalization process. The result of this function is
+equal to the correct residue.
+
+\section{Unrestricted Dimminshed Radix}
+
+Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
+form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they
+can be applied to a wider range of numbers.
+
+\index{mp\_reduce\_2k\_setup}
+\begin{alltt}
+int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+\end{alltt}
+
+This will compute the required $d$ value for the given moduli $a$.
+
+\index{mp\_reduce\_2k}
+\begin{alltt}
+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+\end{alltt}
+
+This will reduce $a$ in place modulo $n$ with the pre--computed value $d$. From my experience this routine is
+slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.
+
+\chapter{Exponentiation}
+\section{Single Digit Exponentiation}
+\index{mp\_expt\_d}
+\begin{alltt}
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+This computes $c = a^b$ using a simple binary left-to-right algorithm. It is faster than repeated multiplications by
+$a$ for all values of $b$ greater than three.
+
+\section{Modular Exponentiation}
+\index{mp\_exptmod}
+\begin{alltt}
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+\end{alltt}
+This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm. This function
+will automatically detect the fastest modular reduction technique to use during the operation. For negative values of
+$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
+$gcd(G, P) = 1$.
+
+This function is actually a shell around the two internal exponentiation functions. This routine will automatically
+detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally
+moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery
+and the other two algorithms.
+
+\section{Root Finding}
+\index{mp\_n\_root}
+\begin{alltt}
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$. The implementation of this function is not
+ideal for values of $b$ greater than three. It will work but become very slow. So unless you are working with very small
+numbers (less than 1000 bits) I'd avoid $b > 3$ situations. Will return a positive root only for even roots and return
+a root with the sign of the input for odd roots. For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$
+will return $-2$.
+
+This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since
+the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
+values of $b$. If particularly large roots are required then a factor method could be used instead. For example,
+$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$.
+
+\chapter{Prime Numbers}
+\section{Trial Division}
+\index{mp\_prime\_is\_divisible}
+\begin{alltt}
+int mp_prime_is_divisible (mp_int * a, int *result)
+\end{alltt}
+This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the
+outcome in ``result''. That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is. Note that
+if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
+the default is to set it to zero first.}.
+
+\section{Fermat Test}
+\index{mp\_prime\_fermat}
+\begin{alltt}
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Fermat primality test to the base $b$. That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
+equal to $b$ or not. If the values are equal then $a$ is probably prime and $result$ is set to one. Otherwise $result$
+is set to zero.
+
+\section{Miller-Rabin Test}
+\index{mp\_prime\_miller\_rabin}
+\begin{alltt}
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Miller-Rabin test to the base $b$ of $a$. This test is much stronger than the Fermat test and is very hard to
+fool (besides with Carmichael numbers). If $a$ passes the test (therefore is probably prime) $result$ is set to one.
+Otherwise $result$ is set to zero.
+
+Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of
+Miller-Rabin are a subset of the failures of the Fermat test.
+
+\subsection{Required Number of Tests}
+Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
+or so unique bases. However, it has been proven that the probability of failure goes down as the size of the input goes up.
+This is why a simple function has been provided to help out.
+
+\index{mp\_prime\_rabin\_miller\_trials}
+\begin{alltt}
+int mp_prime_rabin_miller_trials(int size)
+\end{alltt}
+This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
+in bits. This comes in handy specially since larger numbers are slower to test. For example, a 512-bit number would
+require ten tests whereas a 1024-bit number would only require four tests.
+
+You should always still perform a trial division before a Miller-Rabin test though.
+
+\section{Primality Testing}
+\index{mp\_prime\_is\_prime}
+\begin{alltt}
+int mp_prime_is_prime (mp_int * a, int t, int *result)
+\end{alltt}
+This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.
+If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero. Note that $t$ is bounded by
+$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
+
+\section{Next Prime}
+\index{mp\_prime\_next\_prime}
+\begin{alltt}
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
+\end{alltt}
+This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests. Set $bbs\_style$ to one if you
+want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.
+
+\section{Random Primes}
+\index{mp\_prime\_random}
+\begin{alltt}
+int mp_prime_random(mp_int *a, int t, int size, int bbs,
+ ltm_prime_callback cb, void *dat)
+\end{alltt}
+This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
+$t$ rounds of tests. The ``ltm\_prime\_callback'' is a typedef for
+
+\begin{alltt}
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+\end{alltt}
+
+Which is a function that must read $len$ bytes (and return the amount stored) into $dst$. The $dat$ variable is simply
+copied from the original input. It can be used to pass RNG context data to the callback. The function
+mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there
+is no skew on the least significant bits.
+
+\textit{Note:} As of v0.30 of the LibTomMath library this function has been deprecated. It is still available
+but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
+
+\subsection{Extended Generation}
+\index{mp\_prime\_random\_ex}
+\begin{alltt}
+int mp_prime_random_ex(mp_int *a, int t,
+ int size, int flags,
+ ltm_prime_callback cb, void *dat);
+\end{alltt}
+This will generate a prime in $a$ using $t$ tests of the primality testing algorithms. The variable $size$
+specifies the bit length of the prime desired. The variable $flags$ specifies one of several options available
+(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in
+mp\_prime\_random().
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|r|l|}
+\hline \textbf{Flag} & \textbf{Meaning} \\
+\hline LTM\_PRIME\_BBS & Make the prime congruent to $3$ modulo $4$ \\
+\hline LTM\_PRIME\_SAFE & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
+ & This option implies LTM\_PRIME\_BBS as well. \\
+\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
+ & Is forced to zero. \\
+\hline LTM\_PRIME\_2MSB\_ON & Makes sure that the bit adjacent to the most significant bit \\
+ & Is forced to one. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Primality Generation Options}
+\label{fig:primeopts}
+\end{figure}
+
+\chapter{Input and Output}
+\section{ASCII Conversions}
+\subsection{To ASCII}
+\index{mp\_toradix}
+\begin{alltt}
+int mp_toradix (mp_int * a, char *str, int radix);
+\end{alltt}
+This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character
+to terminate the string. Valid values of ``radix'' line in the range $[2, 64]$. To determine the size (exact) required
+by the conversion before storing any data use the following function.
+
+\index{mp\_radix\_size}
+\begin{alltt}
+int mp_radix_size (mp_int * a, int radix, int *size)
+\end{alltt}
+This stores in ``size'' the number of characters (including space for the NUL terminator) required. Upon error this
+function returns an error code and ``size'' will be zero.
+
+\subsection{From ASCII}
+\index{mp\_read\_radix}
+\begin{alltt}
+int mp_read_radix (mp_int * a, char *str, int radix);
+\end{alltt}
+This will read the base-``radix'' NUL terminated string from ``str'' into $a$. It will stop reading when it reads a
+character it does not recognize (which happens to include th NUL char... imagine that...). A single leading $-$ sign
+can be used to denote a negative number.
+
+\section{Binary Conversions}
+
+Converting an mp\_int to and from binary is another keen idea.
+
+\index{mp\_unsigned\_bin\_size}
+\begin{alltt}
+int mp_unsigned_bin_size(mp_int *a);
+\end{alltt}
+
+This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
+
+\index{mp\_to\_unsigned\_bin}
+\begin{alltt}
+int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+\end{alltt}
+This will store $a$ into the buffer $b$ in big--endian format. Fortunately this is exactly what DER (or is it ASN?)
+requires. It does not store the sign of the integer.
+
+\index{mp\_read\_unsigned\_bin}
+\begin{alltt}
+int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
+\end{alltt}
+This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$. The resulting
+integer $a$ will always be positive.
+
+For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
+previous functions.
+
+\begin{alltt}
+int mp_signed_bin_size(mp_int *a);
+int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
+int mp_to_signed_bin(mp_int *a, unsigned char *b);
+\end{alltt}
+They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
+byte depending on the sign. If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
+is non--zero.
+
+\chapter{Algebraic Functions}
+\section{Extended Euclidean Algorithm}
+\index{mp\_exteuclid}
+\begin{alltt}
+int mp_exteuclid(mp_int *a, mp_int *b,
+ mp_int *U1, mp_int *U2, mp_int *U3);
+\end{alltt}
+
+This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.
+
+\begin{equation}
+a \cdot U1 + b \cdot U2 = U3
+\end{equation}
+
+Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
+
+\section{Greatest Common Divisor}
+\index{mp\_gcd}
+\begin{alltt}
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
+
+\section{Least Common Multiple}
+\index{mp\_lcm}
+\begin{alltt}
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the least common multiple of $a$ and $b$ and store it in $c$.
+
+\section{Jacobi Symbol}
+\index{mp\_jacobi}
+\begin{alltt}
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
+\end{alltt}
+This will compute the Jacobi symbol for $a$ with respect to $p$. If $p$ is prime this essentially computes the Legendre
+symbol. The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$. If $p$ is prime
+then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$. The result will be $0$ if $a$ divides $p$
+and the result will be $1$ if $a$ is a quadratic residue modulo $p$.
+
+\section{Modular Inverse}
+\index{mp\_invmod}
+\begin{alltt}
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
+
+\section{Single Digit Functions}
+
+For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
+
+\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
+\begin{alltt}
+int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+\end{alltt}
+
+These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit. These
+functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
+an entire mp\_int to store a number like $1$ or $2$.
+
+\input{bn.ind}
+
+\end{document}
diff --git a/libtommath/bn_error.c b/libtommath/bn_error.c
new file mode 100644
index 0000000..1546784
--- /dev/null
+++ b/libtommath/bn_error.c
@@ -0,0 +1,43 @@
+#include <tommath.h>
+#ifdef BN_ERROR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+static const struct {
+ int code;
+ char *msg;
+} msgs[] = {
+ { MP_OKAY, "Successful" },
+ { MP_MEM, "Out of heap" },
+ { MP_VAL, "Value out of range" }
+};
+
+/* return a char * string for a given code */
+char *mp_error_to_string(int code)
+{
+ int x;
+
+ /* scan the lookup table for the given message */
+ for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
+ if (msgs[x].code == code) {
+ return msgs[x].msg;
+ }
+ }
+
+ /* generic reply for invalid code */
+ return "Invalid error code";
+}
+
+#endif
diff --git a/libtommath/bn_fast_mp_invmod.c b/libtommath/bn_fast_mp_invmod.c
new file mode 100644
index 0000000..b5b9f10
--- /dev/null
+++ b/libtommath/bn_fast_mp_invmod.c
@@ -0,0 +1,145 @@
+#include <tommath.h>
+#ifdef BN_FAST_MP_INVMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes the modular inverse via binary extended euclidean algorithm,
+ * that is c = 1/a mod b
+ *
+ * Based on slow invmod except this is optimized for the case where b is
+ * odd as per HAC Note 14.64 on pp. 610
+ */
+int
+fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, B, D;
+ int res, neg;
+
+ /* 2. [modified] b must be odd */
+ if (mp_iseven (b) == 1) {
+ return MP_VAL;
+ }
+
+ /* init all our temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x == modulus, y == value to invert */
+ if ((res = mp_copy (b, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* we need y = |a| */
+ if ((res = mp_abs (a, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ mp_set (&D, 1);
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if B is odd then */
+ if (mp_isodd (&B) == 1) {
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* B = B/2 */
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if D is odd then */
+ if (mp_isodd (&D) == 1) {
+ /* D = (D-x)/2 */
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* D = D/2 */
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0) {
+ goto top;
+ }
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* b is now the inverse */
+ neg = a->sign;
+ while (D.sign == MP_NEG) {
+ if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ mp_exch (&D, c);
+ c->sign = neg;
+ res = MP_OKAY;
+
+LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_fast_mp_montgomery_reduce.c b/libtommath/bn_fast_mp_montgomery_reduce.c
new file mode 100644
index 0000000..7373ae6
--- /dev/null
+++ b/libtommath/bn_fast_mp_montgomery_reduce.c
@@ -0,0 +1,169 @@
+#include <tommath.h>
+#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
+ *
+ * This is an optimized implementation of montgomery_reduce
+ * which uses the comba method to quickly calculate the columns of the
+ * reduction.
+ *
+ * Based on Algorithm 14.32 on pp.601 of HAC.
+*/
+int
+fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+{
+ int ix, res, olduse;
+ mp_word W[MP_WARRAY];
+
+ /* get old used count */
+ olduse = x->used;
+
+ /* grow a as required */
+ if (x->alloc < n->used + 1) {
+ if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* first we have to get the digits of the input into
+ * an array of double precision words W[...]
+ */
+ {
+ register mp_word *_W;
+ register mp_digit *tmpx;
+
+ /* alias for the W[] array */
+ _W = W;
+
+ /* alias for the digits of x*/
+ tmpx = x->dp;
+
+ /* copy the digits of a into W[0..a->used-1] */
+ for (ix = 0; ix < x->used; ix++) {
+ *_W++ = *tmpx++;
+ }
+
+ /* zero the high words of W[a->used..m->used*2] */
+ for (; ix < n->used * 2 + 1; ix++) {
+ *_W++ = 0;
+ }
+ }
+
+ /* now we proceed to zero successive digits
+ * from the least significant upwards
+ */
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * m' mod b
+ *
+ * We avoid a double precision multiplication (which isn't required)
+ * by casting the value down to a mp_digit. Note this requires
+ * that W[ix-1] have the carry cleared (see after the inner loop)
+ */
+ register mp_digit mu;
+ mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
+
+ /* a = a + mu * m * b**i
+ *
+ * This is computed in place and on the fly. The multiplication
+ * by b**i is handled by offseting which columns the results
+ * are added to.
+ *
+ * Note the comba method normally doesn't handle carries in the
+ * inner loop In this case we fix the carry from the previous
+ * column since the Montgomery reduction requires digits of the
+ * result (so far) [see above] to work. This is
+ * handled by fixing up one carry after the inner loop. The
+ * carry fixups are done in order so after these loops the
+ * first m->used words of W[] have the carries fixed
+ */
+ {
+ register int iy;
+ register mp_digit *tmpn;
+ register mp_word *_W;
+
+ /* alias for the digits of the modulus */
+ tmpn = n->dp;
+
+ /* Alias for the columns set by an offset of ix */
+ _W = W + ix;
+
+ /* inner loop */
+ for (iy = 0; iy < n->used; iy++) {
+ *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
+ }
+ }
+
+ /* now fix carry for next digit, W[ix+1] */
+ W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+ }
+
+ /* now we have to propagate the carries and
+ * shift the words downward [all those least
+ * significant digits we zeroed].
+ */
+ {
+ register mp_digit *tmpx;
+ register mp_word *_W, *_W1;
+
+ /* nox fix rest of carries */
+
+ /* alias for current word */
+ _W1 = W + ix;
+
+ /* alias for next word, where the carry goes */
+ _W = W + ++ix;
+
+ for (; ix <= n->used * 2 + 1; ix++) {
+ *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+ }
+
+ /* copy out, A = A/b**n
+ *
+ * The result is A/b**n but instead of converting from an
+ * array of mp_word to mp_digit than calling mp_rshd
+ * we just copy them in the right order
+ */
+
+ /* alias for destination word */
+ tmpx = x->dp;
+
+ /* alias for shifted double precision result */
+ _W = W + n->used;
+
+ for (ix = 0; ix < n->used + 1; ix++) {
+ *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
+ }
+
+ /* zero oldused digits, if the input a was larger than
+ * m->used+1 we'll have to clear the digits
+ */
+ for (; ix < olduse; ix++) {
+ *tmpx++ = 0;
+ }
+ }
+
+ /* set the max used and clamp */
+ x->used = n->used + 1;
+ mp_clamp (x);
+
+ /* if A >= m then A = A - m */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
+ }
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_fast_s_mp_mul_digs.c b/libtommath/bn_fast_s_mp_mul_digs.c
new file mode 100644
index 0000000..e1ff5f3
--- /dev/null
+++ b/libtommath/bn_fast_s_mp_mul_digs.c
@@ -0,0 +1,106 @@
+#include <tommath.h>
+#ifdef BN_FAST_S_MP_MUL_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Fast (comba) multiplier
+ *
+ * This is the fast column-array [comba] multiplier. It is
+ * designed to compute the columns of the product first
+ * then handle the carries afterwards. This has the effect
+ * of making the nested loops that compute the columns very
+ * simple and schedulable on super-scalar processors.
+ *
+ * This has been modified to produce a variable number of
+ * digits of output so if say only a half-product is required
+ * you don't have to compute the upper half (a feature
+ * required for fast Barrett reduction).
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ *
+ */
+int
+fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY];
+ register mp_word _W;
+
+ /* grow the destination as required */
+ if (c->alloc < digs) {
+ if ((res = mp_grow (c, digs)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ pa = MIN(digs, a->used + b->used);
+
+ /* clear the carry */
+ _W = 0;
+ for (ix = 0; ix < pa; ix++) {
+ int tx, ty;
+ int iy;
+ mp_digit *tmpx, *tmpy;
+
+ /* get offsets into the two bignums */
+ ty = MIN(b->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = b->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially its
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; ++iz) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* store term */
+ W[ix] = ((mp_digit)_W) & MP_MASK;
+
+ /* make next carry */
+ _W = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* store final carry */
+ W[ix] = _W;
+
+ /* setup dest */
+ olduse = c->used;
+ c->used = digs;
+
+ {
+ register mp_digit *tmpc;
+ tmpc = c->dp;
+ for (ix = 0; ix < digs; ix++) {
+ /* now extract the previous digit [below the carry] */
+ *tmpc++ = W[ix];
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_fast_s_mp_mul_high_digs.c b/libtommath/bn_fast_s_mp_mul_high_digs.c
new file mode 100644
index 0000000..064a9dd
--- /dev/null
+++ b/libtommath/bn_fast_s_mp_mul_high_digs.c
@@ -0,0 +1,98 @@
+#include <tommath.h>
+#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* this is a modified version of fast_s_mul_digs that only produces
+ * output digits *above* digs. See the comments for fast_s_mul_digs
+ * to see how it works.
+ *
+ * This is used in the Barrett reduction since for one of the multiplications
+ * only the higher digits were needed. This essentially halves the work.
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ */
+int
+fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY];
+ mp_word _W;
+
+ /* grow the destination as required */
+ pa = a->used + b->used;
+ if (c->alloc < pa) {
+ if ((res = mp_grow (c, pa)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ pa = a->used + b->used;
+ _W = 0;
+ for (ix = digs; ix < pa; ix++) {
+ int tx, ty, iy;
+ mp_digit *tmpx, *tmpy;
+
+ /* get offsets into the two bignums */
+ ty = MIN(b->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = b->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially its
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; iz++) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* store term */
+ W[ix] = ((mp_digit)_W) & MP_MASK;
+
+ /* make next carry */
+ _W = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* store final carry */
+ W[ix] = _W;
+
+ /* setup dest */
+ olduse = c->used;
+ c->used = pa;
+
+ {
+ register mp_digit *tmpc;
+
+ tmpc = c->dp + digs;
+ for (ix = digs; ix <= pa; ix++) {
+ /* now extract the previous digit [below the carry] */
+ *tmpc++ = W[ix];
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_fast_s_mp_sqr.c b/libtommath/bn_fast_s_mp_sqr.c
new file mode 100644
index 0000000..d6014ab
--- /dev/null
+++ b/libtommath/bn_fast_s_mp_sqr.c
@@ -0,0 +1,129 @@
+#include <tommath.h>
+#ifdef BN_FAST_S_MP_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* fast squaring
+ *
+ * This is the comba method where the columns of the product
+ * are computed first then the carries are computed. This
+ * has the effect of making a very simple inner loop that
+ * is executed the most
+ *
+ * W2 represents the outer products and W the inner.
+ *
+ * A further optimizations is made because the inner
+ * products are of the form "A * B * 2". The *2 part does
+ * not need to be computed until the end which is good
+ * because 64-bit shifts are slow!
+ *
+ * Based on Algorithm 14.16 on pp.597 of HAC.
+ *
+ */
+/* the jist of squaring...
+
+you do like mult except the offset of the tmpx [one that starts closer to zero]
+can't equal the offset of tmpy. So basically you set up iy like before then you min it with
+(ty-tx) so that it never happens. You double all those you add in the inner loop
+
+After that loop you do the squares and add them in.
+
+Remove W2 and don't memset W
+
+*/
+
+int fast_s_mp_sqr (mp_int * a, mp_int * b)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY], *tmpx;
+ mp_word W1;
+
+ /* grow the destination as required */
+ pa = a->used + a->used;
+ if (b->alloc < pa) {
+ if ((res = mp_grow (b, pa)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ W1 = 0;
+ for (ix = 0; ix < pa; ix++) {
+ int tx, ty, iy;
+ mp_word _W;
+ mp_digit *tmpy;
+
+ /* clear counter */
+ _W = 0;
+
+ /* get offsets into the two bignums */
+ ty = MIN(a->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = a->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially its
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* now for squaring tx can never equal ty
+ * we halve the distance since they approach at a rate of 2x
+ * and we have to round because odd cases need to be executed
+ */
+ iy = MIN(iy, (ty-tx+1)>>1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; iz++) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* double the inner product and add carry */
+ _W = _W + _W + W1;
+
+ /* even columns have the square term in them */
+ if ((ix&1) == 0) {
+ _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
+ }
+
+ /* store it */
+ W[ix] = _W;
+
+ /* make next carry */
+ W1 = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* setup dest */
+ olduse = b->used;
+ b->used = a->used+a->used;
+
+ {
+ mp_digit *tmpb;
+ tmpb = b->dp;
+ for (ix = 0; ix < pa; ix++) {
+ *tmpb++ = W[ix] & MP_MASK;
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpb++ = 0;
+ }
+ }
+ mp_clamp (b);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_2expt.c b/libtommath/bn_mp_2expt.c
new file mode 100644
index 0000000..45a6818
--- /dev/null
+++ b/libtommath/bn_mp_2expt.c
@@ -0,0 +1,44 @@
+#include <tommath.h>
+#ifdef BN_MP_2EXPT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes a = 2**b
+ *
+ * Simple algorithm which zeroes the int, grows it then just sets one bit
+ * as required.
+ */
+int
+mp_2expt (mp_int * a, int b)
+{
+ int res;
+
+ /* zero a as per default */
+ mp_zero (a);
+
+ /* grow a to accomodate the single bit */
+ if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* set the used count of where the bit will go */
+ a->used = b / DIGIT_BIT + 1;
+
+ /* put the single bit in its place */
+ a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_abs.c b/libtommath/bn_mp_abs.c
new file mode 100644
index 0000000..34f810f
--- /dev/null
+++ b/libtommath/bn_mp_abs.c
@@ -0,0 +1,39 @@
+#include <tommath.h>
+#ifdef BN_MP_ABS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = |a|
+ *
+ * Simple function copies the input and fixes the sign to positive
+ */
+int
+mp_abs (mp_int * a, mp_int * b)
+{
+ int res;
+
+ /* copy a to b */
+ if (a != b) {
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* force the sign of b to positive */
+ b->sign = MP_ZPOS;
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_add.c b/libtommath/bn_mp_add.c
new file mode 100644
index 0000000..554b7f7
--- /dev/null
+++ b/libtommath/bn_mp_add.c
@@ -0,0 +1,49 @@
+#include <tommath.h>
+#ifdef BN_MP_ADD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* high level addition (handles signs) */
+int mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+ int sa, sb, res;
+
+ /* get sign of both inputs */
+ sa = a->sign;
+ sb = b->sign;
+
+ /* handle two cases, not four */
+ if (sa == sb) {
+ /* both positive or both negative */
+ /* add their magnitudes, copy the sign */
+ c->sign = sa;
+ res = s_mp_add (a, b, c);
+ } else {
+ /* one positive, the other negative */
+ /* subtract the one with the greater magnitude from */
+ /* the one of the lesser magnitude. The result gets */
+ /* the sign of the one with the greater magnitude. */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ c->sign = sb;
+ res = s_mp_sub (b, a, c);
+ } else {
+ c->sign = sa;
+ res = s_mp_sub (a, b, c);
+ }
+ }
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_add_d.c b/libtommath/bn_mp_add_d.c
new file mode 100644
index 0000000..bdd0280
--- /dev/null
+++ b/libtommath/bn_mp_add_d.c
@@ -0,0 +1,105 @@
+#include <tommath.h>
+#ifdef BN_MP_ADD_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* single digit addition */
+int
+mp_add_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ int res, ix, oldused;
+ mp_digit *tmpa, *tmpc, mu;
+
+ /* grow c as required */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* if a is negative and |a| >= b, call c = |a| - b */
+ if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
+ /* temporarily fix sign of a */
+ a->sign = MP_ZPOS;
+
+ /* c = |a| - b */
+ res = mp_sub_d(a, b, c);
+
+ /* fix sign */
+ a->sign = c->sign = MP_NEG;
+
+ return res;
+ }
+
+ /* old number of used digits in c */
+ oldused = c->used;
+
+ /* sign always positive */
+ c->sign = MP_ZPOS;
+
+ /* source alias */
+ tmpa = a->dp;
+
+ /* destination alias */
+ tmpc = c->dp;
+
+ /* if a is positive */
+ if (a->sign == MP_ZPOS) {
+ /* add digit, after this we're propagating
+ * the carry.
+ */
+ *tmpc = *tmpa++ + b;
+ mu = *tmpc >> DIGIT_BIT;
+ *tmpc++ &= MP_MASK;
+
+ /* now handle rest of the digits */
+ for (ix = 1; ix < a->used; ix++) {
+ *tmpc = *tmpa++ + mu;
+ mu = *tmpc >> DIGIT_BIT;
+ *tmpc++ &= MP_MASK;
+ }
+ /* set final carry */
+ ix++;
+ *tmpc++ = mu;
+
+ /* setup size */
+ c->used = a->used + 1;
+ } else {
+ /* a was negative and |a| < b */
+ c->used = 1;
+
+ /* the result is a single digit */
+ if (a->used == 1) {
+ *tmpc++ = b - a->dp[0];
+ } else {
+ *tmpc++ = b;
+ }
+
+ /* setup count so the clearing of oldused
+ * can fall through correctly
+ */
+ ix = 1;
+ }
+
+ /* now zero to oldused */
+ while (ix++ < oldused) {
+ *tmpc++ = 0;
+ }
+ mp_clamp(c);
+
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bn_mp_addmod.c b/libtommath/bn_mp_addmod.c
new file mode 100644
index 0000000..13eb33f
--- /dev/null
+++ b/libtommath/bn_mp_addmod.c
@@ -0,0 +1,37 @@
+#include <tommath.h>
+#ifdef BN_MP_ADDMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* d = a + b (mod c) */
+int
+mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_add (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_and.c b/libtommath/bn_mp_and.c
new file mode 100644
index 0000000..61dc386
--- /dev/null
+++ b/libtommath/bn_mp_and.c
@@ -0,0 +1,53 @@
+#include <tommath.h>
+#ifdef BN_MP_AND_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* AND two ints together */
+int
+mp_and (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] &= x->dp[ix];
+ }
+
+ /* zero digits above the last from the smallest mp_int */
+ for (; ix < t.used; ix++) {
+ t.dp[ix] = 0;
+ }
+
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_clamp.c b/libtommath/bn_mp_clamp.c
new file mode 100644
index 0000000..c172611
--- /dev/null
+++ b/libtommath/bn_mp_clamp.c
@@ -0,0 +1,40 @@
+#include <tommath.h>
+#ifdef BN_MP_CLAMP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* trim unused digits
+ *
+ * This is used to ensure that leading zero digits are
+ * trimed and the leading "used" digit will be non-zero
+ * Typically very fast. Also fixes the sign if there
+ * are no more leading digits
+ */
+void
+mp_clamp (mp_int * a)
+{
+ /* decrease used while the most significant digit is
+ * zero.
+ */
+ while (a->used > 0 && a->dp[a->used - 1] == 0) {
+ --(a->used);
+ }
+
+ /* reset the sign flag if used == 0 */
+ if (a->used == 0) {
+ a->sign = MP_ZPOS;
+ }
+}
+#endif
diff --git a/libtommath/bn_mp_clear.c b/libtommath/bn_mp_clear.c
new file mode 100644
index 0000000..5342648
--- /dev/null
+++ b/libtommath/bn_mp_clear.c
@@ -0,0 +1,40 @@
+#include <tommath.h>
+#ifdef BN_MP_CLEAR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* clear one (frees) */
+void
+mp_clear (mp_int * a)
+{
+ int i;
+
+ /* only do anything if a hasn't been freed previously */
+ if (a->dp != NULL) {
+ /* first zero the digits */
+ for (i = 0; i < a->used; i++) {
+ a->dp[i] = 0;
+ }
+
+ /* free ram */
+ XFREE(a->dp);
+
+ /* reset members to make debugging easier */
+ a->dp = NULL;
+ a->alloc = a->used = 0;
+ a->sign = MP_ZPOS;
+ }
+}
+#endif
diff --git a/libtommath/bn_mp_clear_multi.c b/libtommath/bn_mp_clear_multi.c
new file mode 100644
index 0000000..24cbe73
--- /dev/null
+++ b/libtommath/bn_mp_clear_multi.c
@@ -0,0 +1,30 @@
+#include <tommath.h>
+#ifdef BN_MP_CLEAR_MULTI_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <stdarg.h>
+
+void mp_clear_multi(mp_int *mp, ...)
+{
+ mp_int* next_mp = mp;
+ va_list args;
+ va_start(args, mp);
+ while (next_mp != NULL) {
+ mp_clear(next_mp);
+ next_mp = va_arg(args, mp_int*);
+ }
+ va_end(args);
+}
+#endif
diff --git a/libtommath/bn_mp_cmp.c b/libtommath/bn_mp_cmp.c
new file mode 100644
index 0000000..583b5f8
--- /dev/null
+++ b/libtommath/bn_mp_cmp.c
@@ -0,0 +1,39 @@
+#include <tommath.h>
+#ifdef BN_MP_CMP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* compare two ints (signed)*/
+int
+mp_cmp (mp_int * a, mp_int * b)
+{
+ /* compare based on sign */
+ if (a->sign != b->sign) {
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ } else {
+ return MP_GT;
+ }
+ }
+
+ /* compare digits */
+ if (a->sign == MP_NEG) {
+ /* if negative compare opposite direction */
+ return mp_cmp_mag(b, a);
+ } else {
+ return mp_cmp_mag(a, b);
+ }
+}
+#endif
diff --git a/libtommath/bn_mp_cmp_d.c b/libtommath/bn_mp_cmp_d.c
new file mode 100644
index 0000000..882b1c9
--- /dev/null
+++ b/libtommath/bn_mp_cmp_d.c
@@ -0,0 +1,40 @@
+#include <tommath.h>
+#ifdef BN_MP_CMP_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* compare a digit */
+int mp_cmp_d(mp_int * a, mp_digit b)
+{
+ /* compare based on sign */
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ }
+
+ /* compare based on magnitude */
+ if (a->used > 1) {
+ return MP_GT;
+ }
+
+ /* compare the only digit of a to b */
+ if (a->dp[0] > b) {
+ return MP_GT;
+ } else if (a->dp[0] < b) {
+ return MP_LT;
+ } else {
+ return MP_EQ;
+ }
+}
+#endif
diff --git a/libtommath/bn_mp_cmp_mag.c b/libtommath/bn_mp_cmp_mag.c
new file mode 100644
index 0000000..a0f351c
--- /dev/null
+++ b/libtommath/bn_mp_cmp_mag.c
@@ -0,0 +1,51 @@
+#include <tommath.h>
+#ifdef BN_MP_CMP_MAG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* compare maginitude of two ints (unsigned) */
+int mp_cmp_mag (mp_int * a, mp_int * b)
+{
+ int n;
+ mp_digit *tmpa, *tmpb;
+
+ /* compare based on # of non-zero digits */
+ if (a->used > b->used) {
+ return MP_GT;
+ }
+
+ if (a->used < b->used) {
+ return MP_LT;
+ }
+
+ /* alias for a */
+ tmpa = a->dp + (a->used - 1);
+
+ /* alias for b */
+ tmpb = b->dp + (a->used - 1);
+
+ /* compare based on digits */
+ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
+ if (*tmpa > *tmpb) {
+ return MP_GT;
+ }
+
+ if (*tmpa < *tmpb) {
+ return MP_LT;
+ }
+ }
+ return MP_EQ;
+}
+#endif
diff --git a/libtommath/bn_mp_cnt_lsb.c b/libtommath/bn_mp_cnt_lsb.c
new file mode 100644
index 0000000..571f03f
--- /dev/null
+++ b/libtommath/bn_mp_cnt_lsb.c
@@ -0,0 +1,49 @@
+#include <tommath.h>
+#ifdef BN_MP_CNT_LSB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+static const int lnz[16] = {
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
+};
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+int mp_cnt_lsb(mp_int *a)
+{
+ int x;
+ mp_digit q, qq;
+
+ /* easy out */
+ if (mp_iszero(a) == 1) {
+ return 0;
+ }
+
+ /* scan lower digits until non-zero */
+ for (x = 0; x < a->used && a->dp[x] == 0; x++);
+ q = a->dp[x];
+ x *= DIGIT_BIT;
+
+ /* now scan this digit until a 1 is found */
+ if ((q & 1) == 0) {
+ do {
+ qq = q & 15;
+ x += lnz[qq];
+ q >>= 4;
+ } while (qq == 0);
+ }
+ return x;
+}
+
+#endif
diff --git a/libtommath/bn_mp_copy.c b/libtommath/bn_mp_copy.c
new file mode 100644
index 0000000..183ec9b
--- /dev/null
+++ b/libtommath/bn_mp_copy.c
@@ -0,0 +1,64 @@
+#include <tommath.h>
+#ifdef BN_MP_COPY_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* copy, b = a */
+int
+mp_copy (mp_int * a, mp_int * b)
+{
+ int res, n;
+
+ /* if dst == src do nothing */
+ if (a == b) {
+ return MP_OKAY;
+ }
+
+ /* grow dest */
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* zero b and copy the parameters over */
+ {
+ register mp_digit *tmpa, *tmpb;
+
+ /* pointer aliases */
+
+ /* source */
+ tmpa = a->dp;
+
+ /* destination */
+ tmpb = b->dp;
+
+ /* copy all the digits */
+ for (n = 0; n < a->used; n++) {
+ *tmpb++ = *tmpa++;
+ }
+
+ /* clear high digits */
+ for (; n < b->used; n++) {
+ *tmpb++ = 0;
+ }
+ }
+
+ /* copy used count and sign */
+ b->used = a->used;
+ b->sign = a->sign;
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_count_bits.c b/libtommath/bn_mp_count_bits.c
new file mode 100644
index 0000000..f3f85ac
--- /dev/null
+++ b/libtommath/bn_mp_count_bits.c
@@ -0,0 +1,41 @@
+#include <tommath.h>
+#ifdef BN_MP_COUNT_BITS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* returns the number of bits in an int */
+int
+mp_count_bits (mp_int * a)
+{
+ int r;
+ mp_digit q;
+
+ /* shortcut */
+ if (a->used == 0) {
+ return 0;
+ }
+
+ /* get number of digits and add that */
+ r = (a->used - 1) * DIGIT_BIT;
+
+ /* take the last digit and count the bits in it */
+ q = a->dp[a->used - 1];
+ while (q > ((mp_digit) 0)) {
+ ++r;
+ q >>= ((mp_digit) 1);
+ }
+ return r;
+}
+#endif
diff --git a/libtommath/bn_mp_div.c b/libtommath/bn_mp_div.c
new file mode 100644
index 0000000..6b2b8f0
--- /dev/null
+++ b/libtommath/bn_mp_div.c
@@ -0,0 +1,288 @@
+#include <tommath.h>
+#ifdef BN_MP_DIV_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+#ifdef BN_MP_DIV_SMALL
+
+/* slower bit-bang division... also smaller */
+int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ mp_int ta, tb, tq, q;
+ int res, n, n2;
+
+ /* is divisor zero ? */
+ if (mp_iszero (b) == 1) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy (a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero (c);
+ }
+ return res;
+ }
+
+ /* init our temps */
+ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
+ return res;
+ }
+
+
+ mp_set(&tq, 1);
+ n = mp_count_bits(a) - mp_count_bits(b);
+ if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
+ ((res = mp_abs(b, &tb)) != MP_OKAY) ||
+ ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
+ ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+
+ while (n-- >= 0) {
+ if (mp_cmp(&tb, &ta) != MP_GT) {
+ if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
+ ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+ }
+ if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
+ ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* now q == quotient and ta == remainder */
+ n = a->sign;
+ n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
+ if (c != NULL) {
+ mp_exch(c, &q);
+ c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
+ }
+ if (d != NULL) {
+ mp_exch(d, &ta);
+ d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
+ }
+LBL_ERR:
+ mp_clear_multi(&ta, &tb, &tq, &q, NULL);
+ return res;
+}
+
+#else
+
+/* integer signed division.
+ * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
+ * HAC pp.598 Algorithm 14.20
+ *
+ * Note that the description in HAC is horribly
+ * incomplete. For example, it doesn't consider
+ * the case where digits are removed from 'x' in
+ * the inner loop. It also doesn't consider the
+ * case that y has fewer than three digits, etc..
+ *
+ * The overall algorithm is as described as
+ * 14.20 from HAC but fixed to treat these cases.
+*/
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ mp_int q, x, y, t1, t2;
+ int res, n, t, i, norm, neg;
+
+ /* is divisor zero ? */
+ if (mp_iszero (b) == 1) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy (a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero (c);
+ }
+ return res;
+ }
+
+ if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
+ return res;
+ }
+ q.used = a->used + 2;
+
+ if ((res = mp_init (&t1)) != MP_OKAY) {
+ goto LBL_Q;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ goto LBL_T1;
+ }
+
+ if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
+ goto LBL_T2;
+ }
+
+ if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
+ goto LBL_X;
+ }
+
+ /* fix the sign */
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ x.sign = y.sign = MP_ZPOS;
+
+ /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+ norm = mp_count_bits(&y) % DIGIT_BIT;
+ if (norm < (int)(DIGIT_BIT-1)) {
+ norm = (DIGIT_BIT-1) - norm;
+ if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ } else {
+ norm = 0;
+ }
+
+ /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+ n = x.used - 1;
+ t = y.used - 1;
+
+ /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
+ if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
+ goto LBL_Y;
+ }
+
+ while (mp_cmp (&x, &y) != MP_LT) {
+ ++(q.dp[n - t]);
+ if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ }
+
+ /* reset y by shifting it back down */
+ mp_rshd (&y, n - t);
+
+ /* step 3. for i from n down to (t + 1) */
+ for (i = n; i >= (t + 1); i--) {
+ if (i > x.used) {
+ continue;
+ }
+
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
+ * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
+ if (x.dp[i] == y.dp[t]) {
+ q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
+ } else {
+ mp_word tmp;
+ tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
+ tmp |= ((mp_word) x.dp[i - 1]);
+ tmp /= ((mp_word) y.dp[t]);
+ if (tmp > (mp_word) MP_MASK)
+ tmp = MP_MASK;
+ q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+ }
+
+ /* while (q{i-t-1} * (yt * b + y{t-1})) >
+ xi * b**2 + xi-1 * b + xi-2
+
+ do q{i-t-1} -= 1;
+ */
+ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+ do {
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+
+ /* find left hand */
+ mp_zero (&t1);
+ t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+ t1.dp[1] = y.dp[t];
+ t1.used = 2;
+ if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* find right hand */
+ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+ t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+ t2.dp[2] = x.dp[i];
+ t2.used = 3;
+ } while (mp_cmp_mag(&t1, &t2) == MP_GT);
+
+ /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
+ if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
+ if (x.sign == MP_NEG) {
+ if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+ }
+ }
+
+ /* now q is the quotient and x is the remainder
+ * [which we have to normalize]
+ */
+
+ /* get sign before writing to c */
+ x.sign = x.used == 0 ? MP_ZPOS : a->sign;
+
+ if (c != NULL) {
+ mp_clamp (&q);
+ mp_exch (&q, c);
+ c->sign = neg;
+ }
+
+ if (d != NULL) {
+ mp_div_2d (&x, norm, &x, NULL);
+ mp_exch (&x, d);
+ }
+
+ res = MP_OKAY;
+
+LBL_Y:mp_clear (&y);
+LBL_X:mp_clear (&x);
+LBL_T2:mp_clear (&t2);
+LBL_T1:mp_clear (&t1);
+LBL_Q:mp_clear (&q);
+ return res;
+}
+
+#endif
+
+#endif
diff --git a/libtommath/bn_mp_div_2.c b/libtommath/bn_mp_div_2.c
new file mode 100644
index 0000000..5777997
--- /dev/null
+++ b/libtommath/bn_mp_div_2.c
@@ -0,0 +1,64 @@
+#include <tommath.h>
+#ifdef BN_MP_DIV_2_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = a/2 */
+int mp_div_2(mp_int * a, mp_int * b)
+{
+ int x, res, oldused;
+
+ /* copy */
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ oldused = b->used;
+ b->used = a->used;
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ /* source alias */
+ tmpa = a->dp + b->used - 1;
+
+ /* dest alias */
+ tmpb = b->dp + b->used - 1;
+
+ /* carry */
+ r = 0;
+ for (x = b->used - 1; x >= 0; x--) {
+ /* get the carry for the next iteration */
+ rr = *tmpa & 1;
+
+ /* shift the current digit, add in carry and store */
+ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+
+ /* forward carry to next iteration */
+ r = rr;
+ }
+
+ /* zero excess digits */
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ mp_clamp (b);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_div_2d.c b/libtommath/bn_mp_div_2d.c
new file mode 100644
index 0000000..cf103f2
--- /dev/null
+++ b/libtommath/bn_mp_div_2d.c
@@ -0,0 +1,93 @@
+#include <tommath.h>
+#ifdef BN_MP_DIV_2D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+{
+ mp_digit D, r, rr;
+ int x, res;
+ mp_int t;
+
+
+ /* if the shift count is <= 0 then we do no work */
+ if (b <= 0) {
+ res = mp_copy (a, c);
+ if (d != NULL) {
+ mp_zero (d);
+ }
+ return res;
+ }
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ /* get the remainder */
+ if (d != NULL) {
+ if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ }
+
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ /* shift by as many digits in the bit count */
+ if (b >= (int)DIGIT_BIT) {
+ mp_rshd (c, b / DIGIT_BIT);
+ }
+
+ /* shift any bit count < DIGIT_BIT */
+ D = (mp_digit) (b % DIGIT_BIT);
+ if (D != 0) {
+ register mp_digit *tmpc, mask, shift;
+
+ /* mask */
+ mask = (((mp_digit)1) << D) - 1;
+
+ /* shift for lsb */
+ shift = DIGIT_BIT - D;
+
+ /* alias */
+ tmpc = c->dp + (c->used - 1);
+
+ /* carry */
+ r = 0;
+ for (x = c->used - 1; x >= 0; x--) {
+ /* get the lower bits of this word in a temp */
+ rr = *tmpc & mask;
+
+ /* shift the current word and mix in the carry bits from the previous word */
+ *tmpc = (*tmpc >> D) | (r << shift);
+ --tmpc;
+
+ /* set the carry to the carry bits of the current word found above */
+ r = rr;
+ }
+ }
+ mp_clamp (c);
+ if (d != NULL) {
+ mp_exch (&t, d);
+ }
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_div_3.c b/libtommath/bn_mp_div_3.c
new file mode 100644
index 0000000..7cbafc1
--- /dev/null
+++ b/libtommath/bn_mp_div_3.c
@@ -0,0 +1,75 @@
+#include <tommath.h>
+#ifdef BN_MP_DIV_3_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* divide by three (based on routine from MPI and the GMP manual) */
+int
+mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
+{
+ mp_int q;
+ mp_word w, t;
+ mp_digit b;
+ int res, ix;
+
+ /* b = 2**DIGIT_BIT / 3 */
+ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
+
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= 3) {
+ /* multiply w by [1/3] */
+ t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
+
+ /* now subtract 3 * [w/3] from w, to get the remainder */
+ w -= t+t+t;
+
+ /* fixup the remainder as required since
+ * the optimization is not exact.
+ */
+ while (w >= 3) {
+ t += 1;
+ w -= 3;
+ }
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = (mp_digit)t;
+ }
+
+ /* [optional] store the remainder */
+ if (d != NULL) {
+ *d = (mp_digit)w;
+ }
+
+ /* [optional] store the quotient */
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_div_d.c b/libtommath/bn_mp_div_d.c
new file mode 100644
index 0000000..9b58aa6
--- /dev/null
+++ b/libtommath/bn_mp_div_d.c
@@ -0,0 +1,106 @@
+#include <tommath.h>
+#ifdef BN_MP_DIV_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+static int s_is_power_of_two(mp_digit b, int *p)
+{
+ int x;
+
+ for (x = 1; x < DIGIT_BIT; x++) {
+ if (b == (((mp_digit)1)<<x)) {
+ *p = x;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* single digit division (based on routine from MPI) */
+int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+{
+ mp_int q;
+ mp_word w;
+ mp_digit t;
+ int res, ix;
+
+ /* cannot divide by zero */
+ if (b == 0) {
+ return MP_VAL;
+ }
+
+ /* quick outs */
+ if (b == 1 || mp_iszero(a) == 1) {
+ if (d != NULL) {
+ *d = 0;
+ }
+ if (c != NULL) {
+ return mp_copy(a, c);
+ }
+ return MP_OKAY;
+ }
+
+ /* power of two ? */
+ if (s_is_power_of_two(b, &ix) == 1) {
+ if (d != NULL) {
+ *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
+ }
+ if (c != NULL) {
+ return mp_div_2d(a, ix, c, NULL);
+ }
+ return MP_OKAY;
+ }
+
+#ifdef BN_MP_DIV_3_C
+ /* three? */
+ if (b == 3) {
+ return mp_div_3(a, c, d);
+ }
+#endif
+
+ /* no easy answer [c'est la vie]. Just division */
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= b) {
+ t = (mp_digit)(w / b);
+ w -= ((mp_word)t) * ((mp_word)b);
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = (mp_digit)t;
+ }
+
+ if (d != NULL) {
+ *d = (mp_digit)w;
+ }
+
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_dr_is_modulus.c b/libtommath/bn_mp_dr_is_modulus.c
new file mode 100644
index 0000000..5ef78a3
--- /dev/null
+++ b/libtommath/bn_mp_dr_is_modulus.c
@@ -0,0 +1,39 @@
+#include <tommath.h>
+#ifdef BN_MP_DR_IS_MODULUS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines if a number is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a)
+{
+ int ix;
+
+ /* must be at least two digits */
+ if (a->used < 2) {
+ return 0;
+ }
+
+ /* must be of the form b**k - a [a <= b] so all
+ * but the first digit must be equal to -1 (mod b).
+ */
+ for (ix = 1; ix < a->used; ix++) {
+ if (a->dp[ix] != MP_MASK) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+#endif
diff --git a/libtommath/bn_mp_dr_reduce.c b/libtommath/bn_mp_dr_reduce.c
new file mode 100644
index 0000000..9bb7ad7
--- /dev/null
+++ b/libtommath/bn_mp_dr_reduce.c
@@ -0,0 +1,90 @@
+#include <tommath.h>
+#ifdef BN_MP_DR_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
+ *
+ * Based on algorithm from the paper
+ *
+ * "Generating Efficient Primes for Discrete Log Cryptosystems"
+ * Chae Hoon Lim, Pil Joong Lee,
+ * POSTECH Information Research Laboratories
+ *
+ * The modulus must be of a special format [see manual]
+ *
+ * Has been modified to use algorithm 7.10 from the LTM book instead
+ *
+ * Input x must be in the range 0 <= x <= (n-1)**2
+ */
+int
+mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+{
+ int err, i, m;
+ mp_word r;
+ mp_digit mu, *tmpx1, *tmpx2;
+
+ /* m = digits in modulus */
+ m = n->used;
+
+ /* ensure that "x" has at least 2m digits */
+ if (x->alloc < m + m) {
+ if ((err = mp_grow (x, m + m)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+/* top of loop, this is where the code resumes if
+ * another reduction pass is required.
+ */
+top:
+ /* aliases for digits */
+ /* alias for lower half of x */
+ tmpx1 = x->dp;
+
+ /* alias for upper half of x, or x/B**m */
+ tmpx2 = x->dp + m;
+
+ /* set carry to zero */
+ mu = 0;
+
+ /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
+ for (i = 0; i < m; i++) {
+ r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+ *tmpx1++ = (mp_digit)(r & MP_MASK);
+ mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
+ }
+
+ /* set final carry */
+ *tmpx1++ = mu;
+
+ /* zero words above m */
+ for (i = m + 1; i < x->used; i++) {
+ *tmpx1++ = 0;
+ }
+
+ /* clamp, sub and return */
+ mp_clamp (x);
+
+ /* if x >= n then subtract and reduce again
+ * Each successive "recursion" makes the input smaller and smaller.
+ */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ s_mp_sub(x, n, x);
+ goto top;
+ }
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_dr_setup.c b/libtommath/bn_mp_dr_setup.c
new file mode 100644
index 0000000..029d310
--- /dev/null
+++ b/libtommath/bn_mp_dr_setup.c
@@ -0,0 +1,28 @@
+#include <tommath.h>
+#ifdef BN_MP_DR_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines the setup value */
+void mp_dr_setup(mp_int *a, mp_digit *d)
+{
+ /* the casts are required if DIGIT_BIT is one less than
+ * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+ */
+ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+ ((mp_word)a->dp[0]));
+}
+
+#endif
diff --git a/libtommath/bn_mp_exch.c b/libtommath/bn_mp_exch.c
new file mode 100644
index 0000000..0ef485a
--- /dev/null
+++ b/libtommath/bn_mp_exch.c
@@ -0,0 +1,30 @@
+#include <tommath.h>
+#ifdef BN_MP_EXCH_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* swap the elements of two integers, for cases where you can't simply swap the
+ * mp_int pointers around
+ */
+void
+mp_exch (mp_int * a, mp_int * b)
+{
+ mp_int t;
+
+ t = *a;
+ *a = *b;
+ *b = t;
+}
+#endif
diff --git a/libtommath/bn_mp_expt_d.c b/libtommath/bn_mp_expt_d.c
new file mode 100644
index 0000000..fdb8bd9
--- /dev/null
+++ b/libtommath/bn_mp_expt_d.c
@@ -0,0 +1,53 @@
+#include <tommath.h>
+#ifdef BN_MP_EXPT_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* calculate c = a**b using a square-multiply algorithm */
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ int res, x;
+ mp_int g;
+
+ if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* set initial result */
+ mp_set (c, 1);
+
+ for (x = 0; x < (int) DIGIT_BIT; x++) {
+ /* square */
+ if ((res = mp_sqr (c, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+
+ /* if the bit is set multiply */
+ if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
+ if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+ }
+
+ /* shift to next bit */
+ b <<= 1;
+ }
+
+ mp_clear (&g);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_exptmod.c b/libtommath/bn_mp_exptmod.c
new file mode 100644
index 0000000..7309170
--- /dev/null
+++ b/libtommath/bn_mp_exptmod.c
@@ -0,0 +1,100 @@
+#include <tommath.h>
+#ifdef BN_MP_EXPTMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+
+/* this is a shell function that calls either the normal or Montgomery
+ * exptmod functions. Originally the call to the montgomery code was
+ * embedded in the normal function but that wasted alot of stack space
+ * for nothing (since 99% of the time the Montgomery code would be called)
+ */
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ int dr;
+
+ /* modulus P must be positive */
+ if (P->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* if exponent X is negative we have to recurse */
+ if (X->sign == MP_NEG) {
+#ifdef BN_MP_INVMOD_C
+ mp_int tmpG, tmpX;
+ int err;
+
+ /* first compute 1/G mod P */
+ if ((err = mp_init(&tmpG)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
+ mp_clear(&tmpG);
+ return err;
+ }
+
+ /* now get |X| */
+ if ((err = mp_init(&tmpX)) != MP_OKAY) {
+ mp_clear(&tmpG);
+ return err;
+ }
+ if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
+ mp_clear_multi(&tmpG, &tmpX, NULL);
+ return err;
+ }
+
+ /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+ err = mp_exptmod(&tmpG, &tmpX, P, Y);
+ mp_clear_multi(&tmpG, &tmpX, NULL);
+ return err;
+#else
+ /* no invmod */
+ return MP_VAL;
+#endif
+ }
+
+#ifdef BN_MP_DR_IS_MODULUS_C
+ /* is it a DR modulus? */
+ dr = mp_dr_is_modulus(P);
+#else
+ dr = 0;
+#endif
+
+#ifdef BN_MP_REDUCE_IS_2K_C
+ /* if not, is it a uDR modulus? */
+ if (dr == 0) {
+ dr = mp_reduce_is_2k(P) << 1;
+ }
+#endif
+
+ /* if the modulus is odd or dr != 0 use the fast method */
+#ifdef BN_MP_EXPTMOD_FAST_C
+ if (mp_isodd (P) == 1 || dr != 0) {
+ return mp_exptmod_fast (G, X, P, Y, dr);
+ } else {
+#endif
+#ifdef BN_S_MP_EXPTMOD_C
+ /* otherwise use the generic Barrett reduction technique */
+ return s_mp_exptmod (G, X, P, Y);
+#else
+ /* no exptmod for evens */
+ return MP_VAL;
+#endif
+#ifdef BN_MP_EXPTMOD_FAST_C
+ }
+#endif
+}
+
+#endif
diff --git a/libtommath/bn_mp_exptmod_fast.c b/libtommath/bn_mp_exptmod_fast.c
new file mode 100644
index 0000000..255e9d9
--- /dev/null
+++ b/libtommath/bn_mp_exptmod_fast.c
@@ -0,0 +1,318 @@
+#include <tommath.h>
+#ifdef BN_MP_EXPTMOD_FAST_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
+ *
+ * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
+ * The value of k changes based on the size of the exponent.
+ *
+ * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
+ */
+
+#ifdef MP_LOW_MEM
+ #define TAB_SIZE 32
+#else
+ #define TAB_SIZE 256
+#endif
+
+int
+mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
+{
+ mp_int M[TAB_SIZE], res;
+ mp_digit buf, mp;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* use a pointer to the reduction algorithm. This allows us to use
+ * one of many reduction algorithms without modding the guts of
+ * the code with if statements everywhere.
+ */
+ int (*redux)(mp_int*,mp_int*,mp_digit);
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+#ifdef MP_LOW_MEM
+ if (winsize > 5) {
+ winsize = 5;
+ }
+#endif
+
+ /* init M array */
+ /* init first cell */
+ if ((err = mp_init(&M[1])) != MP_OKAY) {
+ return err;
+ }
+
+ /* now init the second half of the array */
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ if ((err = mp_init(&M[x])) != MP_OKAY) {
+ for (y = 1<<(winsize-1); y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ mp_clear(&M[1]);
+ return err;
+ }
+ }
+
+ /* determine and setup reduction code */
+ if (redmode == 0) {
+#ifdef BN_MP_MONTGOMERY_SETUP_C
+ /* now setup montgomery */
+ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
+ goto LBL_M;
+ }
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+
+ /* automatically pick the comba one if available (saves quite a few calls/ifs) */
+#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
+ if (((P->used * 2 + 1) < MP_WARRAY) &&
+ P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ redux = fast_mp_montgomery_reduce;
+ } else
+#endif
+ {
+#ifdef BN_MP_MONTGOMERY_REDUCE_C
+ /* use slower baseline Montgomery method */
+ redux = mp_montgomery_reduce;
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+ }
+ } else if (redmode == 1) {
+#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
+ /* setup DR reduction for moduli of the form B**k - b */
+ mp_dr_setup(P, &mp);
+ redux = mp_dr_reduce;
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+ } else {
+#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
+ /* setup DR reduction for moduli of the form 2**k - b */
+ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
+ goto LBL_M;
+ }
+ redux = mp_reduce_2k;
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto LBL_M;
+ }
+
+ /* create M table
+ *
+
+ *
+ * The first half of the table is not computed though accept for M[0] and M[1]
+ */
+
+ if (redmode == 0) {
+#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+ /* now we need R mod m */
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+#else
+ err = MP_VAL;
+ goto LBL_RES;
+#endif
+
+ /* now set M[1] to G * R mod m */
+ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ } else {
+ mp_set(&res, 1);
+ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* create upper table */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits so break */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int)DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0) {
+ continue;
+ }
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* get next bit of the window */
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+ }
+ }
+
+ if (redmode == 0) {
+ /* fixup result if Montgomery reduction is used
+ * recall that any value in a Montgomery system is
+ * actually multiplied by R mod n. So we have
+ * to reduce one more time to cancel out the factor
+ * of R.
+ */
+ if ((err = redux(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* swap res with Y */
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+LBL_RES:mp_clear (&res);
+LBL_M:
+ mp_clear(&M[1]);
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
+#endif
+
diff --git a/libtommath/bn_mp_exteuclid.c b/libtommath/bn_mp_exteuclid.c
new file mode 100644
index 0000000..545450b
--- /dev/null
+++ b/libtommath/bn_mp_exteuclid.c
@@ -0,0 +1,71 @@
+#include <tommath.h>
+#ifdef BN_MP_EXTEUCLID_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Extended euclidean algorithm of (a, b) produces
+ a*u1 + b*u2 = u3
+ */
+int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
+{
+ mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
+ int err;
+
+ if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
+ return err;
+ }
+
+ /* initialize, (u1,u2,u3) = (1,0,a) */
+ mp_set(&u1, 1);
+ if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; }
+
+ /* initialize, (v1,v2,v3) = (0,1,b) */
+ mp_set(&v2, 1);
+ if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; }
+
+ /* loop while v3 != 0 */
+ while (mp_iszero(&v3) == MP_NO) {
+ /* q = u3/v3 */
+ if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; }
+
+ /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
+ if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; }
+
+ /* (u1,u2,u3) = (v1,v2,v3) */
+ if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; }
+
+ /* (v1,v2,v3) = (t1,t2,t3) */
+ if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; }
+ }
+
+ /* copy result out */
+ if (U1 != NULL) { mp_exch(U1, &u1); }
+ if (U2 != NULL) { mp_exch(U2, &u2); }
+ if (U3 != NULL) { mp_exch(U3, &u3); }
+
+ err = MP_OKAY;
+_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
+ return err;
+}
+#endif
diff --git a/libtommath/bn_mp_fread.c b/libtommath/bn_mp_fread.c
new file mode 100644
index 0000000..293df3f
--- /dev/null
+++ b/libtommath/bn_mp_fread.c
@@ -0,0 +1,63 @@
+#include <tommath.h>
+#ifdef BN_MP_FREAD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* read a bigint from a file stream in ASCII */
+int mp_fread(mp_int *a, int radix, FILE *stream)
+{
+ int err, ch, neg, y;
+
+ /* clear a */
+ mp_zero(a);
+
+ /* if first digit is - then set negative */
+ ch = fgetc(stream);
+ if (ch == '-') {
+ neg = MP_NEG;
+ ch = fgetc(stream);
+ } else {
+ neg = MP_ZPOS;
+ }
+
+ for (;;) {
+ /* find y in the radix map */
+ for (y = 0; y < radix; y++) {
+ if (mp_s_rmap[y] == ch) {
+ break;
+ }
+ }
+ if (y == radix) {
+ break;
+ }
+
+ /* shift up and add */
+ if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
+ return err;
+ }
+
+ ch = fgetc(stream);
+ }
+ if (mp_cmp_d(a, 0) != MP_EQ) {
+ a->sign = neg;
+ }
+
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bn_mp_fwrite.c b/libtommath/bn_mp_fwrite.c
new file mode 100644
index 0000000..8fa3129
--- /dev/null
+++ b/libtommath/bn_mp_fwrite.c
@@ -0,0 +1,48 @@
+#include <tommath.h>
+#ifdef BN_MP_FWRITE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+int mp_fwrite(mp_int *a, int radix, FILE *stream)
+{
+ char *buf;
+ int err, len, x;
+
+ if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
+ return err;
+ }
+
+ buf = OPT_CAST(char) XMALLOC (len);
+ if (buf == NULL) {
+ return MP_MEM;
+ }
+
+ if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
+ XFREE (buf);
+ return err;
+ }
+
+ for (x = 0; x < len; x++) {
+ if (fputc(buf[x], stream) == EOF) {
+ XFREE (buf);
+ return MP_VAL;
+ }
+ }
+
+ XFREE (buf);
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bn_mp_gcd.c b/libtommath/bn_mp_gcd.c
new file mode 100644
index 0000000..6265df1
--- /dev/null
+++ b/libtommath/bn_mp_gcd.c
@@ -0,0 +1,109 @@
+#include <tommath.h>
+#ifdef BN_MP_GCD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Greatest Common Divisor using the binary method */
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int u, v;
+ int k, u_lsb, v_lsb, res;
+
+ /* either zero than gcd is the largest */
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
+ return mp_abs (b, c);
+ }
+ if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
+ return mp_abs (a, c);
+ }
+
+ /* optimized. At this point if a == 0 then
+ * b must equal zero too
+ */
+ if (mp_iszero (a) == 1) {
+ mp_zero(c);
+ return MP_OKAY;
+ }
+
+ /* get copies of a and b we can modify */
+ if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
+ goto LBL_U;
+ }
+
+ /* must be positive for the remainder of the algorithm */
+ u.sign = v.sign = MP_ZPOS;
+
+ /* B1. Find the common power of two for u and v */
+ u_lsb = mp_cnt_lsb(&u);
+ v_lsb = mp_cnt_lsb(&v);
+ k = MIN(u_lsb, v_lsb);
+
+ if (k > 0) {
+ /* divide the power of two out */
+ if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+
+ if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ /* divide any remaining factors of two out */
+ if (u_lsb != k) {
+ if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ if (v_lsb != k) {
+ if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ while (mp_iszero(&v) == 0) {
+ /* make sure v is the largest */
+ if (mp_cmp_mag(&u, &v) == MP_GT) {
+ /* swap u and v to make sure v is >= u */
+ mp_exch(&u, &v);
+ }
+
+ /* subtract smallest from largest */
+ if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
+ goto LBL_V;
+ }
+
+ /* Divide out all factors of two */
+ if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ /* multiply by 2**k which we divided out at the beginning */
+ if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ c->sign = MP_ZPOS;
+ res = MP_OKAY;
+LBL_V:mp_clear (&u);
+LBL_U:mp_clear (&v);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_get_int.c b/libtommath/bn_mp_get_int.c
new file mode 100644
index 0000000..034467b
--- /dev/null
+++ b/libtommath/bn_mp_get_int.c
@@ -0,0 +1,41 @@
+#include <tommath.h>
+#ifdef BN_MP_GET_INT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* get the lower 32-bits of an mp_int */
+unsigned long mp_get_int(mp_int * a)
+{
+ int i;
+ unsigned long res;
+
+ if (a->used == 0) {
+ return 0;
+ }
+
+ /* get number of digits of the lsb we have to read */
+ i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
+
+ /* get most significant digit of result */
+ res = DIGIT(a,i);
+
+ while (--i >= 0) {
+ res = (res << DIGIT_BIT) | DIGIT(a,i);
+ }
+
+ /* force result to 32-bits always so it is consistent on non 32-bit platforms */
+ return res & 0xFFFFFFFFUL;
+}
+#endif
diff --git a/libtommath/bn_mp_grow.c b/libtommath/bn_mp_grow.c
new file mode 100644
index 0000000..12a78a8
--- /dev/null
+++ b/libtommath/bn_mp_grow.c
@@ -0,0 +1,53 @@
+#include <tommath.h>
+#ifdef BN_MP_GROW_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* grow as required */
+int mp_grow (mp_int * a, int size)
+{
+ int i;
+ mp_digit *tmp;
+
+ /* if the alloc size is smaller alloc more ram */
+ if (a->alloc < size) {
+ /* ensure there are always at least MP_PREC digits extra on top */
+ size += (MP_PREC * 2) - (size % MP_PREC);
+
+ /* reallocate the array a->dp
+ *
+ * We store the return in a temporary variable
+ * in case the operation failed we don't want
+ * to overwrite the dp member of a.
+ */
+ tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
+ if (tmp == NULL) {
+ /* reallocation failed but "a" is still valid [can be freed] */
+ return MP_MEM;
+ }
+
+ /* reallocation succeeded so set a->dp */
+ a->dp = tmp;
+
+ /* zero excess digits */
+ i = a->alloc;
+ a->alloc = size;
+ for (; i < a->alloc; i++) {
+ a->dp[i] = 0;
+ }
+ }
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_init.c b/libtommath/bn_mp_init.c
new file mode 100644
index 0000000..9d70554
--- /dev/null
+++ b/libtommath/bn_mp_init.c
@@ -0,0 +1,42 @@
+#include <tommath.h>
+#ifdef BN_MP_INIT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* init a new mp_int */
+int mp_init (mp_int * a)
+{
+ int i;
+
+ /* allocate memory required and clear it */
+ a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
+
+ /* set the digits to zero */
+ for (i = 0; i < MP_PREC; i++) {
+ a->dp[i] = 0;
+ }
+
+ /* set the used to zero, allocated digits to the default precision
+ * and sign to positive */
+ a->used = 0;
+ a->alloc = MP_PREC;
+ a->sign = MP_ZPOS;
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_init_copy.c b/libtommath/bn_mp_init_copy.c
new file mode 100644
index 0000000..b1b0fa2
--- /dev/null
+++ b/libtommath/bn_mp_init_copy.c
@@ -0,0 +1,28 @@
+#include <tommath.h>
+#ifdef BN_MP_INIT_COPY_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* creates "a" then copies b into it */
+int mp_init_copy (mp_int * a, mp_int * b)
+{
+ int res;
+
+ if ((res = mp_init (a)) != MP_OKAY) {
+ return res;
+ }
+ return mp_copy (b, a);
+}
+#endif
diff --git a/libtommath/bn_mp_init_multi.c b/libtommath/bn_mp_init_multi.c
new file mode 100644
index 0000000..8cb123a
--- /dev/null
+++ b/libtommath/bn_mp_init_multi.c
@@ -0,0 +1,55 @@
+#include <tommath.h>
+#ifdef BN_MP_INIT_MULTI_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <stdarg.h>
+
+int mp_init_multi(mp_int *mp, ...)
+{
+ mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
+ int n = 0; /* Number of ok inits */
+ mp_int* cur_arg = mp;
+ va_list args;
+
+ va_start(args, mp); /* init args to next argument from caller */
+ while (cur_arg != NULL) {
+ if (mp_init(cur_arg) != MP_OKAY) {
+ /* Oops - error! Back-track and mp_clear what we already
+ succeeded in init-ing, then return error.
+ */
+ va_list clean_args;
+
+ /* end the current list */
+ va_end(args);
+
+ /* now start cleaning up */
+ cur_arg = mp;
+ va_start(clean_args, mp);
+ while (n--) {
+ mp_clear(cur_arg);
+ cur_arg = va_arg(clean_args, mp_int*);
+ }
+ va_end(clean_args);
+ res = MP_MEM;
+ break;
+ }
+ n++;
+ cur_arg = va_arg(args, mp_int*);
+ }
+ va_end(args);
+ return res; /* Assumed ok, if error flagged above. */
+}
+
+#endif
diff --git a/libtommath/bn_mp_init_set.c b/libtommath/bn_mp_init_set.c
new file mode 100644
index 0000000..0251e61
--- /dev/null
+++ b/libtommath/bn_mp_init_set.c
@@ -0,0 +1,28 @@
+#include <tommath.h>
+#ifdef BN_MP_INIT_SET_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* initialize and set a digit */
+int mp_init_set (mp_int * a, mp_digit b)
+{
+ int err;
+ if ((err = mp_init(a)) != MP_OKAY) {
+ return err;
+ }
+ mp_set(a, b);
+ return err;
+}
+#endif
diff --git a/libtommath/bn_mp_init_set_int.c b/libtommath/bn_mp_init_set_int.c
new file mode 100644
index 0000000..f59fd19
--- /dev/null
+++ b/libtommath/bn_mp_init_set_int.c
@@ -0,0 +1,27 @@
+#include <tommath.h>
+#ifdef BN_MP_INIT_SET_INT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* initialize and set a digit */
+int mp_init_set_int (mp_int * a, unsigned long b)
+{
+ int err;
+ if ((err = mp_init(a)) != MP_OKAY) {
+ return err;
+ }
+ return mp_set_int(a, b);
+}
+#endif
diff --git a/libtommath/bn_mp_init_size.c b/libtommath/bn_mp_init_size.c
new file mode 100644
index 0000000..845ce2c
--- /dev/null
+++ b/libtommath/bn_mp_init_size.c
@@ -0,0 +1,44 @@
+#include <tommath.h>
+#ifdef BN_MP_INIT_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* init an mp_init for a given size */
+int mp_init_size (mp_int * a, int size)
+{
+ int x;
+
+ /* pad size so there are always extra digits */
+ size += (MP_PREC * 2) - (size % MP_PREC);
+
+ /* alloc mem */
+ a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
+
+ /* set the members */
+ a->used = 0;
+ a->alloc = size;
+ a->sign = MP_ZPOS;
+
+ /* zero the digits */
+ for (x = 0; x < size; x++) {
+ a->dp[x] = 0;
+ }
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_invmod.c b/libtommath/bn_mp_invmod.c
new file mode 100644
index 0000000..46118ad
--- /dev/null
+++ b/libtommath/bn_mp_invmod.c
@@ -0,0 +1,39 @@
+#include <tommath.h>
+#ifdef BN_MP_INVMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* hac 14.61, pp608 */
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ return MP_VAL;
+ }
+
+#ifdef BN_FAST_MP_INVMOD_C
+ /* if the modulus is odd we can use a faster routine instead */
+ if (mp_isodd (b) == 1) {
+ return fast_mp_invmod (a, b, c);
+ }
+#endif
+
+#ifdef BN_MP_INVMOD_SLOW_C
+ return mp_invmod_slow(a, b, c);
+#endif
+
+ return MP_VAL;
+}
+#endif
diff --git a/libtommath/bn_mp_invmod_slow.c b/libtommath/bn_mp_invmod_slow.c
new file mode 100644
index 0000000..c1884c0
--- /dev/null
+++ b/libtommath/bn_mp_invmod_slow.c
@@ -0,0 +1,171 @@
+#include <tommath.h>
+#ifdef BN_MP_INVMOD_SLOW_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* hac 14.61, pp608 */
+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, A, B, C, D;
+ int res;
+
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ return MP_VAL;
+ }
+
+ /* init temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v,
+ &A, &B, &C, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x = a, y = b */
+ if ((res = mp_copy (a, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (b, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 2. [modified] if x,y are both even then return an error! */
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ mp_set (&A, 1);
+ mp_set (&D, 1);
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if A or B is odd then */
+ if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
+ /* A = (A+y)/2, B = (B-x)/2 */
+ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* A = A/2, B = B/2 */
+ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if C or D is odd then */
+ if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
+ /* C = (C+y)/2, D = (D-x)/2 */
+ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* C = C/2, D = D/2 */
+ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, A = A - C, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, C = C - A, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0)
+ goto top;
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* if its too low */
+ while (mp_cmp_d(&C, 0) == MP_LT) {
+ if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* too big */
+ while (mp_cmp_mag(&C, b) != MP_LT) {
+ if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* C is now the inverse */
+ mp_exch (&C, c);
+ res = MP_OKAY;
+LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_is_square.c b/libtommath/bn_mp_is_square.c
new file mode 100644
index 0000000..969d237
--- /dev/null
+++ b/libtommath/bn_mp_is_square.c
@@ -0,0 +1,105 @@
+#include <tommath.h>
+#ifdef BN_MP_IS_SQUARE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Check if remainders are possible squares - fast exclude non-squares */
+static const char rem_128[128] = {
+ 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
+};
+
+static const char rem_105[105] = {
+ 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
+ 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
+ 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
+ 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
+ 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
+};
+
+/* Store non-zero to ret if arg is square, and zero if not */
+int mp_is_square(mp_int *arg,int *ret)
+{
+ int res;
+ mp_digit c;
+ mp_int t;
+ unsigned long r;
+
+ /* Default to Non-square :) */
+ *ret = MP_NO;
+
+ if (arg->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* digits used? (TSD) */
+ if (arg->used == 0) {
+ return MP_OKAY;
+ }
+
+ /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
+ if (rem_128[127 & DIGIT(arg,0)] == 1) {
+ return MP_OKAY;
+ }
+
+ /* Next check mod 105 (3*5*7) */
+ if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
+ return res;
+ }
+ if (rem_105[c] == 1) {
+ return MP_OKAY;
+ }
+
+
+ if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
+ return res;
+ }
+ if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
+ goto ERR;
+ }
+ r = mp_get_int(&t);
+ /* Check for other prime modules, note it's not an ERROR but we must
+ * free "t" so the easiest way is to goto ERR. We know that res
+ * is already equal to MP_OKAY from the mp_mod call
+ */
+ if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
+ if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
+ if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
+ if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
+ if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
+ if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
+ if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
+
+ /* Final check - is sqr(sqrt(arg)) == arg ? */
+ if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
+ERR:mp_clear(&t);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_jacobi.c b/libtommath/bn_mp_jacobi.c
new file mode 100644
index 0000000..74cbbf3
--- /dev/null
+++ b/libtommath/bn_mp_jacobi.c
@@ -0,0 +1,101 @@
+#include <tommath.h>
+#ifdef BN_MP_JACOBI_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes the jacobi c = (a | n) (or Legendre if n is prime)
+ * HAC pp. 73 Algorithm 2.149
+ */
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
+{
+ mp_int a1, p1;
+ int k, s, r, res;
+ mp_digit residue;
+
+ /* if p <= 0 return MP_VAL */
+ if (mp_cmp_d(p, 0) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* step 1. if a == 0, return 0 */
+ if (mp_iszero (a) == 1) {
+ *c = 0;
+ return MP_OKAY;
+ }
+
+ /* step 2. if a == 1, return 1 */
+ if (mp_cmp_d (a, 1) == MP_EQ) {
+ *c = 1;
+ return MP_OKAY;
+ }
+
+ /* default */
+ s = 0;
+
+ /* step 3. write a = a1 * 2**k */
+ if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&p1)) != MP_OKAY) {
+ goto LBL_A1;
+ }
+
+ /* divide out larger power of two */
+ k = mp_cnt_lsb(&a1);
+ if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
+ goto LBL_P1;
+ }
+
+ /* step 4. if e is even set s=1 */
+ if ((k & 1) == 0) {
+ s = 1;
+ } else {
+ /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
+ residue = p->dp[0] & 7;
+
+ if (residue == 1 || residue == 7) {
+ s = 1;
+ } else if (residue == 3 || residue == 5) {
+ s = -1;
+ }
+ }
+
+ /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+ if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
+ s = -s;
+ }
+
+ /* if a1 == 1 we're done */
+ if (mp_cmp_d (&a1, 1) == MP_EQ) {
+ *c = s;
+ } else {
+ /* n1 = n mod a1 */
+ if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
+ goto LBL_P1;
+ }
+ if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
+ goto LBL_P1;
+ }
+ *c = s * r;
+ }
+
+ /* done */
+ res = MP_OKAY;
+LBL_P1:mp_clear (&p1);
+LBL_A1:mp_clear (&a1);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_karatsuba_mul.c b/libtommath/bn_mp_karatsuba_mul.c
new file mode 100644
index 0000000..daa78c7
--- /dev/null
+++ b/libtommath/bn_mp_karatsuba_mul.c
@@ -0,0 +1,163 @@
+#include <tommath.h>
+#ifdef BN_MP_KARATSUBA_MUL_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* c = |a| * |b| using Karatsuba Multiplication using
+ * three half size multiplications
+ *
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and
+ * let n represent half of the number of digits in
+ * the min(a,b)
+ *
+ * a = a1 * B**n + a0
+ * b = b1 * B**n + b0
+ *
+ * Then, a * b =>
+ a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
+ *
+ * Note that a1b1 and a0b0 are used twice and only need to be
+ * computed once. So in total three half size (half # of
+ * digit) multiplications are performed, a0b0, a1b1 and
+ * (a1-b1)(a0-b0)
+ *
+ * Note that a multiplication of half the digits requires
+ * 1/4th the number of single precision multiplications so in
+ * total after one call 25% of the single precision multiplications
+ * are saved. Note also that the call to mp_mul can end up back
+ * in this function if the a0, a1, b0, or b1 are above the threshold.
+ * This is known as divide-and-conquer and leads to the famous
+ * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
+ * the standard O(N**2) that the baseline/comba methods use.
+ * Generally though the overhead of this method doesn't pay off
+ * until a certain size (N ~ 80) is reached.
+ */
+int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
+ int B, err;
+
+ /* default the return code to an error */
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = MIN (a->used, b->used);
+
+ /* now divide in two */
+ B = B >> 1;
+
+ /* init copy all the temps */
+ if (mp_init_size (&x0, B) != MP_OKAY)
+ goto ERR;
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+ goto X0;
+ if (mp_init_size (&y0, B) != MP_OKAY)
+ goto X1;
+ if (mp_init_size (&y1, b->used - B) != MP_OKAY)
+ goto Y0;
+
+ /* init temps */
+ if (mp_init_size (&t1, B * 2) != MP_OKAY)
+ goto Y1;
+ if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
+ goto T1;
+ if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
+ goto X0Y0;
+
+ /* now shift the digits */
+ x0.used = y0.used = B;
+ x1.used = a->used - B;
+ y1.used = b->used - B;
+
+ {
+ register int x;
+ register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+
+ /* we copy the digits directly instead of using higher level functions
+ * since we also need to shift the digits
+ */
+ tmpa = a->dp;
+ tmpb = b->dp;
+
+ tmpx = x0.dp;
+ tmpy = y0.dp;
+ for (x = 0; x < B; x++) {
+ *tmpx++ = *tmpa++;
+ *tmpy++ = *tmpb++;
+ }
+
+ tmpx = x1.dp;
+ for (x = B; x < a->used; x++) {
+ *tmpx++ = *tmpa++;
+ }
+
+ tmpy = y1.dp;
+ for (x = B; x < b->used; x++) {
+ *tmpy++ = *tmpb++;
+ }
+ }
+
+ /* only need to clamp the lower words since by definition the
+ * upper words x1/y1 must have a known number of digits
+ */
+ mp_clamp (&x0);
+ mp_clamp (&y0);
+
+ /* now calc the products x0y0 and x1y1 */
+ /* after this x0 is no longer required, free temp [x0==t2]! */
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
+ goto X1Y1; /* x0y0 = x0*y0 */
+ if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
+ goto X1Y1; /* x1y1 = x1*y1 */
+
+ /* now calc x1-x0 and y1-y0 */
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x1 - x0 */
+ if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
+ goto X1Y1; /* t2 = y1 - y0 */
+ if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
+
+ /* add x0y0 */
+ if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
+ goto X1Y1; /* t2 = x0y0 + x1y1 */
+ if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+
+ /* shift by B */
+ if (mp_lshd (&t1, B) != MP_OKAY)
+ goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+ if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
+ goto X1Y1; /* x1y1 = x1y1 << 2*B */
+
+ if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + t1 */
+ if (mp_add (&t1, &x1y1, c) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
+
+ /* Algorithm succeeded set the return code to MP_OKAY */
+ err = MP_OKAY;
+
+X1Y1:mp_clear (&x1y1);
+X0Y0:mp_clear (&x0y0);
+T1:mp_clear (&t1);
+Y1:mp_clear (&y1);
+Y0:mp_clear (&y0);
+X1:mp_clear (&x1);
+X0:mp_clear (&x0);
+ERR:
+ return err;
+}
+#endif
diff --git a/libtommath/bn_mp_karatsuba_sqr.c b/libtommath/bn_mp_karatsuba_sqr.c
new file mode 100644
index 0000000..315ceab
--- /dev/null
+++ b/libtommath/bn_mp_karatsuba_sqr.c
@@ -0,0 +1,117 @@
+#include <tommath.h>
+#ifdef BN_MP_KARATSUBA_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Karatsuba squaring, computes b = a*a using three
+ * half size squarings
+ *
+ * See comments of karatsuba_mul for details. It
+ * is essentially the same algorithm but merely
+ * tuned to perform recursive squarings.
+ */
+int mp_karatsuba_sqr (mp_int * a, mp_int * b)
+{
+ mp_int x0, x1, t1, t2, x0x0, x1x1;
+ int B, err;
+
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = a->used;
+
+ /* now divide in two */
+ B = B >> 1;
+
+ /* init copy all the temps */
+ if (mp_init_size (&x0, B) != MP_OKAY)
+ goto ERR;
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+ goto X0;
+
+ /* init temps */
+ if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
+ goto X1;
+ if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
+ goto T1;
+ if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
+ goto T2;
+ if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
+ goto X0X0;
+
+ {
+ register int x;
+ register mp_digit *dst, *src;
+
+ src = a->dp;
+
+ /* now shift the digits */
+ dst = x0.dp;
+ for (x = 0; x < B; x++) {
+ *dst++ = *src++;
+ }
+
+ dst = x1.dp;
+ for (x = B; x < a->used; x++) {
+ *dst++ = *src++;
+ }
+ }
+
+ x0.used = B;
+ x1.used = a->used - B;
+
+ mp_clamp (&x0);
+
+ /* now calc the products x0*x0 and x1*x1 */
+ if (mp_sqr (&x0, &x0x0) != MP_OKAY)
+ goto X1X1; /* x0x0 = x0*x0 */
+ if (mp_sqr (&x1, &x1x1) != MP_OKAY)
+ goto X1X1; /* x1x1 = x1*x1 */
+
+ /* now calc (x1-x0)**2 */
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x1 - x0 */
+ if (mp_sqr (&t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
+
+ /* add x0y0 */
+ if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
+ goto X1X1; /* t2 = x0x0 + x1x1 */
+ if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
+
+ /* shift by B */
+ if (mp_lshd (&t1, B) != MP_OKAY)
+ goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
+ if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
+ goto X1X1; /* x1x1 = x1x1 << 2*B */
+
+ if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x0x0 + t1 */
+ if (mp_add (&t1, &x1x1, b) != MP_OKAY)
+ goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
+
+ err = MP_OKAY;
+
+X1X1:mp_clear (&x1x1);
+X0X0:mp_clear (&x0x0);
+T2:mp_clear (&t2);
+T1:mp_clear (&t1);
+X1:mp_clear (&x1);
+X0:mp_clear (&x0);
+ERR:
+ return err;
+}
+#endif
diff --git a/libtommath/bn_mp_lcm.c b/libtommath/bn_mp_lcm.c
new file mode 100644
index 0000000..8e3a759
--- /dev/null
+++ b/libtommath/bn_mp_lcm.c
@@ -0,0 +1,56 @@
+#include <tommath.h>
+#ifdef BN_MP_LCM_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes least common multiple as |a*b|/(a, b) */
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res;
+ mp_int t1, t2;
+
+
+ if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* t1 = get the GCD of the two inputs */
+ if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
+ goto LBL_T;
+ }
+
+ /* divide the smallest by the GCD */
+ if (mp_cmp_mag(a, b) == MP_LT) {
+ /* store quotient in t2 such that t2 * b is the LCM */
+ if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
+ goto LBL_T;
+ }
+ res = mp_mul(b, &t2, c);
+ } else {
+ /* store quotient in t2 such that t2 * a is the LCM */
+ if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
+ goto LBL_T;
+ }
+ res = mp_mul(a, &t2, c);
+ }
+
+ /* fix the sign to positive */
+ c->sign = MP_ZPOS;
+
+LBL_T:
+ mp_clear_multi (&t1, &t2, NULL);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_lshd.c b/libtommath/bn_mp_lshd.c
new file mode 100644
index 0000000..398b648
--- /dev/null
+++ b/libtommath/bn_mp_lshd.c
@@ -0,0 +1,63 @@
+#include <tommath.h>
+#ifdef BN_MP_LSHD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift left a certain amount of digits */
+int mp_lshd (mp_int * a, int b)
+{
+ int x, res;
+
+ /* if its less than zero return */
+ if (b <= 0) {
+ return MP_OKAY;
+ }
+
+ /* grow to fit the new digits */
+ if (a->alloc < a->used + b) {
+ if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ {
+ register mp_digit *top, *bottom;
+
+ /* increment the used by the shift amount then copy upwards */
+ a->used += b;
+
+ /* top */
+ top = a->dp + a->used - 1;
+
+ /* base */
+ bottom = a->dp + a->used - 1 - b;
+
+ /* much like mp_rshd this is implemented using a sliding window
+ * except the window goes the otherway around. Copying from
+ * the bottom to the top. see bn_mp_rshd.c for more info.
+ */
+ for (x = a->used - 1; x >= b; x--) {
+ *top-- = *bottom--;
+ }
+
+ /* zero the lower digits */
+ top = a->dp;
+ for (x = 0; x < b; x++) {
+ *top++ = 0;
+ }
+ }
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_mod.c b/libtommath/bn_mp_mod.c
new file mode 100644
index 0000000..75779bb
--- /dev/null
+++ b/libtommath/bn_mp_mod.c
@@ -0,0 +1,44 @@
+#include <tommath.h>
+#ifdef BN_MP_MOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* c = a mod b, 0 <= c < b */
+int
+mp_mod (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int t;
+ int res;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ if (t.sign != b->sign) {
+ res = mp_add (b, &t, c);
+ } else {
+ res = MP_OKAY;
+ mp_exch (&t, c);
+ }
+
+ mp_clear (&t);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_mod_2d.c b/libtommath/bn_mp_mod_2d.c
new file mode 100644
index 0000000..589e4ba
--- /dev/null
+++ b/libtommath/bn_mp_mod_2d.c
@@ -0,0 +1,51 @@
+#include <tommath.h>
+#ifdef BN_MP_MOD_2D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* calc a value mod 2**b */
+int
+mp_mod_2d (mp_int * a, int b, mp_int * c)
+{
+ int x, res;
+
+ /* if b is <= 0 then zero the int */
+ if (b <= 0) {
+ mp_zero (c);
+ return MP_OKAY;
+ }
+
+ /* if the modulus is larger than the value than return */
+ if (b >= (int) (a->used * DIGIT_BIT)) {
+ res = mp_copy (a, c);
+ return res;
+ }
+
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ return res;
+ }
+
+ /* zero digits above the last digit of the modulus */
+ for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
+ c->dp[x] = 0;
+ }
+ /* clear the digit that is not completely outside/inside the modulus */
+ c->dp[b / DIGIT_BIT] &=
+ (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_mod_d.c b/libtommath/bn_mp_mod_d.c
new file mode 100644
index 0000000..8a2ad24
--- /dev/null
+++ b/libtommath/bn_mp_mod_d.c
@@ -0,0 +1,23 @@
+#include <tommath.h>
+#ifdef BN_MP_MOD_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+int
+mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
+{
+ return mp_div_d(a, b, NULL, c);
+}
+#endif
diff --git a/libtommath/bn_mp_montgomery_calc_normalization.c b/libtommath/bn_mp_montgomery_calc_normalization.c
new file mode 100644
index 0000000..0a760cf
--- /dev/null
+++ b/libtommath/bn_mp_montgomery_calc_normalization.c
@@ -0,0 +1,56 @@
+#include <tommath.h>
+#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/*
+ * shifts with subtractions when the result is greater than b.
+ *
+ * The method is slightly modified to shift B unconditionally upto just under
+ * the leading bit of b. This saves alot of multiple precision shifting.
+ */
+int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
+{
+ int x, bits, res;
+
+ /* how many bits of last digit does b use */
+ bits = mp_count_bits (b) % DIGIT_BIT;
+
+
+ if (b->used > 1) {
+ if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
+ return res;
+ }
+ } else {
+ mp_set(a, 1);
+ bits = 1;
+ }
+
+
+ /* now compute C = A * B mod b */
+ for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
+ if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
+ return res;
+ }
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
+ return res;
+ }
+ }
+ }
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_montgomery_reduce.c b/libtommath/bn_mp_montgomery_reduce.c
new file mode 100644
index 0000000..3095fa7
--- /dev/null
+++ b/libtommath/bn_mp_montgomery_reduce.c
@@ -0,0 +1,114 @@
+#include <tommath.h>
+#ifdef BN_MP_MONTGOMERY_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes xR**-1 == x (mod N) via Montgomery Reduction */
+int
+mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+{
+ int ix, res, digs;
+ mp_digit mu;
+
+ /* can the fast reduction [comba] method be used?
+ *
+ * Note that unlike in mul you're safely allowed *less*
+ * than the available columns [255 per default] since carries
+ * are fixed up in the inner loop.
+ */
+ digs = n->used * 2 + 1;
+ if ((digs < MP_WARRAY) &&
+ n->used <
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_mp_montgomery_reduce (x, n, rho);
+ }
+
+ /* grow the input as required */
+ if (x->alloc < digs) {
+ if ((res = mp_grow (x, digs)) != MP_OKAY) {
+ return res;
+ }
+ }
+ x->used = digs;
+
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * rho mod b
+ *
+ * The value of rho must be precalculated via
+ * montgomery_setup() such that
+ * it equals -1/n0 mod b this allows the
+ * following inner loop to reduce the
+ * input one digit at a time
+ */
+ mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+
+ /* a = a + mu * m * b**i */
+ {
+ register int iy;
+ register mp_digit *tmpn, *tmpx, u;
+ register mp_word r;
+
+ /* alias for digits of the modulus */
+ tmpn = n->dp;
+
+ /* alias for the digits of x [the input] */
+ tmpx = x->dp + ix;
+
+ /* set the carry to zero */
+ u = 0;
+
+ /* Multiply and add in place */
+ for (iy = 0; iy < n->used; iy++) {
+ /* compute product and sum */
+ r = ((mp_word)mu) * ((mp_word)*tmpn++) +
+ ((mp_word) u) + ((mp_word) * tmpx);
+
+ /* get carry */
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+ /* fix digit */
+ *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
+ }
+ /* At this point the ix'th digit of x should be zero */
+
+
+ /* propagate carries upwards as required*/
+ while (u) {
+ *tmpx += u;
+ u = *tmpx >> DIGIT_BIT;
+ *tmpx++ &= MP_MASK;
+ }
+ }
+ }
+
+ /* at this point the n.used'th least
+ * significant digits of x are all zero
+ * which means we can shift x to the
+ * right by n.used digits and the
+ * residue is unchanged.
+ */
+
+ /* x = x/b**n.used */
+ mp_clamp(x);
+ mp_rshd (x, n->used);
+
+ /* if x >= n then x = x - n */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
+ }
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_montgomery_setup.c b/libtommath/bn_mp_montgomery_setup.c
new file mode 100644
index 0000000..9dfc087
--- /dev/null
+++ b/libtommath/bn_mp_montgomery_setup.c
@@ -0,0 +1,55 @@
+#include <tommath.h>
+#ifdef BN_MP_MONTGOMERY_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* setups the montgomery reduction stuff */
+int
+mp_montgomery_setup (mp_int * n, mp_digit * rho)
+{
+ mp_digit x, b;
+
+/* fast inversion mod 2**k
+ *
+ * Based on the fact that
+ *
+ * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
+ * => 2*X*A - X*X*A*A = 1
+ * => 2*(1) - (1) = 1
+ */
+ b = n->dp[0];
+
+ if ((b & 1) == 0) {
+ return MP_VAL;
+ }
+
+ x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**8 */
+#if !defined(MP_8BIT)
+ x *= 2 - b * x; /* here x*a==1 mod 2**16 */
+#endif
+#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
+ x *= 2 - b * x; /* here x*a==1 mod 2**32 */
+#endif
+#ifdef MP_64BIT
+ x *= 2 - b * x; /* here x*a==1 mod 2**64 */
+#endif
+
+ /* rho = -1/m mod b */
+ *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_mul.c b/libtommath/bn_mp_mul.c
new file mode 100644
index 0000000..f9cfa09
--- /dev/null
+++ b/libtommath/bn_mp_mul.c
@@ -0,0 +1,62 @@
+#include <tommath.h>
+#ifdef BN_MP_MUL_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* high level multiplication (handles sign) */
+int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, neg;
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+
+ /* use Toom-Cook? */
+#ifdef BN_MP_TOOM_MUL_C
+ if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
+ res = mp_toom_mul(a, b, c);
+ } else
+#endif
+#ifdef BN_MP_KARATSUBA_MUL_C
+ /* use Karatsuba? */
+ if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
+ res = mp_karatsuba_mul (a, b, c);
+ } else
+#endif
+ {
+ /* can we use the fast multiplier?
+ *
+ * The fast multiplier can be used if the output will
+ * have less than MP_WARRAY digits and the number of
+ * digits won't affect carry propagation
+ */
+ int digs = a->used + b->used + 1;
+
+#ifdef BN_FAST_S_MP_MUL_DIGS_C
+ if ((digs < MP_WARRAY) &&
+ MIN(a->used, b->used) <=
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ res = fast_s_mp_mul_digs (a, b, c, digs);
+ } else
+#endif
+#ifdef BN_S_MP_MUL_DIGS_C
+ res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
+#else
+ res = MP_VAL;
+#endif
+
+ }
+ c->sign = (c->used > 0) ? neg : MP_ZPOS;
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_mul_2.c b/libtommath/bn_mp_mul_2.c
new file mode 100644
index 0000000..6936681
--- /dev/null
+++ b/libtommath/bn_mp_mul_2.c
@@ -0,0 +1,78 @@
+#include <tommath.h>
+#ifdef BN_MP_MUL_2_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = a*2 */
+int mp_mul_2(mp_int * a, mp_int * b)
+{
+ int x, res, oldused;
+
+ /* grow to accomodate result */
+ if (b->alloc < a->used + 1) {
+ if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ oldused = b->used;
+ b->used = a->used;
+
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ /* alias for source */
+ tmpa = a->dp;
+
+ /* alias for dest */
+ tmpb = b->dp;
+
+ /* carry */
+ r = 0;
+ for (x = 0; x < a->used; x++) {
+
+ /* get what will be the *next* carry bit from the
+ * MSB of the current digit
+ */
+ rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
+
+ /* now shift up this digit, add in the carry [from the previous] */
+ *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
+
+ /* copy the carry that would be from the source
+ * digit into the next iteration
+ */
+ r = rr;
+ }
+
+ /* new leading digit? */
+ if (r != 0) {
+ /* add a MSB which is always 1 at this point */
+ *tmpb = 1;
+ ++(b->used);
+ }
+
+ /* now zero any excess digits on the destination
+ * that we didn't write to
+ */
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_mul_2d.c b/libtommath/bn_mp_mul_2d.c
new file mode 100644
index 0000000..04cb8dd
--- /dev/null
+++ b/libtommath/bn_mp_mul_2d.c
@@ -0,0 +1,81 @@
+#include <tommath.h>
+#ifdef BN_MP_MUL_2D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift left by a certain bit count */
+int mp_mul_2d (mp_int * a, int b, mp_int * c)
+{
+ mp_digit d;
+ int res;
+
+ /* copy */
+ if (a != c) {
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
+ if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* shift by as many digits in the bit count */
+ if (b >= (int)DIGIT_BIT) {
+ if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* shift any bit count < DIGIT_BIT */
+ d = (mp_digit) (b % DIGIT_BIT);
+ if (d != 0) {
+ register mp_digit *tmpc, shift, mask, r, rr;
+ register int x;
+
+ /* bitmask for carries */
+ mask = (((mp_digit)1) << d) - 1;
+
+ /* shift for msbs */
+ shift = DIGIT_BIT - d;
+
+ /* alias */
+ tmpc = c->dp;
+
+ /* carry */
+ r = 0;
+ for (x = 0; x < c->used; x++) {
+ /* get the higher bits of the current word */
+ rr = (*tmpc >> shift) & mask;
+
+ /* shift the current word and OR in the carry */
+ *tmpc = ((*tmpc << d) | r) & MP_MASK;
+ ++tmpc;
+
+ /* set the carry to the carry bits of the current word */
+ r = rr;
+ }
+
+ /* set final carry */
+ if (r != 0) {
+ c->dp[(c->used)++] = r;
+ }
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_mul_d.c b/libtommath/bn_mp_mul_d.c
new file mode 100644
index 0000000..f936361
--- /dev/null
+++ b/libtommath/bn_mp_mul_d.c
@@ -0,0 +1,74 @@
+#include <tommath.h>
+#ifdef BN_MP_MUL_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiply by a digit */
+int
+mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_digit u, *tmpa, *tmpc;
+ mp_word r;
+ int ix, res, olduse;
+
+ /* make sure c is big enough to hold a*b */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* get the original destinations used count */
+ olduse = c->used;
+
+ /* set the sign */
+ c->sign = a->sign;
+
+ /* alias for a->dp [source] */
+ tmpa = a->dp;
+
+ /* alias for c->dp [dest] */
+ tmpc = c->dp;
+
+ /* zero carry */
+ u = 0;
+
+ /* compute columns */
+ for (ix = 0; ix < a->used; ix++) {
+ /* compute product and carry sum for this term */
+ r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+
+ /* mask off higher bits to get a single digit */
+ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* send carry into next iteration */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+
+ /* store final carry [if any] */
+ *tmpc++ = u;
+
+ /* now zero digits above the top */
+ while (ix++ < olduse) {
+ *tmpc++ = 0;
+ }
+
+ /* set used count */
+ c->used = a->used + 1;
+ mp_clamp(c);
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_mulmod.c b/libtommath/bn_mp_mulmod.c
new file mode 100644
index 0000000..d34e90a
--- /dev/null
+++ b/libtommath/bn_mp_mulmod.c
@@ -0,0 +1,37 @@
+#include <tommath.h>
+#ifdef BN_MP_MULMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* d = a * b (mod c) */
+int
+mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_n_root.c b/libtommath/bn_mp_n_root.c
new file mode 100644
index 0000000..7b11aa2
--- /dev/null
+++ b/libtommath/bn_mp_n_root.c
@@ -0,0 +1,128 @@
+#include <tommath.h>
+#ifdef BN_MP_N_ROOT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* find the n'th root of an integer
+ *
+ * Result found such that (c)**b <= a and (c+1)**b > a
+ *
+ * This algorithm uses Newton's approximation
+ * x[i+1] = x[i] - f(x[i])/f'(x[i])
+ * which will find the root in log(N) time where
+ * each step involves a fair bit. This is not meant to
+ * find huge roots [square and cube, etc].
+ */
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_int t1, t2, t3;
+ int res, neg;
+
+ /* input must be positive if b is even */
+ if ((b & 1) == 0 && a->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ if ((res = mp_init (&t1)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ goto LBL_T1;
+ }
+
+ if ((res = mp_init (&t3)) != MP_OKAY) {
+ goto LBL_T2;
+ }
+
+ /* if a is negative fudge the sign but keep track */
+ neg = a->sign;
+ a->sign = MP_ZPOS;
+
+ /* t2 = 2 */
+ mp_set (&t2, 2);
+
+ do {
+ /* t1 = t2 */
+ if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
+
+ /* t3 = t1**(b-1) */
+ if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* numerator */
+ /* t2 = t1**b */
+ if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* t2 = t1**b - a */
+ if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* denominator */
+ /* t3 = t1**(b-1) * b */
+ if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* t3 = (t1**b - a)/(b * t1**(b-1)) */
+ if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+ } while (mp_cmp (&t1, &t2) != MP_EQ);
+
+ /* result can be off by a few so check */
+ for (;;) {
+ if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ if (mp_cmp (&t2, a) == MP_GT) {
+ if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+ } else {
+ break;
+ }
+ }
+
+ /* reset the sign of a first */
+ a->sign = neg;
+
+ /* set the result */
+ mp_exch (&t1, c);
+
+ /* set the sign of the result */
+ c->sign = neg;
+
+ res = MP_OKAY;
+
+LBL_T3:mp_clear (&t3);
+LBL_T2:mp_clear (&t2);
+LBL_T1:mp_clear (&t1);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_neg.c b/libtommath/bn_mp_neg.c
new file mode 100644
index 0000000..3a991db
--- /dev/null
+++ b/libtommath/bn_mp_neg.c
@@ -0,0 +1,30 @@
+#include <tommath.h>
+#ifdef BN_MP_NEG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = -a */
+int mp_neg (mp_int * a, mp_int * b)
+{
+ int res;
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
+ return res;
+ }
+ if (mp_iszero(b) != MP_YES) {
+ b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+ }
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_or.c b/libtommath/bn_mp_or.c
new file mode 100644
index 0000000..dccee7e
--- /dev/null
+++ b/libtommath/bn_mp_or.c
@@ -0,0 +1,46 @@
+#include <tommath.h>
+#ifdef BN_MP_OR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* OR two ints together */
+int mp_or (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] |= x->dp[ix];
+ }
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_prime_fermat.c b/libtommath/bn_mp_prime_fermat.c
new file mode 100644
index 0000000..fd74dbe
--- /dev/null
+++ b/libtommath/bn_mp_prime_fermat.c
@@ -0,0 +1,58 @@
+#include <tommath.h>
+#ifdef BN_MP_PRIME_FERMAT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* performs one Fermat test.
+ *
+ * If "a" were prime then b**a == b (mod a) since the order of
+ * the multiplicative sub-group would be phi(a) = a-1. That means
+ * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
+ *
+ * Sets result to 1 if the congruence holds, or zero otherwise.
+ */
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+{
+ mp_int t;
+ int err;
+
+ /* default to composite */
+ *result = MP_NO;
+
+ /* ensure b > 1 */
+ if (mp_cmp_d(b, 1) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* init t */
+ if ((err = mp_init (&t)) != MP_OKAY) {
+ return err;
+ }
+
+ /* compute t = b**a mod a */
+ if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
+ goto LBL_T;
+ }
+
+ /* is it equal to b? */
+ if (mp_cmp (&t, b) == MP_EQ) {
+ *result = MP_YES;
+ }
+
+ err = MP_OKAY;
+LBL_T:mp_clear (&t);
+ return err;
+}
+#endif
diff --git a/libtommath/bn_mp_prime_is_divisible.c b/libtommath/bn_mp_prime_is_divisible.c
new file mode 100644
index 0000000..f85fe7c
--- /dev/null
+++ b/libtommath/bn_mp_prime_is_divisible.c
@@ -0,0 +1,46 @@
+#include <tommath.h>
+#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines if an integers is divisible by one
+ * of the first PRIME_SIZE primes or not
+ *
+ * sets result to 0 if not, 1 if yes
+ */
+int mp_prime_is_divisible (mp_int * a, int *result)
+{
+ int err, ix;
+ mp_digit res;
+
+ /* default to not */
+ *result = MP_NO;
+
+ for (ix = 0; ix < PRIME_SIZE; ix++) {
+ /* what is a mod LBL_prime_tab[ix] */
+ if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
+ return err;
+ }
+
+ /* is the residue zero? */
+ if (res == 0) {
+ *result = MP_YES;
+ return MP_OKAY;
+ }
+ }
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_prime_is_prime.c b/libtommath/bn_mp_prime_is_prime.c
new file mode 100644
index 0000000..188053a
--- /dev/null
+++ b/libtommath/bn_mp_prime_is_prime.c
@@ -0,0 +1,79 @@
+#include <tommath.h>
+#ifdef BN_MP_PRIME_IS_PRIME_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* performs a variable number of rounds of Miller-Rabin
+ *
+ * Probability of error after t rounds is no more than
+
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int mp_prime_is_prime (mp_int * a, int t, int *result)
+{
+ mp_int b;
+ int ix, err, res;
+
+ /* default to no */
+ *result = MP_NO;
+
+ /* valid value of t? */
+ if (t <= 0 || t > PRIME_SIZE) {
+ return MP_VAL;
+ }
+
+ /* is the input equal to one of the primes in the table? */
+ for (ix = 0; ix < PRIME_SIZE; ix++) {
+ if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
+ *result = 1;
+ return MP_OKAY;
+ }
+ }
+
+ /* first perform trial division */
+ if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
+ return err;
+ }
+
+ /* return if it was trivially divisible */
+ if (res == MP_YES) {
+ return MP_OKAY;
+ }
+
+ /* now perform the miller-rabin rounds */
+ if ((err = mp_init (&b)) != MP_OKAY) {
+ return err;
+ }
+
+ for (ix = 0; ix < t; ix++) {
+ /* set the prime */
+ mp_set (&b, ltm_prime_tab[ix]);
+
+ if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
+
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
+ }
+
+ /* passed the test */
+ *result = MP_YES;
+LBL_B:mp_clear (&b);
+ return err;
+}
+#endif
diff --git a/libtommath/bn_mp_prime_miller_rabin.c b/libtommath/bn_mp_prime_miller_rabin.c
new file mode 100644
index 0000000..758a2c3
--- /dev/null
+++ b/libtommath/bn_mp_prime_miller_rabin.c
@@ -0,0 +1,99 @@
+#include <tommath.h>
+#ifdef BN_MP_PRIME_MILLER_RABIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Miller-Rabin test of "a" to the base of "b" as described in
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often
+ * very much lower.
+ */
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+{
+ mp_int n1, y, r;
+ int s, j, err;
+
+ /* default */
+ *result = MP_NO;
+
+ /* ensure b > 1 */
+ if (mp_cmp_d(b, 1) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* get n1 = a - 1 */
+ if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
+ goto LBL_N1;
+ }
+
+ /* set 2**s * r = n1 */
+ if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
+ goto LBL_N1;
+ }
+
+ /* count the number of least significant bits
+ * which are zero
+ */
+ s = mp_cnt_lsb(&r);
+
+ /* now divide n - 1 by 2**s */
+ if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
+ goto LBL_R;
+ }
+
+ /* compute y = b**r mod a */
+ if ((err = mp_init (&y)) != MP_OKAY) {
+ goto LBL_R;
+ }
+ if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if y != 1 and y != n1 do */
+ if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
+ j = 1;
+ /* while j <= s-1 and y != n1 */
+ while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
+ if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if y == 1 then composite */
+ if (mp_cmp_d (&y, 1) == MP_EQ) {
+ goto LBL_Y;
+ }
+
+ ++j;
+ }
+
+ /* if y != n1 then composite */
+ if (mp_cmp (&y, &n1) != MP_EQ) {
+ goto LBL_Y;
+ }
+ }
+
+ /* probably prime now */
+ *result = MP_YES;
+LBL_Y:mp_clear (&y);
+LBL_R:mp_clear (&r);
+LBL_N1:mp_clear (&n1);
+ return err;
+}
+#endif
diff --git a/libtommath/bn_mp_prime_next_prime.c b/libtommath/bn_mp_prime_next_prime.c
new file mode 100644
index 0000000..24f93c4
--- /dev/null
+++ b/libtommath/bn_mp_prime_next_prime.c
@@ -0,0 +1,166 @@
+#include <tommath.h>
+#ifdef BN_MP_PRIME_NEXT_PRIME_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
+ */
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
+{
+ int err, res, x, y;
+ mp_digit res_tab[PRIME_SIZE], step, kstep;
+ mp_int b;
+
+ /* ensure t is valid */
+ if (t <= 0 || t > PRIME_SIZE) {
+ return MP_VAL;
+ }
+
+ /* force positive */
+ a->sign = MP_ZPOS;
+
+ /* simple algo if a is less than the largest prime in the table */
+ if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
+ /* find which prime it is bigger than */
+ for (x = PRIME_SIZE - 2; x >= 0; x--) {
+ if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
+ if (bbs_style == 1) {
+ /* ok we found a prime smaller or
+ * equal [so the next is larger]
+ *
+ * however, the prime must be
+ * congruent to 3 mod 4
+ */
+ if ((ltm_prime_tab[x + 1] & 3) != 3) {
+ /* scan upwards for a prime congruent to 3 mod 4 */
+ for (y = x + 1; y < PRIME_SIZE; y++) {
+ if ((ltm_prime_tab[y] & 3) == 3) {
+ mp_set(a, ltm_prime_tab[y]);
+ return MP_OKAY;
+ }
+ }
+ }
+ } else {
+ mp_set(a, ltm_prime_tab[x + 1]);
+ return MP_OKAY;
+ }
+ }
+ }
+ /* at this point a maybe 1 */
+ if (mp_cmp_d(a, 1) == MP_EQ) {
+ mp_set(a, 2);
+ return MP_OKAY;
+ }
+ /* fall through to the sieve */
+ }
+
+ /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
+ if (bbs_style == 1) {
+ kstep = 4;
+ } else {
+ kstep = 2;
+ }
+
+ /* at this point we will use a combination of a sieve and Miller-Rabin */
+
+ if (bbs_style == 1) {
+ /* if a mod 4 != 3 subtract the correct value to make it so */
+ if ((a->dp[0] & 3) != 3) {
+ if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
+ }
+ } else {
+ if (mp_iseven(a) == 1) {
+ /* force odd */
+ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
+ return err;
+ }
+ }
+ }
+
+ /* generate the restable */
+ for (x = 1; x < PRIME_SIZE; x++) {
+ if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ /* init temp used for Miller-Rabin Testing */
+ if ((err = mp_init(&b)) != MP_OKAY) {
+ return err;
+ }
+
+ for (;;) {
+ /* skip to the next non-trivially divisible candidate */
+ step = 0;
+ do {
+ /* y == 1 if any residue was zero [e.g. cannot be prime] */
+ y = 0;
+
+ /* increase step to next candidate */
+ step += kstep;
+
+ /* compute the new residue without using division */
+ for (x = 1; x < PRIME_SIZE; x++) {
+ /* add the step to each residue */
+ res_tab[x] += kstep;
+
+ /* subtract the modulus [instead of using division] */
+ if (res_tab[x] >= ltm_prime_tab[x]) {
+ res_tab[x] -= ltm_prime_tab[x];
+ }
+
+ /* set flag if zero */
+ if (res_tab[x] == 0) {
+ y = 1;
+ }
+ }
+ } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
+
+ /* add the step */
+ if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* if didn't pass sieve and step == MAX then skip test */
+ if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
+ continue;
+ }
+
+ /* is this prime? */
+ for (x = 0; x < t; x++) {
+ mp_set(&b, ltm_prime_tab[t]);
+ if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if (res == MP_NO) {
+ break;
+ }
+ }
+
+ if (res == MP_YES) {
+ break;
+ }
+ }
+
+ err = MP_OKAY;
+LBL_ERR:
+ mp_clear(&b);
+ return err;
+}
+
+#endif
diff --git a/libtommath/bn_mp_prime_rabin_miller_trials.c b/libtommath/bn_mp_prime_rabin_miller_trials.c
new file mode 100644
index 0000000..d1d0867
--- /dev/null
+++ b/libtommath/bn_mp_prime_rabin_miller_trials.c
@@ -0,0 +1,48 @@
+#include <tommath.h>
+#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+
+static const struct {
+ int k, t;
+} sizes[] = {
+{ 128, 28 },
+{ 256, 16 },
+{ 384, 10 },
+{ 512, 7 },
+{ 640, 6 },
+{ 768, 5 },
+{ 896, 4 },
+{ 1024, 4 }
+};
+
+/* returns # of RM trials required for a given bit size */
+int mp_prime_rabin_miller_trials(int size)
+{
+ int x;
+
+ for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
+ if (sizes[x].k == size) {
+ return sizes[x].t;
+ } else if (sizes[x].k > size) {
+ return (x == 0) ? sizes[0].t : sizes[x - 1].t;
+ }
+ }
+ return sizes[x-1].t + 1;
+}
+
+
+#endif
diff --git a/libtommath/bn_mp_prime_random_ex.c b/libtommath/bn_mp_prime_random_ex.c
new file mode 100644
index 0000000..2010ebe
--- /dev/null
+++ b/libtommath/bn_mp_prime_random_ex.c
@@ -0,0 +1,123 @@
+#include <tommath.h>
+#ifdef BN_MP_PRIME_RANDOM_EX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* makes a truly random prime of a given size (bits),
+ *
+ * Flags are as follows:
+ *
+ * LTM_PRIME_BBS - make prime congruent to 3 mod 4
+ * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
+ * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
+ * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ */
+
+/* This is possibly the mother of all prime generation functions, muahahahahaha! */
+int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
+{
+ unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
+ int res, err, bsize, maskOR_msb_offset;
+
+ /* sanity check the input */
+ if (size <= 1 || t <= 0) {
+ return MP_VAL;
+ }
+
+ /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
+ if (flags & LTM_PRIME_SAFE) {
+ flags |= LTM_PRIME_BBS;
+ }
+
+ /* calc the byte size */
+ bsize = (size>>3) + ((size&7)?1:0);
+
+ /* we need a buffer of bsize bytes */
+ tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
+ if (tmp == NULL) {
+ return MP_MEM;
+ }
+
+ /* calc the maskAND value for the MSbyte*/
+ maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
+
+ /* calc the maskOR_msb */
+ maskOR_msb = 0;
+ maskOR_msb_offset = (size - 2) >> 3;
+ if (flags & LTM_PRIME_2MSB_ON) {
+ maskOR_msb |= 1 << ((size - 2) & 7);
+ } else if (flags & LTM_PRIME_2MSB_OFF) {
+ maskAND &= ~(1 << ((size - 2) & 7));
+ }
+
+ /* get the maskOR_lsb */
+ maskOR_lsb = 0;
+ if (flags & LTM_PRIME_BBS) {
+ maskOR_lsb |= 3;
+ }
+
+ do {
+ /* read the bytes */
+ if (cb(tmp, bsize, dat) != bsize) {
+ err = MP_VAL;
+ goto error;
+ }
+
+ /* work over the MSbyte */
+ tmp[0] &= maskAND;
+ tmp[0] |= 1 << ((size - 1) & 7);
+
+ /* mix in the maskORs */
+ tmp[maskOR_msb_offset] |= maskOR_msb;
+ tmp[bsize-1] |= maskOR_lsb;
+
+ /* read it in */
+ if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
+
+ /* is it prime? */
+ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
+ if (res == MP_NO) {
+ continue;
+ }
+
+ if (flags & LTM_PRIME_SAFE) {
+ /* see if (a-1)/2 is prime */
+ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
+ if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
+
+ /* is it prime? */
+ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
+ }
+ } while (res == MP_NO);
+
+ if (flags & LTM_PRIME_SAFE) {
+ /* restore a to the original value */
+ if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
+ if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
+ }
+
+ err = MP_OKAY;
+error:
+ XFREE(tmp);
+ return err;
+}
+
+
+#endif
diff --git a/libtommath/bn_mp_radix_size.c b/libtommath/bn_mp_radix_size.c
new file mode 100644
index 0000000..30b78d9
--- /dev/null
+++ b/libtommath/bn_mp_radix_size.c
@@ -0,0 +1,67 @@
+#include <tommath.h>
+#ifdef BN_MP_RADIX_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* returns size of ASCII reprensentation */
+int mp_radix_size (mp_int * a, int radix, int *size)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+
+ *size = 0;
+
+ /* special case for binary */
+ if (radix == 2) {
+ *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
+ return MP_OKAY;
+ }
+
+ /* make sure the radix is in range */
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* init a copy of the input */
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* digs is the digit count */
+ digs = 0;
+
+ /* if it's negative add one for the sign */
+ if (t.sign == MP_NEG) {
+ ++digs;
+ t.sign = MP_ZPOS;
+ }
+
+ /* fetch out all of the digits */
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ ++digs;
+ }
+ mp_clear (&t);
+
+ /* return digs + 1, the 1 is for the NULL byte that would be required. */
+ *size = digs + 1;
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bn_mp_radix_smap.c b/libtommath/bn_mp_radix_smap.c
new file mode 100644
index 0000000..bc7517d
--- /dev/null
+++ b/libtommath/bn_mp_radix_smap.c
@@ -0,0 +1,20 @@
+#include <tommath.h>
+#ifdef BN_MP_RADIX_SMAP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* chars used in radix conversions */
+const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+#endif
diff --git a/libtommath/bn_mp_rand.c b/libtommath/bn_mp_rand.c
new file mode 100644
index 0000000..1cc47f1
--- /dev/null
+++ b/libtommath/bn_mp_rand.c
@@ -0,0 +1,51 @@
+#include <tommath.h>
+#ifdef BN_MP_RAND_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* makes a pseudo-random int of a given size */
+int
+mp_rand (mp_int * a, int digits)
+{
+ int res;
+ mp_digit d;
+
+ mp_zero (a);
+ if (digits <= 0) {
+ return MP_OKAY;
+ }
+
+ /* first place a random non-zero digit */
+ do {
+ d = ((mp_digit) abs (rand ()));
+ } while (d == 0);
+
+ if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
+ return res;
+ }
+
+ while (digits-- > 0) {
+ if ((res = mp_lshd (a, 1)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_read_radix.c b/libtommath/bn_mp_read_radix.c
new file mode 100644
index 0000000..704bd0f
--- /dev/null
+++ b/libtommath/bn_mp_read_radix.c
@@ -0,0 +1,78 @@
+#include <tommath.h>
+#ifdef BN_MP_READ_RADIX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* read a string [ASCII] in a given radix */
+int mp_read_radix (mp_int * a, char *str, int radix)
+{
+ int y, res, neg;
+ char ch;
+
+ /* make sure the radix is ok */
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* if the leading digit is a
+ * minus set the sign to negative.
+ */
+ if (*str == '-') {
+ ++str;
+ neg = MP_NEG;
+ } else {
+ neg = MP_ZPOS;
+ }
+
+ /* set the integer to the default of zero */
+ mp_zero (a);
+
+ /* process each digit of the string */
+ while (*str) {
+ /* if the radix < 36 the conversion is case insensitive
+ * this allows numbers like 1AB and 1ab to represent the same value
+ * [e.g. in hex]
+ */
+ ch = (char) ((radix < 36) ? toupper (*str) : *str);
+ for (y = 0; y < 64; y++) {
+ if (ch == mp_s_rmap[y]) {
+ break;
+ }
+ }
+
+ /* if the char was found in the map
+ * and is less than the given radix add it
+ * to the number, otherwise exit the loop.
+ */
+ if (y < radix) {
+ if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
+ return res;
+ }
+ if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
+ return res;
+ }
+ } else {
+ break;
+ }
+ ++str;
+ }
+
+ /* set the sign only if a != 0 */
+ if (mp_iszero(a) != 1) {
+ a->sign = neg;
+ }
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_read_signed_bin.c b/libtommath/bn_mp_read_signed_bin.c
new file mode 100644
index 0000000..814d6c1
--- /dev/null
+++ b/libtommath/bn_mp_read_signed_bin.c
@@ -0,0 +1,38 @@
+#include <tommath.h>
+#ifdef BN_MP_READ_SIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* read signed bin, big endian, first byte is 0==positive or 1==negative */
+int
+mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
+{
+ int res;
+
+ /* read magnitude */
+ if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* first byte is 0 for positive, non-zero for negative */
+ if (b[0] == 0) {
+ a->sign = MP_ZPOS;
+ } else {
+ a->sign = MP_NEG;
+ }
+
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_read_unsigned_bin.c b/libtommath/bn_mp_read_unsigned_bin.c
new file mode 100644
index 0000000..946457d
--- /dev/null
+++ b/libtommath/bn_mp_read_unsigned_bin.c
@@ -0,0 +1,52 @@
+#include <tommath.h>
+#ifdef BN_MP_READ_UNSIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reads a unsigned char array, assumes the msb is stored first [big endian] */
+int
+mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
+{
+ int res;
+
+ /* make sure there are at least two digits */
+ if (a->alloc < 2) {
+ if ((res = mp_grow(a, 2)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* zero the int */
+ mp_zero (a);
+
+ /* read the bytes in */
+ while (c-- > 0) {
+ if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
+ return res;
+ }
+
+#ifndef MP_8BIT
+ a->dp[0] |= *b++;
+ a->used += 1;
+#else
+ a->dp[0] = (*b & MP_MASK);
+ a->dp[1] |= ((*b++ >> 7U) & 1);
+ a->used += 2;
+#endif
+ }
+ mp_clamp (a);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_reduce.c b/libtommath/bn_mp_reduce.c
new file mode 100644
index 0000000..cfcb55a
--- /dev/null
+++ b/libtommath/bn_mp_reduce.c
@@ -0,0 +1,97 @@
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reduces x mod m, assumes 0 < x < m**2, mu is
+ * precomputed via mp_reduce_setup.
+ * From HAC pp.604 Algorithm 14.42
+ */
+int
+mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+{
+ mp_int q;
+ int res, um = m->used;
+
+ /* q = x */
+ if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
+ return res;
+ }
+
+ /* q1 = x / b**(k-1) */
+ mp_rshd (&q, um - 1);
+
+ /* according to HAC this optimization is ok */
+ if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
+ if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ } else {
+#ifdef BN_S_MP_MUL_HIGH_DIGS_C
+ if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
+ if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+#else
+ {
+ res = MP_VAL;
+ goto CLEANUP;
+ }
+#endif
+ }
+
+ /* q3 = q2 / b**(k+1) */
+ mp_rshd (&q, um + 1);
+
+ /* x = x mod b**(k+1), quick (no division) */
+ if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* q = q * m mod b**(k+1), quick (no division) */
+ if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* x = x - q */
+ if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* If x < 0, add b**(k+1) to it */
+ if (mp_cmp_d (x, 0) == MP_LT) {
+ mp_set (&q, 1);
+ if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+ goto CLEANUP;
+ if ((res = mp_add (x, &q, x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ /* Back off if it's too big */
+ while (mp_cmp (x, m) != MP_LT) {
+ if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ }
+
+CLEANUP:
+ mp_clear (&q);
+
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_reduce_2k.c b/libtommath/bn_mp_reduce_2k.c
new file mode 100644
index 0000000..a5a9c74
--- /dev/null
+++ b/libtommath/bn_mp_reduce_2k.c
@@ -0,0 +1,58 @@
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_2K_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reduces a modulo n where n is of the form 2**p - d */
+int
+mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
+{
+ mp_int q;
+ int p, res;
+
+ if ((res = mp_init(&q)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(n);
+top:
+ /* q = a/2**p, a = a mod 2**p */
+ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (d != 1) {
+ /* q = q * d */
+ if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
+ goto ERR;
+ }
+ }
+
+ /* a = a + q */
+ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (mp_cmp_mag(a, n) != MP_LT) {
+ s_mp_sub(a, n, a);
+ goto top;
+ }
+
+ERR:
+ mp_clear(&q);
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_reduce_2k_setup.c b/libtommath/bn_mp_reduce_2k_setup.c
new file mode 100644
index 0000000..5e1fb6e
--- /dev/null
+++ b/libtommath/bn_mp_reduce_2k_setup.c
@@ -0,0 +1,44 @@
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_2K_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines the setup value */
+int
+mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+{
+ int res, p;
+ mp_int tmp;
+
+ if ((res = mp_init(&tmp)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(a);
+ if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ *d = tmp.dp[0];
+ mp_clear(&tmp);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_reduce_is_2k.c b/libtommath/bn_mp_reduce_is_2k.c
new file mode 100644
index 0000000..fc81397
--- /dev/null
+++ b/libtommath/bn_mp_reduce_is_2k.c
@@ -0,0 +1,48 @@
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_IS_2K_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines if mp_reduce_2k can be used */
+int mp_reduce_is_2k(mp_int *a)
+{
+ int ix, iy, iw;
+ mp_digit iz;
+
+ if (a->used == 0) {
+ return 0;
+ } else if (a->used == 1) {
+ return 1;
+ } else if (a->used > 1) {
+ iy = mp_count_bits(a);
+ iz = 1;
+ iw = 1;
+
+ /* Test every bit from the second digit up, must be 1 */
+ for (ix = DIGIT_BIT; ix < iy; ix++) {
+ if ((a->dp[iw] & iz) == 0) {
+ return 0;
+ }
+ iz <<= 1;
+ if (iz > (mp_digit)MP_MASK) {
+ ++iw;
+ iz = 1;
+ }
+ }
+ }
+ return 1;
+}
+
+#endif
diff --git a/libtommath/bn_mp_reduce_setup.c b/libtommath/bn_mp_reduce_setup.c
new file mode 100644
index 0000000..99f158a
--- /dev/null
+++ b/libtommath/bn_mp_reduce_setup.c
@@ -0,0 +1,30 @@
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* pre-calculate the value required for Barrett reduction
+ * For a given modulus "b" it calulates the value required in "a"
+ */
+int mp_reduce_setup (mp_int * a, mp_int * b)
+{
+ int res;
+
+ if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ return mp_div (a, b, a, NULL);
+}
+#endif
diff --git a/libtommath/bn_mp_rshd.c b/libtommath/bn_mp_rshd.c
new file mode 100644
index 0000000..913dda6
--- /dev/null
+++ b/libtommath/bn_mp_rshd.c
@@ -0,0 +1,68 @@
+#include <tommath.h>
+#ifdef BN_MP_RSHD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift right a certain amount of digits */
+void mp_rshd (mp_int * a, int b)
+{
+ int x;
+
+ /* if b <= 0 then ignore it */
+ if (b <= 0) {
+ return;
+ }
+
+ /* if b > used then simply zero it and return */
+ if (a->used <= b) {
+ mp_zero (a);
+ return;
+ }
+
+ {
+ register mp_digit *bottom, *top;
+
+ /* shift the digits down */
+
+ /* bottom */
+ bottom = a->dp;
+
+ /* top [offset into digits] */
+ top = a->dp + b;
+
+ /* this is implemented as a sliding window where
+ * the window is b-digits long and digits from
+ * the top of the window are copied to the bottom
+ *
+ * e.g.
+
+ b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
+ /\ | ---->
+ \-------------------/ ---->
+ */
+ for (x = 0; x < (a->used - b); x++) {
+ *bottom++ = *top++;
+ }
+
+ /* zero the top digits */
+ for (; x < a->used; x++) {
+ *bottom++ = 0;
+ }
+ }
+
+ /* remove excess digits */
+ a->used -= b;
+}
+#endif
diff --git a/libtommath/bn_mp_set.c b/libtommath/bn_mp_set.c
new file mode 100644
index 0000000..078fd5f
--- /dev/null
+++ b/libtommath/bn_mp_set.c
@@ -0,0 +1,25 @@
+#include <tommath.h>
+#ifdef BN_MP_SET_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* set to a digit */
+void mp_set (mp_int * a, mp_digit b)
+{
+ mp_zero (a);
+ a->dp[0] = b & MP_MASK;
+ a->used = (a->dp[0] != 0) ? 1 : 0;
+}
+#endif
diff --git a/libtommath/bn_mp_set_int.c b/libtommath/bn_mp_set_int.c
new file mode 100644
index 0000000..bd47136
--- /dev/null
+++ b/libtommath/bn_mp_set_int.c
@@ -0,0 +1,44 @@
+#include <tommath.h>
+#ifdef BN_MP_SET_INT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* set a 32-bit const */
+int mp_set_int (mp_int * a, unsigned long b)
+{
+ int x, res;
+
+ mp_zero (a);
+
+ /* set four bits at a time */
+ for (x = 0; x < 8; x++) {
+ /* shift the number up four bits */
+ if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* OR in the top four bits of the source */
+ a->dp[0] |= (b >> 28) & 15;
+
+ /* shift the source up to the next four bits */
+ b <<= 4;
+
+ /* ensure that digits are not clamped off */
+ a->used += 1;
+ }
+ mp_clamp (a);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_shrink.c b/libtommath/bn_mp_shrink.c
new file mode 100644
index 0000000..b31f9d2
--- /dev/null
+++ b/libtommath/bn_mp_shrink.c
@@ -0,0 +1,31 @@
+#include <tommath.h>
+#ifdef BN_MP_SHRINK_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shrink a bignum */
+int mp_shrink (mp_int * a)
+{
+ mp_digit *tmp;
+ if (a->alloc != a->used && a->used > 0) {
+ if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
+ return MP_MEM;
+ }
+ a->dp = tmp;
+ a->alloc = a->used;
+ }
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_signed_bin_size.c b/libtommath/bn_mp_signed_bin_size.c
new file mode 100644
index 0000000..30048cb
--- /dev/null
+++ b/libtommath/bn_mp_signed_bin_size.c
@@ -0,0 +1,23 @@
+#include <tommath.h>
+#ifdef BN_MP_SIGNED_BIN_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* get the size for an signed equivalent */
+int mp_signed_bin_size (mp_int * a)
+{
+ return 1 + mp_unsigned_bin_size (a);
+}
+#endif
diff --git a/libtommath/bn_mp_sqr.c b/libtommath/bn_mp_sqr.c
new file mode 100644
index 0000000..b1fdb57
--- /dev/null
+++ b/libtommath/bn_mp_sqr.c
@@ -0,0 +1,54 @@
+#include <tommath.h>
+#ifdef BN_MP_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes b = a*a */
+int
+mp_sqr (mp_int * a, mp_int * b)
+{
+ int res;
+
+#ifdef BN_MP_TOOM_SQR_C
+ /* use Toom-Cook? */
+ if (a->used >= TOOM_SQR_CUTOFF) {
+ res = mp_toom_sqr(a, b);
+ /* Karatsuba? */
+ } else
+#endif
+#ifdef BN_MP_KARATSUBA_SQR_C
+if (a->used >= KARATSUBA_SQR_CUTOFF) {
+ res = mp_karatsuba_sqr (a, b);
+ } else
+#endif
+ {
+#ifdef BN_FAST_S_MP_SQR_C
+ /* can we use the fast comba multiplier? */
+ if ((a->used * 2 + 1) < MP_WARRAY &&
+ a->used <
+ (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
+ res = fast_s_mp_sqr (a, b);
+ } else
+#endif
+#ifdef BN_S_MP_SQR_C
+ res = s_mp_sqr (a, b);
+#else
+ res = MP_VAL;
+#endif
+ }
+ b->sign = MP_ZPOS;
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_sqrmod.c b/libtommath/bn_mp_sqrmod.c
new file mode 100644
index 0000000..1923be4
--- /dev/null
+++ b/libtommath/bn_mp_sqrmod.c
@@ -0,0 +1,37 @@
+#include <tommath.h>
+#ifdef BN_MP_SQRMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* c = a * a (mod b) */
+int
+mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res;
+ mp_int t;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_sqr (a, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, b, c);
+ mp_clear (&t);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_sqrt.c b/libtommath/bn_mp_sqrt.c
new file mode 100644
index 0000000..76cec87
--- /dev/null
+++ b/libtommath/bn_mp_sqrt.c
@@ -0,0 +1,77 @@
+#include <tommath.h>
+#ifdef BN_MP_SQRT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* this function is less generic than mp_n_root, simpler and faster */
+int mp_sqrt(mp_int *arg, mp_int *ret)
+{
+ int res;
+ mp_int t1,t2;
+
+ /* must be positive */
+ if (arg->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* easy out */
+ if (mp_iszero(arg) == MP_YES) {
+ mp_zero(ret);
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init(&t2)) != MP_OKAY) {
+ goto E2;
+ }
+
+ /* First approx. (not very bad for large arg) */
+ mp_rshd (&t1,t1.used/2);
+
+ /* t1 > 0 */
+ if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ /* And now t1 > sqrt(arg) */
+ do {
+ if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ /* t1 >= sqrt(arg) >= t2 at this point */
+ } while (mp_cmp_mag(&t1,&t2) == MP_GT);
+
+ mp_exch(&t1,ret);
+
+E1: mp_clear(&t2);
+E2: mp_clear(&t1);
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_sub.c b/libtommath/bn_mp_sub.c
new file mode 100644
index 0000000..97495f4
--- /dev/null
+++ b/libtommath/bn_mp_sub.c
@@ -0,0 +1,55 @@
+#include <tommath.h>
+#ifdef BN_MP_SUB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* high level subtraction (handles signs) */
+int
+mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+ int sa, sb, res;
+
+ sa = a->sign;
+ sb = b->sign;
+
+ if (sa != sb) {
+ /* subtract a negative from a positive, OR */
+ /* subtract a positive from a negative. */
+ /* In either case, ADD their magnitudes, */
+ /* and use the sign of the first number. */
+ c->sign = sa;
+ res = s_mp_add (a, b, c);
+ } else {
+ /* subtract a positive from a positive, OR */
+ /* subtract a negative from a negative. */
+ /* First, take the difference between their */
+ /* magnitudes, then... */
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ /* Copy the sign from the first */
+ c->sign = sa;
+ /* The first has a larger or equal magnitude */
+ res = s_mp_sub (a, b, c);
+ } else {
+ /* The result has the *opposite* sign from */
+ /* the first number. */
+ c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+ /* The second has a larger magnitude */
+ res = s_mp_sub (b, a, c);
+ }
+ }
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_sub_d.c b/libtommath/bn_mp_sub_d.c
new file mode 100644
index 0000000..4923dde
--- /dev/null
+++ b/libtommath/bn_mp_sub_d.c
@@ -0,0 +1,85 @@
+#include <tommath.h>
+#ifdef BN_MP_SUB_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* single digit subtraction */
+int
+mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_digit *tmpa, *tmpc, mu;
+ int res, ix, oldused;
+
+ /* grow c as required */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* if a is negative just do an unsigned
+ * addition [with fudged signs]
+ */
+ if (a->sign == MP_NEG) {
+ a->sign = MP_ZPOS;
+ res = mp_add_d(a, b, c);
+ a->sign = c->sign = MP_NEG;
+ return res;
+ }
+
+ /* setup regs */
+ oldused = c->used;
+ tmpa = a->dp;
+ tmpc = c->dp;
+
+ /* if a <= b simply fix the single digit */
+ if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
+ if (a->used == 1) {
+ *tmpc++ = b - *tmpa;
+ } else {
+ *tmpc++ = b;
+ }
+ ix = 1;
+
+ /* negative/1digit */
+ c->sign = MP_NEG;
+ c->used = 1;
+ } else {
+ /* positive/size */
+ c->sign = MP_ZPOS;
+ c->used = a->used;
+
+ /* subtract first digit */
+ *tmpc = *tmpa++ - b;
+ mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ *tmpc++ &= MP_MASK;
+
+ /* handle rest of the digits */
+ for (ix = 1; ix < a->used; ix++) {
+ *tmpc = *tmpa++ - mu;
+ mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* zero excess digits */
+ while (ix++ < oldused) {
+ *tmpc++ = 0;
+ }
+ mp_clamp(c);
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bn_mp_submod.c b/libtommath/bn_mp_submod.c
new file mode 100644
index 0000000..b999c85
--- /dev/null
+++ b/libtommath/bn_mp_submod.c
@@ -0,0 +1,38 @@
+#include <tommath.h>
+#ifdef BN_MP_SUBMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* d = a - b (mod c) */
+int
+mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+#endif
diff --git a/libtommath/bn_mp_to_signed_bin.c b/libtommath/bn_mp_to_signed_bin.c
new file mode 100644
index 0000000..0e40d0f
--- /dev/null
+++ b/libtommath/bn_mp_to_signed_bin.c
@@ -0,0 +1,30 @@
+#include <tommath.h>
+#ifdef BN_MP_TO_SIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* store in signed [big endian] format */
+int
+mp_to_signed_bin (mp_int * a, unsigned char *b)
+{
+ int res;
+
+ if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
+ return res;
+ }
+ b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_to_unsigned_bin.c b/libtommath/bn_mp_to_unsigned_bin.c
new file mode 100644
index 0000000..763e346
--- /dev/null
+++ b/libtommath/bn_mp_to_unsigned_bin.c
@@ -0,0 +1,45 @@
+#include <tommath.h>
+#ifdef BN_MP_TO_UNSIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* store in unsigned [big endian] format */
+int
+mp_to_unsigned_bin (mp_int * a, unsigned char *b)
+{
+ int x, res;
+ mp_int t;
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ x = 0;
+ while (mp_iszero (&t) == 0) {
+#ifndef MP_8BIT
+ b[x++] = (unsigned char) (t.dp[0] & 255);
+#else
+ b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
+#endif
+ if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ }
+ bn_reverse (b, x);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_toom_mul.c b/libtommath/bn_mp_toom_mul.c
new file mode 100644
index 0000000..2d66779
--- /dev/null
+++ b/libtommath/bn_mp_toom_mul.c
@@ -0,0 +1,279 @@
+#include <tommath.h>
+#ifdef BN_MP_TOOM_MUL_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiplication using the Toom-Cook 3-way algorithm
+ *
+ * Much more complicated than Karatsuba but has a lower asymptotic running time of
+ * O(N**1.464). This algorithm is only particularly useful on VERY large
+ * inputs (we're talking 1000s of digits here...).
+*/
+int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
+ &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = MIN(a->used, b->used) / 3;
+
+ /* a = a2 * B**2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* b = b2 * B**2 + b1 * B + b0 */
+ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(b, &b1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&b1, B);
+ mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
+
+ if ((res = mp_copy(b, &b2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&b2, B*2);
+
+ /* w0 = a0*b0 */
+ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * b2 */
+ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts,
+ 2 small divisions and 1 small multiplication
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
+ &b2, &tmp1, &tmp2, NULL);
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_toom_sqr.c b/libtommath/bn_mp_toom_sqr.c
new file mode 100644
index 0000000..8c46fea
--- /dev/null
+++ b/libtommath/bn_mp_toom_sqr.c
@@ -0,0 +1,222 @@
+#include <tommath.h>
+#ifdef BN_MP_TOOM_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* squaring using Toom-Cook 3-way algorithm */
+int
+mp_toom_sqr(mp_int *a, mp_int *b)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = a->used / 3;
+
+ /* a = a2 * B**2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* w0 = a0*a0 */
+ if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * a2 */
+ if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))**2 */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))**2 */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)**2 */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
+ return res;
+}
+
+#endif
diff --git a/libtommath/bn_mp_toradix.c b/libtommath/bn_mp_toradix.c
new file mode 100644
index 0000000..a206d5e
--- /dev/null
+++ b/libtommath/bn_mp_toradix.c
@@ -0,0 +1,71 @@
+#include <tommath.h>
+#ifdef BN_MP_TORADIX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* stores a bignum as a ASCII string in a given radix (2..64) */
+int mp_toradix (mp_int * a, char *str, int radix)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+ char *_s = str;
+
+ /* check range of the radix */
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* quick out if its zero */
+ if (mp_iszero(a) == 1) {
+ *str++ = '0';
+ *str = '\0';
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* if it is negative output a - */
+ if (t.sign == MP_NEG) {
+ ++_s;
+ *str++ = '-';
+ t.sign = MP_ZPOS;
+ }
+
+ digs = 0;
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ *str++ = mp_s_rmap[d];
+ ++digs;
+ }
+
+ /* reverse the digits of the string. In this case _s points
+ * to the first digit [exluding the sign] of the number]
+ */
+ bn_reverse ((unsigned char *)_s, digs);
+
+ /* append a NULL so the string is properly terminated */
+ *str = '\0';
+
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bn_mp_toradix_n.c b/libtommath/bn_mp_toradix_n.c
new file mode 100644
index 0000000..7d43558
--- /dev/null
+++ b/libtommath/bn_mp_toradix_n.c
@@ -0,0 +1,85 @@
+#include <tommath.h>
+#ifdef BN_MP_TORADIX_N_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* stores a bignum as a ASCII string in a given radix (2..64)
+ *
+ * Stores upto maxlen-1 chars and always a NULL byte
+ */
+int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+ char *_s = str;
+
+ /* check range of the maxlen, radix */
+ if (maxlen < 3 || radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* quick out if its zero */
+ if (mp_iszero(a) == 1) {
+ *str++ = '0';
+ *str = '\0';
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* if it is negative output a - */
+ if (t.sign == MP_NEG) {
+ /* we have to reverse our digits later... but not the - sign!! */
+ ++_s;
+
+ /* store the flag and mark the number as positive */
+ *str++ = '-';
+ t.sign = MP_ZPOS;
+
+ /* subtract a char */
+ --maxlen;
+ }
+
+ digs = 0;
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ *str++ = mp_s_rmap[d];
+ ++digs;
+
+ if (--maxlen == 1) {
+ /* no more room */
+ break;
+ }
+ }
+
+ /* reverse the digits of the string. In this case _s points
+ * to the first digit [exluding the sign] of the number]
+ */
+ bn_reverse ((unsigned char *)_s, digs);
+
+ /* append a NULL so the string is properly terminated */
+ *str = '\0';
+
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bn_mp_unsigned_bin_size.c b/libtommath/bn_mp_unsigned_bin_size.c
new file mode 100644
index 0000000..80da415
--- /dev/null
+++ b/libtommath/bn_mp_unsigned_bin_size.c
@@ -0,0 +1,25 @@
+#include <tommath.h>
+#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* get the size for an unsigned equivalent */
+int
+mp_unsigned_bin_size (mp_int * a)
+{
+ int size = mp_count_bits (a);
+ return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+}
+#endif
diff --git a/libtommath/bn_mp_xor.c b/libtommath/bn_mp_xor.c
new file mode 100644
index 0000000..192aacc
--- /dev/null
+++ b/libtommath/bn_mp_xor.c
@@ -0,0 +1,47 @@
+#include <tommath.h>
+#ifdef BN_MP_XOR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* XOR two ints together */
+int
+mp_xor (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+
+ }
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_mp_zero.c b/libtommath/bn_mp_zero.c
new file mode 100644
index 0000000..0097598
--- /dev/null
+++ b/libtommath/bn_mp_zero.c
@@ -0,0 +1,26 @@
+#include <tommath.h>
+#ifdef BN_MP_ZERO_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* set to zero */
+void
+mp_zero (mp_int * a)
+{
+ a->sign = MP_ZPOS;
+ a->used = 0;
+ memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
+}
+#endif
diff --git a/libtommath/bn_prime_tab.c b/libtommath/bn_prime_tab.c
new file mode 100644
index 0000000..14306c2
--- /dev/null
+++ b/libtommath/bn_prime_tab.c
@@ -0,0 +1,57 @@
+#include <tommath.h>
+#ifdef BN_PRIME_TAB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+const mp_digit ltm_prime_tab[] = {
+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
+#ifndef MP_8BIT
+ 0x0083,
+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+#endif
+};
+#endif
diff --git a/libtommath/bn_reverse.c b/libtommath/bn_reverse.c
new file mode 100644
index 0000000..851a6e8
--- /dev/null
+++ b/libtommath/bn_reverse.c
@@ -0,0 +1,35 @@
+#include <tommath.h>
+#ifdef BN_REVERSE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reverse an array, used for radix code */
+void
+bn_reverse (unsigned char *s, int len)
+{
+ int ix, iy;
+ unsigned char t;
+
+ ix = 0;
+ iy = len - 1;
+ while (ix < iy) {
+ t = s[ix];
+ s[ix] = s[iy];
+ s[iy] = t;
+ ++ix;
+ --iy;
+ }
+}
+#endif
diff --git a/libtommath/bn_s_mp_add.c b/libtommath/bn_s_mp_add.c
new file mode 100644
index 0000000..2b378ae
--- /dev/null
+++ b/libtommath/bn_s_mp_add.c
@@ -0,0 +1,105 @@
+#include <tommath.h>
+#ifdef BN_S_MP_ADD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* low level addition, based on HAC pp.594, Algorithm 14.7 */
+int
+s_mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int *x;
+ int olduse, res, min, max;
+
+ /* find sizes, we let |a| <= |b| which means we have to sort
+ * them. "x" will point to the input with the most digits
+ */
+ if (a->used > b->used) {
+ min = b->used;
+ max = a->used;
+ x = a;
+ } else {
+ min = a->used;
+ max = b->used;
+ x = b;
+ }
+
+ /* init result */
+ if (c->alloc < max + 1) {
+ if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* get old used digit count and set new one */
+ olduse = c->used;
+ c->used = max + 1;
+
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
+
+ /* alias for digit pointers */
+
+ /* first input */
+ tmpa = a->dp;
+
+ /* second input */
+ tmpb = b->dp;
+
+ /* destination */
+ tmpc = c->dp;
+
+ /* zero the carry */
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+ *tmpc = *tmpa++ + *tmpb++ + u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* now copy higher words if any, that is in A+B
+ * if A or B has more digits add those in
+ */
+ if (min != max) {
+ for (; i < max; i++) {
+ /* T[i] = X[i] + U */
+ *tmpc = x->dp[i] + u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* add carry */
+ *tmpc++ = u;
+
+ /* clear digits above oldused */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_s_mp_exptmod.c b/libtommath/bn_s_mp_exptmod.c
new file mode 100644
index 0000000..01a766f
--- /dev/null
+++ b/libtommath/bn_s_mp_exptmod.c
@@ -0,0 +1,236 @@
+#include <tommath.h>
+#ifdef BN_S_MP_EXPTMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+#ifdef MP_LOW_MEM
+ #define TAB_SIZE 32
+#else
+ #define TAB_SIZE 256
+#endif
+
+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ mp_int M[TAB_SIZE], res, mu;
+ mp_digit buf;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+#ifdef MP_LOW_MEM
+ if (winsize > 5) {
+ winsize = 5;
+ }
+#endif
+
+ /* init M array */
+ /* init first cell */
+ if ((err = mp_init(&M[1])) != MP_OKAY) {
+ return err;
+ }
+
+ /* now init the second half of the array */
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ if ((err = mp_init(&M[x])) != MP_OKAY) {
+ for (y = 1<<(winsize-1); y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ mp_clear(&M[1]);
+ return err;
+ }
+ }
+
+ /* create mu, used for Barrett reduction */
+ if ((err = mp_init (&mu)) != MP_OKAY) {
+ goto LBL_M;
+ }
+ if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* create M table
+ *
+ * The M table contains powers of the base,
+ * e.g. M[x] = G**x mod P
+ *
+ * The first half of the table is not
+ * computed though accept for M[0] and M[1]
+ */
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring
+ * M[1] (winsize-1) times
+ */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)],
+ &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
+ * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
+ */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ mp_set (&res, 1);
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset the bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int) DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0) {
+ continue;
+ }
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+ }
+ }
+
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+LBL_RES:mp_clear (&res);
+LBL_MU:mp_clear (&mu);
+LBL_M:
+ mp_clear(&M[1]);
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
+#endif
diff --git a/libtommath/bn_s_mp_mul_digs.c b/libtommath/bn_s_mp_mul_digs.c
new file mode 100644
index 0000000..d9f0a56
--- /dev/null
+++ b/libtommath/bn_s_mp_mul_digs.c
@@ -0,0 +1,87 @@
+#include <tommath.h>
+#ifdef BN_S_MP_MUL_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiplies |a| * |b| and only computes upto digs digits of result
+ * HAC pp. 595, Algorithm 14.12 Modified so you can control how
+ * many digits of output are created.
+ */
+int
+s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+ /* can we use the fast multiplier? */
+ if (((digs) < MP_WARRAY) &&
+ MIN (a->used, b->used) <
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_s_mp_mul_digs (a, b, c, digs);
+ }
+
+ if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
+ return res;
+ }
+ t.used = digs;
+
+ /* compute the digits of the product directly */
+ pa = a->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* set the carry to zero */
+ u = 0;
+
+ /* limit ourselves to making digs digits of output */
+ pb = MIN (b->used, digs - ix);
+
+ /* setup some aliases */
+ /* copy of the digit from a used within the nested loop */
+ tmpx = a->dp[ix];
+
+ /* an alias for the destination shifted ix places */
+ tmpt = t.dp + ix;
+
+ /* an alias for the digits of b */
+ tmpy = b->dp;
+
+ /* compute the columns of the output and propagate the carry */
+ for (iy = 0; iy < pb; iy++) {
+ /* compute the column as a mp_word */
+ r = ((mp_word)*tmpt) +
+ ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+ ((mp_word) u);
+
+ /* the new column is the lower part of the result */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry word from the result */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ /* set carry if it is placed below digs */
+ if (ix + iy < digs) {
+ *tmpt = u;
+ }
+ }
+
+ mp_clamp (&t);
+ mp_exch (&t, c);
+
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_s_mp_mul_high_digs.c b/libtommath/bn_s_mp_mul_high_digs.c
new file mode 100644
index 0000000..a060248
--- /dev/null
+++ b/libtommath/bn_s_mp_mul_high_digs.c
@@ -0,0 +1,77 @@
+#include <tommath.h>
+#ifdef BN_S_MP_MUL_HIGH_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiplies |a| * |b| and does not compute the lower digs digits
+ * [meant to get the higher part of the product]
+ */
+int
+s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+ /* can we use the fast multiplier? */
+#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
+ if (((a->used + b->used + 1) < MP_WARRAY)
+ && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_s_mp_mul_high_digs (a, b, c, digs);
+ }
+#endif
+
+ if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ t.used = a->used + b->used + 1;
+
+ pa = a->used;
+ pb = b->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* clear the carry */
+ u = 0;
+
+ /* left hand side of A[ix] * B[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias to the address of where the digits will be stored */
+ tmpt = &(t.dp[digs]);
+
+ /* alias for where to read the right hand side from */
+ tmpy = b->dp + (digs - ix);
+
+ for (iy = digs - ix; iy < pb; iy++) {
+ /* calculate the double precision result */
+ r = ((mp_word)*tmpt) +
+ ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+ ((mp_word) u);
+
+ /* get the lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* carry the carry */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ *tmpt = u;
+ }
+ mp_clamp (&t);
+ mp_exch (&t, c);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_s_mp_sqr.c b/libtommath/bn_s_mp_sqr.c
new file mode 100644
index 0000000..4d12804
--- /dev/null
+++ b/libtommath/bn_s_mp_sqr.c
@@ -0,0 +1,81 @@
+#include <tommath.h>
+#ifdef BN_S_MP_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+int
+s_mp_sqr (mp_int * a, mp_int * b)
+{
+ mp_int t;
+ int res, ix, iy, pa;
+ mp_word r;
+ mp_digit u, tmpx, *tmpt;
+
+ pa = a->used;
+ if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* default used is maximum possible size */
+ t.used = 2*pa + 1;
+
+ for (ix = 0; ix < pa; ix++) {
+ /* first calculate the digit at 2*ix */
+ /* calculate double precision result */
+ r = ((mp_word) t.dp[2*ix]) +
+ ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+
+ /* store lower part in result */
+ t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry */
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+ /* left hand side of A[ix] * A[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias for where to store the results */
+ tmpt = t.dp + (2*ix + 1);
+
+ for (iy = ix + 1; iy < pa; iy++) {
+ /* first calculate the product */
+ r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+
+ /* now calculate the double precision result, note we use
+ * addition instead of *2 since it's easier to optimize
+ */
+ r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
+
+ /* store lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get carry */
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+ }
+ /* propagate upwards */
+ while (u != ((mp_digit) 0)) {
+ r = ((mp_word) *tmpt) + ((mp_word) u);
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+ }
+ }
+
+ mp_clamp (&t);
+ mp_exch (&t, b);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
diff --git a/libtommath/bn_s_mp_sub.c b/libtommath/bn_s_mp_sub.c
new file mode 100644
index 0000000..5b7aef9
--- /dev/null
+++ b/libtommath/bn_s_mp_sub.c
@@ -0,0 +1,85 @@
+#include <tommath.h>
+#ifdef BN_S_MP_SUB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
+int
+s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+ int olduse, res, min, max;
+
+ /* find sizes */
+ min = b->used;
+ max = a->used;
+
+ /* init result */
+ if (c->alloc < max) {
+ if ((res = mp_grow (c, max)) != MP_OKAY) {
+ return res;
+ }
+ }
+ olduse = c->used;
+ c->used = max;
+
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
+
+ /* alias for digit pointers */
+ tmpa = a->dp;
+ tmpb = b->dp;
+ tmpc = c->dp;
+
+ /* set carry to zero */
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* T[i] = A[i] - B[i] - U */
+ *tmpc = *tmpa++ - *tmpb++ - u;
+
+ /* U = carry bit of T[i]
+ * Note this saves performing an AND operation since
+ * if a carry does occur it will propagate all the way to the
+ * MSB. As a result a single shift is enough to get the carry
+ */
+ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* now copy higher words if any, e.g. if A has more digits than B */
+ for (; i < max; i++) {
+ /* T[i] = A[i] - U */
+ *tmpc = *tmpa++ - u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* clear digits above used (since we may not have grown result above) */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+#endif
diff --git a/libtommath/bncore.c b/libtommath/bncore.c
new file mode 100644
index 0000000..cf8a15a
--- /dev/null
+++ b/libtommath/bncore.c
@@ -0,0 +1,31 @@
+#include <tommath.h>
+#ifdef BNCORE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Known optimal configurations
+
+ CPU /Compiler /MUL CUTOFF/SQR CUTOFF
+-------------------------------------------------------------
+ Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
+
+*/
+
+int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
+ KARATSUBA_SQR_CUTOFF = 128, /* Min. number of digits before Karatsuba squaring is used. */
+
+ TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
+ TOOM_SQR_CUTOFF = 400;
+#endif
diff --git a/libtommath/booker.pl b/libtommath/booker.pl
new file mode 100644
index 0000000..5c77e53
--- /dev/null
+++ b/libtommath/booker.pl
@@ -0,0 +1,262 @@
+#!/bin/perl
+#
+#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
+#
+#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
+#
+#EXAM,file
+#
+#This preprocessor will then open "file" and insert it as a verbatim copy.
+#
+#Tom St Denis
+
+#get graphics type
+if (shift =~ /PDF/) {
+ $graph = "";
+} else {
+ $graph = ".ps";
+}
+
+open(IN,"<tommath.src") or die "Can't open source file";
+open(OUT,">tommath.tex") or die "Can't open destination file";
+
+print "Scanning for sections\n";
+$chapter = $section = $subsection = 0;
+$x = 0;
+while (<IN>) {
+ print ".";
+ if (!(++$x % 80)) { print "\n"; }
+ #update the headings
+ if (~($_ =~ /\*/)) {
+ if ($_ =~ /\\chapter{.+}/) {
+ ++$chapter;
+ $section = $subsection = 0;
+ } elsif ($_ =~ /\\section{.+}/) {
+ ++$section;
+ $subsection = 0;
+ } elsif ($_ =~ /\\subsection{.+}/) {
+ ++$subsection;
+ }
+ }
+
+ if ($_ =~ m/MARK/) {
+ @m = split(",",$_);
+ chomp(@m[1]);
+ $index1{@m[1]} = $chapter;
+ $index2{@m[1]} = $section;
+ $index3{@m[1]} = $subsection;
+ }
+}
+close(IN);
+
+open(IN,"<tommath.src") or die "Can't open source file";
+$readline = $wroteline = 0;
+$srcline = 0;
+
+while (<IN>) {
+ ++$readline;
+ ++$srcline;
+
+ if ($_ =~ m/MARK/) {
+ } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
+ if ($_ =~ m/EXAM/) {
+ $skipheader = 1;
+ } else {
+ $skipheader = 0;
+ }
+
+ # EXAM,file
+ chomp($_);
+ @m = split(",",$_);
+ open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
+
+ print "$srcline:Inserting $m[1]:";
+
+ $line = 0;
+ $tmp = $m[1];
+ $tmp =~ s/_/"\\_"/ge;
+ print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
+ $wroteline += 5;
+
+ if ($skipheader == 1) {
+ # scan till next end of comment, e.g. skip license
+ while (<SRC>) {
+ $text[$line++] = $_;
+ last if ($_ =~ /math\.libtomcrypt\.org/);
+ }
+ <SRC>;
+ }
+
+ $inline = 0;
+ while (<SRC>) {
+ $text[$line++] = $_;
+ ++$inline;
+ chomp($_);
+ $_ =~ s/\t/" "/ge;
+ $_ =~ s/{/"^{"/ge;
+ $_ =~ s/}/"^}"/ge;
+ $_ =~ s/\\/'\symbol{92}'/ge;
+ $_ =~ s/\^/"\\"/ge;
+
+ printf OUT ("%03d ", $line);
+ for ($x = 0; $x < length($_); $x++) {
+ print OUT chr(vec($_, $x, 8));
+ if ($x == 75) {
+ print OUT "\n ";
+ ++$wroteline;
+ }
+ }
+ print OUT "\n";
+ ++$wroteline;
+ }
+ $totlines = $line;
+ print OUT "\\end{alltt}\n\\end{small}\n";
+ close(SRC);
+ print "$inline lines\n";
+ $wroteline += 2;
+ } elsif ($_ =~ m/@\d+,.+@/) {
+ # line contains [number,text]
+ # e.g. @14,for (ix = 0)@
+ $txt = $_;
+ while ($txt =~ m/@\d+,.+@/) {
+ @m = split("@",$txt); # splits into text, one, two
+ @parms = split(",",$m[1]); # splits one,two into two elements
+
+ # now search from $parms[0] down for $parms[1]
+ $found1 = 0;
+ $found2 = 0;
+ for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
+ if ($text[$i] =~ m/\Q$parms[1]\E/) {
+ $foundline1 = $i + 1;
+ $found1 = 1;
+ }
+ }
+
+ # now search backwards
+ for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
+ if ($text[$i] =~ m/\Q$parms[1]\E/) {
+ $foundline2 = $i + 1;
+ $found2 = 1;
+ }
+ }
+
+ # now use the closest match or the first if tied
+ if ($found1 == 1 && $found2 == 0) {
+ $found = 1;
+ $foundline = $foundline1;
+ } elsif ($found1 == 0 && $found2 == 1) {
+ $found = 1;
+ $foundline = $foundline2;
+ } elsif ($found1 == 1 && $found2 == 1) {
+ $found = 1;
+ if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
+ $foundline = $foundline1;
+ } else {
+ $foundline = $foundline2;
+ }
+ } else {
+ $found = 0;
+ }
+
+ # if found replace
+ if ($found == 1) {
+ $delta = $parms[0] - $foundline;
+ print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
+ $_ =~ s/@\Q$m[1]\E@/$foundline/;
+ } else {
+ print "ERROR: The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
+ }
+
+ # remake the rest of the line
+ $cnt = @m;
+ $txt = "";
+ for ($i = 2; $i < $cnt; $i++) {
+ $txt = $txt . $m[$i] . "@";
+ }
+ }
+ print OUT $_;
+ ++$wroteline;
+ } elsif ($_ =~ /~.+~/) {
+ # line contains a ~text~ pair used to refer to indexing :-)
+ $txt = $_;
+ while ($txt =~ /~.+~/) {
+ @m = split("~", $txt);
+
+ # word is the second position
+ $word = @m[1];
+ $a = $index1{$word};
+ $b = $index2{$word};
+ $c = $index3{$word};
+
+ # if chapter (a) is zero it wasn't found
+ if ($a == 0) {
+ print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
+ } else {
+ # format the tag as x, x.y or x.y.z depending on the values
+ $str = $a;
+ $str = $str . ".$b" if ($b != 0);
+ $str = $str . ".$c" if ($c != 0);
+
+ if ($b == 0 && $c == 0) {
+ # its a chapter
+ if ($a <= 10) {
+ if ($a == 1) {
+ $str = "chapter one";
+ } elsif ($a == 2) {
+ $str = "chapter two";
+ } elsif ($a == 3) {
+ $str = "chapter three";
+ } elsif ($a == 4) {
+ $str = "chapter four";
+ } elsif ($a == 5) {
+ $str = "chapter five";
+ } elsif ($a == 6) {
+ $str = "chapter six";
+ } elsif ($a == 7) {
+ $str = "chapter seven";
+ } elsif ($a == 8) {
+ $str = "chapter eight";
+ } elsif ($a == 9) {
+ $str = "chapter nine";
+ } elsif ($a == 2) {
+ $str = "chapter ten";
+ }
+ } else {
+ $str = "chapter " . $str;
+ }
+ } else {
+ $str = "section " . $str if ($b != 0 && $c == 0);
+ $str = "sub-section " . $str if ($b != 0 && $c != 0);
+ }
+
+ #substitute
+ $_ =~ s/~\Q$word\E~/$str/;
+
+ print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
+ }
+
+ # remake rest of the line
+ $cnt = @m;
+ $txt = "";
+ for ($i = 2; $i < $cnt; $i++) {
+ $txt = $txt . $m[$i] . "~";
+ }
+ }
+ print OUT $_;
+ ++$wroteline;
+ } elsif ($_ =~ m/FIGU/) {
+ # FIGU,file,caption
+ chomp($_);
+ @m = split(",", $_);
+ print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
+ print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
+ $wroteline += 4;
+ } else {
+ print OUT $_;
+ ++$wroteline;
+ }
+}
+print "Read $readline lines, wrote $wroteline lines\n";
+
+close (OUT);
+close (IN);
diff --git a/libtommath/callgraph.txt b/libtommath/callgraph.txt
new file mode 100644
index 0000000..4dc4cba
--- /dev/null
+++ b/libtommath/callgraph.txt
@@ -0,0 +1,10193 @@
+BN_PRIME_TAB_C
+
+
+BN_MP_SQRT_C
++--->BN_MP_N_ROOT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_EXPT_D_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_ZERO_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_SET_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_CMP_D_C
+
+
+BN_MP_EXCH_C
+
+
+BN_MP_IS_SQUARE_C
++--->BN_MP_MOD_D_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SET_INT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_SET_INT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_GET_INT_C
++--->BN_MP_SQRT_C
+| +--->BN_MP_N_ROOT_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_EXPT_D_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_SUB_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_NEG_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
+
+
+BN_MP_EXPTMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_INVMOD_C
+| +--->BN_FAST_MP_INVMOD_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_CMP_D_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INVMOD_SLOW_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_CMP_D_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
++--->BN_MP_ABS_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_MULTI_C
++--->BN_MP_DR_IS_MODULUS_C
++--->BN_MP_REDUCE_IS_2K_C
+| +--->BN_MP_REDUCE_2K_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COUNT_BITS_C
++--->BN_MP_EXPTMOD_FAST_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_MONTGOMERY_SETUP_C
+| +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| +--->BN_MP_MONTGOMERY_REDUCE_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| +--->BN_MP_DR_SETUP_C
+| +--->BN_MP_DR_REDUCE_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| +--->BN_MP_REDUCE_2K_SETUP_C
+| | +--->BN_MP_2EXPT_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_REDUCE_2K_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | +--->BN_MP_2EXPT_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MULMOD_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
++--->BN_S_MP_EXPTMOD_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_REDUCE_SETUP_C
+| | +--->BN_MP_2EXPT_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_REDUCE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_D_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_EXCH_C
+
+
+BN_MP_OR_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_ZERO_C
+
+
+BN_MP_GROW_C
+
+
+BN_MP_COUNT_BITS_C
+
+
+BN_MP_PRIME_FERMAT_C
++--->BN_MP_CMP_D_C
++--->BN_MP_INIT_C
++--->BN_MP_EXPTMOD_C
+| +--->BN_MP_INVMOD_C
+| | +--->BN_FAST_MP_INVMOD_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INVMOD_SLOW_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_ABS_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_DR_IS_MODULUS_C
+| +--->BN_MP_REDUCE_IS_2K_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_EXPTMOD_FAST_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_MONTGOMERY_SETUP_C
+| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_DR_SETUP_C
+| | +--->BN_MP_DR_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MULMOD_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2D_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_INIT_COPY_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_S_MP_EXPTMOD_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_REDUCE_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_REDUCE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_SUBMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+
+
+BN_MP_MOD_2D_C
++--->BN_MP_ZERO_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_TORADIX_N_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_DIV_D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_CMP_C
++--->BN_MP_CMP_MAG_C
+
+
+BNCORE_C
+
+
+BN_MP_TORADIX_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_DIV_D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_ADD_D_C
++--->BN_MP_GROW_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_DIV_3_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_FAST_S_MP_MUL_DIGS_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_SQRMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+
+
+BN_MP_INVMOD_C
++--->BN_FAST_MP_INVMOD_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_CMP_D_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INVMOD_SLOW_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_CMP_D_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+
+
+BN_MP_AND_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_MUL_D_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_FAST_MP_INVMOD_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ABS_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_CMP_D_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_FWRITE_C
++--->BN_MP_RADIX_SIZE_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_TORADIX_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_S_MP_SQR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_N_ROOT_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_EXPT_D_C
+| +--->BN_MP_INIT_COPY_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_COPY_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_PRIME_RABIN_MILLER_TRIALS_C
+
+
+BN_MP_RADIX_SIZE_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_DIV_D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_READ_SIGNED_BIN_C
++--->BN_MP_READ_UNSIGNED_BIN_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_PRIME_RANDOM_EX_C
++--->BN_MP_READ_UNSIGNED_BIN_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_PRIME_IS_PRIME_C
+| +--->BN_MP_CMP_D_C
+| +--->BN_MP_PRIME_IS_DIVISIBLE_C
+| | +--->BN_MP_MOD_D_C
+| | | +--->BN_MP_DIV_D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_INIT_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_INIT_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_PRIME_MILLER_RABIN_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SUB_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CNT_LSB_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXPTMOD_C
+| | | +--->BN_MP_INVMOD_C
+| | | | +--->BN_FAST_MP_INVMOD_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_INVMOD_SLOW_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_DR_IS_MODULUS_C
+| | | +--->BN_MP_REDUCE_IS_2K_C
+| | | | +--->BN_MP_REDUCE_2K_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_EXPTMOD_FAST_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_MONTGOMERY_SETUP_C
+| | | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_DR_SETUP_C
+| | | | +--->BN_MP_DR_REDUCE_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | | | +--->BN_MP_2EXPT_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_REDUCE_2K_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | | | +--->BN_MP_2EXPT_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MULMOD_C
+| | | | | +--->BN_MP_MUL_C
+| | | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_MOD_C
+| | | | | | +--->BN_MP_DIV_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_SQR_C
+| | | | | +--->BN_MP_TOOM_SQR_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_EXPTMOD_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_REDUCE_SETUP_C
+| | | | | +--->BN_MP_2EXPT_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_SQR_C
+| | | | | +--->BN_MP_TOOM_SQR_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_REDUCE_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_C
+| | | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_SQRMOD_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_KARATSUBA_SQR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
++--->BN_MP_ADD_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_INIT_COPY_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
+
+
+BN_MP_CLAMP_C
+
+
+BN_MP_TOOM_SQR_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_SQR_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_3_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_MOD_C
++--->BN_MP_INIT_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_SET_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_COPY_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
+
+
+BN_MP_INIT_C
+
+
+BN_MP_TOOM_MUL_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_MUL_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_3_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_PRIME_IS_PRIME_C
++--->BN_MP_CMP_D_C
++--->BN_MP_PRIME_IS_DIVISIBLE_C
+| +--->BN_MP_MOD_D_C
+| | +--->BN_MP_DIV_D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_INIT_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_PRIME_MILLER_RABIN_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CNT_LSB_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXPTMOD_C
+| | +--->BN_MP_INVMOD_C
+| | | +--->BN_FAST_MP_INVMOD_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INVMOD_SLOW_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_ABS_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_DR_IS_MODULUS_C
+| | +--->BN_MP_REDUCE_IS_2K_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_EXPTMOD_FAST_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_MONTGOMERY_SETUP_C
+| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_DR_SETUP_C
+| | | +--->BN_MP_DR_REDUCE_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MULMOD_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_S_MP_EXPTMOD_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_REDUCE_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_REDUCE_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SQRMOD_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_COPY_C
++--->BN_MP_GROW_C
+
+
+BN_S_MP_SUB_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_READ_UNSIGNED_BIN_C
++--->BN_MP_GROW_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_COPY_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_EXPTMOD_FAST_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_INIT_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MONTGOMERY_SETUP_C
++--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_MONTGOMERY_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_DR_SETUP_C
++--->BN_MP_DR_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_REDUCE_2K_SETUP_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_REDUCE_2K_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MULMOD_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_EXCH_C
+
+
+BN_MP_TO_UNSIGNED_BIN_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_SET_INT_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_MOD_D_C
++--->BN_MP_DIV_D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_SQR_C
++--->BN_MP_TOOM_SQR_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_KARATSUBA_SQR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| +--->BN_MP_ADD_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_FAST_S_MP_SQR_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_SQR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_MULMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+
+
+BN_MP_DIV_2D_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ZERO_C
++--->BN_MP_INIT_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
++--->BN_MP_RSHD_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
+
+
+BN_S_MP_ADD_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_FAST_S_MP_SQR_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_S_MP_MUL_DIGS_C
++--->BN_FAST_S_MP_MUL_DIGS_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_XOR_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_RADIX_SMAP_C
+
+
+BN_MP_DR_IS_MODULUS_C
+
+
+BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_2EXPT_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_SUB_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_INIT_MULTI_C
++--->BN_MP_INIT_C
++--->BN_MP_CLEAR_C
+
+
+BN_S_MP_MUL_HIGH_DIGS_C
++--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_PRIME_NEXT_PRIME_C
++--->BN_MP_CMP_D_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_D_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_PRIME_MILLER_RABIN_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CNT_LSB_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXPTMOD_C
+| | +--->BN_MP_INVMOD_C
+| | | +--->BN_FAST_MP_INVMOD_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INVMOD_SLOW_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_ABS_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_DR_IS_MODULUS_C
+| | +--->BN_MP_REDUCE_IS_2K_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_EXPTMOD_FAST_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_MONTGOMERY_SETUP_C
+| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_DR_SETUP_C
+| | | +--->BN_MP_DR_REDUCE_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MULMOD_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_S_MP_EXPTMOD_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_REDUCE_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_REDUCE_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SQRMOD_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_SIGNED_BIN_SIZE_C
++--->BN_MP_UNSIGNED_BIN_SIZE_C
+| +--->BN_MP_COUNT_BITS_C
+
+
+BN_MP_INVMOD_SLOW_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_CMP_D_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_LCM_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_GCD_C
+| +--->BN_MP_ABS_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CNT_LSB_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_EXCH_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_DIV_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_SET_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_COPY_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_REVERSE_C
+
+
+BN_MP_PRIME_IS_DIVISIBLE_C
++--->BN_MP_MOD_D_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+
+
+BN_MP_SET_C
++--->BN_MP_ZERO_C
+
+
+BN_MP_GCD_C
++--->BN_MP_ABS_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_ZERO_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_CNT_LSB_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_EXCH_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_READ_RADIX_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_FAST_S_MP_MUL_HIGH_DIGS_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_FAST_MP_MONTGOMERY_REDUCE_C
++--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+
+
+BN_MP_DIV_D_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_DIV_3_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_REDUCE_2K_SETUP_C
++--->BN_MP_INIT_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_2EXPT_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_INIT_SET_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
+
+
+BN_MP_REDUCE_2K_C
++--->BN_MP_INIT_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_ERROR_C
+
+
+BN_MP_EXPT_D_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+
+
+BN_S_MP_EXPTMOD_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_INIT_C
++--->BN_MP_CLEAR_C
++--->BN_MP_REDUCE_SETUP_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_REDUCE_C
+| +--->BN_MP_INIT_COPY_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_D_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_EXCH_C
+
+
+BN_MP_ABS_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
+
+
+BN_MP_INIT_SET_INT_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_INT_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_SUB_D_C
++--->BN_MP_GROW_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_TO_SIGNED_BIN_C
++--->BN_MP_TO_UNSIGNED_BIN_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_DIV_2_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_REDUCE_IS_2K_C
++--->BN_MP_REDUCE_2K_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_COUNT_BITS_C
+
+
+BN_MP_INIT_SIZE_C
++--->BN_MP_INIT_C
+
+
+BN_MP_DIV_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ZERO_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SET_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_ABS_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_INIT_C
++--->BN_MP_INIT_COPY_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
++--->BN_MP_RSHD_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_CLEAR_C
+
+
+BN_MP_MONTGOMERY_REDUCE_C
++--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+
+
+BN_MP_MUL_2_C
++--->BN_MP_GROW_C
+
+
+BN_MP_UNSIGNED_BIN_SIZE_C
++--->BN_MP_COUNT_BITS_C
+
+
+BN_MP_ADDMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+
+
+BN_MP_ADD_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_RAND_C
++--->BN_MP_ZERO_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+
+
+BN_MP_CNT_LSB_C
+
+
+BN_MP_2EXPT_C
++--->BN_MP_ZERO_C
++--->BN_MP_GROW_C
+
+
+BN_MP_RSHD_C
++--->BN_MP_ZERO_C
+
+
+BN_MP_SHRINK_C
+
+
+BN_MP_REDUCE_C
++--->BN_MP_REDUCE_SETUP_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_S_MP_MUL_HIGH_DIGS_C
+| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_MUL_DIGS_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_D_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_MUL_2D_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_GROW_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_GET_INT_C
+
+
+BN_MP_JACOBI_C
++--->BN_MP_CMP_D_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_CNT_LSB_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_CLEAR_MULTI_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_MUL_C
++--->BN_MP_TOOM_MUL_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_KARATSUBA_MUL_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| +--->BN_MP_CLEAR_C
++--->BN_FAST_S_MP_MUL_DIGS_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_MUL_DIGS_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_EXTEUCLID_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_COPY_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_DR_REDUCE_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+
+
+BN_MP_FREAD_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_D_C
+
+
+BN_MP_REDUCE_SETUP_C
++--->BN_MP_2EXPT_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_GROW_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_SET_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_COPY_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_MONTGOMERY_SETUP_C
+
+
+BN_MP_KARATSUBA_MUL_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_LSHD_C
++--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
+
+
+BN_MP_PRIME_MILLER_RABIN_C
++--->BN_MP_CMP_D_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CNT_LSB_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_EXPTMOD_C
+| +--->BN_MP_INVMOD_C
+| | +--->BN_FAST_MP_INVMOD_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INVMOD_SLOW_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_ABS_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_DR_IS_MODULUS_C
+| +--->BN_MP_REDUCE_IS_2K_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_EXPTMOD_FAST_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_MONTGOMERY_SETUP_C
+| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_DR_SETUP_C
+| | +--->BN_MP_DR_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MULMOD_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_S_MP_EXPTMOD_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_REDUCE_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_REDUCE_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_SQRMOD_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_DR_SETUP_C
+
+
+BN_MP_CMP_MAG_C
+
+
diff --git a/libtommath/changes.txt b/libtommath/changes.txt
new file mode 100644
index 0000000..0d1ec2e
--- /dev/null
+++ b/libtommath/changes.txt
@@ -0,0 +1,337 @@
+December 23rd, 2004
+v0.33 -- Fixed "small" variant for mp_div() which would munge with negative dividends...
+ -- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when
+ no special flags were set
+ -- Fixed overflow [minor] bug in fast_s_mp_sqr()
+ -- Made the makefiles easier to configure the group/user that ltm will install as
+ -- Fixed "final carry" bug in comba multipliers. (Volkan Ceylan)
+ -- Matt Johnston pointed out a missing semi-colon in mp_exptmod
+
+October 29th, 2004
+v0.32 -- Added "makefile.shared" for shared object support
+ -- Added more to the build options/configs in the manual
+ -- Started the Depends framework, wrote dep.pl to scan deps and
+ produce "callgraph.txt" ;-)
+ -- Wrote SC_RSA_1 which will enable close to the minimum required to perform
+ RSA on 32-bit [or 64-bit] platforms with LibTomCrypt
+ -- Merged in the small/slower mp_div replacement. You can now toggle which
+ you want to use as your mp_div() at build time. Saves roughly 8KB or so.
+ -- Renamed a few files and changed some comments to make depends system work better.
+ (No changes to function names)
+ -- Merged in new Combas that perform 2 reads per inner loop instead of the older
+ 3reads/2writes per inner loop of the old code. Really though if you want speed
+ learn to use TomsFastMath ;-)
+
+August 9th, 2004
+v0.31 -- "profiled" builds now :-) new timings for Intel Northwoods
+ -- Added "pretty" build target
+ -- Update mp_init() to actually assign 0's instead of relying on calloc()
+ -- "Wolfgang Ehrhardt" <Wolfgang.Ehrhardt@munich.netsurf.de> found a bug in mp_mul() where if
+ you multiply a negative by zero you get negative zero as the result. Oops.
+ -- J Harper from PeerSec let me toy with his AMD64 and I got 60-bit digits working properly
+ [this also means that I fixed a bug where if sizeof(int) < sizeof(mp_digit) it would bug]
+
+April 11th, 2004
+v0.30 -- Added "mp_toradix_n" which stores upto "n-1" least significant digits of an mp_int
+ -- Johan Lindh sent a patch so MSVC wouldn't whine about redefining malloc [in weird dll modes]
+ -- Henrik Goldman spotted a missing OPT_CAST in mp_fwrite()
+ -- Tuned tommath.h so that when MP_LOW_MEM is defined MP_PREC shall be reduced.
+ [I also allow MP_PREC to be externally defined now]
+ -- Sped up mp_cnt_lsb() by using a 4x4 table [e.g. 4x speedup]
+ -- Added mp_prime_random_ex() which is a more versatile prime generator accurate to
+ exact bit lengths (unlike the deprecated but still available mp_prime_random() which
+ is only accurate to byte lengths). See the new LTM_PRIME_* flags ;-)
+ -- Alex Polushin contributed an optimized mp_sqrt() as well as mp_get_int() and mp_is_square().
+ I've cleaned them all up to be a little more consistent [along with one bug fix] for this release.
+ -- Added mp_init_set and mp_init_set_int to initialize and set small constants with one function
+ call.
+ -- Removed /etclib directory [um LibTomPoly deprecates this].
+ -- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus.
+ ++ N.B. My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org
+ website.
+
+Jan 25th, 2004
+v0.29 ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-)
+ -- Added fix to mp_shrink to prevent a realloc when used == 0 [e.g. realloc zero bytes???]
+ -- Made the mp_prime_rabin_miller_trials() function internal table smaller and also
+ set the minimum number of tests to two (sounds a bit safer).
+ -- Added a mp_exteuclid() which computes the extended euclidean algorithm.
+ -- Fixed a memory leak in s_mp_exptmod() [called when Barrett reduction is to be used] which would arise
+ if a multiplication or subsequent reduction failed [would not free the temp result].
+ -- Made an API change to mp_radix_size(). It now returns an error code and stores the required size
+ through an "int star" passed to it.
+
+Dec 24th, 2003
+v0.28 -- Henrik Goldman suggested I add casts to the montomgery code [stores into mu...] so compilers wouldn't
+ spew [erroneous] diagnostics... fixed.
+ -- Henrik Goldman also spotted two typos. One in mp_radix_size() and another in mp_toradix().
+ -- Added fix to mp_shrink() to avoid a memory leak.
+ -- Added mp_prime_random() which requires a callback to make truly random primes of a given nature
+ (idea from chat with Niels Ferguson at Crypto'03)
+ -- Picked up a second wind. I'm filled with Gooo. Mission Gooo!
+ -- Removed divisions from mp_reduce_is_2k()
+ -- Sped up mp_div_d() [general case] to use only one division per digit instead of two.
+ -- Added the heap macros from LTC to LTM. Now you can easily [by editing four lines of tommath.h]
+ change the name of the heap functions used in LTM [also compatible with LTC via MPI mode]
+ -- Added bn_prime_rabin_miller_trials() which gives the number of Rabin-Miller trials to achieve
+ a failure rate of less than 2^-96
+ -- fixed bug in fast_mp_invmod(). The initial testing logic was wrong. An invalid input is not when
+ "a" and "b" are even it's when "b" is even [the algo is for odd moduli only].
+ -- Started a new manual [finally]. It is incomplete and will be finished as time goes on. I had to stop
+ adding full demos around half way in chapter three so I could at least get a good portion of the
+ manual done. If you really need help using the library you can always email me!
+ -- My Textbook is now included as part of the package [all Public Domain]
+
+Sept 19th, 2003
+v0.27 -- Removed changes.txt~ which was made by accident since "kate" decided it was
+ a good time to re-enable backups... [kde is fun!]
+ -- In mp_grow() "a->dp" is not overwritten by realloc call [re: memory leak]
+ Now if mp_grow() fails the mp_int is still valid and can be cleared via
+ mp_clear() to reclaim the memory.
+ -- Henrik Goldman found a buffer overflow bug in mp_add_d(). Fixed.
+ -- Cleaned up mp_mul_d() to be much easier to read and follow.
+
+Aug 29th, 2003
+v0.26 -- Fixed typo that caused warning with GCC 3.2
+ -- Martin Marcel noticed a bug in mp_neg() that allowed negative zeroes.
+ Also, Martin is the fellow who noted the bugs in mp_gcd() of 0.24/0.25.
+ -- Martin Marcel noticed an optimization [and slight bug] in mp_lcm().
+ -- Added fix to mp_read_unsigned_bin to prevent a buffer overflow.
+ -- Beefed up the comments in the baseline multipliers [and montgomery]
+ -- Added "mont" demo to the makefile.msvc in etc/
+ -- Optimized sign compares in mp_cmp from 4 to 2 cases.
+
+Aug 4th, 2003
+v0.25 -- Fix to mp_gcd again... oops (0,-a) == (-a, 0) == a
+ -- Fix to mp_clear which didn't reset the sign [Greg Rose]
+ -- Added mp_error_to_string() to convert return codes to strings. [Greg Rose]
+ -- Optimized fast_mp_invmod() to do the test for invalid inputs [both even]
+ first so temps don't have to be initialized if it's going to fail.
+ -- Optimized mp_gcd() by removing mp_div_2d calls for when one of the inputs
+ is odd.
+ -- Tons of new comments, some indentation fixups, etc.
+ -- mp_jacobi() returns MP_VAL if the modulus is less than or equal to zero.
+ -- fixed two typos in the header of each file :-)
+ -- LibTomMath is officially Public Domain [see LICENSE]
+
+July 15th, 2003
+v0.24 -- Optimized mp_add_d and mp_sub_d to not allocate temporary variables
+ -- Fixed mp_gcd() so the gcd of 0,0 is 0. Allows the gcd operation to be chained
+ e.g. (0,0,a) == a [instead of 1]
+ -- Should be one of the last release for a while. Working on LibTomMath book now.
+ -- optimized the pprime demo [/etc/pprime.c] to first make a huge table of single
+ digit primes then it reads them randomly instead of randomly choosing/testing single
+ digit primes.
+
+July 12th, 2003
+v0.23 -- Optimized mp_prime_next_prime() to not use mp_mod [via is_divisible()] in each
+ iteration. Instead now a smaller table is kept of the residues which can be updated
+ without division.
+ -- Fixed a bug in next_prime() where an input of zero would be treated as odd and
+ have two added to it [to move to the next odd].
+ -- fixed a bug in prime_fermat() and prime_miller_rabin() which allowed the base
+ to be negative, zero or one. Normally the test is only valid if the base is
+ greater than one.
+ -- changed the next_prime() prototype to accept a new parameter "bbs_style" which
+ will find the next prime congruent to 3 mod 4. The default [bbs_style==0] will
+ make primes which are either congruent to 1 or 3 mod 4.
+ -- fixed mp_read_unsigned_bin() so that it doesn't include both code for
+ the case DIGIT_BIT < 8 and >= 8
+ -- optimized div_d() to easy out on division by 1 [or if a == 0] and use
+ logical shifts if the divisor is a power of two.
+ -- the default DIGIT_BIT type was not int for non-default builds. Fixed.
+
+July 2nd, 2003
+v0.22 -- Fixed up mp_invmod so the result is properly in range now [was always congruent to the inverse...]
+ -- Fixed up s_mp_exptmod and mp_exptmod_fast so the lower half of the pre-computed table isn't allocated
+ which makes the algorithm use half as much ram.
+ -- Fixed the install script not to make the book :-) [which isn't included anyways]
+ -- added mp_cnt_lsb() which counts how many of the lsbs are zero
+ -- optimized mp_gcd() to use the new mp_cnt_lsb() to replace multiple divisions by two by a single division.
+ -- applied similar optimization to mp_prime_miller_rabin().
+ -- Fixed a bug in both mp_invmod() and fast_mp_invmod() which tested for odd
+ via "mp_iseven() == 0" which is not valid [since zero is not even either].
+
+June 19th, 2003
+v0.21 -- Fixed bug in mp_mul_d which would not handle sign correctly [would not always forward it]
+ -- Removed the #line lines from gen.pl [was in violation of ISO C]
+
+June 8th, 2003
+v0.20 -- Removed the book from the package. Added the TDCAL license document.
+ -- This release is officially pure-bred TDCAL again [last officially TDCAL based release was v0.16]
+
+June 6th, 2003
+v0.19 -- Fixed a bug in mp_montgomery_reduce() which was introduced when I tweaked mp_rshd() in the previous release.
+ Essentially the digits were not trimmed before the compare which cause a subtraction to occur all the time.
+ -- Fixed up etc/tune.c a bit to stop testing new cutoffs after 16 failures [to find more optimal points].
+ Brute force ho!
+
+
+May 29th, 2003
+v0.18 -- Fixed a bug in s_mp_sqr which would handle carries properly just not very elegantly.
+ (e.g. correct result, just bad looking code)
+ -- Fixed bug in mp_sqr which still had a 512 constant instead of MP_WARRAY
+ -- Added Toom-Cook multipliers [needs tuning!]
+ -- Added efficient divide by 3 algorithm mp_div_3
+ -- Re-wrote mp_div_d to be faster than calling mp_div
+ -- Added in a donated BCC makefile and a single page LTM poster (ahalhabsi@sbcglobal.net)
+ -- Added mp_reduce_2k which reduces an input modulo n = 2**p - k for any single digit k
+ -- Made the exptmod system be aware of the 2k reduction algorithms.
+ -- Rewrote mp_dr_reduce to be smaller, simpler and easier to understand.
+
+May 17th, 2003
+v0.17 -- Benjamin Goldberg submitted optimized mp_add and mp_sub routines. A new gen.pl as well
+ as several smaller suggestions. Thanks!
+ -- removed call to mp_cmp in inner loop of mp_div and put mp_cmp_mag in its place :-)
+ -- Fixed bug in mp_exptmod that would cause it to fail for odd moduli when DIGIT_BIT != 28
+ -- mp_exptmod now also returns errors if the modulus is negative and will handle negative exponents
+ -- mp_prime_is_prime will now return true if the input is one of the primes in the prime table
+ -- Damian M Gryski (dgryski@uwaterloo.ca) found a index out of bounds error in the
+ mp_fast_s_mp_mul_high_digs function which didn't come up before. (fixed)
+ -- Refactored the DR reduction code so there is only one function per file.
+ -- Fixed bug in the mp_mul() which would erroneously avoid the faster multiplier [comba] when it was
+ allowed. The bug would not cause the incorrect value to be produced just less efficient (fixed)
+ -- Fixed similar bug in the Montgomery reduction code.
+ -- Added tons of (mp_digit) casts so the 7/15/28/31 bit digit code will work flawlessly out of the box.
+ Also added limited support for 64-bit machines with a 60-bit digit. Both thanks to Tom Wu (tom@arcot.com)
+ -- Added new comments here and there, cleaned up some code [style stuff]
+ -- Fixed a lingering typo in mp_exptmod* that would set bitcnt to zero then one. Very silly stuff :-)
+ -- Fixed up mp_exptmod_fast so it would set "redux" to the comba Montgomery reduction if allowed. This
+ saves quite a few calls and if statements.
+ -- Added etc/mont.c a test of the Montgomery reduction [assuming all else works :-| ]
+ -- Fixed up etc/tune.c to use a wider test range [more appropriate] also added a x86 based addition which
+ uses RDTSC for high precision timing.
+ -- Updated demo/demo.c to remove MPI stuff [won't work anyways], made the tests run for 2 seconds each so its
+ not so insanely slow. Also made the output space delimited [and fixed up various errors]
+ -- Added logs directory, logs/graph.dem which will use gnuplot to make a series of PNG files
+ that go with the pre-made index.html. You have to build [via make timing] and run ltmtest first in the
+ root of the package.
+ -- Fixed a bug in mp_sub and mp_add where "-a - -a" or "-a + a" would produce -0 as the result [obviously invalid].
+ -- Fixed a bug in mp_rshd. If the count == a.used it should zero/return [instead of shifting]
+ -- Fixed a "off-by-one" bug in mp_mul2d. The initial size check on alloc would be off by one if the residue
+ shifting caused a carry.
+ -- Fixed a bug where s_mp_mul_digs() would not call the Comba based routine if allowed. This made Barrett reduction
+ slower than it had to be.
+
+Mar 29th, 2003
+v0.16 -- Sped up mp_div by making normalization one shift call
+ -- Sped up mp_mul_2d/mp_div_2d by aliasing pointers :-)
+ -- Cleaned up mp_gcd to use the macros for odd/even detection
+ -- Added comments here and there, mostly there but occasionally here too.
+
+Mar 22nd, 2003
+v0.15 -- Added series of prime testing routines to lib
+ -- Fixed up etc/tune.c
+ -- Added DR reduction algorithm
+ -- Beefed up the manual more.
+ -- Fixed up demo/demo.c so it doesn't have so many warnings and it does the full series of
+ tests
+ -- Added "pre-gen" directory which will hold a "gen.pl"'ed copy of the entire lib [done at
+ zipup time so its always the latest]
+ -- Added conditional casts for C++ users [boo!]
+
+Mar 15th, 2003
+v0.14 -- Tons of manual updates
+ -- cleaned up the directory
+ -- added MSVC makefiles
+ -- source changes [that I don't recall]
+ -- Fixed up the lshd/rshd code to use pointer aliasing
+ -- Fixed up the mul_2d and div_2d to not call rshd/lshd unless needed
+ -- Fixed up etc/tune.c a tad
+ -- fixed up demo/demo.c to output comma-delimited results of timing
+ also fixed up timing demo to use a finer granularity for various functions
+ -- fixed up demo/demo.c testing to pause during testing so my Duron won't catch on fire
+ [stays around 31-35C during testing :-)]
+
+Feb 13th, 2003
+v0.13 -- tons of minor speed-ups in low level add, sub, mul_2 and div_2 which propagate
+ to other functions like mp_invmod, mp_div, etc...
+ -- Sped up mp_exptmod_fast by using new code to find R mod m [e.g. B^n mod m]
+ -- minor fixes
+
+Jan 17th, 2003
+v0.12 -- re-wrote the majority of the makefile so its more portable and will
+ install via "make install" on most *nix platforms
+ -- Re-packaged all the source as seperate files. Means the library a single
+ file packagage any more. Instead of just adding "bn.c" you have to add
+ libtommath.a
+ -- Renamed "bn.h" to "tommath.h"
+ -- Changes to the manual to reflect all of this
+ -- Used GNU Indent to clean up the source
+
+Jan 15th, 2003
+v0.11 -- More subtle fixes
+ -- Moved to gentoo linux [hurrah!] so made *nix specific fixes to the make process
+ -- Sped up the montgomery reduction code quite a bit
+ -- fixed up demo so when building timing for the x86 it assumes ELF format now
+
+Jan 9th, 2003
+v0.10 -- Pekka Riikonen suggested fixes to the radix conversion code.
+ -- Added baseline montgomery and comba montgomery reductions, sped up exptmods
+ [to a point, see bn.h for MONTGOMERY_EXPT_CUTOFF]
+
+Jan 6th, 2003
+v0.09 -- Updated the manual to reflect recent changes. :-)
+ -- Added Jacobi function (mp_jacobi) to supplement the number theory side of the lib
+ -- Added a Mersenne prime finder demo in ./etc/mersenne.c
+
+Jan 2nd, 2003
+v0.08 -- Sped up the multipliers by moving the inner loop variables into a smaller scope
+ -- Corrected a bunch of small "warnings"
+ -- Added more comments
+ -- Made "mtest" be able to use /dev/random, /dev/urandom or stdin for RNG data
+ -- Corrected some bugs where error messages were potentially ignored
+ -- add etc/pprime.c program which makes numbers which are provably prime.
+
+Jan 1st, 2003
+v0.07 -- Removed alot of heap operations from core functions to speed them up
+ -- Added a root finding function [and mp_sqrt macro like from MPI]
+ -- Added more to manual
+
+Dec 31st, 2002
+v0.06 -- Sped up the s_mp_add, s_mp_sub which inturn sped up mp_invmod, mp_exptmod, etc...
+ -- Cleaned up the header a bit more
+
+Dec 30th, 2002
+v0.05 -- Builds with MSVC out of the box
+ -- Fixed a bug in mp_invmod w.r.t. even moduli
+ -- Made mp_toradix and mp_read_radix use char instead of unsigned char arrays
+ -- Fixed up exptmod to use fewer multiplications
+ -- Fixed up mp_init_size to use only one heap operation
+ -- Note there is a slight "off-by-one" bug in the library somewhere
+ without the padding (see the source for comment) the library
+ crashes in libtomcrypt. Anyways a reasonable workaround is to pad the
+ numbers which will always correct it since as the numbers grow the padding
+ will still be beyond the end of the number
+ -- Added more to the manual
+
+Dec 29th, 2002
+v0.04 -- Fixed a memory leak in mp_to_unsigned_bin
+ -- optimized invmod code
+ -- Fixed bug in mp_div
+ -- use exchange instead of copy for results
+ -- added a bit more to the manual
+
+Dec 27th, 2002
+v0.03 -- Sped up s_mp_mul_high_digs by not computing the carries of the lower digits
+ -- Fixed a bug where mp_set_int wouldn't zero the value first and set the used member.
+ -- fixed a bug in s_mp_mul_high_digs where the limit placed on the result digits was not calculated properly
+ -- fixed bugs in add/sub/mul/sqr_mod functions where if the modulus and dest were the same it wouldn't work
+ -- fixed a bug in mp_mod and mp_mod_d concerning negative inputs
+ -- mp_mul_d didn't preserve sign
+ -- Many many many many fixes
+ -- Works in LibTomCrypt now :-)
+ -- Added iterations to the timing demos... more accurate.
+ -- Tom needs a job.
+
+Dec 26th, 2002
+v0.02 -- Fixed a few "slips" in the manual. This is "LibTomMath" afterall :-)
+ -- Added mp_cmp_mag, mp_neg, mp_abs and mp_radix_size that were missing.
+ -- Sped up the fast [comba] multipliers more [yahoo!]
+
+Dec 25th,2002
+v0.01 -- Initial release. Gimme a break.
+ -- Todo list,
+ add details to manual [e.g. algorithms]
+ more comments in code
+ example programs
diff --git a/libtommath/demo/demo.c b/libtommath/demo/demo.c
new file mode 100644
index 0000000..62615cd
--- /dev/null
+++ b/libtommath/demo/demo.c
@@ -0,0 +1,515 @@
+#include <time.h>
+
+#ifdef IOWNANATHLON
+#include <unistd.h>
+#define SLEEP sleep(4)
+#else
+#define SLEEP
+#endif
+
+#include "tommath.h"
+
+void ndraw(mp_int *a, char *name)
+{
+ char buf[16000];
+ printf("%s: ", name);
+ mp_toradix(a, buf, 10);
+ printf("%s\n", buf);
+}
+
+static void draw(mp_int *a)
+{
+ ndraw(a, "");
+}
+
+
+unsigned long lfsr = 0xAAAAAAAAUL;
+
+int lbit(void)
+{
+ if (lfsr & 0x80000000UL) {
+ lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
+ return 1;
+ } else {
+ lfsr <<= 1;
+ return 0;
+ }
+}
+
+int myrng(unsigned char *dst, int len, void *dat)
+{
+ int x;
+ for (x = 0; x < len; x++) dst[x] = rand() & 0xFF;
+ return len;
+}
+
+
+
+ char cmd[4096], buf[4096];
+int main(void)
+{
+ mp_int a, b, c, d, e, f;
+ unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n,
+ div2_n, mul2_n, add_d_n, sub_d_n, t;
+ unsigned rr;
+ int i, n, err, cnt, ix, old_kara_m, old_kara_s;
+
+
+ mp_init(&a);
+ mp_init(&b);
+ mp_init(&c);
+ mp_init(&d);
+ mp_init(&e);
+ mp_init(&f);
+
+ srand(time(NULL));
+
+#if 0
+ // test mp_get_int
+ printf("Testing: mp_get_int\n");
+ for(i=0;i<1000;++i) {
+ t = ((unsigned long)rand()*rand()+1)&0xFFFFFFFF;
+ mp_set_int(&a,t);
+ if (t!=mp_get_int(&a)) {
+ printf("mp_get_int() bad result!\n");
+ return 1;
+ }
+ }
+ mp_set_int(&a,0);
+ if (mp_get_int(&a)!=0)
+ { printf("mp_get_int() bad result!\n");
+ return 1;
+ }
+ mp_set_int(&a,0xffffffff);
+ if (mp_get_int(&a)!=0xffffffff)
+ { printf("mp_get_int() bad result!\n");
+ return 1;
+ }
+
+ // test mp_sqrt
+ printf("Testing: mp_sqrt\n");
+ for (i=0;i<1000;++i) {
+ printf("%6d\r", i); fflush(stdout);
+ n = (rand()&15)+1;
+ mp_rand(&a,n);
+ if (mp_sqrt(&a,&b) != MP_OKAY)
+ { printf("mp_sqrt() error!\n");
+ return 1;
+ }
+ mp_n_root(&a,2,&a);
+ if (mp_cmp_mag(&b,&a) != MP_EQ)
+ { printf("mp_sqrt() bad result!\n");
+ return 1;
+ }
+ }
+
+ printf("\nTesting: mp_is_square\n");
+ for (i=0;i<1000;++i) {
+ printf("%6d\r", i); fflush(stdout);
+
+ /* test mp_is_square false negatives */
+ n = (rand()&7)+1;
+ mp_rand(&a,n);
+ mp_sqr(&a,&a);
+ if (mp_is_square(&a,&n)!=MP_OKAY) {
+ printf("fn:mp_is_square() error!\n");
+ return 1;
+ }
+ if (n==0) {
+ printf("fn:mp_is_square() bad result!\n");
+ return 1;
+ }
+
+ /* test for false positives */
+ mp_add_d(&a, 1, &a);
+ if (mp_is_square(&a,&n)!=MP_OKAY) {
+ printf("fp:mp_is_square() error!\n");
+ return 1;
+ }
+ if (n==1) {
+ printf("fp:mp_is_square() bad result!\n");
+ return 1;
+ }
+
+ }
+ printf("\n\n");
+
+ /* test for size */
+ for (ix = 10; ix < 256; ix++) {
+ printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout);
+ err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL);
+ if (err != MP_OKAY) {
+ printf("failed with err code %d\n", err);
+ return EXIT_FAILURE;
+ }
+ if (mp_count_bits(&a) != ix) {
+ printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
+ return EXIT_FAILURE;
+ }
+ }
+
+ for (ix = 16; ix < 256; ix++) {
+ printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout);
+ err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL);
+ if (err != MP_OKAY) {
+ printf("failed with err code %d\n", err);
+ return EXIT_FAILURE;
+ }
+ if (mp_count_bits(&a) != ix) {
+ printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
+ return EXIT_FAILURE;
+ }
+ /* let's see if it's really a safe prime */
+ mp_sub_d(&a, 1, &a);
+ mp_div_2(&a, &a);
+ mp_prime_is_prime(&a, 8, &cnt);
+ if (cnt != MP_YES) {
+ printf("sub is not prime!\n");
+ return EXIT_FAILURE;
+ }
+ }
+
+ printf("\n\n");
+
+ mp_read_radix(&a, "123456", 10);
+ mp_toradix_n(&a, buf, 10, 3);
+ printf("a == %s\n", buf);
+ mp_toradix_n(&a, buf, 10, 4);
+ printf("a == %s\n", buf);
+ mp_toradix_n(&a, buf, 10, 30);
+ printf("a == %s\n", buf);
+
+
+#if 0
+ for (;;) {
+ fgets(buf, sizeof(buf), stdin);
+ mp_read_radix(&a, buf, 10);
+ mp_prime_next_prime(&a, 5, 1);
+ mp_toradix(&a, buf, 10);
+ printf("%s, %lu\n", buf, a.dp[0] & 3);
+ }
+#endif
+
+ /* test mp_cnt_lsb */
+ printf("testing mp_cnt_lsb...\n");
+ mp_set(&a, 1);
+ for (ix = 0; ix < 1024; ix++) {
+ if (mp_cnt_lsb(&a) != ix) {
+ printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
+ return 0;
+ }
+ mp_mul_2(&a, &a);
+ }
+
+/* test mp_reduce_2k */
+ printf("Testing mp_reduce_2k...\n");
+ for (cnt = 3; cnt <= 128; ++cnt) {
+ mp_digit tmp;
+ mp_2expt(&a, cnt);
+ mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */
+
+
+ printf("\nTesting %4d bits", cnt);
+ printf("(%d)", mp_reduce_is_2k(&a));
+ mp_reduce_2k_setup(&a, &tmp);
+ printf("(%d)", tmp);
+ for (ix = 0; ix < 1000; ix++) {
+ if (!(ix & 127)) {printf("."); fflush(stdout); }
+ mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2);
+ mp_copy(&c, &b);
+ mp_mod(&c, &a, &c);
+ mp_reduce_2k(&b, &a, 1);
+ if (mp_cmp(&c, &b)) {
+ printf("FAILED\n");
+ exit(0);
+ }
+ }
+ }
+
+/* test mp_div_3 */
+ printf("Testing mp_div_3...\n");
+ mp_set(&d, 3);
+ for (cnt = 0; cnt < 10000; ) {
+ mp_digit r1, r2;
+
+ if (!(++cnt & 127)) printf("%9d\r", cnt);
+ mp_rand(&a, abs(rand()) % 128 + 1);
+ mp_div(&a, &d, &b, &e);
+ mp_div_3(&a, &c, &r2);
+
+ if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
+ printf("\n\nmp_div_3 => Failure\n");
+ }
+ }
+ printf("\n\nPassed div_3 testing\n");
+
+/* test the DR reduction */
+ printf("testing mp_dr_reduce...\n");
+ for (cnt = 2; cnt < 32; cnt++) {
+ printf("%d digit modulus\n", cnt);
+ mp_grow(&a, cnt);
+ mp_zero(&a);
+ for (ix = 1; ix < cnt; ix++) {
+ a.dp[ix] = MP_MASK;
+ }
+ a.used = cnt;
+ a.dp[0] = 3;
+
+ mp_rand(&b, cnt - 1);
+ mp_copy(&b, &c);
+
+ rr = 0;
+ do {
+ if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); }
+ mp_sqr(&b, &b); mp_add_d(&b, 1, &b);
+ mp_copy(&b, &c);
+
+ mp_mod(&b, &a, &b);
+ mp_dr_reduce(&c, &a, (((mp_digit)1)<<DIGIT_BIT)-a.dp[0]);
+
+ if (mp_cmp(&b, &c) != MP_EQ) {
+ printf("Failed on trial %lu\n", rr); exit(-1);
+
+ }
+ } while (++rr < 500);
+ printf("Passed DR test for %d digits\n", cnt);
+ }
+
+#endif
+
+ div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
+ sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0;
+
+ /* force KARA and TOOM to enable despite cutoffs */
+ KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 110;
+ TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 150;
+
+ for (;;) {
+ /* randomly clear and re-init one variable, this has the affect of triming the alloc space */
+ switch (abs(rand()) % 7) {
+ case 0: mp_clear(&a); mp_init(&a); break;
+ case 1: mp_clear(&b); mp_init(&b); break;
+ case 2: mp_clear(&c); mp_init(&c); break;
+ case 3: mp_clear(&d); mp_init(&d); break;
+ case 4: mp_clear(&e); mp_init(&e); break;
+ case 5: mp_clear(&f); mp_init(&f); break;
+ case 6: break; /* don't clear any */
+ }
+
+
+ printf("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n);
+ fgets(cmd, 4095, stdin);
+ cmd[strlen(cmd)-1] = 0;
+ printf("%s ]\r",cmd); fflush(stdout);
+ if (!strcmp(cmd, "mul2d")) { ++mul2d_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+
+ mp_mul_2d(&a, rr, &a);
+ a.sign = b.sign;
+ if (mp_cmp(&a, &b) != MP_EQ) {
+ printf("mul2d failed, rr == %d\n",rr);
+ draw(&a);
+ draw(&b);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "div2d")) { ++div2d_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+
+ mp_div_2d(&a, rr, &a, &e);
+ a.sign = b.sign;
+ if (a.used == b.used && a.used == 0) { a.sign = b.sign = MP_ZPOS; }
+ if (mp_cmp(&a, &b) != MP_EQ) {
+ printf("div2d failed, rr == %d\n",rr);
+ draw(&a);
+ draw(&b);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "add")) { ++add_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ mp_copy(&a, &d);
+ mp_add(&d, &b, &d);
+ if (mp_cmp(&c, &d) != MP_EQ) {
+ printf("add %lu failure!\n", add_n);
+draw(&a);draw(&b);draw(&c);draw(&d);
+ return 0;
+ }
+
+ /* test the sign/unsigned storage functions */
+
+ rr = mp_signed_bin_size(&c);
+ mp_to_signed_bin(&c, (unsigned char *)cmd);
+ memset(cmd+rr, rand()&255, sizeof(cmd)-rr);
+ mp_read_signed_bin(&d, (unsigned char *)cmd, rr);
+ if (mp_cmp(&c, &d) != MP_EQ) {
+ printf("mp_signed_bin failure!\n");
+ draw(&c);
+ draw(&d);
+ return 0;
+ }
+
+
+ rr = mp_unsigned_bin_size(&c);
+ mp_to_unsigned_bin(&c, (unsigned char *)cmd);
+ memset(cmd+rr, rand()&255, sizeof(cmd)-rr);
+ mp_read_unsigned_bin(&d, (unsigned char *)cmd, rr);
+ if (mp_cmp_mag(&c, &d) != MP_EQ) {
+ printf("mp_unsigned_bin failure!\n");
+ draw(&c);
+ draw(&d);
+ return 0;
+ }
+
+ } else if (!strcmp(cmd, "sub")) { ++sub_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ mp_copy(&a, &d);
+ mp_sub(&d, &b, &d);
+ if (mp_cmp(&c, &d) != MP_EQ) {
+ printf("sub %lu failure!\n", sub_n);
+draw(&a);draw(&b);draw(&c);draw(&d);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "mul")) { ++mul_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ mp_copy(&a, &d);
+ mp_mul(&d, &b, &d);
+ if (mp_cmp(&c, &d) != MP_EQ) {
+ printf("mul %lu failure!\n", mul_n);
+draw(&a);draw(&b);draw(&c);draw(&d);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "div")) { ++div_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64);
+
+ mp_div(&a, &b, &e, &f);
+ if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
+ printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e), mp_cmp(&d, &f));
+draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); draw(&f);
+ return 0;
+ }
+
+ } else if (!strcmp(cmd, "sqr")) { ++sqr_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ mp_copy(&a, &c);
+ mp_sqr(&c, &c);
+ if (mp_cmp(&b, &c) != MP_EQ) {
+ printf("sqr %lu failure!\n", sqr_n);
+draw(&a);draw(&b);draw(&c);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "gcd")) { ++gcd_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ mp_copy(&a, &d);
+ mp_gcd(&d, &b, &d);
+ d.sign = c.sign;
+ if (mp_cmp(&c, &d) != MP_EQ) {
+ printf("gcd %lu failure!\n", gcd_n);
+draw(&a);draw(&b);draw(&c);draw(&d);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "lcm")) { ++lcm_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ mp_copy(&a, &d);
+ mp_lcm(&d, &b, &d);
+ d.sign = c.sign;
+ if (mp_cmp(&c, &d) != MP_EQ) {
+ printf("lcm %lu failure!\n", lcm_n);
+ draw(&a);draw(&b);draw(&c);draw(&d);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "expt")) { ++expt_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64);
+ mp_copy(&a, &e);
+ mp_exptmod(&e, &b, &c, &e);
+ if (mp_cmp(&d, &e) != MP_EQ) {
+ printf("expt %lu failure!\n", expt_n);
+ draw(&a);draw(&b);draw(&c);draw(&d); draw(&e);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "invmod")) { ++inv_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64);
+ mp_invmod(&a, &b, &d);
+ mp_mulmod(&d,&a,&b,&e);
+ if (mp_cmp_d(&e, 1) != MP_EQ) {
+ printf("inv [wrong value from MPI?!] failure\n");
+ draw(&a);draw(&b);draw(&c);draw(&d);
+ mp_gcd(&a, &b, &e);
+ draw(&e);
+ return 0;
+ }
+
+ } else if (!strcmp(cmd, "div2")) { ++div2_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ mp_div_2(&a, &c);
+ if (mp_cmp(&c, &b) != MP_EQ) {
+ printf("div_2 %lu failure\n", div2_n);
+ draw(&a);
+ draw(&b);
+ draw(&c);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "mul2")) { ++mul2_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ mp_mul_2(&a, &c);
+ if (mp_cmp(&c, &b) != MP_EQ) {
+ printf("mul_2 %lu failure\n", mul2_n);
+ draw(&a);
+ draw(&b);
+ draw(&c);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "add_d")) { ++add_d_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ mp_add_d(&a, ix, &c);
+ if (mp_cmp(&b, &c) != MP_EQ) {
+ printf("add_d %lu failure\n", add_d_n);
+ draw(&a);
+ draw(&b);
+ draw(&c);
+ printf("d == %d\n", ix);
+ return 0;
+ }
+ } else if (!strcmp(cmd, "sub_d")) { ++sub_d_n;
+ fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64);
+ fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix);
+ fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64);
+ mp_sub_d(&a, ix, &c);
+ if (mp_cmp(&b, &c) != MP_EQ) {
+ printf("sub_d %lu failure\n", sub_d_n);
+ draw(&a);
+ draw(&b);
+ draw(&c);
+ printf("d == %d\n", ix);
+ return 0;
+ }
+ }
+ }
+ return 0;
+}
+
diff --git a/libtommath/demo/timing.c b/libtommath/demo/timing.c
new file mode 100644
index 0000000..7b27d53
--- /dev/null
+++ b/libtommath/demo/timing.c
@@ -0,0 +1,287 @@
+#include <tommath.h>
+#include <time.h>
+
+ulong64 _tt;
+
+#ifdef IOWNANATHLON
+#include <unistd.h>
+#define SLEEP sleep(4)
+#else
+#define SLEEP
+#endif
+
+
+void ndraw(mp_int *a, char *name)
+{
+ char buf[4096];
+ printf("%s: ", name);
+ mp_toradix(a, buf, 64);
+ printf("%s\n", buf);
+}
+
+static void draw(mp_int *a)
+{
+ ndraw(a, "");
+}
+
+
+unsigned long lfsr = 0xAAAAAAAAUL;
+
+int lbit(void)
+{
+ if (lfsr & 0x80000000UL) {
+ lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
+ return 1;
+ } else {
+ lfsr <<= 1;
+ return 0;
+ }
+}
+
+/* RDTSC from Scott Duplichan */
+static ulong64 TIMFUNC (void)
+ {
+ #if defined __GNUC__
+ #if defined(__i386__) || defined(__x86_64__)
+ unsigned long long a;
+ __asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx");
+ return a;
+ #else /* gcc-IA64 version */
+ unsigned long result;
+ __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
+ while (__builtin_expect ((int) result == -1, 0))
+ __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
+ return result;
+ #endif
+
+ // Microsoft and Intel Windows compilers
+ #elif defined _M_IX86
+ __asm rdtsc
+ #elif defined _M_AMD64
+ return __rdtsc ();
+ #elif defined _M_IA64
+ #if defined __INTEL_COMPILER
+ #include <ia64intrin.h>
+ #endif
+ return __getReg (3116);
+ #else
+ #error need rdtsc function for this build
+ #endif
+ }
+
+#define DO(x) x; x;
+//#define DO4(x) DO2(x); DO2(x);
+//#define DO8(x) DO4(x); DO4(x);
+//#define DO(x) DO8(x); DO8(x);
+
+int main(void)
+{
+ ulong64 tt, gg, CLK_PER_SEC;
+ FILE *log, *logb, *logc;
+ mp_int a, b, c, d, e, f;
+ int n, cnt, ix, old_kara_m, old_kara_s;
+ unsigned rr;
+
+ mp_init(&a);
+ mp_init(&b);
+ mp_init(&c);
+ mp_init(&d);
+ mp_init(&e);
+ mp_init(&f);
+
+ srand(time(NULL));
+
+
+ /* temp. turn off TOOM */
+ TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
+
+ CLK_PER_SEC = TIMFUNC();
+ sleep(1);
+ CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
+
+ printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
+
+ log = fopen("logs/add.log", "w");
+ for (cnt = 8; cnt <= 128; cnt += 8) {
+ SLEEP;
+ mp_rand(&a, cnt);
+ mp_rand(&b, cnt);
+ rr = 0;
+ tt = -1;
+ do {
+ gg = TIMFUNC();
+ DO(mp_add(&a,&b,&c));
+ gg = (TIMFUNC() - gg)>>1;
+ if (tt > gg) tt = gg;
+ } while (++rr < 100000);
+ printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+ fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log);
+ }
+ fclose(log);
+
+ log = fopen("logs/sub.log", "w");
+ for (cnt = 8; cnt <= 128; cnt += 8) {
+ SLEEP;
+ mp_rand(&a, cnt);
+ mp_rand(&b, cnt);
+ rr = 0;
+ tt = -1;
+ do {
+ gg = TIMFUNC();
+ DO(mp_sub(&a,&b,&c));
+ gg = (TIMFUNC() - gg)>>1;
+ if (tt > gg) tt = gg;
+ } while (++rr < 100000);
+
+ printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+ fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log);
+ }
+ fclose(log);
+
+ /* do mult/square twice, first without karatsuba and second with */
+ old_kara_m = KARATSUBA_MUL_CUTOFF;
+ old_kara_s = KARATSUBA_SQR_CUTOFF;
+ for (ix = 0; ix < 1; ix++) {
+ printf("With%s Karatsuba\n", (ix==0)?"out":"");
+
+ KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m;
+ KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
+
+ log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
+ for (cnt = 4; cnt <= 288; cnt += 2) {
+ SLEEP;
+ mp_rand(&a, cnt);
+ mp_rand(&b, cnt);
+ rr = 0;
+ tt = -1;
+ do {
+ gg = TIMFUNC();
+ DO(mp_mul(&a, &b, &c));
+ gg = (TIMFUNC() - gg)>>1;
+ if (tt > gg) tt = gg;
+ } while (++rr < 100);
+ printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+ fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log);
+ }
+ fclose(log);
+
+ log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
+ for (cnt = 4; cnt <= 288; cnt += 2) {
+ SLEEP;
+ mp_rand(&a, cnt);
+ rr = 0;
+ tt = -1;
+ do {
+ gg = TIMFUNC();
+ DO(mp_sqr(&a, &b));
+ gg = (TIMFUNC() - gg)>>1;
+ if (tt > gg) tt = gg;
+ } while (++rr < 100);
+ printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+ fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log);
+ }
+ fclose(log);
+
+ }
+
+ {
+ char *primes[] = {
+ /* 2K moduli mersenne primes */
+ "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
+ "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
+ "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
+ "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
+ "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
+ "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
+
+ /* DR moduli */
+ "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
+ "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
+ "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
+ "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
+ "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
+ "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
+ "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
+
+ /* generic unrestricted moduli */
+ "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
+ "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
+ "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
+ "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
+ "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
+ "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
+ "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
+ NULL
+ };
+ log = fopen("logs/expt.log", "w");
+ logb = fopen("logs/expt_dr.log", "w");
+ logc = fopen("logs/expt_2k.log", "w");
+ for (n = 0; primes[n]; n++) {
+ SLEEP;
+ mp_read_radix(&a, primes[n], 10);
+ mp_zero(&b);
+ for (rr = 0; rr < (unsigned)mp_count_bits(&a); rr++) {
+ mp_mul_2(&b, &b);
+ b.dp[0] |= lbit();
+ b.used += 1;
+ }
+ mp_sub_d(&a, 1, &c);
+ mp_mod(&b, &c, &b);
+ mp_set(&c, 3);
+ rr = 0;
+ tt = -1;
+ do {
+ gg = TIMFUNC();
+ DO(mp_exptmod(&c, &b, &a, &d));
+ gg = (TIMFUNC() - gg)>>1;
+ if (tt > gg) tt = gg;
+ } while (++rr < 10);
+ mp_sub_d(&a, 1, &e);
+ mp_sub(&e, &b, &b);
+ mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
+ mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
+ if (mp_cmp_d(&d, 1)) {
+ printf("Different (%d)!!!\n", mp_count_bits(&a));
+ draw(&d);
+ exit(0);
+ }
+ printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+ fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), tt);
+ }
+ }
+ fclose(log);
+ fclose(logb);
+ fclose(logc);
+
+ log = fopen("logs/invmod.log", "w");
+ for (cnt = 4; cnt <= 128; cnt += 4) {
+ SLEEP;
+ mp_rand(&a, cnt);
+ mp_rand(&b, cnt);
+
+ do {
+ mp_add_d(&b, 1, &b);
+ mp_gcd(&a, &b, &c);
+ } while (mp_cmp_d(&c, 1) != MP_EQ);
+
+ rr = 0;
+ tt = -1;
+ do {
+ gg = TIMFUNC();
+ DO(mp_invmod(&b, &a, &c));
+ gg = (TIMFUNC() - gg)>>1;
+ if (tt > gg) tt = gg;
+ } while (++rr < 1000);
+ mp_mulmod(&b, &c, &a, &d);
+ if (mp_cmp_d(&d, 1) != MP_EQ) {
+ printf("Failed to invert\n");
+ return 0;
+ }
+ printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+ fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt);
+ }
+ fclose(log);
+
+ return 0;
+}
+
diff --git a/libtommath/dep.pl b/libtommath/dep.pl
new file mode 100644
index 0000000..22266e3
--- /dev/null
+++ b/libtommath/dep.pl
@@ -0,0 +1,121 @@
+#!/usr/bin/perl
+#
+# Walk through source, add labels and make classes
+#
+#use strict;
+
+my %deplist;
+
+#open class file and write preamble
+open(CLASS, ">tommath_class.h") or die "Couldn't open tommath_class.h for writing\n";
+print CLASS "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined(LTM2)\n#define LTM3\n#endif\n#if defined(LTM1)\n#define LTM2\n#endif\n#define LTM1\n\n#if defined(LTM_ALL)\n";
+
+foreach my $filename (glob "bn*.c") {
+ my $define = $filename;
+
+ # convert filename to upper case so we can use it as a define
+ $define =~ tr/[a-z]/[A-Z]/;
+ $define =~ tr/\./_/;
+ print CLASS "#define $define\n";
+
+ # now copy text and apply #ifdef as required
+ my $apply = 0;
+ open(SRC, "<$filename");
+ open(OUT, ">tmp");
+
+ # first line will be the #ifdef
+ my $line = <SRC>;
+ if ($line =~ /include/) {
+ print OUT $line;
+ } else {
+ print OUT "#include <tommath.h>\n#ifdef $define\n$line";
+ $apply = 1;
+ }
+ while (<SRC>) {
+ if (!($_ =~ /tommath\.h/)) {
+ print OUT $_;
+ }
+ }
+ if ($apply == 1) {
+ print OUT "#endif\n";
+ }
+ close SRC;
+ close OUT;
+
+ unlink($filename);
+ rename("tmp", $filename);
+}
+print CLASS "#endif\n\n";
+
+# now do classes
+
+foreach my $filename (glob "bn*.c") {
+ open(SRC, "<$filename") or die "Can't open source file!\n";
+
+ # convert filename to upper case so we can use it as a define
+ $filename =~ tr/[a-z]/[A-Z]/;
+ $filename =~ tr/\./_/;
+
+ print CLASS "#if defined($filename)\n";
+ my $list = $filename;
+
+ # scan for mp_* and make classes
+ while (<SRC>) {
+ my $line = $_;
+ while ($line =~ m/(fast_)*(s_)*mp\_[a-z_0-9]*/) {
+ $line = $';
+ # now $& is the match, we want to skip over LTM keywords like
+ # mp_int, mp_word, mp_digit
+ if (!($& eq "mp_digit") && !($& eq "mp_word") && !($& eq "mp_int")) {
+ my $a = $&;
+ $a =~ tr/[a-z]/[A-Z]/;
+ $a = "BN_" . $a . "_C";
+ if (!($list =~ /$a/)) {
+ print CLASS " #define $a\n";
+ }
+ $list = $list . "," . $a;
+ }
+ }
+ }
+ @deplist{$filename} = $list;
+
+ print CLASS "#endif\n\n";
+ close SRC;
+}
+
+print CLASS "#ifdef LTM3\n#define LTM_LAST\n#endif\n#include <tommath_superclass.h>\n#include <tommath_class.h>\n#else\n#define LTM_LAST\n#endif\n";
+close CLASS;
+
+#now let's make a cool call graph...
+
+open(OUT,">callgraph.txt");
+$indent = 0;
+foreach (keys %deplist) {
+ $list = "";
+ draw_func(@deplist{$_});
+ print OUT "\n\n";
+}
+close(OUT);
+
+sub draw_func()
+{
+ my @funcs = split(",", $_[0]);
+ if ($list =~ /@funcs[0]/) {
+ return;
+ } else {
+ $list = $list . @funcs[0];
+ }
+ if ($indent == 0) { }
+ elsif ($indent >= 1) { print OUT "| " x ($indent - 1) . "+--->"; }
+ print OUT @funcs[0] . "\n";
+ shift @funcs;
+ my $temp = $list;
+ foreach my $i (@funcs) {
+ ++$indent;
+ draw_func(@deplist{$i});
+ --$indent;
+ }
+ $list = $temp;
+}
+
+
diff --git a/libtommath/etc/2kprime.1 b/libtommath/etc/2kprime.1
new file mode 100644
index 0000000..c41ded1
--- /dev/null
+++ b/libtommath/etc/2kprime.1
@@ -0,0 +1,2 @@
+256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
+512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
diff --git a/libtommath/etc/2kprime.c b/libtommath/etc/2kprime.c
new file mode 100644
index 0000000..d48b83e
--- /dev/null
+++ b/libtommath/etc/2kprime.c
@@ -0,0 +1,80 @@
+/* Makes safe primes of a 2k nature */
+#include <tommath.h>
+#include <time.h>
+
+int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096};
+
+int main(void)
+{
+ char buf[2000];
+ int x, y;
+ mp_int q, p;
+ FILE *out;
+ clock_t t1;
+ mp_digit z;
+
+ mp_init_multi(&q, &p, NULL);
+
+ out = fopen("2kprime.1", "w");
+ for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
+ top:
+ mp_2expt(&q, sizes[x]);
+ mp_add_d(&q, 3, &q);
+ z = -3;
+
+ t1 = clock();
+ for(;;) {
+ mp_sub_d(&q, 4, &q);
+ z += 4;
+
+ if (z > MP_MASK) {
+ printf("No primes of size %d found\n", sizes[x]);
+ break;
+ }
+
+ if (clock() - t1 > CLOCKS_PER_SEC) {
+ printf("."); fflush(stdout);
+// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
+ t1 = clock();
+ }
+
+ /* quick test on q */
+ mp_prime_is_prime(&q, 1, &y);
+ if (y == 0) {
+ continue;
+ }
+
+ /* find (q-1)/2 */
+ mp_sub_d(&q, 1, &p);
+ mp_div_2(&p, &p);
+ mp_prime_is_prime(&p, 3, &y);
+ if (y == 0) {
+ continue;
+ }
+
+ /* test on q */
+ mp_prime_is_prime(&q, 3, &y);
+ if (y == 0) {
+ continue;
+ }
+
+ break;
+ }
+
+ if (y == 0) {
+ ++sizes[x];
+ goto top;
+ }
+
+ mp_toradix(&q, buf, 10);
+ printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
+ fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
+ }
+
+ return 0;
+}
+
+
+
+
+
diff --git a/libtommath/etc/drprime.c b/libtommath/etc/drprime.c
new file mode 100644
index 0000000..0ab8ea6
--- /dev/null
+++ b/libtommath/etc/drprime.c
@@ -0,0 +1,60 @@
+/* Makes safe primes of a DR nature */
+#include <tommath.h>
+
+int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT };
+int main(void)
+{
+ int res, x, y;
+ char buf[4096];
+ FILE *out;
+ mp_int a, b;
+
+ mp_init(&a);
+ mp_init(&b);
+
+ out = fopen("drprimes.txt", "w");
+ for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
+ top:
+ printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
+ mp_grow(&a, sizes[x]);
+ mp_zero(&a);
+ for (y = 1; y < sizes[x]; y++) {
+ a.dp[y] = MP_MASK;
+ }
+
+ /* make a DR modulus */
+ a.dp[0] = -1;
+ a.used = sizes[x];
+
+ /* now loop */
+ res = 0;
+ for (;;) {
+ a.dp[0] += 4;
+ if (a.dp[0] >= MP_MASK) break;
+ mp_prime_is_prime(&a, 1, &res);
+ if (res == 0) continue;
+ printf("."); fflush(stdout);
+ mp_sub_d(&a, 1, &b);
+ mp_div_2(&b, &b);
+ mp_prime_is_prime(&b, 3, &res);
+ if (res == 0) continue;
+ mp_prime_is_prime(&a, 3, &res);
+ if (res == 1) break;
+ }
+
+ if (res != 1) {
+ printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
+ } else {
+ mp_toradix(&a, buf, 10);
+ printf("\n\np == %s\n\n", buf);
+ fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
+ }
+ }
+ fclose(out);
+
+ mp_clear(&a);
+ mp_clear(&b);
+
+ return 0;
+}
+
diff --git a/libtommath/etc/drprimes.28 b/libtommath/etc/drprimes.28
new file mode 100644
index 0000000..9d438ad
--- /dev/null
+++ b/libtommath/etc/drprimes.28
@@ -0,0 +1,25 @@
+DR safe primes for 28-bit digits.
+
+224-bit prime:
+p == 26959946667150639794667015087019630673637144422540572481103341844143
+
+532-bit prime:
+p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
+
+784-bit prime:
+p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
+
+1036-bit prime:
+p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
+
+1540-bit prime:
+p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
+
+2072-bit prime:
+p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
+
+3080-bit prime:
+p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
+
+4116-bit prime:
+p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679
diff --git a/libtommath/etc/drprimes.txt b/libtommath/etc/drprimes.txt
new file mode 100644
index 0000000..2c887ea
--- /dev/null
+++ b/libtommath/etc/drprimes.txt
@@ -0,0 +1,6 @@
+280-bit prime:
+p == 1942668892225729070919461906823518906642406839052139521251812409738904285204940164839
+
+532-bit prime:
+p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
+
diff --git a/libtommath/etc/makefile b/libtommath/etc/makefile
new file mode 100644
index 0000000..99154d8
--- /dev/null
+++ b/libtommath/etc/makefile
@@ -0,0 +1,50 @@
+CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops -I../
+
+# default lib name (requires install with root)
+# LIBNAME=-ltommath
+
+# libname when you can't install the lib with install
+LIBNAME=../libtommath.a
+
+#provable primes
+pprime: pprime.o
+ $(CC) pprime.o $(LIBNAME) -o pprime
+
+# portable [well requires clock()] tuning app
+tune: tune.o
+ $(CC) tune.o $(LIBNAME) -o tune
+
+# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
+tune86: tune.c
+ nasm -f coff timer.asm
+ $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
+
+# for cygwin
+tune86c: tune.c
+ nasm -f gnuwin32 timer.asm
+ $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
+
+#make tune86 for linux or any ELF format
+tune86l: tune.c
+ nasm -f elf -DUSE_ELF timer.asm
+ $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
+
+# spits out mersenne primes
+mersenne: mersenne.o
+ $(CC) mersenne.o $(LIBNAME) -o mersenne
+
+# fines DR safe primes for the given config
+drprime: drprime.o
+ $(CC) drprime.o $(LIBNAME) -o drprime
+
+# fines 2k safe primes for the given config
+2kprime: 2kprime.o
+ $(CC) 2kprime.o $(LIBNAME) -o 2kprime
+
+mont: mont.o
+ $(CC) mont.o $(LIBNAME) -o mont
+
+
+clean:
+ rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat \
+ *.da *.dyn *.dpi *~
diff --git a/libtommath/etc/makefile.icc b/libtommath/etc/makefile.icc
new file mode 100644
index 0000000..0a50728
--- /dev/null
+++ b/libtommath/etc/makefile.icc
@@ -0,0 +1,67 @@
+CC = icc
+
+CFLAGS += -I../
+
+# optimize for SPEED
+#
+# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
+# -ax? specifies make code specifically for ? but compatible with IA-32
+# -x? specifies compile solely for ? [not specifically IA-32 compatible]
+#
+# where ? is
+# K - PIII
+# W - first P4 [Williamette]
+# N - P4 Northwood
+# P - P4 Prescott
+# B - Blend of P4 and PM [mobile]
+#
+# Default to just generic max opts
+CFLAGS += -O3 -xN -ip
+
+# default lib name (requires install with root)
+# LIBNAME=-ltommath
+
+# libname when you can't install the lib with install
+LIBNAME=../libtommath.a
+
+#provable primes
+pprime: pprime.o
+ $(CC) pprime.o $(LIBNAME) -o pprime
+
+# portable [well requires clock()] tuning app
+tune: tune.o
+ $(CC) tune.o $(LIBNAME) -o tune
+
+# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
+tune86: tune.c
+ nasm -f coff timer.asm
+ $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
+
+# for cygwin
+tune86c: tune.c
+ nasm -f gnuwin32 timer.asm
+ $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
+
+#make tune86 for linux or any ELF format
+tune86l: tune.c
+ nasm -f elf -DUSE_ELF timer.asm
+ $(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
+
+# spits out mersenne primes
+mersenne: mersenne.o
+ $(CC) mersenne.o $(LIBNAME) -o mersenne
+
+# fines DR safe primes for the given config
+drprime: drprime.o
+ $(CC) drprime.o $(LIBNAME) -o drprime
+
+# fines 2k safe primes for the given config
+2kprime: 2kprime.o
+ $(CC) 2kprime.o $(LIBNAME) -o 2kprime
+
+mont: mont.o
+ $(CC) mont.o $(LIBNAME) -o mont
+
+
+clean:
+ rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat *.il
diff --git a/libtommath/etc/makefile.msvc b/libtommath/etc/makefile.msvc
new file mode 100644
index 0000000..2833372
--- /dev/null
+++ b/libtommath/etc/makefile.msvc
@@ -0,0 +1,23 @@
+#MSVC Makefile
+#
+#Tom St Denis
+
+CFLAGS = /I../ /Ox /DWIN32 /W3
+
+pprime: pprime.obj
+ cl pprime.obj ../tommath.lib
+
+mersenne: mersenne.obj
+ cl mersenne.obj ../tommath.lib
+
+tune: tune.obj
+ cl tune.obj ../tommath.lib
+
+mont: mont.obj
+ cl mont.obj ../tommath.lib
+
+drprime: drprime.obj
+ cl drprime.obj ../tommath.lib
+
+2kprime: 2kprime.obj
+ cl 2kprime.obj ../tommath.lib
diff --git a/libtommath/etc/mersenne.c b/libtommath/etc/mersenne.c
new file mode 100644
index 0000000..1cd5b50
--- /dev/null
+++ b/libtommath/etc/mersenne.c
@@ -0,0 +1,140 @@
+/* Finds Mersenne primes using the Lucas-Lehmer test
+ *
+ * Tom St Denis, tomstdenis@iahu.ca
+ */
+#include <time.h>
+#include <tommath.h>
+
+int
+is_mersenne (long s, int *pp)
+{
+ mp_int n, u;
+ int res, k;
+
+ *pp = 0;
+
+ if ((res = mp_init (&n)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&u)) != MP_OKAY) {
+ goto LBL_N;
+ }
+
+ /* n = 2^s - 1 */
+ if ((res = mp_2expt(&n, s)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* set u=4 */
+ mp_set (&u, 4);
+
+ /* for k=1 to s-2 do */
+ for (k = 1; k <= s - 2; k++) {
+ /* u = u^2 - 2 mod n */
+ if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* make sure u is positive */
+ while (u.sign == MP_NEG) {
+ if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* reduce */
+ if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* if u == 0 then its prime */
+ if (mp_iszero (&u) == 1) {
+ mp_prime_is_prime(&n, 8, pp);
+ if (*pp != 1) printf("FAILURE\n");
+ }
+
+ res = MP_OKAY;
+LBL_MU:mp_clear (&u);
+LBL_N:mp_clear (&n);
+ return res;
+}
+
+/* square root of a long < 65536 */
+long
+i_sqrt (long x)
+{
+ long x1, x2;
+
+ x2 = 16;
+ do {
+ x1 = x2;
+ x2 = x1 - ((x1 * x1) - x) / (2 * x1);
+ } while (x1 != x2);
+
+ if (x1 * x1 > x) {
+ --x1;
+ }
+
+ return x1;
+}
+
+/* is the long prime by brute force */
+int
+isprime (long k)
+{
+ long y, z;
+
+ y = i_sqrt (k);
+ for (z = 2; z <= y; z++) {
+ if ((k % z) == 0)
+ return 0;
+ }
+ return 1;
+}
+
+
+int
+main (void)
+{
+ int pp;
+ long k;
+ clock_t tt;
+
+ k = 3;
+
+ for (;;) {
+ /* start time */
+ tt = clock ();
+
+ /* test if 2^k - 1 is prime */
+ if (is_mersenne (k, &pp) != MP_OKAY) {
+ printf ("Whoa error\n");
+ return -1;
+ }
+
+ if (pp == 1) {
+ /* count time */
+ tt = clock () - tt;
+
+ /* display if prime */
+ printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
+ }
+
+ /* goto next odd exponent */
+ k += 2;
+
+ /* but make sure its prime */
+ while (isprime (k) == 0) {
+ k += 2;
+ }
+ }
+ return 0;
+}
diff --git a/libtommath/etc/mont.c b/libtommath/etc/mont.c
new file mode 100644
index 0000000..dbf1735
--- /dev/null
+++ b/libtommath/etc/mont.c
@@ -0,0 +1,46 @@
+/* tests the montgomery routines */
+#include <tommath.h>
+
+int main(void)
+{
+ mp_int modulus, R, p, pp;
+ mp_digit mp;
+ long x, y;
+
+ srand(time(NULL));
+ mp_init_multi(&modulus, &R, &p, &pp, NULL);
+
+ /* loop through various sizes */
+ for (x = 4; x < 256; x++) {
+ printf("DIGITS == %3ld...", x); fflush(stdout);
+
+ /* make up the odd modulus */
+ mp_rand(&modulus, x);
+ modulus.dp[0] |= 1;
+
+ /* now find the R value */
+ mp_montgomery_calc_normalization(&R, &modulus);
+ mp_montgomery_setup(&modulus, &mp);
+
+ /* now run through a bunch tests */
+ for (y = 0; y < 1000; y++) {
+ mp_rand(&p, x/2); /* p = random */
+ mp_mul(&p, &R, &pp); /* pp = R * p */
+ mp_montgomery_reduce(&pp, &modulus, mp);
+
+ /* should be equal to p */
+ if (mp_cmp(&pp, &p) != MP_EQ) {
+ printf("FAILURE!\n");
+ exit(-1);
+ }
+ }
+ printf("PASSED\n");
+ }
+
+ return 0;
+}
+
+
+
+
+
diff --git a/libtommath/etc/pprime.c b/libtommath/etc/pprime.c
new file mode 100644
index 0000000..26e0d84
--- /dev/null
+++ b/libtommath/etc/pprime.c
@@ -0,0 +1,396 @@
+/* Generates provable primes
+ *
+ * See http://iahu.ca:8080/papers/pp.pdf for more info.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://tom.iahu.ca
+ */
+#include <time.h>
+#include "tommath.h"
+
+int n_prime;
+FILE *primes;
+
+/* fast square root */
+static mp_digit
+i_sqrt (mp_word x)
+{
+ mp_word x1, x2;
+
+ x2 = x;
+ do {
+ x1 = x2;
+ x2 = x1 - ((x1 * x1) - x) / (2 * x1);
+ } while (x1 != x2);
+
+ if (x1 * x1 > x) {
+ --x1;
+ }
+
+ return x1;
+}
+
+
+/* generates a prime digit */
+static void gen_prime (void)
+{
+ mp_digit r, x, y, next;
+ FILE *out;
+
+ out = fopen("pprime.dat", "wb");
+
+ /* write first set of primes */
+ r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
+ r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
+
+ /* get square root, since if 'r' is composite its factors must be < than this */
+ y = i_sqrt (r);
+ next = (y + 1) * (y + 1);
+
+ for (;;) {
+ do {
+ r += 2; /* next candidate */
+ r &= MP_MASK;
+ if (r < 31) break;
+
+ /* update sqrt ? */
+ if (next <= r) {
+ ++y;
+ next = (y + 1) * (y + 1);
+ }
+
+ /* loop if divisible by 3,5,7,11,13,17,19,23,29 */
+ if ((r % 3) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 5) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 7) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 11) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 13) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 17) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 19) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 23) == 0) {
+ x = 0;
+ continue;
+ }
+ if ((r % 29) == 0) {
+ x = 0;
+ continue;
+ }
+
+ /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
+ for (x = 30; x <= y; x += 30) {
+ if ((r % (x + 1)) == 0) {
+ x = 0;
+ break;
+ }
+ if ((r % (x + 7)) == 0) {
+ x = 0;
+ break;
+ }
+ if ((r % (x + 11)) == 0) {
+ x = 0;
+ break;
+ }
+ if ((r % (x + 13)) == 0) {
+ x = 0;
+ break;
+ }
+ if ((r % (x + 17)) == 0) {
+ x = 0;
+ break;
+ }
+ if ((r % (x + 19)) == 0) {
+ x = 0;
+ break;
+ }
+ if ((r % (x + 23)) == 0) {
+ x = 0;
+ break;
+ }
+ if ((r % (x + 29)) == 0) {
+ x = 0;
+ break;
+ }
+ }
+ } while (x == 0);
+ if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
+ if (r < 31) break;
+ }
+
+ fclose(out);
+}
+
+void load_tab(void)
+{
+ primes = fopen("pprime.dat", "rb");
+ if (primes == NULL) {
+ gen_prime();
+ primes = fopen("pprime.dat", "rb");
+ }
+ fseek(primes, 0, SEEK_END);
+ n_prime = ftell(primes) / sizeof(mp_digit);
+}
+
+mp_digit prime_digit(void)
+{
+ int n;
+ mp_digit d;
+
+ n = abs(rand()) % n_prime;
+ fseek(primes, n * sizeof(mp_digit), SEEK_SET);
+ fread(&d, 1, sizeof(mp_digit), primes);
+ return d;
+}
+
+
+/* makes a prime of at least k bits */
+int
+pprime (int k, int li, mp_int * p, mp_int * q)
+{
+ mp_int a, b, c, n, x, y, z, v;
+ int res, ii;
+ static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
+
+ /* single digit ? */
+ if (k <= (int) DIGIT_BIT) {
+ mp_set (p, prime_digit ());
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init (&c)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&v)) != MP_OKAY) {
+ goto LBL_C;
+ }
+
+ /* product of first 50 primes */
+ if ((res =
+ mp_read_radix (&v,
+ "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
+ 10)) != MP_OKAY) {
+ goto LBL_V;
+ }
+
+ if ((res = mp_init (&a)) != MP_OKAY) {
+ goto LBL_V;
+ }
+
+ /* set the prime */
+ mp_set (&a, prime_digit ());
+
+ if ((res = mp_init (&b)) != MP_OKAY) {
+ goto LBL_A;
+ }
+
+ if ((res = mp_init (&n)) != MP_OKAY) {
+ goto LBL_B;
+ }
+
+ if ((res = mp_init (&x)) != MP_OKAY) {
+ goto LBL_N;
+ }
+
+ if ((res = mp_init (&y)) != MP_OKAY) {
+ goto LBL_X;
+ }
+
+ if ((res = mp_init (&z)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* now loop making the single digit */
+ while (mp_count_bits (&a) < k) {
+ fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
+ fflush (stderr);
+ top:
+ mp_set (&b, prime_digit ());
+
+ /* now compute z = a * b * 2 */
+ if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
+ goto LBL_Z;
+ }
+
+ if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
+ goto LBL_Z;
+ }
+
+ if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
+ goto LBL_Z;
+ }
+
+ /* n = z + 1 */
+ if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
+ goto LBL_Z;
+ }
+
+ /* check (n, v) == 1 */
+ if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
+ goto LBL_Z;
+ }
+
+ if (mp_cmp_d (&y, 1) != MP_EQ)
+ goto top;
+
+ /* now try base x=bases[ii] */
+ for (ii = 0; ii < li; ii++) {
+ mp_set (&x, bases[ii]);
+
+ /* compute x^a mod n */
+ if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
+ goto LBL_Z;
+ }
+
+ /* if y == 1 loop */
+ if (mp_cmp_d (&y, 1) == MP_EQ)
+ continue;
+
+ /* now x^2a mod n */
+ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
+ goto LBL_Z;
+ }
+
+ if (mp_cmp_d (&y, 1) == MP_EQ)
+ continue;
+
+ /* compute x^b mod n */
+ if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
+ goto LBL_Z;
+ }
+
+ /* if y == 1 loop */
+ if (mp_cmp_d (&y, 1) == MP_EQ)
+ continue;
+
+ /* now x^2b mod n */
+ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
+ goto LBL_Z;
+ }
+
+ if (mp_cmp_d (&y, 1) == MP_EQ)
+ continue;
+
+ /* compute x^c mod n == x^ab mod n */
+ if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
+ goto LBL_Z;
+ }
+
+ /* if y == 1 loop */
+ if (mp_cmp_d (&y, 1) == MP_EQ)
+ continue;
+
+ /* now compute (x^c mod n)^2 */
+ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
+ goto LBL_Z;
+ }
+
+ /* y should be 1 */
+ if (mp_cmp_d (&y, 1) != MP_EQ)
+ continue;
+ break;
+ }
+
+ /* no bases worked? */
+ if (ii == li)
+ goto top;
+
+{
+ char buf[4096];
+
+ mp_toradix(&n, buf, 10);
+ printf("Certificate of primality for:\n%s\n\n", buf);
+ mp_toradix(&a, buf, 10);
+ printf("A == \n%s\n\n", buf);
+ mp_toradix(&b, buf, 10);
+ printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
+ printf("----------------------------------------------------------------\n");
+}
+
+ /* a = n */
+ mp_copy (&n, &a);
+ }
+
+ /* get q to be the order of the large prime subgroup */
+ mp_sub_d (&n, 1, q);
+ mp_div_2 (q, q);
+ mp_div (q, &b, q, NULL);
+
+ mp_exch (&n, p);
+
+ res = MP_OKAY;
+LBL_Z:mp_clear (&z);
+LBL_Y:mp_clear (&y);
+LBL_X:mp_clear (&x);
+LBL_N:mp_clear (&n);
+LBL_B:mp_clear (&b);
+LBL_A:mp_clear (&a);
+LBL_V:mp_clear (&v);
+LBL_C:mp_clear (&c);
+ return res;
+}
+
+
+int
+main (void)
+{
+ mp_int p, q;
+ char buf[4096];
+ int k, li;
+ clock_t t1;
+
+ srand (time (NULL));
+ load_tab();
+
+ printf ("Enter # of bits: \n");
+ fgets (buf, sizeof (buf), stdin);
+ sscanf (buf, "%d", &k);
+
+ printf ("Enter number of bases to try (1 to 8):\n");
+ fgets (buf, sizeof (buf), stdin);
+ sscanf (buf, "%d", &li);
+
+
+ mp_init (&p);
+ mp_init (&q);
+
+ t1 = clock ();
+ pprime (k, li, &p, &q);
+ t1 = clock () - t1;
+
+ printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
+
+ mp_toradix (&p, buf, 10);
+ printf ("P == %s\n", buf);
+ mp_toradix (&q, buf, 10);
+ printf ("Q == %s\n", buf);
+
+ return 0;
+}
diff --git a/libtommath/etc/prime.1024 b/libtommath/etc/prime.1024
new file mode 100644
index 0000000..5636e2d
--- /dev/null
+++ b/libtommath/etc/prime.1024
@@ -0,0 +1,414 @@
+Enter # of bits:
+Enter number of bases to try (1 to 8):
+Certificate of primality for:
+36360080703173363
+
+A ==
+89963569
+
+B ==
+202082249
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+4851595597739856136987139
+
+A ==
+36360080703173363
+
+B ==
+66715963
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+19550639734462621430325731591027
+
+A ==
+4851595597739856136987139
+
+B ==
+2014867
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+10409036141344317165691858509923818734539
+
+A ==
+19550639734462621430325731591027
+
+B ==
+266207047
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+1049829549988285012736475602118094726647504414203
+
+A ==
+10409036141344317165691858509923818734539
+
+B ==
+50428759
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+77194737385528288387712399596835459931920358844586615003
+
+A ==
+1049829549988285012736475602118094726647504414203
+
+B ==
+36765367
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+35663756695365208574443215955488689578374232732893628896541201763
+
+A ==
+77194737385528288387712399596835459931920358844586615003
+
+B ==
+230998627
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+16711831463502165169495622246023119698415848120292671294127567620396469803
+
+A ==
+35663756695365208574443215955488689578374232732893628896541201763
+
+B ==
+234297127
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+6163534781560285962890718925972249753147470953579266394395432475622345597103528739
+
+A ==
+16711831463502165169495622246023119698415848120292671294127567620396469803
+
+B ==
+184406323
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
+
+A ==
+6163534781560285962890718925972249753147470953579266394395432475622345597103528739
+
+B ==
+66054487
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
+
+A ==
+814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
+
+B ==
+108362239
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
+
+A ==
+176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
+
+B ==
+127286707
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
+
+A ==
+44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
+
+B ==
+229284691
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
+
+A ==
+20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
+
+B ==
+152800771
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
+
+A ==
+6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
+
+B ==
+246595759
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
+
+A ==
+3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
+
+B ==
+4252063
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
+
+A ==
+26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
+
+B ==
+210605419
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
+
+A ==
+11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
+
+B ==
+74170111
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
+
+A ==
+1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
+
+B ==
+260016763
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
+
+A ==
+857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
+
+B ==
+102563707
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
+
+A ==
+175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
+
+B ==
+137747527
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
+
+A ==
+48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
+
+B ==
+135672847
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
+
+A ==
+13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
+
+B ==
+241523587
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
+
+A ==
+6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
+
+B ==
+248388667
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
+
+A ==
+3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
+
+B ==
+61849651
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
+
+A ==
+390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
+
+B ==
+62201707
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
+
+A ==
+48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
+
+B ==
+264832231
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
+
+A ==
+25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
+
+B ==
+54494047
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
+
+A ==
+2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
+
+B ==
+131594179
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
+
+A ==
+738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
+
+B ==
+266107603
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
+
+A ==
+392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
+
+B ==
+214408111
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
+
+A ==
+168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
+
+B ==
+44122723
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
+
+A ==
+14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
+
+B ==
+40808563
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
+
+A ==
+1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
+
+B ==
+77035759
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
+
+A ==
+186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
+
+B ==
+222383587
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
+
+A ==
+83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
+
+B ==
+23407687
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
+
+A ==
+3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
+
+B ==
+213701827
+
+G == 2
+----------------------------------------------------------------
+
+
+Took 33057 ticks, 1048 bits
+P == 1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
+Q == 3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
diff --git a/libtommath/etc/prime.512 b/libtommath/etc/prime.512
new file mode 100644
index 0000000..cb6ec30
--- /dev/null
+++ b/libtommath/etc/prime.512
@@ -0,0 +1,205 @@
+Enter # of bits:
+Enter number of bases to try (1 to 8):
+Certificate of primality for:
+85933926807634727
+
+A ==
+253758023
+
+B ==
+169322581
+
+G == 5
+----------------------------------------------------------------
+Certificate of primality for:
+23930198825086241462113799
+
+A ==
+85933926807634727
+
+B ==
+139236037
+
+G == 11
+----------------------------------------------------------------
+Certificate of primality for:
+6401844647261612602378676572510019
+
+A ==
+23930198825086241462113799
+
+B ==
+133760791
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+269731366027728777712034888684015329354259
+
+A ==
+6401844647261612602378676572510019
+
+B ==
+21066691
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+37942338209025571690075025099189467992329684223707
+
+A ==
+269731366027728777712034888684015329354259
+
+B ==
+70333567
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+15306904714258982484473490774101705363308327436988160248323
+
+A ==
+37942338209025571690075025099189467992329684223707
+
+B ==
+201712723
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+1616744757018513392810355191503853040357155275733333124624513530099
+
+A ==
+15306904714258982484473490774101705363308327436988160248323
+
+B ==
+52810963
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+464222094814208047161771036072622485188658077940154689939306386289983787983
+
+A ==
+1616744757018513392810355191503853040357155275733333124624513530099
+
+B ==
+143566909
+
+G == 5
+----------------------------------------------------------------
+Certificate of primality for:
+187429931674053784626487560729643601208757374994177258429930699354770049369025096447
+
+A ==
+464222094814208047161771036072622485188658077940154689939306386289983787983
+
+B ==
+201875281
+
+G == 5
+----------------------------------------------------------------
+Certificate of primality for:
+100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
+
+A ==
+187429931674053784626487560729643601208757374994177258429930699354770049369025096447
+
+B ==
+268311523
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
+
+A ==
+100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
+
+B ==
+5834287
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
+
+A ==
+1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
+
+B ==
+81567097
+
+G == 5
+----------------------------------------------------------------
+Certificate of primality for:
+57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
+
+A ==
+191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
+
+B ==
+151095433
+
+G == 7
+----------------------------------------------------------------
+Certificate of primality for:
+13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
+
+A ==
+57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
+
+B ==
+119178679
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
+
+A ==
+13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
+
+B ==
+256552363
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
+
+A ==
+7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
+
+B ==
+86720989
+
+G == 5
+----------------------------------------------------------------
+Certificate of primality for:
+446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
+
+A ==
+1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
+
+B ==
+182015287
+
+G == 2
+----------------------------------------------------------------
+Certificate of primality for:
+5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
+
+A ==
+446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
+
+B ==
+5920567
+
+G == 2
+----------------------------------------------------------------
+
+
+Took 3454 ticks, 521 bits
+P == 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
+Q == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
diff --git a/libtommath/etc/timer.asm b/libtommath/etc/timer.asm
new file mode 100644
index 0000000..35890d9
--- /dev/null
+++ b/libtommath/etc/timer.asm
@@ -0,0 +1,37 @@
+; x86 timer in NASM
+;
+; Tom St Denis, tomstdenis@iahu.ca
+[bits 32]
+[section .data]
+time dd 0, 0
+
+[section .text]
+
+%ifdef USE_ELF
+[global t_start]
+t_start:
+%else
+[global _t_start]
+_t_start:
+%endif
+ push edx
+ push eax
+ rdtsc
+ mov [time+0],edx
+ mov [time+4],eax
+ pop eax
+ pop edx
+ ret
+
+%ifdef USE_ELF
+[global t_read]
+t_read:
+%else
+[global _t_read]
+_t_read:
+%endif
+ rdtsc
+ sub eax,[time+4]
+ sbb edx,[time+0]
+ ret
+ \ No newline at end of file
diff --git a/libtommath/etc/tune.c b/libtommath/etc/tune.c
new file mode 100644
index 0000000..14aace2
--- /dev/null
+++ b/libtommath/etc/tune.c
@@ -0,0 +1,107 @@
+/* Tune the Karatsuba parameters
+ *
+ * Tom St Denis, tomstdenis@iahu.ca
+ */
+#include <tommath.h>
+#include <time.h>
+
+/* how many times todo each size mult. Depends on your computer. For slow computers
+ * this can be low like 5 or 10. For fast [re: Athlon] should be 25 - 50 or so
+ */
+#define TIMES (1UL<<14UL)
+
+
+#ifndef X86_TIMER
+
+/* generic ISO C timer */
+ulong64 LBL_T;
+void t_start(void) { LBL_T = clock(); }
+ulong64 t_read(void) { return clock() - LBL_T; }
+
+#else
+extern void t_start(void);
+extern ulong64 t_read(void);
+#endif
+
+ulong64 time_mult(int size, int s)
+{
+ unsigned long x;
+ mp_int a, b, c;
+ ulong64 t1;
+
+ mp_init (&a);
+ mp_init (&b);
+ mp_init (&c);
+
+ mp_rand (&a, size);
+ mp_rand (&b, size);
+
+ if (s == 1) {
+ KARATSUBA_MUL_CUTOFF = size;
+ } else {
+ KARATSUBA_MUL_CUTOFF = 100000;
+ }
+
+ t_start();
+ for (x = 0; x < TIMES; x++) {
+ mp_mul(&a,&b,&c);
+ }
+ t1 = t_read();
+ mp_clear (&a);
+ mp_clear (&b);
+ mp_clear (&c);
+ return t1;
+}
+
+ulong64 time_sqr(int size, int s)
+{
+ unsigned long x;
+ mp_int a, b;
+ ulong64 t1;
+
+ mp_init (&a);
+ mp_init (&b);
+
+ mp_rand (&a, size);
+
+ if (s == 1) {
+ KARATSUBA_SQR_CUTOFF = size;
+ } else {
+ KARATSUBA_SQR_CUTOFF = 100000;
+ }
+
+ t_start();
+ for (x = 0; x < TIMES; x++) {
+ mp_sqr(&a,&b);
+ }
+ t1 = t_read();
+ mp_clear (&a);
+ mp_clear (&b);
+ return t1;
+}
+
+int
+main (void)
+{
+ ulong64 t1, t2;
+ int x, y;
+
+ for (x = 8; ; x += 2) {
+ t1 = time_mult(x, 0);
+ t2 = time_mult(x, 1);
+ printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
+ if (t2 < t1) break;
+ }
+ y = x;
+
+ for (x = 8; ; x += 2) {
+ t1 = time_sqr(x, 0);
+ t2 = time_sqr(x, 1);
+ printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
+ if (t2 < t1) break;
+ }
+ printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
+ printf("KARATSUBA_SQR_CUTOFF = %d\n", x);
+
+ return 0;
+}
diff --git a/libtommath/gen.pl b/libtommath/gen.pl
new file mode 100644
index 0000000..7236591
--- /dev/null
+++ b/libtommath/gen.pl
@@ -0,0 +1,17 @@
+#!/usr/bin/perl -w
+#
+# Generates a "single file" you can use to quickly
+# add the whole source without any makefile troubles
+#
+use strict;
+
+open( OUT, ">mpi.c" ) or die "Couldn't open mpi.c for writing: $!";
+foreach my $filename (glob "bn*.c") {
+ open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!";
+ print OUT "/* Start: $filename */\n";
+ print OUT while <SRC>;
+ print OUT "\n/* End: $filename */\n\n";
+ close SRC or die "Error closing $filename after reading: $!";
+}
+print OUT "\n/* EOF */\n";
+close OUT or die "Error closing mpi.c after writing: $!"; \ No newline at end of file
diff --git a/libtommath/logs/README b/libtommath/logs/README
new file mode 100644
index 0000000..ea20c81
--- /dev/null
+++ b/libtommath/logs/README
@@ -0,0 +1,13 @@
+To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.
+Todo this type
+
+make timing ; ltmtest
+
+in the root. It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.
+
+After doing that run "gnuplot graphs.dem" to make the PNGs. If you managed todo that all so far just open index.html to view
+them all :-)
+
+Have fun
+
+Tom \ No newline at end of file
diff --git a/libtommath/logs/add.log b/libtommath/logs/add.log
new file mode 100644
index 0000000..fa11039
--- /dev/null
+++ b/libtommath/logs/add.log
@@ -0,0 +1,16 @@
+480 88
+960 113
+1440 138
+1920 163
+2400 202
+2880 226
+3360 251
+3840 272
+4320 296
+4800 320
+5280 344
+5760 368
+6240 392
+6720 416
+7200 440
+7680 464
diff --git a/libtommath/logs/addsub.png b/libtommath/logs/addsub.png
new file mode 100644
index 0000000..a5679ac
--- /dev/null
+++ b/libtommath/logs/addsub.png
Binary files differ
diff --git a/libtommath/logs/expt.log b/libtommath/logs/expt.log
new file mode 100644
index 0000000..e65e927
--- /dev/null
+++ b/libtommath/logs/expt.log
@@ -0,0 +1,7 @@
+513 1499509
+769 3682671
+1025 8098887
+2049 49332743
+2561 89647783
+3073 149440713
+4097 326135364
diff --git a/libtommath/logs/expt.png b/libtommath/logs/expt.png
new file mode 100644
index 0000000..9ee8bb7
--- /dev/null
+++ b/libtommath/logs/expt.png
Binary files differ
diff --git a/libtommath/logs/expt_2k.log b/libtommath/logs/expt_2k.log
new file mode 100644
index 0000000..d106280
--- /dev/null
+++ b/libtommath/logs/expt_2k.log
@@ -0,0 +1,6 @@
+521 1423346
+607 1841305
+1279 8375656
+2203 34104708
+3217 83830729
+4253 167916804
diff --git a/libtommath/logs/expt_dr.log b/libtommath/logs/expt_dr.log
new file mode 100644
index 0000000..6cfc874
--- /dev/null
+++ b/libtommath/logs/expt_dr.log
@@ -0,0 +1,7 @@
+532 1803110
+784 3607375
+1036 6089790
+1540 14739797
+2072 33251589
+3080 82794331
+4116 165212734
diff --git a/libtommath/logs/graphs.dem b/libtommath/logs/graphs.dem
new file mode 100644
index 0000000..dfaf613
--- /dev/null
+++ b/libtommath/logs/graphs.dem
@@ -0,0 +1,17 @@
+set terminal png
+set size 1.75
+set ylabel "Cycles per Operation"
+set xlabel "Operand size (bits)"
+
+set output "addsub.png"
+plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
+
+set output "mult.png"
+plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
+
+set output "expt.png"
+plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)", 'expt_2k.log' smooth bezier title "Exptmod (2k Reduction)"
+
+set output "invmod.png"
+plot 'invmod.log' smooth bezier title "Modular Inverse"
+
diff --git a/libtommath/logs/index.html b/libtommath/logs/index.html
new file mode 100644
index 0000000..19fe403
--- /dev/null
+++ b/libtommath/logs/index.html
@@ -0,0 +1,24 @@
+<html>
+<head>
+<title>LibTomMath Log Plots</title>
+</head>
+<body>
+
+<h1>Addition and Subtraction</h1>
+<center><img src=addsub.png></center>
+<hr>
+
+<h1>Multipliers</h1>
+<center><img src=mult.png></center>
+<hr>
+
+<h1>Exptmod</h1>
+<center><img src=expt.png></center>
+<hr>
+
+<h1>Modular Inverse</h1>
+<center><img src=invmod.png></center>
+<hr>
+
+</body>
+</html> \ No newline at end of file
diff --git a/libtommath/logs/invmod.log b/libtommath/logs/invmod.log
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/libtommath/logs/invmod.log
diff --git a/libtommath/logs/invmod.png b/libtommath/logs/invmod.png
new file mode 100644
index 0000000..0a8a4ad
--- /dev/null
+++ b/libtommath/logs/invmod.png
Binary files differ
diff --git a/libtommath/logs/mult.log b/libtommath/logs/mult.log
new file mode 100644
index 0000000..864de46
--- /dev/null
+++ b/libtommath/logs/mult.log
@@ -0,0 +1,143 @@
+271 580
+390 861
+511 1177
+630 1598
+749 2115
+871 2670
+991 3276
+1111 3987
+1231 4722
+1351 5474
+1471 6281
+1589 7126
+1710 8114
+1831 8988
+1946 10038
+2071 10995
+2188 12286
+2310 13152
+2430 14480
+2549 15521
+2671 17171
+2790 18081
+2911 19754
+3031 20809
+3150 22849
+3269 23757
+3391 25772
+3508 26832
+3631 29304
+3750 30149
+3865 32581
+3988 33644
+4111 36565
+4231 37309
+4351 40152
+4471 41188
+4590 44658
+4710 45256
+4827 48538
+4951 49490
+5070 53472
+5190 53902
+5308 57619
+5431 58509
+5550 63044
+5664 63333
+5791 67542
+5911 68279
+6028 73477
+6150 73475
+6271 78189
+6390 78842
+6510 84691
+6631 84444
+6751 89721
+6871 90186
+6991 96665
+7111 96119
+7231 101937
+7350 102212
+7471 109439
+7591 108491
+7709 114965
+7829 115025
+7951 123002
+8071 121630
+8190 128725
+8311 128536
+8430 137298
+8550 135568
+8671 143265
+8791 142793
+8911 152432
+9030 150202
+9151 158616
+9271 157848
+9391 168374
+9511 165651
+9627 174775
+9750 173375
+9871 185067
+9985 181845
+10111 191708
+10229 190239
+10351 202585
+10467 198704
+10591 209193
+10711 207322
+10831 220842
+10950 215882
+11071 227761
+11191 225501
+11311 239669
+11430 234809
+11550 243511
+11671 255947
+11791 255243
+11906 267828
+12029 263437
+12149 276571
+12270 275579
+12390 288963
+12510 284001
+12631 298196
+12751 297018
+12869 310848
+12990 305369
+13111 319086
+13230 318940
+13349 333685
+13471 327495
+13588 343678
+13711 341817
+13831 357181
+13948 350440
+14071 367526
+14189 365330
+14311 381551
+14429 374149
+14549 392203
+14670 389764
+14791 406761
+14910 398652
+15026 417718
+15150 414733
+15269 432759
+15390 1037071
+15511 1053454
+15631 1069198
+15748 1086164
+15871 1112820
+15991 1129676
+16111 1145924
+16230 1163016
+16345 1179911
+16471 1197048
+16586 1214352
+16711 1232095
+16829 1249338
+16947 1266987
+17071 1284181
+17188 1302521
+17311 1320539
diff --git a/libtommath/logs/mult.png b/libtommath/logs/mult.png
new file mode 100644
index 0000000..4f7a4ee
--- /dev/null
+++ b/libtommath/logs/mult.png
Binary files differ
diff --git a/libtommath/logs/mult_kara.log b/libtommath/logs/mult_kara.log
new file mode 100644
index 0000000..086feaf
--- /dev/null
+++ b/libtommath/logs/mult_kara.log
@@ -0,0 +1,33 @@
+924 16686
+1146 25334
+1371 35304
+1591 47122
+1820 61500
+2044 75254
+2266 91732
+2492 111656
+2716 129428
+2937 147508
+3164 167758
+3388 188248
+3612 210826
+3836 233814
+4059 256898
+4284 280210
+4508 310372
+4731 333902
+4955 376502
+5179 402854
+5404 432004
+5626 459010
+5849 491868
+6076 520550
+6300 547400
+6524 575968
+6747 608482
+6971 642850
+7196 673670
+7419 710680
+7644 743942
+7868 780394
+8092 817342
diff --git a/libtommath/logs/sqr.log b/libtommath/logs/sqr.log
new file mode 100644
index 0000000..0898342
--- /dev/null
+++ b/libtommath/logs/sqr.log
@@ -0,0 +1,143 @@
+271 552
+389 883
+510 1191
+629 1572
+750 1996
+863 2428
+991 2891
+1108 3539
+1231 4182
+1351 4980
+1471 5771
+1590 6551
+1711 7313
+1830 8240
+1951 9184
+2070 10087
+2191 11140
+2311 12111
+2431 13219
+2550 14247
+2669 15353
+2791 16446
+2911 17692
+3029 18848
+3151 20028
+3268 21282
+3391 22696
+3511 23971
+3631 25303
+3751 26675
+3871 28245
+3990 29736
+4111 31124
+4229 32714
+4347 34397
+4471 35877
+4587 37269
+4710 39011
+4831 40884
+4950 42501
+5070 44005
+5191 46026
+5310 48168
+5431 49801
+5551 51385
+5671 53604
+5787 55942
+5910 57757
+6031 59391
+6151 61754
+6271 64234
+6390 66110
+6511 67845
+6627 70474
+6751 73113
+6871 75064
+6990 76940
+7111 79681
+7230 82548
+7351 84597
+7471 86507
+7591 89497
+7711 225216
+7831 232192
+7951 239583
+8071 247302
+8191 255497
+8308 261587
+8431 271490
+8550 279492
+8671 286927
+8790 294680
+8910 302974
+9030 311300
+9150 318635
+9271 326740
+9390 335304
+9511 344297
+9630 352056
+9748 358652
+9870 369723
+9991 379119
+10111 386982
+10231 396075
+10349 404396
+10470 415375
+10590 424146
+10711 433390
+10829 442662
+10950 453238
+11071 462178
+11186 469811
+11311 482529
+11431 493214
+11550 503210
+11671 513486
+11791 524244
+11911 535277
+12031 544872
+12151 555695
+12271 566893
+12391 578385
+12510 588658
+12628 596914
+12751 611324
+12871 623437
+12991 633907
+13110 645605
+13231 657684
+13351 670037
+13471 680939
+13591 693047
+13710 705363
+13829 718178
+13949 727930
+14069 739641
+14190 754817
+14310 768192
+14431 779875
+14551 792655
+14667 802847
+14791 819806
+14911 831684
+15031 844936
+15151 858813
+15270 873037
+15387 882123
+15510 899117
+15631 913465
+15750 927989
+15870 940790
+15991 954948
+16110 969483
+16231 984544
+16350 997837
+16470 1012445
+16590 1027834
+16710 1043032
+16831 1056394
+16951 1071408
+17069 1097263
+17191 1113364
+17306 1123650
diff --git a/libtommath/logs/sqr_kara.log b/libtommath/logs/sqr_kara.log
new file mode 100644
index 0000000..cafe458
--- /dev/null
+++ b/libtommath/logs/sqr_kara.log
@@ -0,0 +1,33 @@
+922 11272
+1148 16004
+1370 21958
+1596 28684
+1817 37832
+2044 46386
+2262 56218
+2492 66388
+2716 77478
+2940 89380
+3163 103680
+3385 116274
+3612 135334
+3836 151332
+4057 164938
+4284 183178
+4508 198864
+4731 215222
+4954 231986
+5180 251660
+5404 269414
+5626 288454
+5850 307806
+6076 329458
+6299 347726
+6523 369864
+6748 387832
+6971 413010
+7194 453310
+7415 476936
+7643 497118
+7867 521394
+8091 540224
diff --git a/libtommath/logs/sub.log b/libtommath/logs/sub.log
new file mode 100644
index 0000000..a42d91e
--- /dev/null
+++ b/libtommath/logs/sub.log
@@ -0,0 +1,16 @@
+480 87
+960 114
+1440 139
+1920 159
+2400 204
+2880 228
+3360 250
+3840 273
+4320 300
+4800 321
+5280 348
+5760 370
+6240 393
+6720 420
+7200 444
+7680 466
diff --git a/libtommath/makefile b/libtommath/makefile
new file mode 100644
index 0000000..164a0ab
--- /dev/null
+++ b/libtommath/makefile
@@ -0,0 +1,157 @@
+#Makefile for GCC
+#
+#Tom St Denis
+
+#version of library
+VERSION=0.33
+
+CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
+
+#for speed
+CFLAGS += -O3 -funroll-all-loops
+
+#for size
+#CFLAGS += -Os
+
+#x86 optimizations [should be valid for any GCC install though]
+CFLAGS += -fomit-frame-pointer
+
+#debug
+#CFLAGS += -g3
+
+#install as this user
+USER=root
+GROUP=root
+
+default: libtommath.a
+
+#default files to install
+LIBNAME=libtommath.a
+HEADERS=tommath.h tommath_class.h tommath_superclass.h
+
+#LIBPATH-The directory for libtommath to be installed to.
+#INCPATH-The directory to install the header files for libtommath.
+#DATAPATH-The directory to install the pdf docs.
+DESTDIR=
+LIBPATH=/usr/lib
+INCPATH=/usr/include
+DATAPATH=/usr/share/doc/libtommath/pdf
+
+OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \
+bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \
+bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \
+bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \
+bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \
+bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \
+bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \
+bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \
+bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \
+bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \
+bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
+bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
+bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
+bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
+bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
+bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
+bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
+bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
+bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
+bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
+bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
+bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
+bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
+bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
+
+libtommath.a: $(OBJECTS)
+ $(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
+ ranlib libtommath.a
+
+#make a profiled library (takes a while!!!)
+#
+# This will build the library with profile generation
+# then run the test demo and rebuild the library.
+#
+# So far I've seen improvements in the MP math
+profiled:
+ make CFLAGS="$(CFLAGS) -fprofile-arcs -DTESTING" timing
+ ./ltmtest
+ rm -f *.a *.o ltmtest
+ make CFLAGS="$(CFLAGS) -fbranch-probabilities"
+
+#make a single object profiled library
+profiled_single:
+ perl gen.pl
+ $(CC) $(CFLAGS) -fprofile-arcs -DTESTING -c mpi.c -o mpi.o
+ $(CC) $(CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -o ltmtest
+ ./ltmtest
+ rm -f *.o ltmtest
+ $(CC) $(CFLAGS) -fbranch-probabilities -DTESTING -c mpi.c -o mpi.o
+ $(AR) $(ARFLAGS) libtommath.a mpi.o
+ ranlib libtommath.a
+
+install: libtommath.a
+ install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
+ install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
+ install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
+ install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
+
+test: libtommath.a demo/demo.o
+ $(CC) $(CFLAGS) demo/demo.o libtommath.a -o test
+
+mtest: test
+ cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
+
+timing: libtommath.a
+ $(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
+
+# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
+docdvi: tommath.src
+ cd pics ; make
+ echo "hello" > tommath.ind
+ perl booker.pl
+ latex tommath > /dev/null
+ latex tommath > /dev/null
+ makeindex tommath
+ latex tommath > /dev/null
+
+# poster, makes the single page PDF poster
+poster: poster.tex
+ pdflatex poster
+ rm -f poster.aux poster.log
+
+# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
+docs: docdvi
+ dvipdf tommath
+ rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
+ cd pics ; make clean
+
+#LTM user manual
+mandvi: bn.tex
+ echo "hello" > bn.ind
+ latex bn > /dev/null
+ latex bn > /dev/null
+ makeindex bn
+ latex bn > /dev/null
+
+#LTM user manual [pdf]
+manual: mandvi
+ pdflatex bn >/dev/null
+ rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
+
+pretty:
+ perl pretty.build
+
+clean:
+ rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
+ *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find -type f | grep [~] | xargs` *.lo *.la
+ rm -rf .libs
+ cd etc ; make clean
+ cd pics ; make clean
+
+zipup: clean manual poster docs
+ perl gen.pl ; mv mpi.c pre_gen/ ; \
+ cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
+ cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; \
+ tar -c libtommath-$(VERSION)/* | bzip2 -9vvc > ltm-$(VERSION).tar.bz2 ; \
+ zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*
diff --git a/libtommath/makefile.bcc b/libtommath/makefile.bcc
new file mode 100644
index 0000000..775e9ff
--- /dev/null
+++ b/libtommath/makefile.bcc
@@ -0,0 +1,42 @@
+#
+# Borland C++Builder Makefile (makefile.bcc)
+#
+
+
+LIB = tlib
+CC = bcc32
+CFLAGS = -c -O2 -I.
+
+OBJECTS=bncore.obj bn_mp_init.obj bn_mp_clear.obj bn_mp_exch.obj bn_mp_grow.obj bn_mp_shrink.obj \
+bn_mp_clamp.obj bn_mp_zero.obj bn_mp_set.obj bn_mp_set_int.obj bn_mp_init_size.obj bn_mp_copy.obj \
+bn_mp_init_copy.obj bn_mp_abs.obj bn_mp_neg.obj bn_mp_cmp_mag.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
+bn_mp_rshd.obj bn_mp_lshd.obj bn_mp_mod_2d.obj bn_mp_div_2d.obj bn_mp_mul_2d.obj bn_mp_div_2.obj \
+bn_mp_mul_2.obj bn_s_mp_add.obj bn_s_mp_sub.obj bn_fast_s_mp_mul_digs.obj bn_s_mp_mul_digs.obj \
+bn_fast_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_s_mp_sqr.obj \
+bn_mp_add.obj bn_mp_sub.obj bn_mp_karatsuba_mul.obj bn_mp_mul.obj bn_mp_karatsuba_sqr.obj \
+bn_mp_sqr.obj bn_mp_div.obj bn_mp_mod.obj bn_mp_add_d.obj bn_mp_sub_d.obj bn_mp_mul_d.obj \
+bn_mp_div_d.obj bn_mp_mod_d.obj bn_mp_expt_d.obj bn_mp_addmod.obj bn_mp_submod.obj \
+bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.obj bn_mp_invmod.obj \
+bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \
+bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \
+bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \
+bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj \
+bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
+bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
+bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \
+bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
+bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
+bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
+bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
+bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
+bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
+bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
+bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj
+
+TARGET = libtommath.lib
+
+$(TARGET): $(OBJECTS)
+
+.c.objbjbjbj:
+ $(CC) $(CFLAGS) $<
+ $(LIB) $(TARGET) -+$@
diff --git a/libtommath/makefile.cygwin_dll b/libtommath/makefile.cygwin_dll
new file mode 100644
index 0000000..c90e5d9
--- /dev/null
+++ b/libtommath/makefile.cygwin_dll
@@ -0,0 +1,49 @@
+#Makefile for Cygwin-GCC
+#
+#This makefile will build a Windows DLL [doesn't require cygwin to run] in the file
+#libtommath.dll. The import library is in libtommath.dll.a. Remember to add
+#"-Wl,--enable-auto-import" to your client build to avoid the auto-import warnings
+#
+#Tom St Denis
+CFLAGS += -I./ -Wall -W -Wshadow -O3 -funroll-loops -mno-cygwin
+
+#x86 optimizations [should be valid for any GCC install though]
+CFLAGS += -fomit-frame-pointer
+
+default: windll
+
+OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \
+bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \
+bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \
+bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \
+bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \
+bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \
+bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \
+bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \
+bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \
+bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \
+bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
+bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
+bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
+bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
+bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
+bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
+bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
+bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
+bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
+bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
+bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
+bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
+bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
+bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
+
+# make a Windows DLL via Cygwin
+windll: $(OBJECTS)
+ gcc -mno-cygwin -mdll -o libtommath.dll -Wl,--out-implib=libtommath.dll.a -Wl,--export-all-symbols *.o
+ ranlib libtommath.dll.a
+
+# build the test program using the windows DLL
+test: $(OBJECTS) windll
+ gcc $(CFLAGS) demo/demo.c libtommath.dll.a -Wl,--enable-auto-import -o test -s
+ cd mtest ; $(CC) -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest -s
diff --git a/libtommath/makefile.icc b/libtommath/makefile.icc
new file mode 100644
index 0000000..3775b20
--- /dev/null
+++ b/libtommath/makefile.icc
@@ -0,0 +1,114 @@
+#Makefile for ICC
+#
+#Tom St Denis
+CC=icc
+
+CFLAGS += -I./
+
+# optimize for SPEED
+#
+# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
+# -ax? specifies make code specifically for ? but compatible with IA-32
+# -x? specifies compile solely for ? [not specifically IA-32 compatible]
+#
+# where ? is
+# K - PIII
+# W - first P4 [Williamette]
+# N - P4 Northwood
+# P - P4 Prescott
+# B - Blend of P4 and PM [mobile]
+#
+# Default to just generic max opts
+CFLAGS += -O3 -xN
+
+#install as this user
+USER=root
+GROUP=root
+
+default: libtommath.a
+
+#default files to install
+LIBNAME=libtommath.a
+HEADERS=tommath.h
+
+#LIBPATH-The directory for libtomcrypt to be installed to.
+#INCPATH-The directory to install the header files for libtommath.
+#DATAPATH-The directory to install the pdf docs.
+DESTDIR=
+LIBPATH=/usr/lib
+INCPATH=/usr/include
+DATAPATH=/usr/share/doc/libtommath/pdf
+
+OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \
+bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \
+bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \
+bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \
+bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \
+bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \
+bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \
+bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \
+bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \
+bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \
+bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
+bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
+bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
+bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
+bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
+bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
+bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
+bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
+bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
+bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
+bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
+bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
+bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
+bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
+
+libtommath.a: $(OBJECTS)
+ $(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
+ ranlib libtommath.a
+
+#make a profiled library (takes a while!!!)
+#
+# This will build the library with profile generation
+# then run the test demo and rebuild the library.
+#
+# So far I've seen improvements in the MP math
+profiled:
+ make -f makefile.icc CFLAGS="$(CFLAGS) -prof_gen -DTESTING" timing
+ ./ltmtest
+ rm -f *.a *.o ltmtest
+ make -f makefile.icc CFLAGS="$(CFLAGS) -prof_use"
+
+#make a single object profiled library
+profiled_single:
+ perl gen.pl
+ $(CC) $(CFLAGS) -prof_gen -DTESTING -c mpi.c -o mpi.o
+ $(CC) $(CFLAGS) -DTESTING -DTIMER demo/demo.c mpi.o -o ltmtest
+ ./ltmtest
+ rm -f *.o ltmtest
+ $(CC) $(CFLAGS) -prof_use -ip -DTESTING -c mpi.c -o mpi.o
+ $(AR) $(ARFLAGS) libtommath.a mpi.o
+ ranlib libtommath.a
+
+install: libtommath.a
+ install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
+ install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
+ install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
+ install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
+
+test: libtommath.a demo/demo.o
+ $(CC) demo/demo.o libtommath.a -o test
+
+mtest: test
+ cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
+
+timing: libtommath.a
+ $(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
+
+clean:
+ rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
+ *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.il etc/*.il *.dyn
+ cd etc ; make clean
+ cd pics ; make clean
diff --git a/libtommath/makefile.msvc b/libtommath/makefile.msvc
new file mode 100644
index 0000000..cf59943
--- /dev/null
+++ b/libtommath/makefile.msvc
@@ -0,0 +1,36 @@
+#MSVC Makefile
+#
+#Tom St Denis
+
+CFLAGS = /I. /Ox /DWIN32 /W4
+
+default: library
+
+OBJECTS=bncore.obj bn_mp_init.obj bn_mp_clear.obj bn_mp_exch.obj bn_mp_grow.obj bn_mp_shrink.obj \
+bn_mp_clamp.obj bn_mp_zero.obj bn_mp_set.obj bn_mp_set_int.obj bn_mp_init_size.obj bn_mp_copy.obj \
+bn_mp_init_copy.obj bn_mp_abs.obj bn_mp_neg.obj bn_mp_cmp_mag.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
+bn_mp_rshd.obj bn_mp_lshd.obj bn_mp_mod_2d.obj bn_mp_div_2d.obj bn_mp_mul_2d.obj bn_mp_div_2.obj \
+bn_mp_mul_2.obj bn_s_mp_add.obj bn_s_mp_sub.obj bn_fast_s_mp_mul_digs.obj bn_s_mp_mul_digs.obj \
+bn_fast_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_s_mp_sqr.obj \
+bn_mp_add.obj bn_mp_sub.obj bn_mp_karatsuba_mul.obj bn_mp_mul.obj bn_mp_karatsuba_sqr.obj \
+bn_mp_sqr.obj bn_mp_div.obj bn_mp_mod.obj bn_mp_add_d.obj bn_mp_sub_d.obj bn_mp_mul_d.obj \
+bn_mp_div_d.obj bn_mp_mod_d.obj bn_mp_expt_d.obj bn_mp_addmod.obj bn_mp_submod.obj \
+bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.obj bn_mp_invmod.obj \
+bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \
+bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \
+bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \
+bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj \
+bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
+bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
+bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \
+bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
+bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
+bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
+bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
+bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
+bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
+bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
+bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj
+
+library: $(OBJECTS)
+ lib /out:tommath.lib $(OBJECTS)
diff --git a/libtommath/makefile.shared b/libtommath/makefile.shared
new file mode 100644
index 0000000..86a3786
--- /dev/null
+++ b/libtommath/makefile.shared
@@ -0,0 +1,77 @@
+#Makefile for GCC
+#
+#Tom St Denis
+VERSION=0:33
+
+CC = libtool --mode=compile gcc
+CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare
+
+#for speed
+CFLAGS += -O3 -funroll-loops
+
+#for size
+#CFLAGS += -Os
+
+#x86 optimizations [should be valid for any GCC install though]
+CFLAGS += -fomit-frame-pointer
+
+#install as this user
+USER=root
+GROUP=root
+
+default: libtommath.la
+
+#default files to install
+LIBNAME=libtommath.la
+HEADERS=tommath.h tommath_class.h tommath_superclass.h
+
+#LIBPATH-The directory for libtommath to be installed to.
+#INCPATH-The directory to install the header files for libtommath.
+#DATAPATH-The directory to install the pdf docs.
+DESTDIR=
+LIBPATH=/usr/lib
+INCPATH=/usr/include
+DATAPATH=/usr/share/doc/libtommath/pdf
+
+OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \
+bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \
+bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \
+bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \
+bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \
+bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \
+bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \
+bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \
+bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \
+bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \
+bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
+bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
+bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
+bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
+bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
+bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
+bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
+bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
+bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
+bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
+bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
+bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
+bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
+bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o
+
+libtommath.la: $(OBJECTS)
+ libtool --mode=link gcc *.lo -o libtommath.la -rpath $(LIBPATH) -version-info $(VERSION)
+ libtool --mode=link gcc *.o -o libtommath.a
+ libtool --mode=install install -c libtommath.la $(LIBPATH)/libtommath.la
+ install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
+ install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
+
+test: libtommath.a demo/demo.o
+ gcc $(CFLAGS) -c demo/demo.c -o demo/demo.o
+ libtool --mode=link gcc -o test demo/demo.o libtommath.la
+
+mtest: test
+ cd mtest ; gcc $(CFLAGS) mtest.c -o mtest -s
+
+timing: libtommath.la
+ gcc $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest -s
diff --git a/libtommath/mtest/logtab.h b/libtommath/mtest/logtab.h
new file mode 100644
index 0000000..68462bd
--- /dev/null
+++ b/libtommath/mtest/logtab.h
@@ -0,0 +1,20 @@
+const float s_logv_2[] = {
+ 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0 1 2 3 */
+ 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
+ 0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
+ 0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
+ 0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
+ 0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
+ 0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
+ 0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
+ 0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
+ 0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
+ 0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
+ 0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
+ 0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
+ 0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
+ 0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
+ 0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
+ 0.166666667
+};
+
diff --git a/libtommath/mtest/mpi-config.h b/libtommath/mtest/mpi-config.h
new file mode 100644
index 0000000..dcdbd35
--- /dev/null
+++ b/libtommath/mtest/mpi-config.h
@@ -0,0 +1,86 @@
+/* Default configuration for MPI library */
+/* $Id: mpi-config.h,v 1.1.1.1 2005/01/19 22:41:29 kennykb Exp $ */
+
+#ifndef MPI_CONFIG_H_
+#define MPI_CONFIG_H_
+
+/*
+ For boolean options,
+ 0 = no
+ 1 = yes
+
+ Other options are documented individually.
+
+ */
+
+#ifndef MP_IOFUNC
+#define MP_IOFUNC 0 /* include mp_print() ? */
+#endif
+
+#ifndef MP_MODARITH
+#define MP_MODARITH 1 /* include modular arithmetic ? */
+#endif
+
+#ifndef MP_NUMTH
+#define MP_NUMTH 1 /* include number theoretic functions? */
+#endif
+
+#ifndef MP_LOGTAB
+#define MP_LOGTAB 1 /* use table of logs instead of log()? */
+#endif
+
+#ifndef MP_MEMSET
+#define MP_MEMSET 1 /* use memset() to zero buffers? */
+#endif
+
+#ifndef MP_MEMCPY
+#define MP_MEMCPY 1 /* use memcpy() to copy buffers? */
+#endif
+
+#ifndef MP_CRYPTO
+#define MP_CRYPTO 1 /* erase memory on free? */
+#endif
+
+#ifndef MP_ARGCHK
+/*
+ 0 = no parameter checks
+ 1 = runtime checks, continue execution and return an error to caller
+ 2 = assertions; dump core on parameter errors
+ */
+#define MP_ARGCHK 2 /* how to check input arguments */
+#endif
+
+#ifndef MP_DEBUG
+#define MP_DEBUG 0 /* print diagnostic output? */
+#endif
+
+#ifndef MP_DEFPREC
+#define MP_DEFPREC 64 /* default precision, in digits */
+#endif
+
+#ifndef MP_MACRO
+#define MP_MACRO 1 /* use macros for frequent calls? */
+#endif
+
+#ifndef MP_SQUARE
+#define MP_SQUARE 1 /* use separate squaring code? */
+#endif
+
+#ifndef MP_PTAB_SIZE
+/*
+ When building mpprime.c, we build in a table of small prime
+ values to use for primality testing. The more you include,
+ the more space they take up. See primes.c for the possible
+ values (currently 16, 32, 64, 128, 256, and 6542)
+ */
+#define MP_PTAB_SIZE 128 /* how many built-in primes? */
+#endif
+
+#ifndef MP_COMPAT_MACROS
+#define MP_COMPAT_MACROS 1 /* define compatibility macros? */
+#endif
+
+#endif /* ifndef MPI_CONFIG_H_ */
+
+
+/* crc==3287762869, version==2, Sat Feb 02 06:43:53 2002 */
diff --git a/libtommath/mtest/mpi-types.h b/libtommath/mtest/mpi-types.h
new file mode 100644
index 0000000..e097188
--- /dev/null
+++ b/libtommath/mtest/mpi-types.h
@@ -0,0 +1,16 @@
+/* Type definitions generated by 'types.pl' */
+typedef char mp_sign;
+typedef unsigned short mp_digit; /* 2 byte type */
+typedef unsigned int mp_word; /* 4 byte type */
+typedef unsigned int mp_size;
+typedef int mp_err;
+
+#define MP_DIGIT_BIT (CHAR_BIT*sizeof(mp_digit))
+#define MP_DIGIT_MAX USHRT_MAX
+#define MP_WORD_BIT (CHAR_BIT*sizeof(mp_word))
+#define MP_WORD_MAX UINT_MAX
+
+#define MP_DIGIT_SIZE 2
+#define DIGIT_FMT "%04X"
+#define RADIX (MP_DIGIT_MAX+1)
+
diff --git a/libtommath/mtest/mpi.c b/libtommath/mtest/mpi.c
new file mode 100644
index 0000000..0517602
--- /dev/null
+++ b/libtommath/mtest/mpi.c
@@ -0,0 +1,3981 @@
+/*
+ mpi.c
+
+ by Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
+
+ Arbitrary precision integer arithmetic library
+
+ $Id: mpi.c,v 1.1.1.1 2005/01/19 22:41:29 kennykb Exp $
+ */
+
+#include "mpi.h"
+#include <stdlib.h>
+#include <string.h>
+#include <ctype.h>
+
+#if MP_DEBUG
+#include <stdio.h>
+
+#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
+#else
+#define DIAG(T,V)
+#endif
+
+/*
+ If MP_LOGTAB is not defined, use the math library to compute the
+ logarithms on the fly. Otherwise, use the static table below.
+ Pick which works best for your system.
+ */
+#if MP_LOGTAB
+
+/* {{{ s_logv_2[] - log table for 2 in various bases */
+
+/*
+ A table of the logs of 2 for various bases (the 0 and 1 entries of
+ this table are meaningless and should not be referenced).
+
+ This table is used to compute output lengths for the mp_toradix()
+ function. Since a number n in radix r takes up about log_r(n)
+ digits, we estimate the output size by taking the least integer
+ greater than log_r(n), where:
+
+ log_r(n) = log_2(n) * log_r(2)
+
+ This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
+ which are the output bases supported.
+ */
+
+#include "logtab.h"
+
+/* }}} */
+#define LOG_V_2(R) s_logv_2[(R)]
+
+#else
+
+#include <math.h>
+#define LOG_V_2(R) (log(2.0)/log(R))
+
+#endif
+
+/* Default precision for newly created mp_int's */
+static unsigned int s_mp_defprec = MP_DEFPREC;
+
+/* {{{ Digit arithmetic macros */
+
+/*
+ When adding and multiplying digits, the results can be larger than
+ can be contained in an mp_digit. Thus, an mp_word is used. These
+ macros mask off the upper and lower digits of the mp_word (the
+ mp_word may be more than 2 mp_digits wide, but we only concern
+ ourselves with the low-order 2 mp_digits)
+
+ If your mp_word DOES have more than 2 mp_digits, you need to
+ uncomment the first line, and comment out the second.
+ */
+
+/* #define CARRYOUT(W) (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
+#define CARRYOUT(W) ((W)>>DIGIT_BIT)
+#define ACCUM(W) ((W)&MP_DIGIT_MAX)
+
+/* }}} */
+
+/* {{{ Comparison constants */
+
+#define MP_LT -1
+#define MP_EQ 0
+#define MP_GT 1
+
+/* }}} */
+
+/* {{{ Constant strings */
+
+/* Constant strings returned by mp_strerror() */
+static const char *mp_err_string[] = {
+ "unknown result code", /* say what? */
+ "boolean true", /* MP_OKAY, MP_YES */
+ "boolean false", /* MP_NO */
+ "out of memory", /* MP_MEM */
+ "argument out of range", /* MP_RANGE */
+ "invalid input parameter", /* MP_BADARG */
+ "result is undefined" /* MP_UNDEF */
+};
+
+/* Value to digit maps for radix conversion */
+
+/* s_dmap_1 - standard digits and letters */
+static const char *s_dmap_1 =
+ "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+
+#if 0
+/* s_dmap_2 - base64 ordering for digits */
+static const char *s_dmap_2 =
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
+#endif
+
+/* }}} */
+
+/* {{{ Static function declarations */
+
+/*
+ If MP_MACRO is false, these will be defined as actual functions;
+ otherwise, suitable macro definitions will be used. This works
+ around the fact that ANSI C89 doesn't support an 'inline' keyword
+ (although I hear C9x will ... about bloody time). At present, the
+ macro definitions are identical to the function bodies, but they'll
+ expand in place, instead of generating a function call.
+
+ I chose these particular functions to be made into macros because
+ some profiling showed they are called a lot on a typical workload,
+ and yet they are primarily housekeeping.
+ */
+#if MP_MACRO == 0
+ void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
+ void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
+ void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */
+ void s_mp_free(void *ptr); /* general free function */
+#else
+
+ /* Even if these are defined as macros, we need to respect the settings
+ of the MP_MEMSET and MP_MEMCPY configuration options...
+ */
+ #if MP_MEMSET == 0
+ #define s_mp_setz(dp, count) \
+ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
+ #else
+ #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
+ #endif /* MP_MEMSET */
+
+ #if MP_MEMCPY == 0
+ #define s_mp_copy(sp, dp, count) \
+ {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
+ #else
+ #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
+ #endif /* MP_MEMCPY */
+
+ #define s_mp_alloc(nb, ni) calloc(nb, ni)
+ #define s_mp_free(ptr) {if(ptr) free(ptr);}
+#endif /* MP_MACRO */
+
+mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
+mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
+
+void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
+
+void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
+
+mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
+void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
+void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
+void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
+mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place*/
+void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
+mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
+mp_digit s_mp_norm(mp_int *a, mp_int *b); /* normalize for division */
+mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
+mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
+mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
+mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
+ /* unsigned digit divide */
+mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu);
+ /* Barrett reduction */
+mp_err s_mp_add(mp_int *a, mp_int *b); /* magnitude addition */
+mp_err s_mp_sub(mp_int *a, mp_int *b); /* magnitude subtract */
+mp_err s_mp_mul(mp_int *a, mp_int *b); /* magnitude multiply */
+#if 0
+void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len);
+ /* multiply buffers in place */
+#endif
+#if MP_SQUARE
+mp_err s_mp_sqr(mp_int *a); /* magnitude square */
+#else
+#define s_mp_sqr(a) s_mp_mul(a, a)
+#endif
+mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */
+mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
+int s_mp_cmp(mp_int *a, mp_int *b); /* magnitude comparison */
+int s_mp_cmp_d(mp_int *a, mp_digit d); /* magnitude digit compare */
+int s_mp_ispow2(mp_int *v); /* is v a power of 2? */
+int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
+
+int s_mp_tovalue(char ch, int r); /* convert ch to value */
+char s_mp_todigit(int val, int r, int low); /* convert val to digit */
+int s_mp_outlen(int bits, int r); /* output length in bytes */
+
+/* }}} */
+
+/* {{{ Default precision manipulation */
+
+unsigned int mp_get_prec(void)
+{
+ return s_mp_defprec;
+
+} /* end mp_get_prec() */
+
+void mp_set_prec(unsigned int prec)
+{
+ if(prec == 0)
+ s_mp_defprec = MP_DEFPREC;
+ else
+ s_mp_defprec = prec;
+
+} /* end mp_set_prec() */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ mp_init(mp) */
+
+/*
+ mp_init(mp)
+
+ Initialize a new zero-valued mp_int. Returns MP_OKAY if successful,
+ MP_MEM if memory could not be allocated for the structure.
+ */
+
+mp_err mp_init(mp_int *mp)
+{
+ return mp_init_size(mp, s_mp_defprec);
+
+} /* end mp_init() */
+
+/* }}} */
+
+/* {{{ mp_init_array(mp[], count) */
+
+mp_err mp_init_array(mp_int mp[], int count)
+{
+ mp_err res;
+ int pos;
+
+ ARGCHK(mp !=NULL && count > 0, MP_BADARG);
+
+ for(pos = 0; pos < count; ++pos) {
+ if((res = mp_init(&mp[pos])) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ return MP_OKAY;
+
+ CLEANUP:
+ while(--pos >= 0)
+ mp_clear(&mp[pos]);
+
+ return res;
+
+} /* end mp_init_array() */
+
+/* }}} */
+
+/* {{{ mp_init_size(mp, prec) */
+
+/*
+ mp_init_size(mp, prec)
+
+ Initialize a new zero-valued mp_int with at least the given
+ precision; returns MP_OKAY if successful, or MP_MEM if memory could
+ not be allocated for the structure.
+ */
+
+mp_err mp_init_size(mp_int *mp, mp_size prec)
+{
+ ARGCHK(mp != NULL && prec > 0, MP_BADARG);
+
+ if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
+ return MP_MEM;
+
+ SIGN(mp) = MP_ZPOS;
+ USED(mp) = 1;
+ ALLOC(mp) = prec;
+
+ return MP_OKAY;
+
+} /* end mp_init_size() */
+
+/* }}} */
+
+/* {{{ mp_init_copy(mp, from) */
+
+/*
+ mp_init_copy(mp, from)
+
+ Initialize mp as an exact copy of from. Returns MP_OKAY if
+ successful, MP_MEM if memory could not be allocated for the new
+ structure.
+ */
+
+mp_err mp_init_copy(mp_int *mp, mp_int *from)
+{
+ ARGCHK(mp != NULL && from != NULL, MP_BADARG);
+
+ if(mp == from)
+ return MP_OKAY;
+
+ if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
+ return MP_MEM;
+
+ s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
+ USED(mp) = USED(from);
+ ALLOC(mp) = USED(from);
+ SIGN(mp) = SIGN(from);
+
+ return MP_OKAY;
+
+} /* end mp_init_copy() */
+
+/* }}} */
+
+/* {{{ mp_copy(from, to) */
+
+/*
+ mp_copy(from, to)
+
+ Copies the mp_int 'from' to the mp_int 'to'. It is presumed that
+ 'to' has already been initialized (if not, use mp_init_copy()
+ instead). If 'from' and 'to' are identical, nothing happens.
+ */
+
+mp_err mp_copy(mp_int *from, mp_int *to)
+{
+ ARGCHK(from != NULL && to != NULL, MP_BADARG);
+
+ if(from == to)
+ return MP_OKAY;
+
+ { /* copy */
+ mp_digit *tmp;
+
+ /*
+ If the allocated buffer in 'to' already has enough space to hold
+ all the used digits of 'from', we'll re-use it to avoid hitting
+ the memory allocater more than necessary; otherwise, we'd have
+ to grow anyway, so we just allocate a hunk and make the copy as
+ usual
+ */
+ if(ALLOC(to) >= USED(from)) {
+ s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
+ s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
+
+ } else {
+ if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
+ return MP_MEM;
+
+ s_mp_copy(DIGITS(from), tmp, USED(from));
+
+ if(DIGITS(to) != NULL) {
+#if MP_CRYPTO
+ s_mp_setz(DIGITS(to), ALLOC(to));
+#endif
+ s_mp_free(DIGITS(to));
+ }
+
+ DIGITS(to) = tmp;
+ ALLOC(to) = USED(from);
+ }
+
+ /* Copy the precision and sign from the original */
+ USED(to) = USED(from);
+ SIGN(to) = SIGN(from);
+ } /* end copy */
+
+ return MP_OKAY;
+
+} /* end mp_copy() */
+
+/* }}} */
+
+/* {{{ mp_exch(mp1, mp2) */
+
+/*
+ mp_exch(mp1, mp2)
+
+ Exchange mp1 and mp2 without allocating any intermediate memory
+ (well, unless you count the stack space needed for this call and the
+ locals it creates...). This cannot fail.
+ */
+
+void mp_exch(mp_int *mp1, mp_int *mp2)
+{
+#if MP_ARGCHK == 2
+ assert(mp1 != NULL && mp2 != NULL);
+#else
+ if(mp1 == NULL || mp2 == NULL)
+ return;
+#endif
+
+ s_mp_exch(mp1, mp2);
+
+} /* end mp_exch() */
+
+/* }}} */
+
+/* {{{ mp_clear(mp) */
+
+/*
+ mp_clear(mp)
+
+ Release the storage used by an mp_int, and void its fields so that
+ if someone calls mp_clear() again for the same int later, we won't
+ get tollchocked.
+ */
+
+void mp_clear(mp_int *mp)
+{
+ if(mp == NULL)
+ return;
+
+ if(DIGITS(mp) != NULL) {
+#if MP_CRYPTO
+ s_mp_setz(DIGITS(mp), ALLOC(mp));
+#endif
+ s_mp_free(DIGITS(mp));
+ DIGITS(mp) = NULL;
+ }
+
+ USED(mp) = 0;
+ ALLOC(mp) = 0;
+
+} /* end mp_clear() */
+
+/* }}} */
+
+/* {{{ mp_clear_array(mp[], count) */
+
+void mp_clear_array(mp_int mp[], int count)
+{
+ ARGCHK(mp != NULL && count > 0, MP_BADARG);
+
+ while(--count >= 0)
+ mp_clear(&mp[count]);
+
+} /* end mp_clear_array() */
+
+/* }}} */
+
+/* {{{ mp_zero(mp) */
+
+/*
+ mp_zero(mp)
+
+ Set mp to zero. Does not change the allocated size of the structure,
+ and therefore cannot fail (except on a bad argument, which we ignore)
+ */
+void mp_zero(mp_int *mp)
+{
+ if(mp == NULL)
+ return;
+
+ s_mp_setz(DIGITS(mp), ALLOC(mp));
+ USED(mp) = 1;
+ SIGN(mp) = MP_ZPOS;
+
+} /* end mp_zero() */
+
+/* }}} */
+
+/* {{{ mp_set(mp, d) */
+
+void mp_set(mp_int *mp, mp_digit d)
+{
+ if(mp == NULL)
+ return;
+
+ mp_zero(mp);
+ DIGIT(mp, 0) = d;
+
+} /* end mp_set() */
+
+/* }}} */
+
+/* {{{ mp_set_int(mp, z) */
+
+mp_err mp_set_int(mp_int *mp, long z)
+{
+ int ix;
+ unsigned long v = abs(z);
+ mp_err res;
+
+ ARGCHK(mp != NULL, MP_BADARG);
+
+ mp_zero(mp);
+ if(z == 0)
+ return MP_OKAY; /* shortcut for zero */
+
+ for(ix = sizeof(long) - 1; ix >= 0; ix--) {
+
+ if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
+ return res;
+
+ res = s_mp_add_d(mp,
+ (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
+ if(res != MP_OKAY)
+ return res;
+
+ }
+
+ if(z < 0)
+ SIGN(mp) = MP_NEG;
+
+ return MP_OKAY;
+
+} /* end mp_set_int() */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Digit arithmetic */
+
+/* {{{ mp_add_d(a, d, b) */
+
+/*
+ mp_add_d(a, d, b)
+
+ Compute the sum b = a + d, for a single digit d. Respects the sign of
+ its primary addend (single digits are unsigned anyway).
+ */
+
+mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b)
+{
+ mp_err res = MP_OKAY;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, b)) != MP_OKAY)
+ return res;
+
+ if(SIGN(b) == MP_ZPOS) {
+ res = s_mp_add_d(b, d);
+ } else if(s_mp_cmp_d(b, d) >= 0) {
+ res = s_mp_sub_d(b, d);
+ } else {
+ SIGN(b) = MP_ZPOS;
+
+ DIGIT(b, 0) = d - DIGIT(b, 0);
+ }
+
+ return res;
+
+} /* end mp_add_d() */
+
+/* }}} */
+
+/* {{{ mp_sub_d(a, d, b) */
+
+/*
+ mp_sub_d(a, d, b)
+
+ Compute the difference b = a - d, for a single digit d. Respects the
+ sign of its subtrahend (single digits are unsigned anyway).
+ */
+
+mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, b)) != MP_OKAY)
+ return res;
+
+ if(SIGN(b) == MP_NEG) {
+ if((res = s_mp_add_d(b, d)) != MP_OKAY)
+ return res;
+
+ } else if(s_mp_cmp_d(b, d) >= 0) {
+ if((res = s_mp_sub_d(b, d)) != MP_OKAY)
+ return res;
+
+ } else {
+ mp_neg(b, b);
+
+ DIGIT(b, 0) = d - DIGIT(b, 0);
+ SIGN(b) = MP_NEG;
+ }
+
+ if(s_mp_cmp_d(b, 0) == 0)
+ SIGN(b) = MP_ZPOS;
+
+ return MP_OKAY;
+
+} /* end mp_sub_d() */
+
+/* }}} */
+
+/* {{{ mp_mul_d(a, d, b) */
+
+/*
+ mp_mul_d(a, d, b)
+
+ Compute the product b = a * d, for a single digit d. Respects the sign
+ of its multiplicand (single digits are unsigned anyway)
+ */
+
+mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ if(d == 0) {
+ mp_zero(b);
+ return MP_OKAY;
+ }
+
+ if((res = mp_copy(a, b)) != MP_OKAY)
+ return res;
+
+ res = s_mp_mul_d(b, d);
+
+ return res;
+
+} /* end mp_mul_d() */
+
+/* }}} */
+
+/* {{{ mp_mul_2(a, c) */
+
+mp_err mp_mul_2(mp_int *a, mp_int *c)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, c)) != MP_OKAY)
+ return res;
+
+ return s_mp_mul_2(c);
+
+} /* end mp_mul_2() */
+
+/* }}} */
+
+/* {{{ mp_div_d(a, d, q, r) */
+
+/*
+ mp_div_d(a, d, q, r)
+
+ Compute the quotient q = a / d and remainder r = a mod d, for a
+ single digit d. Respects the sign of its divisor (single digits are
+ unsigned anyway).
+ */
+
+mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
+{
+ mp_err res;
+ mp_digit rem;
+ int pow;
+
+ ARGCHK(a != NULL, MP_BADARG);
+
+ if(d == 0)
+ return MP_RANGE;
+
+ /* Shortcut for powers of two ... */
+ if((pow = s_mp_ispow2d(d)) >= 0) {
+ mp_digit mask;
+
+ mask = (1 << pow) - 1;
+ rem = DIGIT(a, 0) & mask;
+
+ if(q) {
+ mp_copy(a, q);
+ s_mp_div_2d(q, pow);
+ }
+
+ if(r)
+ *r = rem;
+
+ return MP_OKAY;
+ }
+
+ /*
+ If the quotient is actually going to be returned, we'll try to
+ avoid hitting the memory allocator by copying the dividend into it
+ and doing the division there. This can't be any _worse_ than
+ always copying, and will sometimes be better (since it won't make
+ another copy)
+
+ If it's not going to be returned, we need to allocate a temporary
+ to hold the quotient, which will just be discarded.
+ */
+ if(q) {
+ if((res = mp_copy(a, q)) != MP_OKAY)
+ return res;
+
+ res = s_mp_div_d(q, d, &rem);
+ if(s_mp_cmp_d(q, 0) == MP_EQ)
+ SIGN(q) = MP_ZPOS;
+
+ } else {
+ mp_int qp;
+
+ if((res = mp_init_copy(&qp, a)) != MP_OKAY)
+ return res;
+
+ res = s_mp_div_d(&qp, d, &rem);
+ if(s_mp_cmp_d(&qp, 0) == 0)
+ SIGN(&qp) = MP_ZPOS;
+
+ mp_clear(&qp);
+ }
+
+ if(r)
+ *r = rem;
+
+ return res;
+
+} /* end mp_div_d() */
+
+/* }}} */
+
+/* {{{ mp_div_2(a, c) */
+
+/*
+ mp_div_2(a, c)
+
+ Compute c = a / 2, disregarding the remainder.
+ */
+
+mp_err mp_div_2(mp_int *a, mp_int *c)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, c)) != MP_OKAY)
+ return res;
+
+ s_mp_div_2(c);
+
+ return MP_OKAY;
+
+} /* end mp_div_2() */
+
+/* }}} */
+
+/* {{{ mp_expt_d(a, d, b) */
+
+mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c)
+{
+ mp_int s, x;
+ mp_err res;
+
+ ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_init(&s)) != MP_OKAY)
+ return res;
+ if((res = mp_init_copy(&x, a)) != MP_OKAY)
+ goto X;
+
+ DIGIT(&s, 0) = 1;
+
+ while(d != 0) {
+ if(d & 1) {
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ d >>= 1;
+
+ if((res = s_mp_sqr(&x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ s_mp_exch(&s, c);
+
+CLEANUP:
+ mp_clear(&x);
+X:
+ mp_clear(&s);
+
+ return res;
+
+} /* end mp_expt_d() */
+
+/* }}} */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Full arithmetic */
+
+/* {{{ mp_abs(a, b) */
+
+/*
+ mp_abs(a, b)
+
+ Compute b = |a|. 'a' and 'b' may be identical.
+ */
+
+mp_err mp_abs(mp_int *a, mp_int *b)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, b)) != MP_OKAY)
+ return res;
+
+ SIGN(b) = MP_ZPOS;
+
+ return MP_OKAY;
+
+} /* end mp_abs() */
+
+/* }}} */
+
+/* {{{ mp_neg(a, b) */
+
+/*
+ mp_neg(a, b)
+
+ Compute b = -a. 'a' and 'b' may be identical.
+ */
+
+mp_err mp_neg(mp_int *a, mp_int *b)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, b)) != MP_OKAY)
+ return res;
+
+ if(s_mp_cmp_d(b, 0) == MP_EQ)
+ SIGN(b) = MP_ZPOS;
+ else
+ SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
+
+ return MP_OKAY;
+
+} /* end mp_neg() */
+
+/* }}} */
+
+/* {{{ mp_add(a, b, c) */
+
+/*
+ mp_add(a, b, c)
+
+ Compute c = a + b. All parameters may be identical.
+ */
+
+mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_err res;
+ int cmp;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */
+
+ /* Commutativity of addition lets us do this in either order,
+ so we avoid having to use a temporary even if the result
+ is supposed to replace the output
+ */
+ if(c == b) {
+ if((res = s_mp_add(c, a)) != MP_OKAY)
+ return res;
+ } else {
+ if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
+ return res;
+
+ if((res = s_mp_add(c, b)) != MP_OKAY)
+ return res;
+ }
+
+ } else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */
+
+ /* If the output is going to be clobbered, we will use a temporary
+ variable; otherwise, we'll do it without touching the memory
+ allocator at all, if possible
+ */
+ if(c == b) {
+ mp_int tmp;
+
+ if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
+ return res;
+ if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ s_mp_exch(&tmp, c);
+ mp_clear(&tmp);
+
+ } else {
+
+ if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
+ return res;
+ if((res = s_mp_sub(c, b)) != MP_OKAY)
+ return res;
+
+ }
+
+ } else if(cmp == 0) { /* different sign, a == b */
+
+ mp_zero(c);
+ return MP_OKAY;
+
+ } else { /* different sign: a < b */
+
+ /* See above... */
+ if(c == a) {
+ mp_int tmp;
+
+ if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
+ return res;
+ if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ s_mp_exch(&tmp, c);
+ mp_clear(&tmp);
+
+ } else {
+
+ if(c != b && (res = mp_copy(b, c)) != MP_OKAY)
+ return res;
+ if((res = s_mp_sub(c, a)) != MP_OKAY)
+ return res;
+
+ }
+ }
+
+ if(USED(c) == 1 && DIGIT(c, 0) == 0)
+ SIGN(c) = MP_ZPOS;
+
+ return MP_OKAY;
+
+} /* end mp_add() */
+
+/* }}} */
+
+/* {{{ mp_sub(a, b, c) */
+
+/*
+ mp_sub(a, b, c)
+
+ Compute c = a - b. All parameters may be identical.
+ */
+
+mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_err res;
+ int cmp;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ if(SIGN(a) != SIGN(b)) {
+ if(c == a) {
+ if((res = s_mp_add(c, b)) != MP_OKAY)
+ return res;
+ } else {
+ if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
+ return res;
+ if((res = s_mp_add(c, a)) != MP_OKAY)
+ return res;
+ SIGN(c) = SIGN(a);
+ }
+
+ } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */
+ if(c == b) {
+ mp_int tmp;
+
+ if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
+ return res;
+ if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+ s_mp_exch(&tmp, c);
+ mp_clear(&tmp);
+
+ } else {
+ if(c != a && ((res = mp_copy(a, c)) != MP_OKAY))
+ return res;
+
+ if((res = s_mp_sub(c, b)) != MP_OKAY)
+ return res;
+ }
+
+ } else if(cmp == 0) { /* Same sign, equal magnitude */
+ mp_zero(c);
+ return MP_OKAY;
+
+ } else { /* Same sign, b > a */
+ if(c == a) {
+ mp_int tmp;
+
+ if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
+ return res;
+
+ if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+ s_mp_exch(&tmp, c);
+ mp_clear(&tmp);
+
+ } else {
+ if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
+ return res;
+
+ if((res = s_mp_sub(c, a)) != MP_OKAY)
+ return res;
+ }
+
+ SIGN(c) = !SIGN(b);
+ }
+
+ if(USED(c) == 1 && DIGIT(c, 0) == 0)
+ SIGN(c) = MP_ZPOS;
+
+ return MP_OKAY;
+
+} /* end mp_sub() */
+
+/* }}} */
+
+/* {{{ mp_mul(a, b, c) */
+
+/*
+ mp_mul(a, b, c)
+
+ Compute c = a * b. All parameters may be identical.
+ */
+
+mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_err res;
+ mp_sign sgn;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG;
+
+ if(c == b) {
+ if((res = s_mp_mul(c, a)) != MP_OKAY)
+ return res;
+
+ } else {
+ if((res = mp_copy(a, c)) != MP_OKAY)
+ return res;
+
+ if((res = s_mp_mul(c, b)) != MP_OKAY)
+ return res;
+ }
+
+ if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
+ SIGN(c) = MP_ZPOS;
+ else
+ SIGN(c) = sgn;
+
+ return MP_OKAY;
+
+} /* end mp_mul() */
+
+/* }}} */
+
+/* {{{ mp_mul_2d(a, d, c) */
+
+/*
+ mp_mul_2d(a, d, c)
+
+ Compute c = a * 2^d. a may be the same as c.
+ */
+
+mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, c)) != MP_OKAY)
+ return res;
+
+ if(d == 0)
+ return MP_OKAY;
+
+ return s_mp_mul_2d(c, d);
+
+} /* end mp_mul() */
+
+/* }}} */
+
+/* {{{ mp_sqr(a, b) */
+
+#if MP_SQUARE
+mp_err mp_sqr(mp_int *a, mp_int *b)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ if((res = mp_copy(a, b)) != MP_OKAY)
+ return res;
+
+ if((res = s_mp_sqr(b)) != MP_OKAY)
+ return res;
+
+ SIGN(b) = MP_ZPOS;
+
+ return MP_OKAY;
+
+} /* end mp_sqr() */
+#endif
+
+/* }}} */
+
+/* {{{ mp_div(a, b, q, r) */
+
+/*
+ mp_div(a, b, q, r)
+
+ Compute q = a / b and r = a mod b. Input parameters may be re-used
+ as output parameters. If q or r is NULL, that portion of the
+ computation will be discarded (although it will still be computed)
+
+ Pay no attention to the hacker behind the curtain.
+ */
+
+mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
+{
+ mp_err res;
+ mp_int qtmp, rtmp;
+ int cmp;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ if(mp_cmp_z(b) == MP_EQ)
+ return MP_RANGE;
+
+ /* If a <= b, we can compute the solution without division, and
+ avoid any memory allocation
+ */
+ if((cmp = s_mp_cmp(a, b)) < 0) {
+ if(r) {
+ if((res = mp_copy(a, r)) != MP_OKAY)
+ return res;
+ }
+
+ if(q)
+ mp_zero(q);
+
+ return MP_OKAY;
+
+ } else if(cmp == 0) {
+
+ /* Set quotient to 1, with appropriate sign */
+ if(q) {
+ int qneg = (SIGN(a) != SIGN(b));
+
+ mp_set(q, 1);
+ if(qneg)
+ SIGN(q) = MP_NEG;
+ }
+
+ if(r)
+ mp_zero(r);
+
+ return MP_OKAY;
+ }
+
+ /* If we get here, it means we actually have to do some division */
+
+ /* Set up some temporaries... */
+ if((res = mp_init_copy(&qtmp, a)) != MP_OKAY)
+ return res;
+ if((res = mp_init_copy(&rtmp, b)) != MP_OKAY)
+ goto CLEANUP;
+
+ if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY)
+ goto CLEANUP;
+
+ /* Compute the signs for the output */
+ SIGN(&rtmp) = SIGN(a); /* Sr = Sa */
+ if(SIGN(a) == SIGN(b))
+ SIGN(&qtmp) = MP_ZPOS; /* Sq = MP_ZPOS if Sa = Sb */
+ else
+ SIGN(&qtmp) = MP_NEG; /* Sq = MP_NEG if Sa != Sb */
+
+ if(s_mp_cmp_d(&qtmp, 0) == MP_EQ)
+ SIGN(&qtmp) = MP_ZPOS;
+ if(s_mp_cmp_d(&rtmp, 0) == MP_EQ)
+ SIGN(&rtmp) = MP_ZPOS;
+
+ /* Copy output, if it is needed */
+ if(q)
+ s_mp_exch(&qtmp, q);
+
+ if(r)
+ s_mp_exch(&rtmp, r);
+
+CLEANUP:
+ mp_clear(&rtmp);
+ mp_clear(&qtmp);
+
+ return res;
+
+} /* end mp_div() */
+
+/* }}} */
+
+/* {{{ mp_div_2d(a, d, q, r) */
+
+mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL, MP_BADARG);
+
+ if(q) {
+ if((res = mp_copy(a, q)) != MP_OKAY)
+ return res;
+
+ s_mp_div_2d(q, d);
+ }
+
+ if(r) {
+ if((res = mp_copy(a, r)) != MP_OKAY)
+ return res;
+
+ s_mp_mod_2d(r, d);
+ }
+
+ return MP_OKAY;
+
+} /* end mp_div_2d() */
+
+/* }}} */
+
+/* {{{ mp_expt(a, b, c) */
+
+/*
+ mp_expt(a, b, c)
+
+ Compute c = a ** b, that is, raise a to the b power. Uses a
+ standard iterative square-and-multiply technique.
+ */
+
+mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_int s, x;
+ mp_err res;
+ mp_digit d;
+ int dig, bit;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ if(mp_cmp_z(b) < 0)
+ return MP_RANGE;
+
+ if((res = mp_init(&s)) != MP_OKAY)
+ return res;
+
+ mp_set(&s, 1);
+
+ if((res = mp_init_copy(&x, a)) != MP_OKAY)
+ goto X;
+
+ /* Loop over low-order digits in ascending order */
+ for(dig = 0; dig < (USED(b) - 1); dig++) {
+ d = DIGIT(b, dig);
+
+ /* Loop over bits of each non-maximal digit */
+ for(bit = 0; bit < DIGIT_BIT; bit++) {
+ if(d & 1) {
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ d >>= 1;
+
+ if((res = s_mp_sqr(&x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+ }
+
+ /* Consider now the last digit... */
+ d = DIGIT(b, dig);
+
+ while(d) {
+ if(d & 1) {
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ d >>= 1;
+
+ if((res = s_mp_sqr(&x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ if(mp_iseven(b))
+ SIGN(&s) = SIGN(a);
+
+ res = mp_copy(&s, c);
+
+CLEANUP:
+ mp_clear(&x);
+X:
+ mp_clear(&s);
+
+ return res;
+
+} /* end mp_expt() */
+
+/* }}} */
+
+/* {{{ mp_2expt(a, k) */
+
+/* Compute a = 2^k */
+
+mp_err mp_2expt(mp_int *a, mp_digit k)
+{
+ ARGCHK(a != NULL, MP_BADARG);
+
+ return s_mp_2expt(a, k);
+
+} /* end mp_2expt() */
+
+/* }}} */
+
+/* {{{ mp_mod(a, m, c) */
+
+/*
+ mp_mod(a, m, c)
+
+ Compute c = a (mod m). Result will always be 0 <= c < m.
+ */
+
+mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
+{
+ mp_err res;
+ int mag;
+
+ ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
+
+ if(SIGN(m) == MP_NEG)
+ return MP_RANGE;
+
+ /*
+ If |a| > m, we need to divide to get the remainder and take the
+ absolute value.
+
+ If |a| < m, we don't need to do any division, just copy and adjust
+ the sign (if a is negative).
+
+ If |a| == m, we can simply set the result to zero.
+
+ This order is intended to minimize the average path length of the
+ comparison chain on common workloads -- the most frequent cases are
+ that |a| != m, so we do those first.
+ */
+ if((mag = s_mp_cmp(a, m)) > 0) {
+ if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
+ return res;
+
+ if(SIGN(c) == MP_NEG) {
+ if((res = mp_add(c, m, c)) != MP_OKAY)
+ return res;
+ }
+
+ } else if(mag < 0) {
+ if((res = mp_copy(a, c)) != MP_OKAY)
+ return res;
+
+ if(mp_cmp_z(a) < 0) {
+ if((res = mp_add(c, m, c)) != MP_OKAY)
+ return res;
+
+ }
+
+ } else {
+ mp_zero(c);
+
+ }
+
+ return MP_OKAY;
+
+} /* end mp_mod() */
+
+/* }}} */
+
+/* {{{ mp_mod_d(a, d, c) */
+
+/*
+ mp_mod_d(a, d, c)
+
+ Compute c = a (mod d). Result will always be 0 <= c < d
+ */
+mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c)
+{
+ mp_err res;
+ mp_digit rem;
+
+ ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+ if(s_mp_cmp_d(a, d) > 0) {
+ if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
+ return res;
+
+ } else {
+ if(SIGN(a) == MP_NEG)
+ rem = d - DIGIT(a, 0);
+ else
+ rem = DIGIT(a, 0);
+ }
+
+ if(c)
+ *c = rem;
+
+ return MP_OKAY;
+
+} /* end mp_mod_d() */
+
+/* }}} */
+
+/* {{{ mp_sqrt(a, b) */
+
+/*
+ mp_sqrt(a, b)
+
+ Compute the integer square root of a, and store the result in b.
+ Uses an integer-arithmetic version of Newton's iterative linear
+ approximation technique to determine this value; the result has the
+ following two properties:
+
+ b^2 <= a
+ (b+1)^2 >= a
+
+ It is a range error to pass a negative value.
+ */
+mp_err mp_sqrt(mp_int *a, mp_int *b)
+{
+ mp_int x, t;
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL, MP_BADARG);
+
+ /* Cannot take square root of a negative value */
+ if(SIGN(a) == MP_NEG)
+ return MP_RANGE;
+
+ /* Special cases for zero and one, trivial */
+ if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
+ return mp_copy(a, b);
+
+ /* Initialize the temporaries we'll use below */
+ if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
+ return res;
+
+ /* Compute an initial guess for the iteration as a itself */
+ if((res = mp_init_copy(&x, a)) != MP_OKAY)
+ goto X;
+
+s_mp_rshd(&x, (USED(&x)/2)+1);
+mp_add_d(&x, 1, &x);
+
+ for(;;) {
+ /* t = (x * x) - a */
+ mp_copy(&x, &t); /* can't fail, t is big enough for original x */
+ if((res = mp_sqr(&t, &t)) != MP_OKAY ||
+ (res = mp_sub(&t, a, &t)) != MP_OKAY)
+ goto CLEANUP;
+
+ /* t = t / 2x */
+ s_mp_mul_2(&x);
+ if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
+ goto CLEANUP;
+ s_mp_div_2(&x);
+
+ /* Terminate the loop, if the quotient is zero */
+ if(mp_cmp_z(&t) == MP_EQ)
+ break;
+
+ /* x = x - t */
+ if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
+ goto CLEANUP;
+
+ }
+
+ /* Copy result to output parameter */
+ mp_sub_d(&x, 1, &x);
+ s_mp_exch(&x, b);
+
+ CLEANUP:
+ mp_clear(&x);
+ X:
+ mp_clear(&t);
+
+ return res;
+
+} /* end mp_sqrt() */
+
+/* }}} */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Modular arithmetic */
+
+#if MP_MODARITH
+/* {{{ mp_addmod(a, b, m, c) */
+
+/*
+ mp_addmod(a, b, m, c)
+
+ Compute c = (a + b) mod m
+ */
+
+mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_add(a, b, c)) != MP_OKAY)
+ return res;
+ if((res = mp_mod(c, m, c)) != MP_OKAY)
+ return res;
+
+ return MP_OKAY;
+
+}
+
+/* }}} */
+
+/* {{{ mp_submod(a, b, m, c) */
+
+/*
+ mp_submod(a, b, m, c)
+
+ Compute c = (a - b) mod m
+ */
+
+mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_sub(a, b, c)) != MP_OKAY)
+ return res;
+ if((res = mp_mod(c, m, c)) != MP_OKAY)
+ return res;
+
+ return MP_OKAY;
+
+}
+
+/* }}} */
+
+/* {{{ mp_mulmod(a, b, m, c) */
+
+/*
+ mp_mulmod(a, b, m, c)
+
+ Compute c = (a * b) mod m
+ */
+
+mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_mul(a, b, c)) != MP_OKAY)
+ return res;
+ if((res = mp_mod(c, m, c)) != MP_OKAY)
+ return res;
+
+ return MP_OKAY;
+
+}
+
+/* }}} */
+
+/* {{{ mp_sqrmod(a, m, c) */
+
+#if MP_SQUARE
+mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
+{
+ mp_err res;
+
+ ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_sqr(a, c)) != MP_OKAY)
+ return res;
+ if((res = mp_mod(c, m, c)) != MP_OKAY)
+ return res;
+
+ return MP_OKAY;
+
+} /* end mp_sqrmod() */
+#endif
+
+/* }}} */
+
+/* {{{ mp_exptmod(a, b, m, c) */
+
+/*
+ mp_exptmod(a, b, m, c)
+
+ Compute c = (a ** b) mod m. Uses a standard square-and-multiply
+ method with modular reductions at each step. (This is basically the
+ same code as mp_expt(), except for the addition of the reductions)
+
+ The modular reductions are done using Barrett's algorithm (see
+ s_mp_reduce() below for details)
+ */
+
+mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
+{
+ mp_int s, x, mu;
+ mp_err res;
+ mp_digit d, *db = DIGITS(b);
+ mp_size ub = USED(b);
+ int dig, bit;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
+ return MP_RANGE;
+
+ if((res = mp_init(&s)) != MP_OKAY)
+ return res;
+ if((res = mp_init_copy(&x, a)) != MP_OKAY)
+ goto X;
+ if((res = mp_mod(&x, m, &x)) != MP_OKAY ||
+ (res = mp_init(&mu)) != MP_OKAY)
+ goto MU;
+
+ mp_set(&s, 1);
+
+ /* mu = b^2k / m */
+ s_mp_add_d(&mu, 1);
+ s_mp_lshd(&mu, 2 * USED(m));
+ if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
+ goto CLEANUP;
+
+ /* Loop over digits of b in ascending order, except highest order */
+ for(dig = 0; dig < (ub - 1); dig++) {
+ d = *db++;
+
+ /* Loop over the bits of the lower-order digits */
+ for(bit = 0; bit < DIGIT_BIT; bit++) {
+ if(d & 1) {
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+ goto CLEANUP;
+ if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ d >>= 1;
+
+ if((res = s_mp_sqr(&x)) != MP_OKAY)
+ goto CLEANUP;
+ if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
+ goto CLEANUP;
+ }
+ }
+
+ /* Now do the last digit... */
+ d = *db;
+
+ while(d) {
+ if(d & 1) {
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+ goto CLEANUP;
+ if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ d >>= 1;
+
+ if((res = s_mp_sqr(&x)) != MP_OKAY)
+ goto CLEANUP;
+ if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ s_mp_exch(&s, c);
+
+ CLEANUP:
+ mp_clear(&mu);
+ MU:
+ mp_clear(&x);
+ X:
+ mp_clear(&s);
+
+ return res;
+
+} /* end mp_exptmod() */
+
+/* }}} */
+
+/* {{{ mp_exptmod_d(a, d, m, c) */
+
+mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c)
+{
+ mp_int s, x;
+ mp_err res;
+
+ ARGCHK(a != NULL && c != NULL, MP_BADARG);
+
+ if((res = mp_init(&s)) != MP_OKAY)
+ return res;
+ if((res = mp_init_copy(&x, a)) != MP_OKAY)
+ goto X;
+
+ mp_set(&s, 1);
+
+ while(d != 0) {
+ if(d & 1) {
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
+ (res = mp_mod(&s, m, &s)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ d /= 2;
+
+ if((res = s_mp_sqr(&x)) != MP_OKAY ||
+ (res = mp_mod(&x, m, &x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ s_mp_exch(&s, c);
+
+CLEANUP:
+ mp_clear(&x);
+X:
+ mp_clear(&s);
+
+ return res;
+
+} /* end mp_exptmod_d() */
+
+/* }}} */
+#endif /* if MP_MODARITH */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Comparison functions */
+
+/* {{{ mp_cmp_z(a) */
+
+/*
+ mp_cmp_z(a)
+
+ Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0.
+ */
+
+int mp_cmp_z(mp_int *a)
+{
+ if(SIGN(a) == MP_NEG)
+ return MP_LT;
+ else if(USED(a) == 1 && DIGIT(a, 0) == 0)
+ return MP_EQ;
+ else
+ return MP_GT;
+
+} /* end mp_cmp_z() */
+
+/* }}} */
+
+/* {{{ mp_cmp_d(a, d) */
+
+/*
+ mp_cmp_d(a, d)
+
+ Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d
+ */
+
+int mp_cmp_d(mp_int *a, mp_digit d)
+{
+ ARGCHK(a != NULL, MP_EQ);
+
+ if(SIGN(a) == MP_NEG)
+ return MP_LT;
+
+ return s_mp_cmp_d(a, d);
+
+} /* end mp_cmp_d() */
+
+/* }}} */
+
+/* {{{ mp_cmp(a, b) */
+
+int mp_cmp(mp_int *a, mp_int *b)
+{
+ ARGCHK(a != NULL && b != NULL, MP_EQ);
+
+ if(SIGN(a) == SIGN(b)) {
+ int mag;
+
+ if((mag = s_mp_cmp(a, b)) == MP_EQ)
+ return MP_EQ;
+
+ if(SIGN(a) == MP_ZPOS)
+ return mag;
+ else
+ return -mag;
+
+ } else if(SIGN(a) == MP_ZPOS) {
+ return MP_GT;
+ } else {
+ return MP_LT;
+ }
+
+} /* end mp_cmp() */
+
+/* }}} */
+
+/* {{{ mp_cmp_mag(a, b) */
+
+/*
+ mp_cmp_mag(a, b)
+
+ Compares |a| <=> |b|, and returns an appropriate comparison result
+ */
+
+int mp_cmp_mag(mp_int *a, mp_int *b)
+{
+ ARGCHK(a != NULL && b != NULL, MP_EQ);
+
+ return s_mp_cmp(a, b);
+
+} /* end mp_cmp_mag() */
+
+/* }}} */
+
+/* {{{ mp_cmp_int(a, z) */
+
+/*
+ This just converts z to an mp_int, and uses the existing comparison
+ routines. This is sort of inefficient, but it's not clear to me how
+ frequently this wil get used anyway. For small positive constants,
+ you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
+ */
+int mp_cmp_int(mp_int *a, long z)
+{
+ mp_int tmp;
+ int out;
+
+ ARGCHK(a != NULL, MP_EQ);
+
+ mp_init(&tmp); mp_set_int(&tmp, z);
+ out = mp_cmp(a, &tmp);
+ mp_clear(&tmp);
+
+ return out;
+
+} /* end mp_cmp_int() */
+
+/* }}} */
+
+/* {{{ mp_isodd(a) */
+
+/*
+ mp_isodd(a)
+
+ Returns a true (non-zero) value if a is odd, false (zero) otherwise.
+ */
+int mp_isodd(mp_int *a)
+{
+ ARGCHK(a != NULL, 0);
+
+ return (DIGIT(a, 0) & 1);
+
+} /* end mp_isodd() */
+
+/* }}} */
+
+/* {{{ mp_iseven(a) */
+
+int mp_iseven(mp_int *a)
+{
+ return !mp_isodd(a);
+
+} /* end mp_iseven() */
+
+/* }}} */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ Number theoretic functions */
+
+#if MP_NUMTH
+/* {{{ mp_gcd(a, b, c) */
+
+/*
+ Like the old mp_gcd() function, except computes the GCD using the
+ binary algorithm due to Josef Stein in 1961 (via Knuth).
+ */
+mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_err res;
+ mp_int u, v, t;
+ mp_size k = 0;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
+ return MP_RANGE;
+ if(mp_cmp_z(a) == MP_EQ) {
+ return mp_copy(b, c);
+ } else if(mp_cmp_z(b) == MP_EQ) {
+ return mp_copy(a, c);
+ }
+
+ if((res = mp_init(&t)) != MP_OKAY)
+ return res;
+ if((res = mp_init_copy(&u, a)) != MP_OKAY)
+ goto U;
+ if((res = mp_init_copy(&v, b)) != MP_OKAY)
+ goto V;
+
+ SIGN(&u) = MP_ZPOS;
+ SIGN(&v) = MP_ZPOS;
+
+ /* Divide out common factors of 2 until at least 1 of a, b is even */
+ while(mp_iseven(&u) && mp_iseven(&v)) {
+ s_mp_div_2(&u);
+ s_mp_div_2(&v);
+ ++k;
+ }
+
+ /* Initialize t */
+ if(mp_isodd(&u)) {
+ if((res = mp_copy(&v, &t)) != MP_OKAY)
+ goto CLEANUP;
+
+ /* t = -v */
+ if(SIGN(&v) == MP_ZPOS)
+ SIGN(&t) = MP_NEG;
+ else
+ SIGN(&t) = MP_ZPOS;
+
+ } else {
+ if((res = mp_copy(&u, &t)) != MP_OKAY)
+ goto CLEANUP;
+
+ }
+
+ for(;;) {
+ while(mp_iseven(&t)) {
+ s_mp_div_2(&t);
+ }
+
+ if(mp_cmp_z(&t) == MP_GT) {
+ if((res = mp_copy(&t, &u)) != MP_OKAY)
+ goto CLEANUP;
+
+ } else {
+ if((res = mp_copy(&t, &v)) != MP_OKAY)
+ goto CLEANUP;
+
+ /* v = -t */
+ if(SIGN(&t) == MP_ZPOS)
+ SIGN(&v) = MP_NEG;
+ else
+ SIGN(&v) = MP_ZPOS;
+ }
+
+ if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
+ goto CLEANUP;
+
+ if(s_mp_cmp_d(&t, 0) == MP_EQ)
+ break;
+ }
+
+ s_mp_2expt(&v, k); /* v = 2^k */
+ res = mp_mul(&u, &v, c); /* c = u * v */
+
+ CLEANUP:
+ mp_clear(&v);
+ V:
+ mp_clear(&u);
+ U:
+ mp_clear(&t);
+
+ return res;
+
+} /* end mp_bgcd() */
+
+/* }}} */
+
+/* {{{ mp_lcm(a, b, c) */
+
+/* We compute the least common multiple using the rule:
+
+ ab = [a, b](a, b)
+
+ ... by computing the product, and dividing out the gcd.
+ */
+
+mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_int gcd, prod;
+ mp_err res;
+
+ ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
+
+ /* Set up temporaries */
+ if((res = mp_init(&gcd)) != MP_OKAY)
+ return res;
+ if((res = mp_init(&prod)) != MP_OKAY)
+ goto GCD;
+
+ if((res = mp_mul(a, b, &prod)) != MP_OKAY)
+ goto CLEANUP;
+ if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
+ goto CLEANUP;
+
+ res = mp_div(&prod, &gcd, c, NULL);
+
+ CLEANUP:
+ mp_clear(&prod);
+ GCD:
+ mp_clear(&gcd);
+
+ return res;
+
+} /* end mp_lcm() */
+
+/* }}} */
+
+/* {{{ mp_xgcd(a, b, g, x, y) */
+
+/*
+ mp_xgcd(a, b, g, x, y)
+
+ Compute g = (a, b) and values x and y satisfying Bezout's identity
+ (that is, ax + by = g). This uses the extended binary GCD algorithm
+ based on the Stein algorithm used for mp_gcd()
+ */
+
+mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
+{
+ mp_int gx, xc, yc, u, v, A, B, C, D;
+ mp_int *clean[9];
+ mp_err res;
+ int last = -1;
+
+ if(mp_cmp_z(b) == 0)
+ return MP_RANGE;
+
+ /* Initialize all these variables we need */
+ if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &u;
+ if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &v;
+ if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &gx;
+ if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &A;
+ if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &B;
+ if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &C;
+ if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &D;
+ if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &xc;
+ mp_abs(&xc, &xc);
+ if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP;
+ clean[++last] = &yc;
+ mp_abs(&yc, &yc);
+
+ mp_set(&gx, 1);
+
+ /* Divide by two until at least one of them is even */
+ while(mp_iseven(&xc) && mp_iseven(&yc)) {
+ s_mp_div_2(&xc);
+ s_mp_div_2(&yc);
+ if((res = s_mp_mul_2(&gx)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ mp_copy(&xc, &u);
+ mp_copy(&yc, &v);
+ mp_set(&A, 1); mp_set(&D, 1);
+
+ /* Loop through binary GCD algorithm */
+ for(;;) {
+ while(mp_iseven(&u)) {
+ s_mp_div_2(&u);
+
+ if(mp_iseven(&A) && mp_iseven(&B)) {
+ s_mp_div_2(&A); s_mp_div_2(&B);
+ } else {
+ if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP;
+ s_mp_div_2(&A);
+ if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP;
+ s_mp_div_2(&B);
+ }
+ }
+
+ while(mp_iseven(&v)) {
+ s_mp_div_2(&v);
+
+ if(mp_iseven(&C) && mp_iseven(&D)) {
+ s_mp_div_2(&C); s_mp_div_2(&D);
+ } else {
+ if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP;
+ s_mp_div_2(&C);
+ if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP;
+ s_mp_div_2(&D);
+ }
+ }
+
+ if(mp_cmp(&u, &v) >= 0) {
+ if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP;
+ if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP;
+ if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP;
+
+ } else {
+ if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP;
+ if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP;
+ if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP;
+
+ }
+
+ /* If we're done, copy results to output */
+ if(mp_cmp_z(&u) == 0) {
+ if(x)
+ if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP;
+
+ if(y)
+ if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
+
+ if(g)
+ if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
+
+ break;
+ }
+ }
+
+ CLEANUP:
+ while(last >= 0)
+ mp_clear(clean[last--]);
+
+ return res;
+
+} /* end mp_xgcd() */
+
+/* }}} */
+
+/* {{{ mp_invmod(a, m, c) */
+
+/*
+ mp_invmod(a, m, c)
+
+ Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
+ This is equivalent to the question of whether (a, m) = 1. If not,
+ MP_UNDEF is returned, and there is no inverse.
+ */
+
+mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c)
+{
+ mp_int g, x;
+ mp_err res;
+
+ ARGCHK(a && m && c, MP_BADARG);
+
+ if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
+ return MP_RANGE;
+
+ if((res = mp_init(&g)) != MP_OKAY)
+ return res;
+ if((res = mp_init(&x)) != MP_OKAY)
+ goto X;
+
+ if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY)
+ goto CLEANUP;
+
+ if(mp_cmp_d(&g, 1) != MP_EQ) {
+ res = MP_UNDEF;
+ goto CLEANUP;
+ }
+
+ res = mp_mod(&x, m, c);
+ SIGN(c) = SIGN(a);
+
+CLEANUP:
+ mp_clear(&x);
+X:
+ mp_clear(&g);
+
+ return res;
+
+} /* end mp_invmod() */
+
+/* }}} */
+#endif /* if MP_NUMTH */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ mp_print(mp, ofp) */
+
+#if MP_IOFUNC
+/*
+ mp_print(mp, ofp)
+
+ Print a textual representation of the given mp_int on the output
+ stream 'ofp'. Output is generated using the internal radix.
+ */
+
+void mp_print(mp_int *mp, FILE *ofp)
+{
+ int ix;
+
+ if(mp == NULL || ofp == NULL)
+ return;
+
+ fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp);
+
+ for(ix = USED(mp) - 1; ix >= 0; ix--) {
+ fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
+ }
+
+} /* end mp_print() */
+
+#endif /* if MP_IOFUNC */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* {{{ More I/O Functions */
+
+/* {{{ mp_read_signed_bin(mp, str, len) */
+
+/*
+ mp_read_signed_bin(mp, str, len)
+
+ Read in a raw value (base 256) into the given mp_int
+ */
+
+mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len)
+{
+ mp_err res;
+
+ ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
+
+ if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) {
+ /* Get sign from first byte */
+ if(str[0])
+ SIGN(mp) = MP_NEG;
+ else
+ SIGN(mp) = MP_ZPOS;
+ }
+
+ return res;
+
+} /* end mp_read_signed_bin() */
+
+/* }}} */
+
+/* {{{ mp_signed_bin_size(mp) */
+
+int mp_signed_bin_size(mp_int *mp)
+{
+ ARGCHK(mp != NULL, 0);
+
+ return mp_unsigned_bin_size(mp) + 1;
+
+} /* end mp_signed_bin_size() */
+
+/* }}} */
+
+/* {{{ mp_to_signed_bin(mp, str) */
+
+mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str)
+{
+ ARGCHK(mp != NULL && str != NULL, MP_BADARG);
+
+ /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */
+ str[0] = (char)SIGN(mp);
+
+ return mp_to_unsigned_bin(mp, str + 1);
+
+} /* end mp_to_signed_bin() */
+
+/* }}} */
+
+/* {{{ mp_read_unsigned_bin(mp, str, len) */
+
+/*
+ mp_read_unsigned_bin(mp, str, len)
+
+ Read in an unsigned value (base 256) into the given mp_int
+ */
+
+mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
+{
+ int ix;
+ mp_err res;
+
+ ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
+
+ mp_zero(mp);
+
+ for(ix = 0; ix < len; ix++) {
+ if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
+ return res;
+
+ if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
+ return res;
+ }
+
+ return MP_OKAY;
+
+} /* end mp_read_unsigned_bin() */
+
+/* }}} */
+
+/* {{{ mp_unsigned_bin_size(mp) */
+
+int mp_unsigned_bin_size(mp_int *mp)
+{
+ mp_digit topdig;
+ int count;
+
+ ARGCHK(mp != NULL, 0);
+
+ /* Special case for the value zero */
+ if(USED(mp) == 1 && DIGIT(mp, 0) == 0)
+ return 1;
+
+ count = (USED(mp) - 1) * sizeof(mp_digit);
+ topdig = DIGIT(mp, USED(mp) - 1);
+
+ while(topdig != 0) {
+ ++count;
+ topdig >>= CHAR_BIT;
+ }
+
+ return count;
+
+} /* end mp_unsigned_bin_size() */
+
+/* }}} */
+
+/* {{{ mp_to_unsigned_bin(mp, str) */
+
+mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str)
+{
+ mp_digit *dp, *end, d;
+ unsigned char *spos;
+
+ ARGCHK(mp != NULL && str != NULL, MP_BADARG);
+
+ dp = DIGITS(mp);
+ end = dp + USED(mp) - 1;
+ spos = str;
+
+ /* Special case for zero, quick test */
+ if(dp == end && *dp == 0) {
+ *str = '\0';
+ return MP_OKAY;
+ }
+
+ /* Generate digits in reverse order */
+ while(dp < end) {
+ int ix;
+
+ d = *dp;
+ for(ix = 0; ix < sizeof(mp_digit); ++ix) {
+ *spos = d & UCHAR_MAX;
+ d >>= CHAR_BIT;
+ ++spos;
+ }
+
+ ++dp;
+ }
+
+ /* Now handle last digit specially, high order zeroes are not written */
+ d = *end;
+ while(d != 0) {
+ *spos = d & UCHAR_MAX;
+ d >>= CHAR_BIT;
+ ++spos;
+ }
+
+ /* Reverse everything to get digits in the correct order */
+ while(--spos > str) {
+ unsigned char t = *str;
+ *str = *spos;
+ *spos = t;
+
+ ++str;
+ }
+
+ return MP_OKAY;
+
+} /* end mp_to_unsigned_bin() */
+
+/* }}} */
+
+/* {{{ mp_count_bits(mp) */
+
+int mp_count_bits(mp_int *mp)
+{
+ int len;
+ mp_digit d;
+
+ ARGCHK(mp != NULL, MP_BADARG);
+
+ len = DIGIT_BIT * (USED(mp) - 1);
+ d = DIGIT(mp, USED(mp) - 1);
+
+ while(d != 0) {
+ ++len;
+ d >>= 1;
+ }
+
+ return len;
+
+} /* end mp_count_bits() */
+
+/* }}} */
+
+/* {{{ mp_read_radix(mp, str, radix) */
+
+/*
+ mp_read_radix(mp, str, radix)
+
+ Read an integer from the given string, and set mp to the resulting
+ value. The input is presumed to be in base 10. Leading non-digit
+ characters are ignored, and the function reads until a non-digit
+ character or the end of the string.
+ */
+
+mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix)
+{
+ int ix = 0, val = 0;
+ mp_err res;
+ mp_sign sig = MP_ZPOS;
+
+ ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
+ MP_BADARG);
+
+ mp_zero(mp);
+
+ /* Skip leading non-digit characters until a digit or '-' or '+' */
+ while(str[ix] &&
+ (s_mp_tovalue(str[ix], radix) < 0) &&
+ str[ix] != '-' &&
+ str[ix] != '+') {
+ ++ix;
+ }
+
+ if(str[ix] == '-') {
+ sig = MP_NEG;
+ ++ix;
+ } else if(str[ix] == '+') {
+ sig = MP_ZPOS; /* this is the default anyway... */
+ ++ix;
+ }
+
+ while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
+ if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
+ return res;
+ if((res = s_mp_add_d(mp, val)) != MP_OKAY)
+ return res;
+ ++ix;
+ }
+
+ if(s_mp_cmp_d(mp, 0) == MP_EQ)
+ SIGN(mp) = MP_ZPOS;
+ else
+ SIGN(mp) = sig;
+
+ return MP_OKAY;
+
+} /* end mp_read_radix() */
+
+/* }}} */
+
+/* {{{ mp_radix_size(mp, radix) */
+
+int mp_radix_size(mp_int *mp, int radix)
+{
+ int len;
+ ARGCHK(mp != NULL, 0);
+
+ len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */
+
+ if(mp_cmp_z(mp) < 0)
+ ++len; /* for sign */
+
+ return len;
+
+} /* end mp_radix_size() */
+
+/* }}} */
+
+/* {{{ mp_value_radix_size(num, qty, radix) */
+
+/* num = number of digits
+ qty = number of bits per digit
+ radix = target base
+
+ Return the number of digits in the specified radix that would be
+ needed to express 'num' digits of 'qty' bits each.
+ */
+int mp_value_radix_size(int num, int qty, int radix)
+{
+ ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0);
+
+ return s_mp_outlen(num * qty, radix);
+
+} /* end mp_value_radix_size() */
+
+/* }}} */
+
+/* {{{ mp_toradix(mp, str, radix) */
+
+mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix)
+{
+ int ix, pos = 0;
+
+ ARGCHK(mp != NULL && str != NULL, MP_BADARG);
+ ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
+
+ if(mp_cmp_z(mp) == MP_EQ) {
+ str[0] = '0';
+ str[1] = '\0';
+ } else {
+ mp_err res;
+ mp_int tmp;
+ mp_sign sgn;
+ mp_digit rem, rdx = (mp_digit)radix;
+ char ch;
+
+ if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
+ return res;
+
+ /* Save sign for later, and take absolute value */
+ sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS;
+
+ /* Generate output digits in reverse order */
+ while(mp_cmp_z(&tmp) != 0) {
+ if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ /* Generate digits, use capital letters */
+ ch = s_mp_todigit(rem, radix, 0);
+
+ str[pos++] = ch;
+ }
+
+ /* Add - sign if original value was negative */
+ if(sgn == MP_NEG)
+ str[pos++] = '-';
+
+ /* Add trailing NUL to end the string */
+ str[pos--] = '\0';
+
+ /* Reverse the digits and sign indicator */
+ ix = 0;
+ while(ix < pos) {
+ char tmp = str[ix];
+
+ str[ix] = str[pos];
+ str[pos] = tmp;
+ ++ix;
+ --pos;
+ }
+
+ mp_clear(&tmp);
+ }
+
+ return MP_OKAY;
+
+} /* end mp_toradix() */
+
+/* }}} */
+
+/* {{{ mp_char2value(ch, r) */
+
+int mp_char2value(char ch, int r)
+{
+ return s_mp_tovalue(ch, r);
+
+} /* end mp_tovalue() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ mp_strerror(ec) */
+
+/*
+ mp_strerror(ec)
+
+ Return a string describing the meaning of error code 'ec'. The
+ string returned is allocated in static memory, so the caller should
+ not attempt to modify or free the memory associated with this
+ string.
+ */
+const char *mp_strerror(mp_err ec)
+{
+ int aec = (ec < 0) ? -ec : ec;
+
+ /* Code values are negative, so the senses of these comparisons
+ are accurate */
+ if(ec < MP_LAST_CODE || ec > MP_OKAY) {
+ return mp_err_string[0]; /* unknown error code */
+ } else {
+ return mp_err_string[aec + 1];
+ }
+
+} /* end mp_strerror() */
+
+/* }}} */
+
+/*========================================================================*/
+/*------------------------------------------------------------------------*/
+/* Static function definitions (internal use only) */
+
+/* {{{ Memory management */
+
+/* {{{ s_mp_grow(mp, min) */
+
+/* Make sure there are at least 'min' digits allocated to mp */
+mp_err s_mp_grow(mp_int *mp, mp_size min)
+{
+ if(min > ALLOC(mp)) {
+ mp_digit *tmp;
+
+ /* Set min to next nearest default precision block size */
+ min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec;
+
+ if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
+ return MP_MEM;
+
+ s_mp_copy(DIGITS(mp), tmp, USED(mp));
+
+#if MP_CRYPTO
+ s_mp_setz(DIGITS(mp), ALLOC(mp));
+#endif
+ s_mp_free(DIGITS(mp));
+ DIGITS(mp) = tmp;
+ ALLOC(mp) = min;
+ }
+
+ return MP_OKAY;
+
+} /* end s_mp_grow() */
+
+/* }}} */
+
+/* {{{ s_mp_pad(mp, min) */
+
+/* Make sure the used size of mp is at least 'min', growing if needed */
+mp_err s_mp_pad(mp_int *mp, mp_size min)
+{
+ if(min > USED(mp)) {
+ mp_err res;
+
+ /* Make sure there is room to increase precision */
+ if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY)
+ return res;
+
+ /* Increase precision; should already be 0-filled */
+ USED(mp) = min;
+ }
+
+ return MP_OKAY;
+
+} /* end s_mp_pad() */
+
+/* }}} */
+
+/* {{{ s_mp_setz(dp, count) */
+
+#if MP_MACRO == 0
+/* Set 'count' digits pointed to by dp to be zeroes */
+void s_mp_setz(mp_digit *dp, mp_size count)
+{
+#if MP_MEMSET == 0
+ int ix;
+
+ for(ix = 0; ix < count; ix++)
+ dp[ix] = 0;
+#else
+ memset(dp, 0, count * sizeof(mp_digit));
+#endif
+
+} /* end s_mp_setz() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_copy(sp, dp, count) */
+
+#if MP_MACRO == 0
+/* Copy 'count' digits from sp to dp */
+void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count)
+{
+#if MP_MEMCPY == 0
+ int ix;
+
+ for(ix = 0; ix < count; ix++)
+ dp[ix] = sp[ix];
+#else
+ memcpy(dp, sp, count * sizeof(mp_digit));
+#endif
+
+} /* end s_mp_copy() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_alloc(nb, ni) */
+
+#if MP_MACRO == 0
+/* Allocate ni records of nb bytes each, and return a pointer to that */
+void *s_mp_alloc(size_t nb, size_t ni)
+{
+ return calloc(nb, ni);
+
+} /* end s_mp_alloc() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_free(ptr) */
+
+#if MP_MACRO == 0
+/* Free the memory pointed to by ptr */
+void s_mp_free(void *ptr)
+{
+ if(ptr)
+ free(ptr);
+
+} /* end s_mp_free() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_clamp(mp) */
+
+/* Remove leading zeroes from the given value */
+void s_mp_clamp(mp_int *mp)
+{
+ mp_size du = USED(mp);
+ mp_digit *zp = DIGITS(mp) + du - 1;
+
+ while(du > 1 && !*zp--)
+ --du;
+
+ USED(mp) = du;
+
+} /* end s_mp_clamp() */
+
+
+/* }}} */
+
+/* {{{ s_mp_exch(a, b) */
+
+/* Exchange the data for a and b; (b, a) = (a, b) */
+void s_mp_exch(mp_int *a, mp_int *b)
+{
+ mp_int tmp;
+
+ tmp = *a;
+ *a = *b;
+ *b = tmp;
+
+} /* end s_mp_exch() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Arithmetic helpers */
+
+/* {{{ s_mp_lshd(mp, p) */
+
+/*
+ Shift mp leftward by p digits, growing if needed, and zero-filling
+ the in-shifted digits at the right end. This is a convenient
+ alternative to multiplication by powers of the radix
+ */
+
+mp_err s_mp_lshd(mp_int *mp, mp_size p)
+{
+ mp_err res;
+ mp_size pos;
+ mp_digit *dp;
+ int ix;
+
+ if(p == 0)
+ return MP_OKAY;
+
+ if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
+ return res;
+
+ pos = USED(mp) - 1;
+ dp = DIGITS(mp);
+
+ /* Shift all the significant figures over as needed */
+ for(ix = pos - p; ix >= 0; ix--)
+ dp[ix + p] = dp[ix];
+
+ /* Fill the bottom digits with zeroes */
+ for(ix = 0; ix < p; ix++)
+ dp[ix] = 0;
+
+ return MP_OKAY;
+
+} /* end s_mp_lshd() */
+
+/* }}} */
+
+/* {{{ s_mp_rshd(mp, p) */
+
+/*
+ Shift mp rightward by p digits. Maintains the invariant that
+ digits above the precision are all zero. Digits shifted off the
+ end are lost. Cannot fail.
+ */
+
+void s_mp_rshd(mp_int *mp, mp_size p)
+{
+ mp_size ix;
+ mp_digit *dp;
+
+ if(p == 0)
+ return;
+
+ /* Shortcut when all digits are to be shifted off */
+ if(p >= USED(mp)) {
+ s_mp_setz(DIGITS(mp), ALLOC(mp));
+ USED(mp) = 1;
+ SIGN(mp) = MP_ZPOS;
+ return;
+ }
+
+ /* Shift all the significant figures over as needed */
+ dp = DIGITS(mp);
+ for(ix = p; ix < USED(mp); ix++)
+ dp[ix - p] = dp[ix];
+
+ /* Fill the top digits with zeroes */
+ ix -= p;
+ while(ix < USED(mp))
+ dp[ix++] = 0;
+
+ /* Strip off any leading zeroes */
+ s_mp_clamp(mp);
+
+} /* end s_mp_rshd() */
+
+/* }}} */
+
+/* {{{ s_mp_div_2(mp) */
+
+/* Divide by two -- take advantage of radix properties to do it fast */
+void s_mp_div_2(mp_int *mp)
+{
+ s_mp_div_2d(mp, 1);
+
+} /* end s_mp_div_2() */
+
+/* }}} */
+
+/* {{{ s_mp_mul_2(mp) */
+
+mp_err s_mp_mul_2(mp_int *mp)
+{
+ int ix;
+ mp_digit kin = 0, kout, *dp = DIGITS(mp);
+ mp_err res;
+
+ /* Shift digits leftward by 1 bit */
+ for(ix = 0; ix < USED(mp); ix++) {
+ kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1;
+ dp[ix] = (dp[ix] << 1) | kin;
+
+ kin = kout;
+ }
+
+ /* Deal with rollover from last digit */
+ if(kin) {
+ if(ix >= ALLOC(mp)) {
+ if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
+ return res;
+ dp = DIGITS(mp);
+ }
+
+ dp[ix] = kin;
+ USED(mp) += 1;
+ }
+
+ return MP_OKAY;
+
+} /* end s_mp_mul_2() */
+
+/* }}} */
+
+/* {{{ s_mp_mod_2d(mp, d) */
+
+/*
+ Remainder the integer by 2^d, where d is a number of bits. This
+ amounts to a bitwise AND of the value, and does not require the full
+ division code
+ */
+void s_mp_mod_2d(mp_int *mp, mp_digit d)
+{
+ unsigned int ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
+ unsigned int ix;
+ mp_digit dmask, *dp = DIGITS(mp);
+
+ if(ndig >= USED(mp))
+ return;
+
+ /* Flush all the bits above 2^d in its digit */
+ dmask = (1 << nbit) - 1;
+ dp[ndig] &= dmask;
+
+ /* Flush all digits above the one with 2^d in it */
+ for(ix = ndig + 1; ix < USED(mp); ix++)
+ dp[ix] = 0;
+
+ s_mp_clamp(mp);
+
+} /* end s_mp_mod_2d() */
+
+/* }}} */
+
+/* {{{ s_mp_mul_2d(mp, d) */
+
+/*
+ Multiply by the integer 2^d, where d is a number of bits. This
+ amounts to a bitwise shift of the value, and does not require the
+ full multiplication code.
+ */
+mp_err s_mp_mul_2d(mp_int *mp, mp_digit d)
+{
+ mp_err res;
+ mp_digit save, next, mask, *dp;
+ mp_size used;
+ int ix;
+
+ if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
+ return res;
+
+ dp = DIGITS(mp); used = USED(mp);
+ d %= DIGIT_BIT;
+
+ mask = (1 << d) - 1;
+
+ /* If the shift requires another digit, make sure we've got one to
+ work with */
+ if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) {
+ if((res = s_mp_grow(mp, used + 1)) != MP_OKAY)
+ return res;
+ dp = DIGITS(mp);
+ }
+
+ /* Do the shifting... */
+ save = 0;
+ for(ix = 0; ix < used; ix++) {
+ next = (dp[ix] >> (DIGIT_BIT - d)) & mask;
+ dp[ix] = (dp[ix] << d) | save;
+ save = next;
+ }
+
+ /* If, at this point, we have a nonzero carryout into the next
+ digit, we'll increase the size by one digit, and store it...
+ */
+ if(save) {
+ dp[used] = save;
+ USED(mp) += 1;
+ }
+
+ s_mp_clamp(mp);
+ return MP_OKAY;
+
+} /* end s_mp_mul_2d() */
+
+/* }}} */
+
+/* {{{ s_mp_div_2d(mp, d) */
+
+/*
+ Divide the integer by 2^d, where d is a number of bits. This
+ amounts to a bitwise shift of the value, and does not require the
+ full division code (used in Barrett reduction, see below)
+ */
+void s_mp_div_2d(mp_int *mp, mp_digit d)
+{
+ int ix;
+ mp_digit save, next, mask, *dp = DIGITS(mp);
+
+ s_mp_rshd(mp, d / DIGIT_BIT);
+ d %= DIGIT_BIT;
+
+ mask = (1 << d) - 1;
+
+ save = 0;
+ for(ix = USED(mp) - 1; ix >= 0; ix--) {
+ next = dp[ix] & mask;
+ dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d));
+ save = next;
+ }
+
+ s_mp_clamp(mp);
+
+} /* end s_mp_div_2d() */
+
+/* }}} */
+
+/* {{{ s_mp_norm(a, b) */
+
+/*
+ s_mp_norm(a, b)
+
+ Normalize a and b for division, where b is the divisor. In order
+ that we might make good guesses for quotient digits, we want the
+ leading digit of b to be at least half the radix, which we
+ accomplish by multiplying a and b by a constant. This constant is
+ returned (so that it can be divided back out of the remainder at the
+ end of the division process).
+
+ We multiply by the smallest power of 2 that gives us a leading digit
+ at least half the radix. By choosing a power of 2, we simplify the
+ multiplication and division steps to simple shifts.
+ */
+mp_digit s_mp_norm(mp_int *a, mp_int *b)
+{
+ mp_digit t, d = 0;
+
+ t = DIGIT(b, USED(b) - 1);
+ while(t < (RADIX / 2)) {
+ t <<= 1;
+ ++d;
+ }
+
+ if(d != 0) {
+ s_mp_mul_2d(a, d);
+ s_mp_mul_2d(b, d);
+ }
+
+ return d;
+
+} /* end s_mp_norm() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Primitive digit arithmetic */
+
+/* {{{ s_mp_add_d(mp, d) */
+
+/* Add d to |mp| in place */
+mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */
+{
+ mp_word w, k = 0;
+ mp_size ix = 1, used = USED(mp);
+ mp_digit *dp = DIGITS(mp);
+
+ w = dp[0] + d;
+ dp[0] = ACCUM(w);
+ k = CARRYOUT(w);
+
+ while(ix < used && k) {
+ w = dp[ix] + k;
+ dp[ix] = ACCUM(w);
+ k = CARRYOUT(w);
+ ++ix;
+ }
+
+ if(k != 0) {
+ mp_err res;
+
+ if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
+ return res;
+
+ DIGIT(mp, ix) = k;
+ }
+
+ return MP_OKAY;
+
+} /* end s_mp_add_d() */
+
+/* }}} */
+
+/* {{{ s_mp_sub_d(mp, d) */
+
+/* Subtract d from |mp| in place, assumes |mp| > d */
+mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */
+{
+ mp_word w, b = 0;
+ mp_size ix = 1, used = USED(mp);
+ mp_digit *dp = DIGITS(mp);
+
+ /* Compute initial subtraction */
+ w = (RADIX + dp[0]) - d;
+ b = CARRYOUT(w) ? 0 : 1;
+ dp[0] = ACCUM(w);
+
+ /* Propagate borrows leftward */
+ while(b && ix < used) {
+ w = (RADIX + dp[ix]) - b;
+ b = CARRYOUT(w) ? 0 : 1;
+ dp[ix] = ACCUM(w);
+ ++ix;
+ }
+
+ /* Remove leading zeroes */
+ s_mp_clamp(mp);
+
+ /* If we have a borrow out, it's a violation of the input invariant */
+ if(b)
+ return MP_RANGE;
+ else
+ return MP_OKAY;
+
+} /* end s_mp_sub_d() */
+
+/* }}} */
+
+/* {{{ s_mp_mul_d(a, d) */
+
+/* Compute a = a * d, single digit multiplication */
+mp_err s_mp_mul_d(mp_int *a, mp_digit d)
+{
+ mp_word w, k = 0;
+ mp_size ix, max;
+ mp_err res;
+ mp_digit *dp = DIGITS(a);
+
+ /*
+ Single-digit multiplication will increase the precision of the
+ output by at most one digit. However, we can detect when this
+ will happen -- if the high-order digit of a, times d, gives a
+ two-digit result, then the precision of the result will increase;
+ otherwise it won't. We use this fact to avoid calling s_mp_pad()
+ unless absolutely necessary.
+ */
+ max = USED(a);
+ w = dp[max - 1] * d;
+ if(CARRYOUT(w) != 0) {
+ if((res = s_mp_pad(a, max + 1)) != MP_OKAY)
+ return res;
+ dp = DIGITS(a);
+ }
+
+ for(ix = 0; ix < max; ix++) {
+ w = (dp[ix] * d) + k;
+ dp[ix] = ACCUM(w);
+ k = CARRYOUT(w);
+ }
+
+ /* If there is a precision increase, take care of it here; the above
+ test guarantees we have enough storage to do this safely.
+ */
+ if(k) {
+ dp[max] = k;
+ USED(a) = max + 1;
+ }
+
+ s_mp_clamp(a);
+
+ return MP_OKAY;
+
+} /* end s_mp_mul_d() */
+
+/* }}} */
+
+/* {{{ s_mp_div_d(mp, d, r) */
+
+/*
+ s_mp_div_d(mp, d, r)
+
+ Compute the quotient mp = mp / d and remainder r = mp mod d, for a
+ single digit d. If r is null, the remainder will be discarded.
+ */
+
+mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
+{
+ mp_word w = 0, t;
+ mp_int quot;
+ mp_err res;
+ mp_digit *dp = DIGITS(mp), *qp;
+ int ix;
+
+ if(d == 0)
+ return MP_RANGE;
+
+ /* Make room for the quotient */
+ if((res = mp_init_size(&quot, USED(mp))) != MP_OKAY)
+ return res;
+
+ USED(&quot) = USED(mp); /* so clamping will work below */
+ qp = DIGITS(&quot);
+
+ /* Divide without subtraction */
+ for(ix = USED(mp) - 1; ix >= 0; ix--) {
+ w = (w << DIGIT_BIT) | dp[ix];
+
+ if(w >= d) {
+ t = w / d;
+ w = w % d;
+ } else {
+ t = 0;
+ }
+
+ qp[ix] = t;
+ }
+
+ /* Deliver the remainder, if desired */
+ if(r)
+ *r = w;
+
+ s_mp_clamp(&quot);
+ mp_exch(&quot, mp);
+ mp_clear(&quot);
+
+ return MP_OKAY;
+
+} /* end s_mp_div_d() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Primitive full arithmetic */
+
+/* {{{ s_mp_add(a, b) */
+
+/* Compute a = |a| + |b| */
+mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */
+{
+ mp_word w = 0;
+ mp_digit *pa, *pb;
+ mp_size ix, used = USED(b);
+ mp_err res;
+
+ /* Make sure a has enough precision for the output value */
+ if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY)
+ return res;
+
+ /*
+ Add up all digits up to the precision of b. If b had initially
+ the same precision as a, or greater, we took care of it by the
+ padding step above, so there is no problem. If b had initially
+ less precision, we'll have to make sure the carry out is duly
+ propagated upward among the higher-order digits of the sum.
+ */
+ pa = DIGITS(a);
+ pb = DIGITS(b);
+ for(ix = 0; ix < used; ++ix) {
+ w += *pa + *pb++;
+ *pa++ = ACCUM(w);
+ w = CARRYOUT(w);
+ }
+
+ /* If we run out of 'b' digits before we're actually done, make
+ sure the carries get propagated upward...
+ */
+ used = USED(a);
+ while(w && ix < used) {
+ w += *pa;
+ *pa++ = ACCUM(w);
+ w = CARRYOUT(w);
+ ++ix;
+ }
+
+ /* If there's an overall carry out, increase precision and include
+ it. We could have done this initially, but why touch the memory
+ allocator unless we're sure we have to?
+ */
+ if(w) {
+ if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
+ return res;
+
+ DIGIT(a, ix) = w; /* pa may not be valid after s_mp_pad() call */
+ }
+
+ return MP_OKAY;
+
+} /* end s_mp_add() */
+
+/* }}} */
+
+/* {{{ s_mp_sub(a, b) */
+
+/* Compute a = |a| - |b|, assumes |a| >= |b| */
+mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */
+{
+ mp_word w = 0;
+ mp_digit *pa, *pb;
+ mp_size ix, used = USED(b);
+
+ /*
+ Subtract and propagate borrow. Up to the precision of b, this
+ accounts for the digits of b; after that, we just make sure the
+ carries get to the right place. This saves having to pad b out to
+ the precision of a just to make the loops work right...
+ */
+ pa = DIGITS(a);
+ pb = DIGITS(b);
+
+ for(ix = 0; ix < used; ++ix) {
+ w = (RADIX + *pa) - w - *pb++;
+ *pa++ = ACCUM(w);
+ w = CARRYOUT(w) ? 0 : 1;
+ }
+
+ used = USED(a);
+ while(ix < used) {
+ w = RADIX + *pa - w;
+ *pa++ = ACCUM(w);
+ w = CARRYOUT(w) ? 0 : 1;
+ ++ix;
+ }
+
+ /* Clobber any leading zeroes we created */
+ s_mp_clamp(a);
+
+ /*
+ If there was a borrow out, then |b| > |a| in violation
+ of our input invariant. We've already done the work,
+ but we'll at least complain about it...
+ */
+ if(w)
+ return MP_RANGE;
+ else
+ return MP_OKAY;
+
+} /* end s_mp_sub() */
+
+/* }}} */
+
+mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
+{
+ mp_int q;
+ mp_err res;
+ mp_size um = USED(m);
+
+ if((res = mp_init_copy(&q, x)) != MP_OKAY)
+ return res;
+
+ s_mp_rshd(&q, um - 1); /* q1 = x / b^(k-1) */
+ s_mp_mul(&q, mu); /* q2 = q1 * mu */
+ s_mp_rshd(&q, um + 1); /* q3 = q2 / b^(k+1) */
+
+ /* x = x mod b^(k+1), quick (no division) */
+ s_mp_mod_2d(x, (mp_digit)(DIGIT_BIT * (um + 1)));
+
+ /* q = q * m mod b^(k+1), quick (no division), uses the short multiplier */
+#ifndef SHRT_MUL
+ s_mp_mul(&q, m);
+ s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1)));
+#else
+ s_mp_mul_dig(&q, m, um + 1);
+#endif
+
+ /* x = x - q */
+ if((res = mp_sub(x, &q, x)) != MP_OKAY)
+ goto CLEANUP;
+
+ /* If x < 0, add b^(k+1) to it */
+ if(mp_cmp_z(x) < 0) {
+ mp_set(&q, 1);
+ if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY)
+ goto CLEANUP;
+ if((res = mp_add(x, &q, x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ /* Back off if it's too big */
+ while(mp_cmp(x, m) >= 0) {
+ if((res = s_mp_sub(x, m)) != MP_OKAY)
+ break;
+ }
+
+ CLEANUP:
+ mp_clear(&q);
+
+ return res;
+
+} /* end s_mp_reduce() */
+
+
+
+/* {{{ s_mp_mul(a, b) */
+
+/* Compute a = |a| * |b| */
+mp_err s_mp_mul(mp_int *a, mp_int *b)
+{
+ mp_word w, k = 0;
+ mp_int tmp;
+ mp_err res;
+ mp_size ix, jx, ua = USED(a), ub = USED(b);
+ mp_digit *pa, *pb, *pt, *pbt;
+
+ if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY)
+ return res;
+
+ /* This has the effect of left-padding with zeroes... */
+ USED(&tmp) = ua + ub;
+
+ /* We're going to need the base value each iteration */
+ pbt = DIGITS(&tmp);
+
+ /* Outer loop: Digits of b */
+
+ pb = DIGITS(b);
+ for(ix = 0; ix < ub; ++ix, ++pb) {
+ if(*pb == 0)
+ continue;
+
+ /* Inner product: Digits of a */
+ pa = DIGITS(a);
+ for(jx = 0; jx < ua; ++jx, ++pa) {
+ pt = pbt + ix + jx;
+ w = *pb * *pa + k + *pt;
+ *pt = ACCUM(w);
+ k = CARRYOUT(w);
+ }
+
+ pbt[ix + jx] = k;
+ k = 0;
+ }
+
+ s_mp_clamp(&tmp);
+ s_mp_exch(&tmp, a);
+
+ mp_clear(&tmp);
+
+ return MP_OKAY;
+
+} /* end s_mp_mul() */
+
+/* }}} */
+
+/* {{{ s_mp_kmul(a, b, out, len) */
+
+#if 0
+void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
+{
+ mp_word w, k = 0;
+ mp_size ix, jx;
+ mp_digit *pa, *pt;
+
+ for(ix = 0; ix < len; ++ix, ++b) {
+ if(*b == 0)
+ continue;
+
+ pa = a;
+ for(jx = 0; jx < len; ++jx, ++pa) {
+ pt = out + ix + jx;
+ w = *b * *pa + k + *pt;
+ *pt = ACCUM(w);
+ k = CARRYOUT(w);
+ }
+
+ out[ix + jx] = k;
+ k = 0;
+ }
+
+} /* end s_mp_kmul() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_sqr(a) */
+
+/*
+ Computes the square of a, in place. This can be done more
+ efficiently than a general multiplication, because many of the
+ computation steps are redundant when squaring. The inner product
+ step is a bit more complicated, but we save a fair number of
+ iterations of the multiplication loop.
+ */
+#if MP_SQUARE
+mp_err s_mp_sqr(mp_int *a)
+{
+ mp_word w, k = 0;
+ mp_int tmp;
+ mp_err res;
+ mp_size ix, jx, kx, used = USED(a);
+ mp_digit *pa1, *pa2, *pt, *pbt;
+
+ if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY)
+ return res;
+
+ /* Left-pad with zeroes */
+ USED(&tmp) = 2 * used;
+
+ /* We need the base value each time through the loop */
+ pbt = DIGITS(&tmp);
+
+ pa1 = DIGITS(a);
+ for(ix = 0; ix < used; ++ix, ++pa1) {
+ if(*pa1 == 0)
+ continue;
+
+ w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1);
+
+ pbt[ix + ix] = ACCUM(w);
+ k = CARRYOUT(w);
+
+ /*
+ The inner product is computed as:
+
+ (C, S) = t[i,j] + 2 a[i] a[j] + C
+
+ This can overflow what can be represented in an mp_word, and
+ since C arithmetic does not provide any way to check for
+ overflow, we have to check explicitly for overflow conditions
+ before they happen.
+ */
+ for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
+ mp_word u = 0, v;
+
+ /* Store this in a temporary to avoid indirections later */
+ pt = pbt + ix + jx;
+
+ /* Compute the multiplicative step */
+ w = *pa1 * *pa2;
+
+ /* If w is more than half MP_WORD_MAX, the doubling will
+ overflow, and we need to record a carry out into the next
+ word */
+ u = (w >> (MP_WORD_BIT - 1)) & 1;
+
+ /* Double what we've got, overflow will be ignored as defined
+ for C arithmetic (we've already noted if it is to occur)
+ */
+ w *= 2;
+
+ /* Compute the additive step */
+ v = *pt + k;
+
+ /* If we do not already have an overflow carry, check to see
+ if the addition will cause one, and set the carry out if so
+ */
+ u |= ((MP_WORD_MAX - v) < w);
+
+ /* Add in the rest, again ignoring overflow */
+ w += v;
+
+ /* Set the i,j digit of the output */
+ *pt = ACCUM(w);
+
+ /* Save carry information for the next iteration of the loop.
+ This is why k must be an mp_word, instead of an mp_digit */
+ k = CARRYOUT(w) | (u << DIGIT_BIT);
+
+ } /* for(jx ...) */
+
+ /* Set the last digit in the cycle and reset the carry */
+ k = DIGIT(&tmp, ix + jx) + k;
+ pbt[ix + jx] = ACCUM(k);
+ k = CARRYOUT(k);
+
+ /* If we are carrying out, propagate the carry to the next digit
+ in the output. This may cascade, so we have to be somewhat
+ circumspect -- but we will have enough precision in the output
+ that we won't overflow
+ */
+ kx = 1;
+ while(k) {
+ k = pbt[ix + jx + kx] + 1;
+ pbt[ix + jx + kx] = ACCUM(k);
+ k = CARRYOUT(k);
+ ++kx;
+ }
+ } /* for(ix ...) */
+
+ s_mp_clamp(&tmp);
+ s_mp_exch(&tmp, a);
+
+ mp_clear(&tmp);
+
+ return MP_OKAY;
+
+} /* end s_mp_sqr() */
+#endif
+
+/* }}} */
+
+/* {{{ s_mp_div(a, b) */
+
+/*
+ s_mp_div(a, b)
+
+ Compute a = a / b and b = a mod b. Assumes b > a.
+ */
+
+mp_err s_mp_div(mp_int *a, mp_int *b)
+{
+ mp_int quot, rem, t;
+ mp_word q;
+ mp_err res;
+ mp_digit d;
+ int ix;
+
+ if(mp_cmp_z(b) == 0)
+ return MP_RANGE;
+
+ /* Shortcut if b is power of two */
+ if((ix = s_mp_ispow2(b)) >= 0) {
+ mp_copy(a, b); /* need this for remainder */
+ s_mp_div_2d(a, (mp_digit)ix);
+ s_mp_mod_2d(b, (mp_digit)ix);
+
+ return MP_OKAY;
+ }
+
+ /* Allocate space to store the quotient */
+ if((res = mp_init_size(&quot, USED(a))) != MP_OKAY)
+ return res;
+
+ /* A working temporary for division */
+ if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
+ goto T;
+
+ /* Allocate space for the remainder */
+ if((res = mp_init_size(&rem, USED(a))) != MP_OKAY)
+ goto REM;
+
+ /* Normalize to optimize guessing */
+ d = s_mp_norm(a, b);
+
+ /* Perform the division itself...woo! */
+ ix = USED(a) - 1;
+
+ while(ix >= 0) {
+ /* Find a partial substring of a which is at least b */
+ while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
+ if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
+ goto CLEANUP;
+
+ if((res = s_mp_lshd(&quot, 1)) != MP_OKAY)
+ goto CLEANUP;
+
+ DIGIT(&rem, 0) = DIGIT(a, ix);
+ s_mp_clamp(&rem);
+ --ix;
+ }
+
+ /* If we didn't find one, we're finished dividing */
+ if(s_mp_cmp(&rem, b) < 0)
+ break;
+
+ /* Compute a guess for the next quotient digit */
+ q = DIGIT(&rem, USED(&rem) - 1);
+ if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1)
+ q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);
+
+ q /= DIGIT(b, USED(b) - 1);
+
+ /* The guess can be as much as RADIX + 1 */
+ if(q >= RADIX)
+ q = RADIX - 1;
+
+ /* See what that multiplies out to */
+ mp_copy(b, &t);
+ if((res = s_mp_mul_d(&t, q)) != MP_OKAY)
+ goto CLEANUP;
+
+ /*
+ If it's too big, back it off. We should not have to do this
+ more than once, or, in rare cases, twice. Knuth describes a
+ method by which this could be reduced to a maximum of once, but
+ I didn't implement that here.
+ */
+ while(s_mp_cmp(&t, &rem) > 0) {
+ --q;
+ s_mp_sub(&t, b);
+ }
+
+ /* At this point, q should be the right next digit */
+ if((res = s_mp_sub(&rem, &t)) != MP_OKAY)
+ goto CLEANUP;
+
+ /*
+ Include the digit in the quotient. We allocated enough memory
+ for any quotient we could ever possibly get, so we should not
+ have to check for failures here
+ */
+ DIGIT(&quot, 0) = q;
+ }
+
+ /* Denormalize remainder */
+ if(d != 0)
+ s_mp_div_2d(&rem, d);
+
+ s_mp_clamp(&quot);
+ s_mp_clamp(&rem);
+
+ /* Copy quotient back to output */
+ s_mp_exch(&quot, a);
+
+ /* Copy remainder back to output */
+ s_mp_exch(&rem, b);
+
+CLEANUP:
+ mp_clear(&rem);
+REM:
+ mp_clear(&t);
+T:
+ mp_clear(&quot);
+
+ return res;
+
+} /* end s_mp_div() */
+
+/* }}} */
+
+/* {{{ s_mp_2expt(a, k) */
+
+mp_err s_mp_2expt(mp_int *a, mp_digit k)
+{
+ mp_err res;
+ mp_size dig, bit;
+
+ dig = k / DIGIT_BIT;
+ bit = k % DIGIT_BIT;
+
+ mp_zero(a);
+ if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
+ return res;
+
+ DIGIT(a, dig) |= (1 << bit);
+
+ return MP_OKAY;
+
+} /* end s_mp_2expt() */
+
+/* }}} */
+
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Primitive comparisons */
+
+/* {{{ s_mp_cmp(a, b) */
+
+/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */
+int s_mp_cmp(mp_int *a, mp_int *b)
+{
+ mp_size ua = USED(a), ub = USED(b);
+
+ if(ua > ub)
+ return MP_GT;
+ else if(ua < ub)
+ return MP_LT;
+ else {
+ int ix = ua - 1;
+ mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix;
+
+ while(ix >= 0) {
+ if(*ap > *bp)
+ return MP_GT;
+ else if(*ap < *bp)
+ return MP_LT;
+
+ --ap; --bp; --ix;
+ }
+
+ return MP_EQ;
+ }
+
+} /* end s_mp_cmp() */
+
+/* }}} */
+
+/* {{{ s_mp_cmp_d(a, d) */
+
+/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */
+int s_mp_cmp_d(mp_int *a, mp_digit d)
+{
+ mp_size ua = USED(a);
+ mp_digit *ap = DIGITS(a);
+
+ if(ua > 1)
+ return MP_GT;
+
+ if(*ap < d)
+ return MP_LT;
+ else if(*ap > d)
+ return MP_GT;
+ else
+ return MP_EQ;
+
+} /* end s_mp_cmp_d() */
+
+/* }}} */
+
+/* {{{ s_mp_ispow2(v) */
+
+/*
+ Returns -1 if the value is not a power of two; otherwise, it returns
+ k such that v = 2^k, i.e. lg(v).
+ */
+int s_mp_ispow2(mp_int *v)
+{
+ mp_digit d, *dp;
+ mp_size uv = USED(v);
+ int extra = 0, ix;
+
+ d = DIGIT(v, uv - 1); /* most significant digit of v */
+
+ while(d && ((d & 1) == 0)) {
+ d >>= 1;
+ ++extra;
+ }
+
+ if(d == 1) {
+ ix = uv - 2;
+ dp = DIGITS(v) + ix;
+
+ while(ix >= 0) {
+ if(*dp)
+ return -1; /* not a power of two */
+
+ --dp; --ix;
+ }
+
+ return ((uv - 1) * DIGIT_BIT) + extra;
+ }
+
+ return -1;
+
+} /* end s_mp_ispow2() */
+
+/* }}} */
+
+/* {{{ s_mp_ispow2d(d) */
+
+int s_mp_ispow2d(mp_digit d)
+{
+ int pow = 0;
+
+ while((d & 1) == 0) {
+ ++pow; d >>= 1;
+ }
+
+ if(d == 1)
+ return pow;
+
+ return -1;
+
+} /* end s_mp_ispow2d() */
+
+/* }}} */
+
+/* }}} */
+
+/* {{{ Primitive I/O helpers */
+
+/* {{{ s_mp_tovalue(ch, r) */
+
+/*
+ Convert the given character to its digit value, in the given radix.
+ If the given character is not understood in the given radix, -1 is
+ returned. Otherwise the digit's numeric value is returned.
+
+ The results will be odd if you use a radix < 2 or > 62, you are
+ expected to know what you're up to.
+ */
+int s_mp_tovalue(char ch, int r)
+{
+ int val, xch;
+
+ if(r > 36)
+ xch = ch;
+ else
+ xch = toupper(ch);
+
+ if(isdigit(xch))
+ val = xch - '0';
+ else if(isupper(xch))
+ val = xch - 'A' + 10;
+ else if(islower(xch))
+ val = xch - 'a' + 36;
+ else if(xch == '+')
+ val = 62;
+ else if(xch == '/')
+ val = 63;
+ else
+ return -1;
+
+ if(val < 0 || val >= r)
+ return -1;
+
+ return val;
+
+} /* end s_mp_tovalue() */
+
+/* }}} */
+
+/* {{{ s_mp_todigit(val, r, low) */
+
+/*
+ Convert val to a radix-r digit, if possible. If val is out of range
+ for r, returns zero. Otherwise, returns an ASCII character denoting
+ the value in the given radix.
+
+ The results may be odd if you use a radix < 2 or > 64, you are
+ expected to know what you're doing.
+ */
+
+char s_mp_todigit(int val, int r, int low)
+{
+ char ch;
+
+ if(val < 0 || val >= r)
+ return 0;
+
+ ch = s_dmap_1[val];
+
+ if(r <= 36 && low)
+ ch = tolower(ch);
+
+ return ch;
+
+} /* end s_mp_todigit() */
+
+/* }}} */
+
+/* {{{ s_mp_outlen(bits, radix) */
+
+/*
+ Return an estimate for how long a string is needed to hold a radix
+ r representation of a number with 'bits' significant bits.
+
+ Does not include space for a sign or a NUL terminator.
+ */
+int s_mp_outlen(int bits, int r)
+{
+ return (int)((double)bits * LOG_V_2(r));
+
+} /* end s_mp_outlen() */
+
+/* }}} */
+
+/* }}} */
+
+/*------------------------------------------------------------------------*/
+/* HERE THERE BE DRAGONS */
+/* crc==4242132123, version==2, Sat Feb 02 06:43:52 2002 */
diff --git a/libtommath/mtest/mpi.h b/libtommath/mtest/mpi.h
new file mode 100644
index 0000000..b7a8cb5
--- /dev/null
+++ b/libtommath/mtest/mpi.h
@@ -0,0 +1,227 @@
+/*
+ mpi.h
+
+ by Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
+
+ Arbitrary precision integer arithmetic library
+
+ $Id: mpi.h,v 1.1.1.1 2005/01/19 22:41:29 kennykb Exp $
+ */
+
+#ifndef _H_MPI_
+#define _H_MPI_
+
+#include "mpi-config.h"
+
+#define MP_LT -1
+#define MP_EQ 0
+#define MP_GT 1
+
+#if MP_DEBUG
+#undef MP_IOFUNC
+#define MP_IOFUNC 1
+#endif
+
+#if MP_IOFUNC
+#include <stdio.h>
+#include <ctype.h>
+#endif
+
+#include <limits.h>
+
+#define MP_NEG 1
+#define MP_ZPOS 0
+
+/* Included for compatibility... */
+#define NEG MP_NEG
+#define ZPOS MP_ZPOS
+
+#define MP_OKAY 0 /* no error, all is well */
+#define MP_YES 0 /* yes (boolean result) */
+#define MP_NO -1 /* no (boolean result) */
+#define MP_MEM -2 /* out of memory */
+#define MP_RANGE -3 /* argument out of range */
+#define MP_BADARG -4 /* invalid parameter */
+#define MP_UNDEF -5 /* answer is undefined */
+#define MP_LAST_CODE MP_UNDEF
+
+#include "mpi-types.h"
+
+/* Included for compatibility... */
+#define DIGIT_BIT MP_DIGIT_BIT
+#define DIGIT_MAX MP_DIGIT_MAX
+
+/* Macros for accessing the mp_int internals */
+#define SIGN(MP) ((MP)->sign)
+#define USED(MP) ((MP)->used)
+#define ALLOC(MP) ((MP)->alloc)
+#define DIGITS(MP) ((MP)->dp)
+#define DIGIT(MP,N) (MP)->dp[(N)]
+
+#if MP_ARGCHK == 1
+#define ARGCHK(X,Y) {if(!(X)){return (Y);}}
+#elif MP_ARGCHK == 2
+#include <assert.h>
+#define ARGCHK(X,Y) assert(X)
+#else
+#define ARGCHK(X,Y) /* */
+#endif
+
+/* This defines the maximum I/O base (minimum is 2) */
+#define MAX_RADIX 64
+
+typedef struct {
+ mp_sign sign; /* sign of this quantity */
+ mp_size alloc; /* how many digits allocated */
+ mp_size used; /* how many digits used */
+ mp_digit *dp; /* the digits themselves */
+} mp_int;
+
+/*------------------------------------------------------------------------*/
+/* Default precision */
+
+unsigned int mp_get_prec(void);
+void mp_set_prec(unsigned int prec);
+
+/*------------------------------------------------------------------------*/
+/* Memory management */
+
+mp_err mp_init(mp_int *mp);
+mp_err mp_init_array(mp_int mp[], int count);
+mp_err mp_init_size(mp_int *mp, mp_size prec);
+mp_err mp_init_copy(mp_int *mp, mp_int *from);
+mp_err mp_copy(mp_int *from, mp_int *to);
+void mp_exch(mp_int *mp1, mp_int *mp2);
+void mp_clear(mp_int *mp);
+void mp_clear_array(mp_int mp[], int count);
+void mp_zero(mp_int *mp);
+void mp_set(mp_int *mp, mp_digit d);
+mp_err mp_set_int(mp_int *mp, long z);
+mp_err mp_shrink(mp_int *a);
+
+
+/*------------------------------------------------------------------------*/
+/* Single digit arithmetic */
+
+mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b);
+mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b);
+mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b);
+mp_err mp_mul_2(mp_int *a, mp_int *c);
+mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r);
+mp_err mp_div_2(mp_int *a, mp_int *c);
+mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c);
+
+/*------------------------------------------------------------------------*/
+/* Sign manipulations */
+
+mp_err mp_abs(mp_int *a, mp_int *b);
+mp_err mp_neg(mp_int *a, mp_int *b);
+
+/*------------------------------------------------------------------------*/
+/* Full arithmetic */
+
+mp_err mp_add(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c);
+#if MP_SQUARE
+mp_err mp_sqr(mp_int *a, mp_int *b);
+#else
+#define mp_sqr(a, b) mp_mul(a, a, b)
+#endif
+mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r);
+mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r);
+mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_2expt(mp_int *a, mp_digit k);
+mp_err mp_sqrt(mp_int *a, mp_int *b);
+
+/*------------------------------------------------------------------------*/
+/* Modular arithmetic */
+
+#if MP_MODARITH
+mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c);
+mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c);
+mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
+mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
+mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
+#if MP_SQUARE
+mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c);
+#else
+#define mp_sqrmod(a, m, c) mp_mulmod(a, a, m, c)
+#endif
+mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
+mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c);
+#endif /* MP_MODARITH */
+
+/*------------------------------------------------------------------------*/
+/* Comparisons */
+
+int mp_cmp_z(mp_int *a);
+int mp_cmp_d(mp_int *a, mp_digit d);
+int mp_cmp(mp_int *a, mp_int *b);
+int mp_cmp_mag(mp_int *a, mp_int *b);
+int mp_cmp_int(mp_int *a, long z);
+int mp_isodd(mp_int *a);
+int mp_iseven(mp_int *a);
+
+/*------------------------------------------------------------------------*/
+/* Number theoretic */
+
+#if MP_NUMTH
+mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y);
+mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c);
+#endif /* end MP_NUMTH */
+
+/*------------------------------------------------------------------------*/
+/* Input and output */
+
+#if MP_IOFUNC
+void mp_print(mp_int *mp, FILE *ofp);
+#endif /* end MP_IOFUNC */
+
+/*------------------------------------------------------------------------*/
+/* Base conversion */
+
+#define BITS 1
+#define BYTES CHAR_BIT
+
+mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len);
+int mp_signed_bin_size(mp_int *mp);
+mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str);
+
+mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len);
+int mp_unsigned_bin_size(mp_int *mp);
+mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str);
+
+int mp_count_bits(mp_int *mp);
+
+#if MP_COMPAT_MACROS
+#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
+#define mp_raw_size(mp) mp_signed_bin_size(mp)
+#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
+#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
+#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
+#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
+#endif
+
+mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix);
+int mp_radix_size(mp_int *mp, int radix);
+int mp_value_radix_size(int num, int qty, int radix);
+mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix);
+
+int mp_char2value(char ch, int r);
+
+#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
+#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
+#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
+#define mp_tohex(M, S) mp_toradix((M), (S), 16)
+
+/*------------------------------------------------------------------------*/
+/* Error strings */
+
+const char *mp_strerror(mp_err ec);
+
+#endif /* end _H_MPI_ */
diff --git a/libtommath/mtest/mtest.c b/libtommath/mtest/mtest.c
new file mode 100644
index 0000000..d46f456
--- /dev/null
+++ b/libtommath/mtest/mtest.c
@@ -0,0 +1,304 @@
+/* makes a bignum test harness with NUM tests per operation
+ *
+ * the output is made in the following format [one parameter per line]
+
+operation
+operand1
+operand2
+[... operandN]
+result1
+result2
+[... resultN]
+
+So for example "a * b mod n" would be
+
+mulmod
+a
+b
+n
+a*b mod n
+
+e.g. if a=3, b=4 n=11 then
+
+mulmod
+3
+4
+11
+1
+
+ */
+
+#ifdef MP_8BIT
+#define THE_MASK 127
+#else
+#define THE_MASK 32767
+#endif
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <time.h>
+#include "mpi.c"
+
+FILE *rng;
+
+void rand_num(mp_int *a)
+{
+ int n, size;
+ unsigned char buf[2048];
+
+ size = 1 + ((fgetc(rng)<<8) + fgetc(rng)) % 101;
+ buf[0] = (fgetc(rng)&1)?1:0;
+ fread(buf+1, 1, size, rng);
+ while (buf[1] == 0) buf[1] = fgetc(rng);
+ mp_read_raw(a, buf, 1+size);
+}
+
+void rand_num2(mp_int *a)
+{
+ int n, size;
+ unsigned char buf[2048];
+
+ size = 10 + ((fgetc(rng)<<8) + fgetc(rng)) % 101;
+ buf[0] = (fgetc(rng)&1)?1:0;
+ fread(buf+1, 1, size, rng);
+ while (buf[1] == 0) buf[1] = fgetc(rng);
+ mp_read_raw(a, buf, 1+size);
+}
+
+#define mp_to64(a, b) mp_toradix(a, b, 64)
+
+int main(void)
+{
+ int n, tmp;
+ mp_int a, b, c, d, e;
+ clock_t t1;
+ char buf[4096];
+
+ mp_init(&a);
+ mp_init(&b);
+ mp_init(&c);
+ mp_init(&d);
+ mp_init(&e);
+
+
+ /* initial (2^n - 1)^2 testing, makes sure the comba multiplier works [it has the new carry code] */
+/*
+ mp_set(&a, 1);
+ for (n = 1; n < 8192; n++) {
+ mp_mul(&a, &a, &c);
+ printf("mul\n");
+ mp_to64(&a, buf);
+ printf("%s\n%s\n", buf, buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+
+ mp_add_d(&a, 1, &a);
+ mp_mul_2(&a, &a);
+ mp_sub_d(&a, 1, &a);
+ }
+*/
+
+ rng = fopen("/dev/urandom", "rb");
+ if (rng == NULL) {
+ rng = fopen("/dev/random", "rb");
+ if (rng == NULL) {
+ fprintf(stderr, "\nWarning: stdin used as random source\n\n");
+ rng = stdin;
+ }
+ }
+
+ t1 = clock();
+ for (;;) {
+#if 0
+ if (clock() - t1 > CLOCKS_PER_SEC) {
+ sleep(2);
+ t1 = clock();
+ }
+#endif
+ n = fgetc(rng) % 15;
+
+ if (n == 0) {
+ /* add tests */
+ rand_num(&a);
+ rand_num(&b);
+ mp_add(&a, &b, &c);
+ printf("add\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ } else if (n == 1) {
+ /* sub tests */
+ rand_num(&a);
+ rand_num(&b);
+ mp_sub(&a, &b, &c);
+ printf("sub\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ } else if (n == 2) {
+ /* mul tests */
+ rand_num(&a);
+ rand_num(&b);
+ mp_mul(&a, &b, &c);
+ printf("mul\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ } else if (n == 3) {
+ /* div tests */
+ rand_num(&a);
+ rand_num(&b);
+ mp_div(&a, &b, &c, &d);
+ printf("div\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ mp_to64(&d, buf);
+ printf("%s\n", buf);
+ } else if (n == 4) {
+ /* sqr tests */
+ rand_num(&a);
+ mp_sqr(&a, &b);
+ printf("sqr\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ } else if (n == 5) {
+ /* mul_2d test */
+ rand_num(&a);
+ mp_copy(&a, &b);
+ n = fgetc(rng) & 63;
+ mp_mul_2d(&b, n, &b);
+ mp_to64(&a, buf);
+ printf("mul2d\n");
+ printf("%s\n", buf);
+ printf("%d\n", n);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ } else if (n == 6) {
+ /* div_2d test */
+ rand_num(&a);
+ mp_copy(&a, &b);
+ n = fgetc(rng) & 63;
+ mp_div_2d(&b, n, &b, NULL);
+ mp_to64(&a, buf);
+ printf("div2d\n");
+ printf("%s\n", buf);
+ printf("%d\n", n);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ } else if (n == 7) {
+ /* gcd test */
+ rand_num(&a);
+ rand_num(&b);
+ a.sign = MP_ZPOS;
+ b.sign = MP_ZPOS;
+ mp_gcd(&a, &b, &c);
+ printf("gcd\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ } else if (n == 8) {
+ /* lcm test */
+ rand_num(&a);
+ rand_num(&b);
+ a.sign = MP_ZPOS;
+ b.sign = MP_ZPOS;
+ mp_lcm(&a, &b, &c);
+ printf("lcm\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ } else if (n == 9) {
+ /* exptmod test */
+ rand_num2(&a);
+ rand_num2(&b);
+ rand_num2(&c);
+// if (c.dp[0]&1) mp_add_d(&c, 1, &c);
+ a.sign = b.sign = c.sign = 0;
+ mp_exptmod(&a, &b, &c, &d);
+ printf("expt\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ mp_to64(&d, buf);
+ printf("%s\n", buf);
+ } else if (n == 10) {
+ /* invmod test */
+ rand_num2(&a);
+ rand_num2(&b);
+ b.sign = MP_ZPOS;
+ a.sign = MP_ZPOS;
+ mp_gcd(&a, &b, &c);
+ if (mp_cmp_d(&c, 1) != 0) continue;
+ if (mp_cmp_d(&b, 1) == 0) continue;
+ mp_invmod(&a, &b, &c);
+ printf("invmod\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ mp_to64(&c, buf);
+ printf("%s\n", buf);
+ } else if (n == 11) {
+ rand_num(&a);
+ mp_mul_2(&a, &a);
+ mp_div_2(&a, &b);
+ printf("div2\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ } else if (n == 12) {
+ rand_num2(&a);
+ mp_mul_2(&a, &b);
+ printf("mul2\n");
+ mp_to64(&a, buf);
+ printf("%s\n", buf);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ } else if (n == 13) {
+ rand_num2(&a);
+ tmp = abs(rand()) & THE_MASK;
+ mp_add_d(&a, tmp, &b);
+ printf("add_d\n");
+ mp_to64(&a, buf);
+ printf("%s\n%d\n", buf, tmp);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ } else if (n == 14) {
+ rand_num2(&a);
+ tmp = abs(rand()) & THE_MASK;
+ mp_sub_d(&a, tmp, &b);
+ printf("sub_d\n");
+ mp_to64(&a, buf);
+ printf("%s\n%d\n", buf, tmp);
+ mp_to64(&b, buf);
+ printf("%s\n", buf);
+ }
+ }
+ fclose(rng);
+ return 0;
+}
diff --git a/libtommath/pics/design_process.sxd b/libtommath/pics/design_process.sxd
new file mode 100644
index 0000000..7414dbb
--- /dev/null
+++ b/libtommath/pics/design_process.sxd
Binary files differ
diff --git a/libtommath/pics/design_process.tif b/libtommath/pics/design_process.tif
new file mode 100644
index 0000000..4a0c012
--- /dev/null
+++ b/libtommath/pics/design_process.tif
Binary files differ
diff --git a/libtommath/pics/expt_state.sxd b/libtommath/pics/expt_state.sxd
new file mode 100644
index 0000000..6518404
--- /dev/null
+++ b/libtommath/pics/expt_state.sxd
Binary files differ
diff --git a/libtommath/pics/expt_state.tif b/libtommath/pics/expt_state.tif
new file mode 100644
index 0000000..cb06e8e
--- /dev/null
+++ b/libtommath/pics/expt_state.tif
Binary files differ
diff --git a/libtommath/pics/makefile b/libtommath/pics/makefile
new file mode 100644
index 0000000..3ecb02f
--- /dev/null
+++ b/libtommath/pics/makefile
@@ -0,0 +1,35 @@
+# makes the images... yeah
+
+default: pses
+
+design_process.ps: design_process.tif
+ tiff2ps -s -e design_process.tif > design_process.ps
+
+sliding_window.ps: sliding_window.tif
+ tiff2ps -s -e sliding_window.tif > sliding_window.ps
+
+expt_state.ps: expt_state.tif
+ tiff2ps -s -e expt_state.tif > expt_state.ps
+
+primality.ps: primality.tif
+ tiff2ps -s -e primality.tif > primality.ps
+
+design_process.pdf: design_process.ps
+ epstopdf design_process.ps
+
+sliding_window.pdf: sliding_window.ps
+ epstopdf sliding_window.ps
+
+expt_state.pdf: expt_state.ps
+ epstopdf expt_state.ps
+
+primality.pdf: primality.ps
+ epstopdf primality.ps
+
+
+pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
+pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
+
+clean:
+ rm -rf *.ps *.pdf .xvpics
+ \ No newline at end of file
diff --git a/libtommath/pics/primality.tif b/libtommath/pics/primality.tif
new file mode 100644
index 0000000..76d6be3
--- /dev/null
+++ b/libtommath/pics/primality.tif
Binary files differ
diff --git a/libtommath/pics/radix.sxd b/libtommath/pics/radix.sxd
new file mode 100644
index 0000000..b9eb9a0
--- /dev/null
+++ b/libtommath/pics/radix.sxd
Binary files differ
diff --git a/libtommath/pics/sliding_window.sxd b/libtommath/pics/sliding_window.sxd
new file mode 100644
index 0000000..91e7c0d
--- /dev/null
+++ b/libtommath/pics/sliding_window.sxd
Binary files differ
diff --git a/libtommath/pics/sliding_window.tif b/libtommath/pics/sliding_window.tif
new file mode 100644
index 0000000..bb4cb96
--- /dev/null
+++ b/libtommath/pics/sliding_window.tif
Binary files differ
diff --git a/libtommath/poster.out b/libtommath/poster.out
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/libtommath/poster.out
diff --git a/libtommath/poster.pdf b/libtommath/poster.pdf
new file mode 100644
index 0000000..e0b4f84
--- /dev/null
+++ b/libtommath/poster.pdf
Binary files differ
diff --git a/libtommath/poster.tex b/libtommath/poster.tex
new file mode 100644
index 0000000..e7388f4
--- /dev/null
+++ b/libtommath/poster.tex
@@ -0,0 +1,35 @@
+\documentclass[landscape,11pt]{article}
+\usepackage{amsmath, amssymb}
+\usepackage{hyperref}
+\begin{document}
+\hspace*{-3in}
+\begin{tabular}{llllll}
+$c = a + b$ & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$ & {\tt mp\_mul\_2(\&a, \&b)} & \\
+$c = a - b$ & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
+$c = ab $ & {\tt mp\_mul(\&a, \&b, \&c)} & $c = 2^ba$ & {\tt mp\_mul\_2d(\&a, b, \&c)} \\
+$b = a^2 $ & {\tt mp\_sqr(\&a, \&b)} & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
+$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $ & {\tt mp\_mod\_2d(\&a, b, \&c)} \\
+ && \\
+$a = b $ & {\tt mp\_set\_int(\&a, b)} & $c = a \vee b$ & {\tt mp\_or(\&a, \&b, \&c)} \\
+$b = a $ & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$ & {\tt mp\_and(\&a, \&b, \&c)} \\
+ && $c = a \oplus b$ & {\tt mp\_xor(\&a, \&b, \&c)} \\
+ & \\
+$b = -a $ & {\tt mp\_neg(\&a, \&b)} & $d = a + b \mod c$ & {\tt mp\_addmod(\&a, \&b, \&c, \&d)} \\
+$b = |a| $ & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$ & {\tt mp\_submod(\&a, \&b, \&c, \&d)} \\
+ && $d = ab \mod c$ & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)} \\
+Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$ & {\tt mp\_sqrmod(\&a, \&b, \&c)} \\
+Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$ & {\tt mp\_invmod(\&a, \&b, \&c)} \\
+Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
+Is Odd ? & {\tt mp\_isodd(\&a)} \\
+&\\
+$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
+$buf \leftarrow a$ & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\
+$a \leftarrow buf[0..len-1]$ & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
+&\\
+$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
+$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
+&\\
+Greater Than & MP\_GT & Equal To & MP\_EQ \\
+Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
+\end{tabular}
+\end{document}
diff --git a/libtommath/pre_gen/mpi.c b/libtommath/pre_gen/mpi.c
new file mode 100644
index 0000000..7d832e7
--- /dev/null
+++ b/libtommath/pre_gen/mpi.c
@@ -0,0 +1,8819 @@
+/* Start: bn_error.c */
+#include <tommath.h>
+#ifdef BN_ERROR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+static const struct {
+ int code;
+ char *msg;
+} msgs[] = {
+ { MP_OKAY, "Successful" },
+ { MP_MEM, "Out of heap" },
+ { MP_VAL, "Value out of range" }
+};
+
+/* return a char * string for a given code */
+char *mp_error_to_string(int code)
+{
+ int x;
+
+ /* scan the lookup table for the given message */
+ for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
+ if (msgs[x].code == code) {
+ return msgs[x].msg;
+ }
+ }
+
+ /* generic reply for invalid code */
+ return "Invalid error code";
+}
+
+#endif
+
+/* End: bn_error.c */
+
+/* Start: bn_fast_mp_invmod.c */
+#include <tommath.h>
+#ifdef BN_FAST_MP_INVMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes the modular inverse via binary extended euclidean algorithm,
+ * that is c = 1/a mod b
+ *
+ * Based on slow invmod except this is optimized for the case where b is
+ * odd as per HAC Note 14.64 on pp. 610
+ */
+int
+fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, B, D;
+ int res, neg;
+
+ /* 2. [modified] b must be odd */
+ if (mp_iseven (b) == 1) {
+ return MP_VAL;
+ }
+
+ /* init all our temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x == modulus, y == value to invert */
+ if ((res = mp_copy (b, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* we need y = |a| */
+ if ((res = mp_abs (a, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ mp_set (&D, 1);
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if B is odd then */
+ if (mp_isodd (&B) == 1) {
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* B = B/2 */
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if D is odd then */
+ if (mp_isodd (&D) == 1) {
+ /* D = (D-x)/2 */
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* D = D/2 */
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0) {
+ goto top;
+ }
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* b is now the inverse */
+ neg = a->sign;
+ while (D.sign == MP_NEG) {
+ if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ mp_exch (&D, c);
+ c->sign = neg;
+ res = MP_OKAY;
+
+LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
+ return res;
+}
+#endif
+
+/* End: bn_fast_mp_invmod.c */
+
+/* Start: bn_fast_mp_montgomery_reduce.c */
+#include <tommath.h>
+#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
+ *
+ * This is an optimized implementation of montgomery_reduce
+ * which uses the comba method to quickly calculate the columns of the
+ * reduction.
+ *
+ * Based on Algorithm 14.32 on pp.601 of HAC.
+*/
+int
+fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+{
+ int ix, res, olduse;
+ mp_word W[MP_WARRAY];
+
+ /* get old used count */
+ olduse = x->used;
+
+ /* grow a as required */
+ if (x->alloc < n->used + 1) {
+ if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* first we have to get the digits of the input into
+ * an array of double precision words W[...]
+ */
+ {
+ register mp_word *_W;
+ register mp_digit *tmpx;
+
+ /* alias for the W[] array */
+ _W = W;
+
+ /* alias for the digits of x*/
+ tmpx = x->dp;
+
+ /* copy the digits of a into W[0..a->used-1] */
+ for (ix = 0; ix < x->used; ix++) {
+ *_W++ = *tmpx++;
+ }
+
+ /* zero the high words of W[a->used..m->used*2] */
+ for (; ix < n->used * 2 + 1; ix++) {
+ *_W++ = 0;
+ }
+ }
+
+ /* now we proceed to zero successive digits
+ * from the least significant upwards
+ */
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * m' mod b
+ *
+ * We avoid a double precision multiplication (which isn't required)
+ * by casting the value down to a mp_digit. Note this requires
+ * that W[ix-1] have the carry cleared (see after the inner loop)
+ */
+ register mp_digit mu;
+ mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
+
+ /* a = a + mu * m * b**i
+ *
+ * This is computed in place and on the fly. The multiplication
+ * by b**i is handled by offseting which columns the results
+ * are added to.
+ *
+ * Note the comba method normally doesn't handle carries in the
+ * inner loop In this case we fix the carry from the previous
+ * column since the Montgomery reduction requires digits of the
+ * result (so far) [see above] to work. This is
+ * handled by fixing up one carry after the inner loop. The
+ * carry fixups are done in order so after these loops the
+ * first m->used words of W[] have the carries fixed
+ */
+ {
+ register int iy;
+ register mp_digit *tmpn;
+ register mp_word *_W;
+
+ /* alias for the digits of the modulus */
+ tmpn = n->dp;
+
+ /* Alias for the columns set by an offset of ix */
+ _W = W + ix;
+
+ /* inner loop */
+ for (iy = 0; iy < n->used; iy++) {
+ *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
+ }
+ }
+
+ /* now fix carry for next digit, W[ix+1] */
+ W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+ }
+
+ /* now we have to propagate the carries and
+ * shift the words downward [all those least
+ * significant digits we zeroed].
+ */
+ {
+ register mp_digit *tmpx;
+ register mp_word *_W, *_W1;
+
+ /* nox fix rest of carries */
+
+ /* alias for current word */
+ _W1 = W + ix;
+
+ /* alias for next word, where the carry goes */
+ _W = W + ++ix;
+
+ for (; ix <= n->used * 2 + 1; ix++) {
+ *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+ }
+
+ /* copy out, A = A/b**n
+ *
+ * The result is A/b**n but instead of converting from an
+ * array of mp_word to mp_digit than calling mp_rshd
+ * we just copy them in the right order
+ */
+
+ /* alias for destination word */
+ tmpx = x->dp;
+
+ /* alias for shifted double precision result */
+ _W = W + n->used;
+
+ for (ix = 0; ix < n->used + 1; ix++) {
+ *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
+ }
+
+ /* zero oldused digits, if the input a was larger than
+ * m->used+1 we'll have to clear the digits
+ */
+ for (; ix < olduse; ix++) {
+ *tmpx++ = 0;
+ }
+ }
+
+ /* set the max used and clamp */
+ x->used = n->used + 1;
+ mp_clamp (x);
+
+ /* if A >= m then A = A - m */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
+ }
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_fast_mp_montgomery_reduce.c */
+
+/* Start: bn_fast_s_mp_mul_digs.c */
+#include <tommath.h>
+#ifdef BN_FAST_S_MP_MUL_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Fast (comba) multiplier
+ *
+ * This is the fast column-array [comba] multiplier. It is
+ * designed to compute the columns of the product first
+ * then handle the carries afterwards. This has the effect
+ * of making the nested loops that compute the columns very
+ * simple and schedulable on super-scalar processors.
+ *
+ * This has been modified to produce a variable number of
+ * digits of output so if say only a half-product is required
+ * you don't have to compute the upper half (a feature
+ * required for fast Barrett reduction).
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ *
+ */
+int
+fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY];
+ register mp_word _W;
+
+ /* grow the destination as required */
+ if (c->alloc < digs) {
+ if ((res = mp_grow (c, digs)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ pa = MIN(digs, a->used + b->used);
+
+ /* clear the carry */
+ _W = 0;
+ for (ix = 0; ix < pa; ix++) {
+ int tx, ty;
+ int iy;
+ mp_digit *tmpx, *tmpy;
+
+ /* get offsets into the two bignums */
+ ty = MIN(b->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = b->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially its
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; ++iz) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* store term */
+ W[ix] = ((mp_digit)_W) & MP_MASK;
+
+ /* make next carry */
+ _W = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* store final carry */
+ W[ix] = _W;
+
+ /* setup dest */
+ olduse = c->used;
+ c->used = digs;
+
+ {
+ register mp_digit *tmpc;
+ tmpc = c->dp;
+ for (ix = 0; ix < digs; ix++) {
+ /* now extract the previous digit [below the carry] */
+ *tmpc++ = W[ix];
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_fast_s_mp_mul_digs.c */
+
+/* Start: bn_fast_s_mp_mul_high_digs.c */
+#include <tommath.h>
+#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* this is a modified version of fast_s_mul_digs that only produces
+ * output digits *above* digs. See the comments for fast_s_mul_digs
+ * to see how it works.
+ *
+ * This is used in the Barrett reduction since for one of the multiplications
+ * only the higher digits were needed. This essentially halves the work.
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ */
+int
+fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY];
+ mp_word _W;
+
+ /* grow the destination as required */
+ pa = a->used + b->used;
+ if (c->alloc < pa) {
+ if ((res = mp_grow (c, pa)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ pa = a->used + b->used;
+ _W = 0;
+ for (ix = digs; ix < pa; ix++) {
+ int tx, ty, iy;
+ mp_digit *tmpx, *tmpy;
+
+ /* get offsets into the two bignums */
+ ty = MIN(b->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = b->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially its
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; iz++) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* store term */
+ W[ix] = ((mp_digit)_W) & MP_MASK;
+
+ /* make next carry */
+ _W = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* store final carry */
+ W[ix] = _W;
+
+ /* setup dest */
+ olduse = c->used;
+ c->used = pa;
+
+ {
+ register mp_digit *tmpc;
+
+ tmpc = c->dp + digs;
+ for (ix = digs; ix <= pa; ix++) {
+ /* now extract the previous digit [below the carry] */
+ *tmpc++ = W[ix];
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_fast_s_mp_mul_high_digs.c */
+
+/* Start: bn_fast_s_mp_sqr.c */
+#include <tommath.h>
+#ifdef BN_FAST_S_MP_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* fast squaring
+ *
+ * This is the comba method where the columns of the product
+ * are computed first then the carries are computed. This
+ * has the effect of making a very simple inner loop that
+ * is executed the most
+ *
+ * W2 represents the outer products and W the inner.
+ *
+ * A further optimizations is made because the inner
+ * products are of the form "A * B * 2". The *2 part does
+ * not need to be computed until the end which is good
+ * because 64-bit shifts are slow!
+ *
+ * Based on Algorithm 14.16 on pp.597 of HAC.
+ *
+ */
+/* the jist of squaring...
+
+you do like mult except the offset of the tmpx [one that starts closer to zero]
+can't equal the offset of tmpy. So basically you set up iy like before then you min it with
+(ty-tx) so that it never happens. You double all those you add in the inner loop
+
+After that loop you do the squares and add them in.
+
+Remove W2 and don't memset W
+
+*/
+
+int fast_s_mp_sqr (mp_int * a, mp_int * b)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY], *tmpx;
+ mp_word W1;
+
+ /* grow the destination as required */
+ pa = a->used + a->used;
+ if (b->alloc < pa) {
+ if ((res = mp_grow (b, pa)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ W1 = 0;
+ for (ix = 0; ix < pa; ix++) {
+ int tx, ty, iy;
+ mp_word _W;
+ mp_digit *tmpy;
+
+ /* clear counter */
+ _W = 0;
+
+ /* get offsets into the two bignums */
+ ty = MIN(a->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = a->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially its
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* now for squaring tx can never equal ty
+ * we halve the distance since they approach at a rate of 2x
+ * and we have to round because odd cases need to be executed
+ */
+ iy = MIN(iy, (ty-tx+1)>>1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; iz++) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* double the inner product and add carry */
+ _W = _W + _W + W1;
+
+ /* even columns have the square term in them */
+ if ((ix&1) == 0) {
+ _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
+ }
+
+ /* store it */
+ W[ix] = _W;
+
+ /* make next carry */
+ W1 = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* setup dest */
+ olduse = b->used;
+ b->used = a->used+a->used;
+
+ {
+ mp_digit *tmpb;
+ tmpb = b->dp;
+ for (ix = 0; ix < pa; ix++) {
+ *tmpb++ = W[ix] & MP_MASK;
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpb++ = 0;
+ }
+ }
+ mp_clamp (b);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_fast_s_mp_sqr.c */
+
+/* Start: bn_mp_2expt.c */
+#include <tommath.h>
+#ifdef BN_MP_2EXPT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes a = 2**b
+ *
+ * Simple algorithm which zeroes the int, grows it then just sets one bit
+ * as required.
+ */
+int
+mp_2expt (mp_int * a, int b)
+{
+ int res;
+
+ /* zero a as per default */
+ mp_zero (a);
+
+ /* grow a to accomodate the single bit */
+ if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* set the used count of where the bit will go */
+ a->used = b / DIGIT_BIT + 1;
+
+ /* put the single bit in its place */
+ a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_2expt.c */
+
+/* Start: bn_mp_abs.c */
+#include <tommath.h>
+#ifdef BN_MP_ABS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = |a|
+ *
+ * Simple function copies the input and fixes the sign to positive
+ */
+int
+mp_abs (mp_int * a, mp_int * b)
+{
+ int res;
+
+ /* copy a to b */
+ if (a != b) {
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* force the sign of b to positive */
+ b->sign = MP_ZPOS;
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_abs.c */
+
+/* Start: bn_mp_add.c */
+#include <tommath.h>
+#ifdef BN_MP_ADD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* high level addition (handles signs) */
+int mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+ int sa, sb, res;
+
+ /* get sign of both inputs */
+ sa = a->sign;
+ sb = b->sign;
+
+ /* handle two cases, not four */
+ if (sa == sb) {
+ /* both positive or both negative */
+ /* add their magnitudes, copy the sign */
+ c->sign = sa;
+ res = s_mp_add (a, b, c);
+ } else {
+ /* one positive, the other negative */
+ /* subtract the one with the greater magnitude from */
+ /* the one of the lesser magnitude. The result gets */
+ /* the sign of the one with the greater magnitude. */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ c->sign = sb;
+ res = s_mp_sub (b, a, c);
+ } else {
+ c->sign = sa;
+ res = s_mp_sub (a, b, c);
+ }
+ }
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_add.c */
+
+/* Start: bn_mp_add_d.c */
+#include <tommath.h>
+#ifdef BN_MP_ADD_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* single digit addition */
+int
+mp_add_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ int res, ix, oldused;
+ mp_digit *tmpa, *tmpc, mu;
+
+ /* grow c as required */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* if a is negative and |a| >= b, call c = |a| - b */
+ if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
+ /* temporarily fix sign of a */
+ a->sign = MP_ZPOS;
+
+ /* c = |a| - b */
+ res = mp_sub_d(a, b, c);
+
+ /* fix sign */
+ a->sign = c->sign = MP_NEG;
+
+ return res;
+ }
+
+ /* old number of used digits in c */
+ oldused = c->used;
+
+ /* sign always positive */
+ c->sign = MP_ZPOS;
+
+ /* source alias */
+ tmpa = a->dp;
+
+ /* destination alias */
+ tmpc = c->dp;
+
+ /* if a is positive */
+ if (a->sign == MP_ZPOS) {
+ /* add digit, after this we're propagating
+ * the carry.
+ */
+ *tmpc = *tmpa++ + b;
+ mu = *tmpc >> DIGIT_BIT;
+ *tmpc++ &= MP_MASK;
+
+ /* now handle rest of the digits */
+ for (ix = 1; ix < a->used; ix++) {
+ *tmpc = *tmpa++ + mu;
+ mu = *tmpc >> DIGIT_BIT;
+ *tmpc++ &= MP_MASK;
+ }
+ /* set final carry */
+ ix++;
+ *tmpc++ = mu;
+
+ /* setup size */
+ c->used = a->used + 1;
+ } else {
+ /* a was negative and |a| < b */
+ c->used = 1;
+
+ /* the result is a single digit */
+ if (a->used == 1) {
+ *tmpc++ = b - a->dp[0];
+ } else {
+ *tmpc++ = b;
+ }
+
+ /* setup count so the clearing of oldused
+ * can fall through correctly
+ */
+ ix = 1;
+ }
+
+ /* now zero to oldused */
+ while (ix++ < oldused) {
+ *tmpc++ = 0;
+ }
+ mp_clamp(c);
+
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_mp_add_d.c */
+
+/* Start: bn_mp_addmod.c */
+#include <tommath.h>
+#ifdef BN_MP_ADDMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* d = a + b (mod c) */
+int
+mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_add (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+#endif
+
+/* End: bn_mp_addmod.c */
+
+/* Start: bn_mp_and.c */
+#include <tommath.h>
+#ifdef BN_MP_AND_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* AND two ints together */
+int
+mp_and (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] &= x->dp[ix];
+ }
+
+ /* zero digits above the last from the smallest mp_int */
+ for (; ix < t.used; ix++) {
+ t.dp[ix] = 0;
+ }
+
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_and.c */
+
+/* Start: bn_mp_clamp.c */
+#include <tommath.h>
+#ifdef BN_MP_CLAMP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* trim unused digits
+ *
+ * This is used to ensure that leading zero digits are
+ * trimed and the leading "used" digit will be non-zero
+ * Typically very fast. Also fixes the sign if there
+ * are no more leading digits
+ */
+void
+mp_clamp (mp_int * a)
+{
+ /* decrease used while the most significant digit is
+ * zero.
+ */
+ while (a->used > 0 && a->dp[a->used - 1] == 0) {
+ --(a->used);
+ }
+
+ /* reset the sign flag if used == 0 */
+ if (a->used == 0) {
+ a->sign = MP_ZPOS;
+ }
+}
+#endif
+
+/* End: bn_mp_clamp.c */
+
+/* Start: bn_mp_clear.c */
+#include <tommath.h>
+#ifdef BN_MP_CLEAR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* clear one (frees) */
+void
+mp_clear (mp_int * a)
+{
+ int i;
+
+ /* only do anything if a hasn't been freed previously */
+ if (a->dp != NULL) {
+ /* first zero the digits */
+ for (i = 0; i < a->used; i++) {
+ a->dp[i] = 0;
+ }
+
+ /* free ram */
+ XFREE(a->dp);
+
+ /* reset members to make debugging easier */
+ a->dp = NULL;
+ a->alloc = a->used = 0;
+ a->sign = MP_ZPOS;
+ }
+}
+#endif
+
+/* End: bn_mp_clear.c */
+
+/* Start: bn_mp_clear_multi.c */
+#include <tommath.h>
+#ifdef BN_MP_CLEAR_MULTI_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <stdarg.h>
+
+void mp_clear_multi(mp_int *mp, ...)
+{
+ mp_int* next_mp = mp;
+ va_list args;
+ va_start(args, mp);
+ while (next_mp != NULL) {
+ mp_clear(next_mp);
+ next_mp = va_arg(args, mp_int*);
+ }
+ va_end(args);
+}
+#endif
+
+/* End: bn_mp_clear_multi.c */
+
+/* Start: bn_mp_cmp.c */
+#include <tommath.h>
+#ifdef BN_MP_CMP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* compare two ints (signed)*/
+int
+mp_cmp (mp_int * a, mp_int * b)
+{
+ /* compare based on sign */
+ if (a->sign != b->sign) {
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ } else {
+ return MP_GT;
+ }
+ }
+
+ /* compare digits */
+ if (a->sign == MP_NEG) {
+ /* if negative compare opposite direction */
+ return mp_cmp_mag(b, a);
+ } else {
+ return mp_cmp_mag(a, b);
+ }
+}
+#endif
+
+/* End: bn_mp_cmp.c */
+
+/* Start: bn_mp_cmp_d.c */
+#include <tommath.h>
+#ifdef BN_MP_CMP_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* compare a digit */
+int mp_cmp_d(mp_int * a, mp_digit b)
+{
+ /* compare based on sign */
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ }
+
+ /* compare based on magnitude */
+ if (a->used > 1) {
+ return MP_GT;
+ }
+
+ /* compare the only digit of a to b */
+ if (a->dp[0] > b) {
+ return MP_GT;
+ } else if (a->dp[0] < b) {
+ return MP_LT;
+ } else {
+ return MP_EQ;
+ }
+}
+#endif
+
+/* End: bn_mp_cmp_d.c */
+
+/* Start: bn_mp_cmp_mag.c */
+#include <tommath.h>
+#ifdef BN_MP_CMP_MAG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* compare maginitude of two ints (unsigned) */
+int mp_cmp_mag (mp_int * a, mp_int * b)
+{
+ int n;
+ mp_digit *tmpa, *tmpb;
+
+ /* compare based on # of non-zero digits */
+ if (a->used > b->used) {
+ return MP_GT;
+ }
+
+ if (a->used < b->used) {
+ return MP_LT;
+ }
+
+ /* alias for a */
+ tmpa = a->dp + (a->used - 1);
+
+ /* alias for b */
+ tmpb = b->dp + (a->used - 1);
+
+ /* compare based on digits */
+ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
+ if (*tmpa > *tmpb) {
+ return MP_GT;
+ }
+
+ if (*tmpa < *tmpb) {
+ return MP_LT;
+ }
+ }
+ return MP_EQ;
+}
+#endif
+
+/* End: bn_mp_cmp_mag.c */
+
+/* Start: bn_mp_cnt_lsb.c */
+#include <tommath.h>
+#ifdef BN_MP_CNT_LSB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+static const int lnz[16] = {
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
+};
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+int mp_cnt_lsb(mp_int *a)
+{
+ int x;
+ mp_digit q, qq;
+
+ /* easy out */
+ if (mp_iszero(a) == 1) {
+ return 0;
+ }
+
+ /* scan lower digits until non-zero */
+ for (x = 0; x < a->used && a->dp[x] == 0; x++);
+ q = a->dp[x];
+ x *= DIGIT_BIT;
+
+ /* now scan this digit until a 1 is found */
+ if ((q & 1) == 0) {
+ do {
+ qq = q & 15;
+ x += lnz[qq];
+ q >>= 4;
+ } while (qq == 0);
+ }
+ return x;
+}
+
+#endif
+
+/* End: bn_mp_cnt_lsb.c */
+
+/* Start: bn_mp_copy.c */
+#include <tommath.h>
+#ifdef BN_MP_COPY_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* copy, b = a */
+int
+mp_copy (mp_int * a, mp_int * b)
+{
+ int res, n;
+
+ /* if dst == src do nothing */
+ if (a == b) {
+ return MP_OKAY;
+ }
+
+ /* grow dest */
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* zero b and copy the parameters over */
+ {
+ register mp_digit *tmpa, *tmpb;
+
+ /* pointer aliases */
+
+ /* source */
+ tmpa = a->dp;
+
+ /* destination */
+ tmpb = b->dp;
+
+ /* copy all the digits */
+ for (n = 0; n < a->used; n++) {
+ *tmpb++ = *tmpa++;
+ }
+
+ /* clear high digits */
+ for (; n < b->used; n++) {
+ *tmpb++ = 0;
+ }
+ }
+
+ /* copy used count and sign */
+ b->used = a->used;
+ b->sign = a->sign;
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_copy.c */
+
+/* Start: bn_mp_count_bits.c */
+#include <tommath.h>
+#ifdef BN_MP_COUNT_BITS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* returns the number of bits in an int */
+int
+mp_count_bits (mp_int * a)
+{
+ int r;
+ mp_digit q;
+
+ /* shortcut */
+ if (a->used == 0) {
+ return 0;
+ }
+
+ /* get number of digits and add that */
+ r = (a->used - 1) * DIGIT_BIT;
+
+ /* take the last digit and count the bits in it */
+ q = a->dp[a->used - 1];
+ while (q > ((mp_digit) 0)) {
+ ++r;
+ q >>= ((mp_digit) 1);
+ }
+ return r;
+}
+#endif
+
+/* End: bn_mp_count_bits.c */
+
+/* Start: bn_mp_div.c */
+#include <tommath.h>
+#ifdef BN_MP_DIV_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+#ifdef BN_MP_DIV_SMALL
+
+/* slower bit-bang division... also smaller */
+int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ mp_int ta, tb, tq, q;
+ int res, n, n2;
+
+ /* is divisor zero ? */
+ if (mp_iszero (b) == 1) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy (a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero (c);
+ }
+ return res;
+ }
+
+ /* init our temps */
+ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
+ return res;
+ }
+
+
+ mp_set(&tq, 1);
+ n = mp_count_bits(a) - mp_count_bits(b);
+ if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
+ ((res = mp_abs(b, &tb)) != MP_OKAY) ||
+ ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
+ ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+
+ while (n-- >= 0) {
+ if (mp_cmp(&tb, &ta) != MP_GT) {
+ if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
+ ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+ }
+ if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
+ ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* now q == quotient and ta == remainder */
+ n = a->sign;
+ n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
+ if (c != NULL) {
+ mp_exch(c, &q);
+ c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
+ }
+ if (d != NULL) {
+ mp_exch(d, &ta);
+ d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
+ }
+LBL_ERR:
+ mp_clear_multi(&ta, &tb, &tq, &q, NULL);
+ return res;
+}
+
+#else
+
+/* integer signed division.
+ * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
+ * HAC pp.598 Algorithm 14.20
+ *
+ * Note that the description in HAC is horribly
+ * incomplete. For example, it doesn't consider
+ * the case where digits are removed from 'x' in
+ * the inner loop. It also doesn't consider the
+ * case that y has fewer than three digits, etc..
+ *
+ * The overall algorithm is as described as
+ * 14.20 from HAC but fixed to treat these cases.
+*/
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ mp_int q, x, y, t1, t2;
+ int res, n, t, i, norm, neg;
+
+ /* is divisor zero ? */
+ if (mp_iszero (b) == 1) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (mp_cmp_mag (a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy (a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero (c);
+ }
+ return res;
+ }
+
+ if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
+ return res;
+ }
+ q.used = a->used + 2;
+
+ if ((res = mp_init (&t1)) != MP_OKAY) {
+ goto LBL_Q;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ goto LBL_T1;
+ }
+
+ if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
+ goto LBL_T2;
+ }
+
+ if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
+ goto LBL_X;
+ }
+
+ /* fix the sign */
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ x.sign = y.sign = MP_ZPOS;
+
+ /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+ norm = mp_count_bits(&y) % DIGIT_BIT;
+ if (norm < (int)(DIGIT_BIT-1)) {
+ norm = (DIGIT_BIT-1) - norm;
+ if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ } else {
+ norm = 0;
+ }
+
+ /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+ n = x.used - 1;
+ t = y.used - 1;
+
+ /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
+ if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
+ goto LBL_Y;
+ }
+
+ while (mp_cmp (&x, &y) != MP_LT) {
+ ++(q.dp[n - t]);
+ if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ }
+
+ /* reset y by shifting it back down */
+ mp_rshd (&y, n - t);
+
+ /* step 3. for i from n down to (t + 1) */
+ for (i = n; i >= (t + 1); i--) {
+ if (i > x.used) {
+ continue;
+ }
+
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
+ * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
+ if (x.dp[i] == y.dp[t]) {
+ q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
+ } else {
+ mp_word tmp;
+ tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
+ tmp |= ((mp_word) x.dp[i - 1]);
+ tmp /= ((mp_word) y.dp[t]);
+ if (tmp > (mp_word) MP_MASK)
+ tmp = MP_MASK;
+ q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+ }
+
+ /* while (q{i-t-1} * (yt * b + y{t-1})) >
+ xi * b**2 + xi-1 * b + xi-2
+
+ do q{i-t-1} -= 1;
+ */
+ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+ do {
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+
+ /* find left hand */
+ mp_zero (&t1);
+ t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+ t1.dp[1] = y.dp[t];
+ t1.used = 2;
+ if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* find right hand */
+ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+ t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+ t2.dp[2] = x.dp[i];
+ t2.used = 3;
+ } while (mp_cmp_mag(&t1, &t2) == MP_GT);
+
+ /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
+ if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
+ if (x.sign == MP_NEG) {
+ if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+ }
+ }
+
+ /* now q is the quotient and x is the remainder
+ * [which we have to normalize]
+ */
+
+ /* get sign before writing to c */
+ x.sign = x.used == 0 ? MP_ZPOS : a->sign;
+
+ if (c != NULL) {
+ mp_clamp (&q);
+ mp_exch (&q, c);
+ c->sign = neg;
+ }
+
+ if (d != NULL) {
+ mp_div_2d (&x, norm, &x, NULL);
+ mp_exch (&x, d);
+ }
+
+ res = MP_OKAY;
+
+LBL_Y:mp_clear (&y);
+LBL_X:mp_clear (&x);
+LBL_T2:mp_clear (&t2);
+LBL_T1:mp_clear (&t1);
+LBL_Q:mp_clear (&q);
+ return res;
+}
+
+#endif
+
+#endif
+
+/* End: bn_mp_div.c */
+
+/* Start: bn_mp_div_2.c */
+#include <tommath.h>
+#ifdef BN_MP_DIV_2_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = a/2 */
+int mp_div_2(mp_int * a, mp_int * b)
+{
+ int x, res, oldused;
+
+ /* copy */
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ oldused = b->used;
+ b->used = a->used;
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ /* source alias */
+ tmpa = a->dp + b->used - 1;
+
+ /* dest alias */
+ tmpb = b->dp + b->used - 1;
+
+ /* carry */
+ r = 0;
+ for (x = b->used - 1; x >= 0; x--) {
+ /* get the carry for the next iteration */
+ rr = *tmpa & 1;
+
+ /* shift the current digit, add in carry and store */
+ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+
+ /* forward carry to next iteration */
+ r = rr;
+ }
+
+ /* zero excess digits */
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ mp_clamp (b);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_div_2.c */
+
+/* Start: bn_mp_div_2d.c */
+#include <tommath.h>
+#ifdef BN_MP_DIV_2D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+{
+ mp_digit D, r, rr;
+ int x, res;
+ mp_int t;
+
+
+ /* if the shift count is <= 0 then we do no work */
+ if (b <= 0) {
+ res = mp_copy (a, c);
+ if (d != NULL) {
+ mp_zero (d);
+ }
+ return res;
+ }
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ /* get the remainder */
+ if (d != NULL) {
+ if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ }
+
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ /* shift by as many digits in the bit count */
+ if (b >= (int)DIGIT_BIT) {
+ mp_rshd (c, b / DIGIT_BIT);
+ }
+
+ /* shift any bit count < DIGIT_BIT */
+ D = (mp_digit) (b % DIGIT_BIT);
+ if (D != 0) {
+ register mp_digit *tmpc, mask, shift;
+
+ /* mask */
+ mask = (((mp_digit)1) << D) - 1;
+
+ /* shift for lsb */
+ shift = DIGIT_BIT - D;
+
+ /* alias */
+ tmpc = c->dp + (c->used - 1);
+
+ /* carry */
+ r = 0;
+ for (x = c->used - 1; x >= 0; x--) {
+ /* get the lower bits of this word in a temp */
+ rr = *tmpc & mask;
+
+ /* shift the current word and mix in the carry bits from the previous word */
+ *tmpc = (*tmpc >> D) | (r << shift);
+ --tmpc;
+
+ /* set the carry to the carry bits of the current word found above */
+ r = rr;
+ }
+ }
+ mp_clamp (c);
+ if (d != NULL) {
+ mp_exch (&t, d);
+ }
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_div_2d.c */
+
+/* Start: bn_mp_div_3.c */
+#include <tommath.h>
+#ifdef BN_MP_DIV_3_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* divide by three (based on routine from MPI and the GMP manual) */
+int
+mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
+{
+ mp_int q;
+ mp_word w, t;
+ mp_digit b;
+ int res, ix;
+
+ /* b = 2**DIGIT_BIT / 3 */
+ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
+
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= 3) {
+ /* multiply w by [1/3] */
+ t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
+
+ /* now subtract 3 * [w/3] from w, to get the remainder */
+ w -= t+t+t;
+
+ /* fixup the remainder as required since
+ * the optimization is not exact.
+ */
+ while (w >= 3) {
+ t += 1;
+ w -= 3;
+ }
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = (mp_digit)t;
+ }
+
+ /* [optional] store the remainder */
+ if (d != NULL) {
+ *d = (mp_digit)w;
+ }
+
+ /* [optional] store the quotient */
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_div_3.c */
+
+/* Start: bn_mp_div_d.c */
+#include <tommath.h>
+#ifdef BN_MP_DIV_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+static int s_is_power_of_two(mp_digit b, int *p)
+{
+ int x;
+
+ for (x = 1; x < DIGIT_BIT; x++) {
+ if (b == (((mp_digit)1)<<x)) {
+ *p = x;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* single digit division (based on routine from MPI) */
+int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+{
+ mp_int q;
+ mp_word w;
+ mp_digit t;
+ int res, ix;
+
+ /* cannot divide by zero */
+ if (b == 0) {
+ return MP_VAL;
+ }
+
+ /* quick outs */
+ if (b == 1 || mp_iszero(a) == 1) {
+ if (d != NULL) {
+ *d = 0;
+ }
+ if (c != NULL) {
+ return mp_copy(a, c);
+ }
+ return MP_OKAY;
+ }
+
+ /* power of two ? */
+ if (s_is_power_of_two(b, &ix) == 1) {
+ if (d != NULL) {
+ *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
+ }
+ if (c != NULL) {
+ return mp_div_2d(a, ix, c, NULL);
+ }
+ return MP_OKAY;
+ }
+
+#ifdef BN_MP_DIV_3_C
+ /* three? */
+ if (b == 3) {
+ return mp_div_3(a, c, d);
+ }
+#endif
+
+ /* no easy answer [c'est la vie]. Just division */
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= b) {
+ t = (mp_digit)(w / b);
+ w -= ((mp_word)t) * ((mp_word)b);
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = (mp_digit)t;
+ }
+
+ if (d != NULL) {
+ *d = (mp_digit)w;
+ }
+
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_div_d.c */
+
+/* Start: bn_mp_dr_is_modulus.c */
+#include <tommath.h>
+#ifdef BN_MP_DR_IS_MODULUS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines if a number is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a)
+{
+ int ix;
+
+ /* must be at least two digits */
+ if (a->used < 2) {
+ return 0;
+ }
+
+ /* must be of the form b**k - a [a <= b] so all
+ * but the first digit must be equal to -1 (mod b).
+ */
+ for (ix = 1; ix < a->used; ix++) {
+ if (a->dp[ix] != MP_MASK) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+#endif
+
+/* End: bn_mp_dr_is_modulus.c */
+
+/* Start: bn_mp_dr_reduce.c */
+#include <tommath.h>
+#ifdef BN_MP_DR_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
+ *
+ * Based on algorithm from the paper
+ *
+ * "Generating Efficient Primes for Discrete Log Cryptosystems"
+ * Chae Hoon Lim, Pil Joong Lee,
+ * POSTECH Information Research Laboratories
+ *
+ * The modulus must be of a special format [see manual]
+ *
+ * Has been modified to use algorithm 7.10 from the LTM book instead
+ *
+ * Input x must be in the range 0 <= x <= (n-1)**2
+ */
+int
+mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+{
+ int err, i, m;
+ mp_word r;
+ mp_digit mu, *tmpx1, *tmpx2;
+
+ /* m = digits in modulus */
+ m = n->used;
+
+ /* ensure that "x" has at least 2m digits */
+ if (x->alloc < m + m) {
+ if ((err = mp_grow (x, m + m)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+/* top of loop, this is where the code resumes if
+ * another reduction pass is required.
+ */
+top:
+ /* aliases for digits */
+ /* alias for lower half of x */
+ tmpx1 = x->dp;
+
+ /* alias for upper half of x, or x/B**m */
+ tmpx2 = x->dp + m;
+
+ /* set carry to zero */
+ mu = 0;
+
+ /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
+ for (i = 0; i < m; i++) {
+ r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+ *tmpx1++ = (mp_digit)(r & MP_MASK);
+ mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
+ }
+
+ /* set final carry */
+ *tmpx1++ = mu;
+
+ /* zero words above m */
+ for (i = m + 1; i < x->used; i++) {
+ *tmpx1++ = 0;
+ }
+
+ /* clamp, sub and return */
+ mp_clamp (x);
+
+ /* if x >= n then subtract and reduce again
+ * Each successive "recursion" makes the input smaller and smaller.
+ */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ s_mp_sub(x, n, x);
+ goto top;
+ }
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_dr_reduce.c */
+
+/* Start: bn_mp_dr_setup.c */
+#include <tommath.h>
+#ifdef BN_MP_DR_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines the setup value */
+void mp_dr_setup(mp_int *a, mp_digit *d)
+{
+ /* the casts are required if DIGIT_BIT is one less than
+ * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+ */
+ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+ ((mp_word)a->dp[0]));
+}
+
+#endif
+
+/* End: bn_mp_dr_setup.c */
+
+/* Start: bn_mp_exch.c */
+#include <tommath.h>
+#ifdef BN_MP_EXCH_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* swap the elements of two integers, for cases where you can't simply swap the
+ * mp_int pointers around
+ */
+void
+mp_exch (mp_int * a, mp_int * b)
+{
+ mp_int t;
+
+ t = *a;
+ *a = *b;
+ *b = t;
+}
+#endif
+
+/* End: bn_mp_exch.c */
+
+/* Start: bn_mp_expt_d.c */
+#include <tommath.h>
+#ifdef BN_MP_EXPT_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* calculate c = a**b using a square-multiply algorithm */
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ int res, x;
+ mp_int g;
+
+ if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* set initial result */
+ mp_set (c, 1);
+
+ for (x = 0; x < (int) DIGIT_BIT; x++) {
+ /* square */
+ if ((res = mp_sqr (c, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+
+ /* if the bit is set multiply */
+ if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
+ if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+ }
+
+ /* shift to next bit */
+ b <<= 1;
+ }
+
+ mp_clear (&g);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_expt_d.c */
+
+/* Start: bn_mp_exptmod.c */
+#include <tommath.h>
+#ifdef BN_MP_EXPTMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+
+/* this is a shell function that calls either the normal or Montgomery
+ * exptmod functions. Originally the call to the montgomery code was
+ * embedded in the normal function but that wasted alot of stack space
+ * for nothing (since 99% of the time the Montgomery code would be called)
+ */
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ int dr;
+
+ /* modulus P must be positive */
+ if (P->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* if exponent X is negative we have to recurse */
+ if (X->sign == MP_NEG) {
+#ifdef BN_MP_INVMOD_C
+ mp_int tmpG, tmpX;
+ int err;
+
+ /* first compute 1/G mod P */
+ if ((err = mp_init(&tmpG)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
+ mp_clear(&tmpG);
+ return err;
+ }
+
+ /* now get |X| */
+ if ((err = mp_init(&tmpX)) != MP_OKAY) {
+ mp_clear(&tmpG);
+ return err;
+ }
+ if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
+ mp_clear_multi(&tmpG, &tmpX, NULL);
+ return err;
+ }
+
+ /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+ err = mp_exptmod(&tmpG, &tmpX, P, Y);
+ mp_clear_multi(&tmpG, &tmpX, NULL);
+ return err;
+#else
+ /* no invmod */
+ return MP_VAL;
+#endif
+ }
+
+#ifdef BN_MP_DR_IS_MODULUS_C
+ /* is it a DR modulus? */
+ dr = mp_dr_is_modulus(P);
+#else
+ dr = 0;
+#endif
+
+#ifdef BN_MP_REDUCE_IS_2K_C
+ /* if not, is it a uDR modulus? */
+ if (dr == 0) {
+ dr = mp_reduce_is_2k(P) << 1;
+ }
+#endif
+
+ /* if the modulus is odd or dr != 0 use the fast method */
+#ifdef BN_MP_EXPTMOD_FAST_C
+ if (mp_isodd (P) == 1 || dr != 0) {
+ return mp_exptmod_fast (G, X, P, Y, dr);
+ } else {
+#endif
+#ifdef BN_S_MP_EXPTMOD_C
+ /* otherwise use the generic Barrett reduction technique */
+ return s_mp_exptmod (G, X, P, Y);
+#else
+ /* no exptmod for evens */
+ return MP_VAL;
+#endif
+#ifdef BN_MP_EXPTMOD_FAST_C
+ }
+#endif
+}
+
+#endif
+
+/* End: bn_mp_exptmod.c */
+
+/* Start: bn_mp_exptmod_fast.c */
+#include <tommath.h>
+#ifdef BN_MP_EXPTMOD_FAST_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
+ *
+ * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
+ * The value of k changes based on the size of the exponent.
+ *
+ * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
+ */
+
+#ifdef MP_LOW_MEM
+ #define TAB_SIZE 32
+#else
+ #define TAB_SIZE 256
+#endif
+
+int
+mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
+{
+ mp_int M[TAB_SIZE], res;
+ mp_digit buf, mp;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* use a pointer to the reduction algorithm. This allows us to use
+ * one of many reduction algorithms without modding the guts of
+ * the code with if statements everywhere.
+ */
+ int (*redux)(mp_int*,mp_int*,mp_digit);
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+#ifdef MP_LOW_MEM
+ if (winsize > 5) {
+ winsize = 5;
+ }
+#endif
+
+ /* init M array */
+ /* init first cell */
+ if ((err = mp_init(&M[1])) != MP_OKAY) {
+ return err;
+ }
+
+ /* now init the second half of the array */
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ if ((err = mp_init(&M[x])) != MP_OKAY) {
+ for (y = 1<<(winsize-1); y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ mp_clear(&M[1]);
+ return err;
+ }
+ }
+
+ /* determine and setup reduction code */
+ if (redmode == 0) {
+#ifdef BN_MP_MONTGOMERY_SETUP_C
+ /* now setup montgomery */
+ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
+ goto LBL_M;
+ }
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+
+ /* automatically pick the comba one if available (saves quite a few calls/ifs) */
+#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
+ if (((P->used * 2 + 1) < MP_WARRAY) &&
+ P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ redux = fast_mp_montgomery_reduce;
+ } else
+#endif
+ {
+#ifdef BN_MP_MONTGOMERY_REDUCE_C
+ /* use slower baseline Montgomery method */
+ redux = mp_montgomery_reduce;
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+ }
+ } else if (redmode == 1) {
+#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
+ /* setup DR reduction for moduli of the form B**k - b */
+ mp_dr_setup(P, &mp);
+ redux = mp_dr_reduce;
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+ } else {
+#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
+ /* setup DR reduction for moduli of the form 2**k - b */
+ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
+ goto LBL_M;
+ }
+ redux = mp_reduce_2k;
+#else
+ err = MP_VAL;
+ goto LBL_M;
+#endif
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto LBL_M;
+ }
+
+ /* create M table
+ *
+
+ *
+ * The first half of the table is not computed though accept for M[0] and M[1]
+ */
+
+ if (redmode == 0) {
+#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+ /* now we need R mod m */
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+#else
+ err = MP_VAL;
+ goto LBL_RES;
+#endif
+
+ /* now set M[1] to G * R mod m */
+ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ } else {
+ mp_set(&res, 1);
+ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* create upper table */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits so break */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int)DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0) {
+ continue;
+ }
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* get next bit of the window */
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+ }
+ }
+
+ if (redmode == 0) {
+ /* fixup result if Montgomery reduction is used
+ * recall that any value in a Montgomery system is
+ * actually multiplied by R mod n. So we have
+ * to reduce one more time to cancel out the factor
+ * of R.
+ */
+ if ((err = redux(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* swap res with Y */
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+LBL_RES:mp_clear (&res);
+LBL_M:
+ mp_clear(&M[1]);
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
+#endif
+
+
+/* End: bn_mp_exptmod_fast.c */
+
+/* Start: bn_mp_exteuclid.c */
+#include <tommath.h>
+#ifdef BN_MP_EXTEUCLID_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Extended euclidean algorithm of (a, b) produces
+ a*u1 + b*u2 = u3
+ */
+int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
+{
+ mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
+ int err;
+
+ if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
+ return err;
+ }
+
+ /* initialize, (u1,u2,u3) = (1,0,a) */
+ mp_set(&u1, 1);
+ if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; }
+
+ /* initialize, (v1,v2,v3) = (0,1,b) */
+ mp_set(&v2, 1);
+ if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; }
+
+ /* loop while v3 != 0 */
+ while (mp_iszero(&v3) == MP_NO) {
+ /* q = u3/v3 */
+ if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; }
+
+ /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
+ if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; }
+
+ /* (u1,u2,u3) = (v1,v2,v3) */
+ if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; }
+
+ /* (v1,v2,v3) = (t1,t2,t3) */
+ if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; }
+ }
+
+ /* copy result out */
+ if (U1 != NULL) { mp_exch(U1, &u1); }
+ if (U2 != NULL) { mp_exch(U2, &u2); }
+ if (U3 != NULL) { mp_exch(U3, &u3); }
+
+ err = MP_OKAY;
+_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
+ return err;
+}
+#endif
+
+/* End: bn_mp_exteuclid.c */
+
+/* Start: bn_mp_fread.c */
+#include <tommath.h>
+#ifdef BN_MP_FREAD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* read a bigint from a file stream in ASCII */
+int mp_fread(mp_int *a, int radix, FILE *stream)
+{
+ int err, ch, neg, y;
+
+ /* clear a */
+ mp_zero(a);
+
+ /* if first digit is - then set negative */
+ ch = fgetc(stream);
+ if (ch == '-') {
+ neg = MP_NEG;
+ ch = fgetc(stream);
+ } else {
+ neg = MP_ZPOS;
+ }
+
+ for (;;) {
+ /* find y in the radix map */
+ for (y = 0; y < radix; y++) {
+ if (mp_s_rmap[y] == ch) {
+ break;
+ }
+ }
+ if (y == radix) {
+ break;
+ }
+
+ /* shift up and add */
+ if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
+ return err;
+ }
+
+ ch = fgetc(stream);
+ }
+ if (mp_cmp_d(a, 0) != MP_EQ) {
+ a->sign = neg;
+ }
+
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_mp_fread.c */
+
+/* Start: bn_mp_fwrite.c */
+#include <tommath.h>
+#ifdef BN_MP_FWRITE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+int mp_fwrite(mp_int *a, int radix, FILE *stream)
+{
+ char *buf;
+ int err, len, x;
+
+ if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
+ return err;
+ }
+
+ buf = OPT_CAST(char) XMALLOC (len);
+ if (buf == NULL) {
+ return MP_MEM;
+ }
+
+ if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
+ XFREE (buf);
+ return err;
+ }
+
+ for (x = 0; x < len; x++) {
+ if (fputc(buf[x], stream) == EOF) {
+ XFREE (buf);
+ return MP_VAL;
+ }
+ }
+
+ XFREE (buf);
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_mp_fwrite.c */
+
+/* Start: bn_mp_gcd.c */
+#include <tommath.h>
+#ifdef BN_MP_GCD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Greatest Common Divisor using the binary method */
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int u, v;
+ int k, u_lsb, v_lsb, res;
+
+ /* either zero than gcd is the largest */
+ if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
+ return mp_abs (b, c);
+ }
+ if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
+ return mp_abs (a, c);
+ }
+
+ /* optimized. At this point if a == 0 then
+ * b must equal zero too
+ */
+ if (mp_iszero (a) == 1) {
+ mp_zero(c);
+ return MP_OKAY;
+ }
+
+ /* get copies of a and b we can modify */
+ if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
+ goto LBL_U;
+ }
+
+ /* must be positive for the remainder of the algorithm */
+ u.sign = v.sign = MP_ZPOS;
+
+ /* B1. Find the common power of two for u and v */
+ u_lsb = mp_cnt_lsb(&u);
+ v_lsb = mp_cnt_lsb(&v);
+ k = MIN(u_lsb, v_lsb);
+
+ if (k > 0) {
+ /* divide the power of two out */
+ if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+
+ if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ /* divide any remaining factors of two out */
+ if (u_lsb != k) {
+ if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ if (v_lsb != k) {
+ if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ while (mp_iszero(&v) == 0) {
+ /* make sure v is the largest */
+ if (mp_cmp_mag(&u, &v) == MP_GT) {
+ /* swap u and v to make sure v is >= u */
+ mp_exch(&u, &v);
+ }
+
+ /* subtract smallest from largest */
+ if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
+ goto LBL_V;
+ }
+
+ /* Divide out all factors of two */
+ if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ /* multiply by 2**k which we divided out at the beginning */
+ if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ c->sign = MP_ZPOS;
+ res = MP_OKAY;
+LBL_V:mp_clear (&u);
+LBL_U:mp_clear (&v);
+ return res;
+}
+#endif
+
+/* End: bn_mp_gcd.c */
+
+/* Start: bn_mp_get_int.c */
+#include <tommath.h>
+#ifdef BN_MP_GET_INT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* get the lower 32-bits of an mp_int */
+unsigned long mp_get_int(mp_int * a)
+{
+ int i;
+ unsigned long res;
+
+ if (a->used == 0) {
+ return 0;
+ }
+
+ /* get number of digits of the lsb we have to read */
+ i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
+
+ /* get most significant digit of result */
+ res = DIGIT(a,i);
+
+ while (--i >= 0) {
+ res = (res << DIGIT_BIT) | DIGIT(a,i);
+ }
+
+ /* force result to 32-bits always so it is consistent on non 32-bit platforms */
+ return res & 0xFFFFFFFFUL;
+}
+#endif
+
+/* End: bn_mp_get_int.c */
+
+/* Start: bn_mp_grow.c */
+#include <tommath.h>
+#ifdef BN_MP_GROW_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* grow as required */
+int mp_grow (mp_int * a, int size)
+{
+ int i;
+ mp_digit *tmp;
+
+ /* if the alloc size is smaller alloc more ram */
+ if (a->alloc < size) {
+ /* ensure there are always at least MP_PREC digits extra on top */
+ size += (MP_PREC * 2) - (size % MP_PREC);
+
+ /* reallocate the array a->dp
+ *
+ * We store the return in a temporary variable
+ * in case the operation failed we don't want
+ * to overwrite the dp member of a.
+ */
+ tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
+ if (tmp == NULL) {
+ /* reallocation failed but "a" is still valid [can be freed] */
+ return MP_MEM;
+ }
+
+ /* reallocation succeeded so set a->dp */
+ a->dp = tmp;
+
+ /* zero excess digits */
+ i = a->alloc;
+ a->alloc = size;
+ for (; i < a->alloc; i++) {
+ a->dp[i] = 0;
+ }
+ }
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_grow.c */
+
+/* Start: bn_mp_init.c */
+#include <tommath.h>
+#ifdef BN_MP_INIT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* init a new mp_int */
+int mp_init (mp_int * a)
+{
+ int i;
+
+ /* allocate memory required and clear it */
+ a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
+
+ /* set the digits to zero */
+ for (i = 0; i < MP_PREC; i++) {
+ a->dp[i] = 0;
+ }
+
+ /* set the used to zero, allocated digits to the default precision
+ * and sign to positive */
+ a->used = 0;
+ a->alloc = MP_PREC;
+ a->sign = MP_ZPOS;
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_init.c */
+
+/* Start: bn_mp_init_copy.c */
+#include <tommath.h>
+#ifdef BN_MP_INIT_COPY_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* creates "a" then copies b into it */
+int mp_init_copy (mp_int * a, mp_int * b)
+{
+ int res;
+
+ if ((res = mp_init (a)) != MP_OKAY) {
+ return res;
+ }
+ return mp_copy (b, a);
+}
+#endif
+
+/* End: bn_mp_init_copy.c */
+
+/* Start: bn_mp_init_multi.c */
+#include <tommath.h>
+#ifdef BN_MP_INIT_MULTI_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <stdarg.h>
+
+int mp_init_multi(mp_int *mp, ...)
+{
+ mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
+ int n = 0; /* Number of ok inits */
+ mp_int* cur_arg = mp;
+ va_list args;
+
+ va_start(args, mp); /* init args to next argument from caller */
+ while (cur_arg != NULL) {
+ if (mp_init(cur_arg) != MP_OKAY) {
+ /* Oops - error! Back-track and mp_clear what we already
+ succeeded in init-ing, then return error.
+ */
+ va_list clean_args;
+
+ /* end the current list */
+ va_end(args);
+
+ /* now start cleaning up */
+ cur_arg = mp;
+ va_start(clean_args, mp);
+ while (n--) {
+ mp_clear(cur_arg);
+ cur_arg = va_arg(clean_args, mp_int*);
+ }
+ va_end(clean_args);
+ res = MP_MEM;
+ break;
+ }
+ n++;
+ cur_arg = va_arg(args, mp_int*);
+ }
+ va_end(args);
+ return res; /* Assumed ok, if error flagged above. */
+}
+
+#endif
+
+/* End: bn_mp_init_multi.c */
+
+/* Start: bn_mp_init_set.c */
+#include <tommath.h>
+#ifdef BN_MP_INIT_SET_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* initialize and set a digit */
+int mp_init_set (mp_int * a, mp_digit b)
+{
+ int err;
+ if ((err = mp_init(a)) != MP_OKAY) {
+ return err;
+ }
+ mp_set(a, b);
+ return err;
+}
+#endif
+
+/* End: bn_mp_init_set.c */
+
+/* Start: bn_mp_init_set_int.c */
+#include <tommath.h>
+#ifdef BN_MP_INIT_SET_INT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* initialize and set a digit */
+int mp_init_set_int (mp_int * a, unsigned long b)
+{
+ int err;
+ if ((err = mp_init(a)) != MP_OKAY) {
+ return err;
+ }
+ return mp_set_int(a, b);
+}
+#endif
+
+/* End: bn_mp_init_set_int.c */
+
+/* Start: bn_mp_init_size.c */
+#include <tommath.h>
+#ifdef BN_MP_INIT_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* init an mp_init for a given size */
+int mp_init_size (mp_int * a, int size)
+{
+ int x;
+
+ /* pad size so there are always extra digits */
+ size += (MP_PREC * 2) - (size % MP_PREC);
+
+ /* alloc mem */
+ a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
+
+ /* set the members */
+ a->used = 0;
+ a->alloc = size;
+ a->sign = MP_ZPOS;
+
+ /* zero the digits */
+ for (x = 0; x < size; x++) {
+ a->dp[x] = 0;
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_init_size.c */
+
+/* Start: bn_mp_invmod.c */
+#include <tommath.h>
+#ifdef BN_MP_INVMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* hac 14.61, pp608 */
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ return MP_VAL;
+ }
+
+#ifdef BN_FAST_MP_INVMOD_C
+ /* if the modulus is odd we can use a faster routine instead */
+ if (mp_isodd (b) == 1) {
+ return fast_mp_invmod (a, b, c);
+ }
+#endif
+
+#ifdef BN_MP_INVMOD_SLOW_C
+ return mp_invmod_slow(a, b, c);
+#endif
+
+ return MP_VAL;
+}
+#endif
+
+/* End: bn_mp_invmod.c */
+
+/* Start: bn_mp_invmod_slow.c */
+#include <tommath.h>
+#ifdef BN_MP_INVMOD_SLOW_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* hac 14.61, pp608 */
+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, A, B, C, D;
+ int res;
+
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ return MP_VAL;
+ }
+
+ /* init temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v,
+ &A, &B, &C, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x = a, y = b */
+ if ((res = mp_copy (a, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (b, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 2. [modified] if x,y are both even then return an error! */
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ mp_set (&A, 1);
+ mp_set (&D, 1);
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if A or B is odd then */
+ if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
+ /* A = (A+y)/2, B = (B-x)/2 */
+ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* A = A/2, B = B/2 */
+ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if C or D is odd then */
+ if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
+ /* C = (C+y)/2, D = (D-x)/2 */
+ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* C = C/2, D = D/2 */
+ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, A = A - C, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, C = C - A, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0)
+ goto top;
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* if its too low */
+ while (mp_cmp_d(&C, 0) == MP_LT) {
+ if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* too big */
+ while (mp_cmp_mag(&C, b) != MP_LT) {
+ if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* C is now the inverse */
+ mp_exch (&C, c);
+ res = MP_OKAY;
+LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
+ return res;
+}
+#endif
+
+/* End: bn_mp_invmod_slow.c */
+
+/* Start: bn_mp_is_square.c */
+#include <tommath.h>
+#ifdef BN_MP_IS_SQUARE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Check if remainders are possible squares - fast exclude non-squares */
+static const char rem_128[128] = {
+ 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
+};
+
+static const char rem_105[105] = {
+ 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
+ 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
+ 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
+ 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
+ 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
+ 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
+};
+
+/* Store non-zero to ret if arg is square, and zero if not */
+int mp_is_square(mp_int *arg,int *ret)
+{
+ int res;
+ mp_digit c;
+ mp_int t;
+ unsigned long r;
+
+ /* Default to Non-square :) */
+ *ret = MP_NO;
+
+ if (arg->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* digits used? (TSD) */
+ if (arg->used == 0) {
+ return MP_OKAY;
+ }
+
+ /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
+ if (rem_128[127 & DIGIT(arg,0)] == 1) {
+ return MP_OKAY;
+ }
+
+ /* Next check mod 105 (3*5*7) */
+ if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
+ return res;
+ }
+ if (rem_105[c] == 1) {
+ return MP_OKAY;
+ }
+
+
+ if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
+ return res;
+ }
+ if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
+ goto ERR;
+ }
+ r = mp_get_int(&t);
+ /* Check for other prime modules, note it's not an ERROR but we must
+ * free "t" so the easiest way is to goto ERR. We know that res
+ * is already equal to MP_OKAY from the mp_mod call
+ */
+ if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
+ if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
+ if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
+ if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
+ if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
+ if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
+ if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
+
+ /* Final check - is sqr(sqrt(arg)) == arg ? */
+ if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
+ERR:mp_clear(&t);
+ return res;
+}
+#endif
+
+/* End: bn_mp_is_square.c */
+
+/* Start: bn_mp_jacobi.c */
+#include <tommath.h>
+#ifdef BN_MP_JACOBI_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes the jacobi c = (a | n) (or Legendre if n is prime)
+ * HAC pp. 73 Algorithm 2.149
+ */
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
+{
+ mp_int a1, p1;
+ int k, s, r, res;
+ mp_digit residue;
+
+ /* if p <= 0 return MP_VAL */
+ if (mp_cmp_d(p, 0) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* step 1. if a == 0, return 0 */
+ if (mp_iszero (a) == 1) {
+ *c = 0;
+ return MP_OKAY;
+ }
+
+ /* step 2. if a == 1, return 1 */
+ if (mp_cmp_d (a, 1) == MP_EQ) {
+ *c = 1;
+ return MP_OKAY;
+ }
+
+ /* default */
+ s = 0;
+
+ /* step 3. write a = a1 * 2**k */
+ if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&p1)) != MP_OKAY) {
+ goto LBL_A1;
+ }
+
+ /* divide out larger power of two */
+ k = mp_cnt_lsb(&a1);
+ if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
+ goto LBL_P1;
+ }
+
+ /* step 4. if e is even set s=1 */
+ if ((k & 1) == 0) {
+ s = 1;
+ } else {
+ /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
+ residue = p->dp[0] & 7;
+
+ if (residue == 1 || residue == 7) {
+ s = 1;
+ } else if (residue == 3 || residue == 5) {
+ s = -1;
+ }
+ }
+
+ /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+ if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
+ s = -s;
+ }
+
+ /* if a1 == 1 we're done */
+ if (mp_cmp_d (&a1, 1) == MP_EQ) {
+ *c = s;
+ } else {
+ /* n1 = n mod a1 */
+ if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
+ goto LBL_P1;
+ }
+ if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
+ goto LBL_P1;
+ }
+ *c = s * r;
+ }
+
+ /* done */
+ res = MP_OKAY;
+LBL_P1:mp_clear (&p1);
+LBL_A1:mp_clear (&a1);
+ return res;
+}
+#endif
+
+/* End: bn_mp_jacobi.c */
+
+/* Start: bn_mp_karatsuba_mul.c */
+#include <tommath.h>
+#ifdef BN_MP_KARATSUBA_MUL_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* c = |a| * |b| using Karatsuba Multiplication using
+ * three half size multiplications
+ *
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and
+ * let n represent half of the number of digits in
+ * the min(a,b)
+ *
+ * a = a1 * B**n + a0
+ * b = b1 * B**n + b0
+ *
+ * Then, a * b =>
+ a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
+ *
+ * Note that a1b1 and a0b0 are used twice and only need to be
+ * computed once. So in total three half size (half # of
+ * digit) multiplications are performed, a0b0, a1b1 and
+ * (a1-b1)(a0-b0)
+ *
+ * Note that a multiplication of half the digits requires
+ * 1/4th the number of single precision multiplications so in
+ * total after one call 25% of the single precision multiplications
+ * are saved. Note also that the call to mp_mul can end up back
+ * in this function if the a0, a1, b0, or b1 are above the threshold.
+ * This is known as divide-and-conquer and leads to the famous
+ * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
+ * the standard O(N**2) that the baseline/comba methods use.
+ * Generally though the overhead of this method doesn't pay off
+ * until a certain size (N ~ 80) is reached.
+ */
+int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
+ int B, err;
+
+ /* default the return code to an error */
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = MIN (a->used, b->used);
+
+ /* now divide in two */
+ B = B >> 1;
+
+ /* init copy all the temps */
+ if (mp_init_size (&x0, B) != MP_OKAY)
+ goto ERR;
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+ goto X0;
+ if (mp_init_size (&y0, B) != MP_OKAY)
+ goto X1;
+ if (mp_init_size (&y1, b->used - B) != MP_OKAY)
+ goto Y0;
+
+ /* init temps */
+ if (mp_init_size (&t1, B * 2) != MP_OKAY)
+ goto Y1;
+ if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
+ goto T1;
+ if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
+ goto X0Y0;
+
+ /* now shift the digits */
+ x0.used = y0.used = B;
+ x1.used = a->used - B;
+ y1.used = b->used - B;
+
+ {
+ register int x;
+ register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+
+ /* we copy the digits directly instead of using higher level functions
+ * since we also need to shift the digits
+ */
+ tmpa = a->dp;
+ tmpb = b->dp;
+
+ tmpx = x0.dp;
+ tmpy = y0.dp;
+ for (x = 0; x < B; x++) {
+ *tmpx++ = *tmpa++;
+ *tmpy++ = *tmpb++;
+ }
+
+ tmpx = x1.dp;
+ for (x = B; x < a->used; x++) {
+ *tmpx++ = *tmpa++;
+ }
+
+ tmpy = y1.dp;
+ for (x = B; x < b->used; x++) {
+ *tmpy++ = *tmpb++;
+ }
+ }
+
+ /* only need to clamp the lower words since by definition the
+ * upper words x1/y1 must have a known number of digits
+ */
+ mp_clamp (&x0);
+ mp_clamp (&y0);
+
+ /* now calc the products x0y0 and x1y1 */
+ /* after this x0 is no longer required, free temp [x0==t2]! */
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
+ goto X1Y1; /* x0y0 = x0*y0 */
+ if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
+ goto X1Y1; /* x1y1 = x1*y1 */
+
+ /* now calc x1-x0 and y1-y0 */
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x1 - x0 */
+ if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
+ goto X1Y1; /* t2 = y1 - y0 */
+ if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
+
+ /* add x0y0 */
+ if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
+ goto X1Y1; /* t2 = x0y0 + x1y1 */
+ if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+
+ /* shift by B */
+ if (mp_lshd (&t1, B) != MP_OKAY)
+ goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+ if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
+ goto X1Y1; /* x1y1 = x1y1 << 2*B */
+
+ if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + t1 */
+ if (mp_add (&t1, &x1y1, c) != MP_OKAY)
+ goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
+
+ /* Algorithm succeeded set the return code to MP_OKAY */
+ err = MP_OKAY;
+
+X1Y1:mp_clear (&x1y1);
+X0Y0:mp_clear (&x0y0);
+T1:mp_clear (&t1);
+Y1:mp_clear (&y1);
+Y0:mp_clear (&y0);
+X1:mp_clear (&x1);
+X0:mp_clear (&x0);
+ERR:
+ return err;
+}
+#endif
+
+/* End: bn_mp_karatsuba_mul.c */
+
+/* Start: bn_mp_karatsuba_sqr.c */
+#include <tommath.h>
+#ifdef BN_MP_KARATSUBA_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Karatsuba squaring, computes b = a*a using three
+ * half size squarings
+ *
+ * See comments of karatsuba_mul for details. It
+ * is essentially the same algorithm but merely
+ * tuned to perform recursive squarings.
+ */
+int mp_karatsuba_sqr (mp_int * a, mp_int * b)
+{
+ mp_int x0, x1, t1, t2, x0x0, x1x1;
+ int B, err;
+
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = a->used;
+
+ /* now divide in two */
+ B = B >> 1;
+
+ /* init copy all the temps */
+ if (mp_init_size (&x0, B) != MP_OKAY)
+ goto ERR;
+ if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+ goto X0;
+
+ /* init temps */
+ if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
+ goto X1;
+ if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
+ goto T1;
+ if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
+ goto T2;
+ if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
+ goto X0X0;
+
+ {
+ register int x;
+ register mp_digit *dst, *src;
+
+ src = a->dp;
+
+ /* now shift the digits */
+ dst = x0.dp;
+ for (x = 0; x < B; x++) {
+ *dst++ = *src++;
+ }
+
+ dst = x1.dp;
+ for (x = B; x < a->used; x++) {
+ *dst++ = *src++;
+ }
+ }
+
+ x0.used = B;
+ x1.used = a->used - B;
+
+ mp_clamp (&x0);
+
+ /* now calc the products x0*x0 and x1*x1 */
+ if (mp_sqr (&x0, &x0x0) != MP_OKAY)
+ goto X1X1; /* x0x0 = x0*x0 */
+ if (mp_sqr (&x1, &x1x1) != MP_OKAY)
+ goto X1X1; /* x1x1 = x1*x1 */
+
+ /* now calc (x1-x0)**2 */
+ if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x1 - x0 */
+ if (mp_sqr (&t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
+
+ /* add x0y0 */
+ if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
+ goto X1X1; /* t2 = x0x0 + x1x1 */
+ if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
+
+ /* shift by B */
+ if (mp_lshd (&t1, B) != MP_OKAY)
+ goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
+ if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
+ goto X1X1; /* x1x1 = x1x1 << 2*B */
+
+ if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
+ goto X1X1; /* t1 = x0x0 + t1 */
+ if (mp_add (&t1, &x1x1, b) != MP_OKAY)
+ goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
+
+ err = MP_OKAY;
+
+X1X1:mp_clear (&x1x1);
+X0X0:mp_clear (&x0x0);
+T2:mp_clear (&t2);
+T1:mp_clear (&t1);
+X1:mp_clear (&x1);
+X0:mp_clear (&x0);
+ERR:
+ return err;
+}
+#endif
+
+/* End: bn_mp_karatsuba_sqr.c */
+
+/* Start: bn_mp_lcm.c */
+#include <tommath.h>
+#ifdef BN_MP_LCM_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes least common multiple as |a*b|/(a, b) */
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res;
+ mp_int t1, t2;
+
+
+ if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* t1 = get the GCD of the two inputs */
+ if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
+ goto LBL_T;
+ }
+
+ /* divide the smallest by the GCD */
+ if (mp_cmp_mag(a, b) == MP_LT) {
+ /* store quotient in t2 such that t2 * b is the LCM */
+ if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
+ goto LBL_T;
+ }
+ res = mp_mul(b, &t2, c);
+ } else {
+ /* store quotient in t2 such that t2 * a is the LCM */
+ if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
+ goto LBL_T;
+ }
+ res = mp_mul(a, &t2, c);
+ }
+
+ /* fix the sign to positive */
+ c->sign = MP_ZPOS;
+
+LBL_T:
+ mp_clear_multi (&t1, &t2, NULL);
+ return res;
+}
+#endif
+
+/* End: bn_mp_lcm.c */
+
+/* Start: bn_mp_lshd.c */
+#include <tommath.h>
+#ifdef BN_MP_LSHD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift left a certain amount of digits */
+int mp_lshd (mp_int * a, int b)
+{
+ int x, res;
+
+ /* if its less than zero return */
+ if (b <= 0) {
+ return MP_OKAY;
+ }
+
+ /* grow to fit the new digits */
+ if (a->alloc < a->used + b) {
+ if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ {
+ register mp_digit *top, *bottom;
+
+ /* increment the used by the shift amount then copy upwards */
+ a->used += b;
+
+ /* top */
+ top = a->dp + a->used - 1;
+
+ /* base */
+ bottom = a->dp + a->used - 1 - b;
+
+ /* much like mp_rshd this is implemented using a sliding window
+ * except the window goes the otherway around. Copying from
+ * the bottom to the top. see bn_mp_rshd.c for more info.
+ */
+ for (x = a->used - 1; x >= b; x--) {
+ *top-- = *bottom--;
+ }
+
+ /* zero the lower digits */
+ top = a->dp;
+ for (x = 0; x < b; x++) {
+ *top++ = 0;
+ }
+ }
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_lshd.c */
+
+/* Start: bn_mp_mod.c */
+#include <tommath.h>
+#ifdef BN_MP_MOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* c = a mod b, 0 <= c < b */
+int
+mp_mod (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int t;
+ int res;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+
+ if (t.sign != b->sign) {
+ res = mp_add (b, &t, c);
+ } else {
+ res = MP_OKAY;
+ mp_exch (&t, c);
+ }
+
+ mp_clear (&t);
+ return res;
+}
+#endif
+
+/* End: bn_mp_mod.c */
+
+/* Start: bn_mp_mod_2d.c */
+#include <tommath.h>
+#ifdef BN_MP_MOD_2D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* calc a value mod 2**b */
+int
+mp_mod_2d (mp_int * a, int b, mp_int * c)
+{
+ int x, res;
+
+ /* if b is <= 0 then zero the int */
+ if (b <= 0) {
+ mp_zero (c);
+ return MP_OKAY;
+ }
+
+ /* if the modulus is larger than the value than return */
+ if (b >= (int) (a->used * DIGIT_BIT)) {
+ res = mp_copy (a, c);
+ return res;
+ }
+
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ return res;
+ }
+
+ /* zero digits above the last digit of the modulus */
+ for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
+ c->dp[x] = 0;
+ }
+ /* clear the digit that is not completely outside/inside the modulus */
+ c->dp[b / DIGIT_BIT] &=
+ (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_mod_2d.c */
+
+/* Start: bn_mp_mod_d.c */
+#include <tommath.h>
+#ifdef BN_MP_MOD_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+int
+mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
+{
+ return mp_div_d(a, b, NULL, c);
+}
+#endif
+
+/* End: bn_mp_mod_d.c */
+
+/* Start: bn_mp_montgomery_calc_normalization.c */
+#include <tommath.h>
+#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/*
+ * shifts with subtractions when the result is greater than b.
+ *
+ * The method is slightly modified to shift B unconditionally upto just under
+ * the leading bit of b. This saves alot of multiple precision shifting.
+ */
+int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
+{
+ int x, bits, res;
+
+ /* how many bits of last digit does b use */
+ bits = mp_count_bits (b) % DIGIT_BIT;
+
+
+ if (b->used > 1) {
+ if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
+ return res;
+ }
+ } else {
+ mp_set(a, 1);
+ bits = 1;
+ }
+
+
+ /* now compute C = A * B mod b */
+ for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
+ if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
+ return res;
+ }
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
+ return res;
+ }
+ }
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_montgomery_calc_normalization.c */
+
+/* Start: bn_mp_montgomery_reduce.c */
+#include <tommath.h>
+#ifdef BN_MP_MONTGOMERY_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes xR**-1 == x (mod N) via Montgomery Reduction */
+int
+mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+{
+ int ix, res, digs;
+ mp_digit mu;
+
+ /* can the fast reduction [comba] method be used?
+ *
+ * Note that unlike in mul you're safely allowed *less*
+ * than the available columns [255 per default] since carries
+ * are fixed up in the inner loop.
+ */
+ digs = n->used * 2 + 1;
+ if ((digs < MP_WARRAY) &&
+ n->used <
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_mp_montgomery_reduce (x, n, rho);
+ }
+
+ /* grow the input as required */
+ if (x->alloc < digs) {
+ if ((res = mp_grow (x, digs)) != MP_OKAY) {
+ return res;
+ }
+ }
+ x->used = digs;
+
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * rho mod b
+ *
+ * The value of rho must be precalculated via
+ * montgomery_setup() such that
+ * it equals -1/n0 mod b this allows the
+ * following inner loop to reduce the
+ * input one digit at a time
+ */
+ mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+
+ /* a = a + mu * m * b**i */
+ {
+ register int iy;
+ register mp_digit *tmpn, *tmpx, u;
+ register mp_word r;
+
+ /* alias for digits of the modulus */
+ tmpn = n->dp;
+
+ /* alias for the digits of x [the input] */
+ tmpx = x->dp + ix;
+
+ /* set the carry to zero */
+ u = 0;
+
+ /* Multiply and add in place */
+ for (iy = 0; iy < n->used; iy++) {
+ /* compute product and sum */
+ r = ((mp_word)mu) * ((mp_word)*tmpn++) +
+ ((mp_word) u) + ((mp_word) * tmpx);
+
+ /* get carry */
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+ /* fix digit */
+ *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
+ }
+ /* At this point the ix'th digit of x should be zero */
+
+
+ /* propagate carries upwards as required*/
+ while (u) {
+ *tmpx += u;
+ u = *tmpx >> DIGIT_BIT;
+ *tmpx++ &= MP_MASK;
+ }
+ }
+ }
+
+ /* at this point the n.used'th least
+ * significant digits of x are all zero
+ * which means we can shift x to the
+ * right by n.used digits and the
+ * residue is unchanged.
+ */
+
+ /* x = x/b**n.used */
+ mp_clamp(x);
+ mp_rshd (x, n->used);
+
+ /* if x >= n then x = x - n */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_montgomery_reduce.c */
+
+/* Start: bn_mp_montgomery_setup.c */
+#include <tommath.h>
+#ifdef BN_MP_MONTGOMERY_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* setups the montgomery reduction stuff */
+int
+mp_montgomery_setup (mp_int * n, mp_digit * rho)
+{
+ mp_digit x, b;
+
+/* fast inversion mod 2**k
+ *
+ * Based on the fact that
+ *
+ * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
+ * => 2*X*A - X*X*A*A = 1
+ * => 2*(1) - (1) = 1
+ */
+ b = n->dp[0];
+
+ if ((b & 1) == 0) {
+ return MP_VAL;
+ }
+
+ x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**8 */
+#if !defined(MP_8BIT)
+ x *= 2 - b * x; /* here x*a==1 mod 2**16 */
+#endif
+#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
+ x *= 2 - b * x; /* here x*a==1 mod 2**32 */
+#endif
+#ifdef MP_64BIT
+ x *= 2 - b * x; /* here x*a==1 mod 2**64 */
+#endif
+
+ /* rho = -1/m mod b */
+ *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_montgomery_setup.c */
+
+/* Start: bn_mp_mul.c */
+#include <tommath.h>
+#ifdef BN_MP_MUL_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* high level multiplication (handles sign) */
+int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, neg;
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+
+ /* use Toom-Cook? */
+#ifdef BN_MP_TOOM_MUL_C
+ if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
+ res = mp_toom_mul(a, b, c);
+ } else
+#endif
+#ifdef BN_MP_KARATSUBA_MUL_C
+ /* use Karatsuba? */
+ if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
+ res = mp_karatsuba_mul (a, b, c);
+ } else
+#endif
+ {
+ /* can we use the fast multiplier?
+ *
+ * The fast multiplier can be used if the output will
+ * have less than MP_WARRAY digits and the number of
+ * digits won't affect carry propagation
+ */
+ int digs = a->used + b->used + 1;
+
+#ifdef BN_FAST_S_MP_MUL_DIGS_C
+ if ((digs < MP_WARRAY) &&
+ MIN(a->used, b->used) <=
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ res = fast_s_mp_mul_digs (a, b, c, digs);
+ } else
+#endif
+#ifdef BN_S_MP_MUL_DIGS_C
+ res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
+#else
+ res = MP_VAL;
+#endif
+
+ }
+ c->sign = (c->used > 0) ? neg : MP_ZPOS;
+ return res;
+}
+#endif
+
+/* End: bn_mp_mul.c */
+
+/* Start: bn_mp_mul_2.c */
+#include <tommath.h>
+#ifdef BN_MP_MUL_2_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = a*2 */
+int mp_mul_2(mp_int * a, mp_int * b)
+{
+ int x, res, oldused;
+
+ /* grow to accomodate result */
+ if (b->alloc < a->used + 1) {
+ if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ oldused = b->used;
+ b->used = a->used;
+
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ /* alias for source */
+ tmpa = a->dp;
+
+ /* alias for dest */
+ tmpb = b->dp;
+
+ /* carry */
+ r = 0;
+ for (x = 0; x < a->used; x++) {
+
+ /* get what will be the *next* carry bit from the
+ * MSB of the current digit
+ */
+ rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
+
+ /* now shift up this digit, add in the carry [from the previous] */
+ *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
+
+ /* copy the carry that would be from the source
+ * digit into the next iteration
+ */
+ r = rr;
+ }
+
+ /* new leading digit? */
+ if (r != 0) {
+ /* add a MSB which is always 1 at this point */
+ *tmpb = 1;
+ ++(b->used);
+ }
+
+ /* now zero any excess digits on the destination
+ * that we didn't write to
+ */
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_mul_2.c */
+
+/* Start: bn_mp_mul_2d.c */
+#include <tommath.h>
+#ifdef BN_MP_MUL_2D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift left by a certain bit count */
+int mp_mul_2d (mp_int * a, int b, mp_int * c)
+{
+ mp_digit d;
+ int res;
+
+ /* copy */
+ if (a != c) {
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
+ if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* shift by as many digits in the bit count */
+ if (b >= (int)DIGIT_BIT) {
+ if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* shift any bit count < DIGIT_BIT */
+ d = (mp_digit) (b % DIGIT_BIT);
+ if (d != 0) {
+ register mp_digit *tmpc, shift, mask, r, rr;
+ register int x;
+
+ /* bitmask for carries */
+ mask = (((mp_digit)1) << d) - 1;
+
+ /* shift for msbs */
+ shift = DIGIT_BIT - d;
+
+ /* alias */
+ tmpc = c->dp;
+
+ /* carry */
+ r = 0;
+ for (x = 0; x < c->used; x++) {
+ /* get the higher bits of the current word */
+ rr = (*tmpc >> shift) & mask;
+
+ /* shift the current word and OR in the carry */
+ *tmpc = ((*tmpc << d) | r) & MP_MASK;
+ ++tmpc;
+
+ /* set the carry to the carry bits of the current word */
+ r = rr;
+ }
+
+ /* set final carry */
+ if (r != 0) {
+ c->dp[(c->used)++] = r;
+ }
+ }
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_mul_2d.c */
+
+/* Start: bn_mp_mul_d.c */
+#include <tommath.h>
+#ifdef BN_MP_MUL_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiply by a digit */
+int
+mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_digit u, *tmpa, *tmpc;
+ mp_word r;
+ int ix, res, olduse;
+
+ /* make sure c is big enough to hold a*b */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* get the original destinations used count */
+ olduse = c->used;
+
+ /* set the sign */
+ c->sign = a->sign;
+
+ /* alias for a->dp [source] */
+ tmpa = a->dp;
+
+ /* alias for c->dp [dest] */
+ tmpc = c->dp;
+
+ /* zero carry */
+ u = 0;
+
+ /* compute columns */
+ for (ix = 0; ix < a->used; ix++) {
+ /* compute product and carry sum for this term */
+ r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+
+ /* mask off higher bits to get a single digit */
+ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* send carry into next iteration */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+
+ /* store final carry [if any] */
+ *tmpc++ = u;
+
+ /* now zero digits above the top */
+ while (ix++ < olduse) {
+ *tmpc++ = 0;
+ }
+
+ /* set used count */
+ c->used = a->used + 1;
+ mp_clamp(c);
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_mul_d.c */
+
+/* Start: bn_mp_mulmod.c */
+#include <tommath.h>
+#ifdef BN_MP_MULMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* d = a * b (mod c) */
+int
+mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+#endif
+
+/* End: bn_mp_mulmod.c */
+
+/* Start: bn_mp_n_root.c */
+#include <tommath.h>
+#ifdef BN_MP_N_ROOT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* find the n'th root of an integer
+ *
+ * Result found such that (c)**b <= a and (c+1)**b > a
+ *
+ * This algorithm uses Newton's approximation
+ * x[i+1] = x[i] - f(x[i])/f'(x[i])
+ * which will find the root in log(N) time where
+ * each step involves a fair bit. This is not meant to
+ * find huge roots [square and cube, etc].
+ */
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_int t1, t2, t3;
+ int res, neg;
+
+ /* input must be positive if b is even */
+ if ((b & 1) == 0 && a->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ if ((res = mp_init (&t1)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init (&t2)) != MP_OKAY) {
+ goto LBL_T1;
+ }
+
+ if ((res = mp_init (&t3)) != MP_OKAY) {
+ goto LBL_T2;
+ }
+
+ /* if a is negative fudge the sign but keep track */
+ neg = a->sign;
+ a->sign = MP_ZPOS;
+
+ /* t2 = 2 */
+ mp_set (&t2, 2);
+
+ do {
+ /* t1 = t2 */
+ if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
+
+ /* t3 = t1**(b-1) */
+ if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* numerator */
+ /* t2 = t1**b */
+ if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* t2 = t1**b - a */
+ if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* denominator */
+ /* t3 = t1**(b-1) * b */
+ if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ /* t3 = (t1**b - a)/(b * t1**(b-1)) */
+ if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+ } while (mp_cmp (&t1, &t2) != MP_EQ);
+
+ /* result can be off by a few so check */
+ for (;;) {
+ if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+
+ if (mp_cmp (&t2, a) == MP_GT) {
+ if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
+ goto LBL_T3;
+ }
+ } else {
+ break;
+ }
+ }
+
+ /* reset the sign of a first */
+ a->sign = neg;
+
+ /* set the result */
+ mp_exch (&t1, c);
+
+ /* set the sign of the result */
+ c->sign = neg;
+
+ res = MP_OKAY;
+
+LBL_T3:mp_clear (&t3);
+LBL_T2:mp_clear (&t2);
+LBL_T1:mp_clear (&t1);
+ return res;
+}
+#endif
+
+/* End: bn_mp_n_root.c */
+
+/* Start: bn_mp_neg.c */
+#include <tommath.h>
+#ifdef BN_MP_NEG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* b = -a */
+int mp_neg (mp_int * a, mp_int * b)
+{
+ int res;
+ if ((res = mp_copy (a, b)) != MP_OKAY) {
+ return res;
+ }
+ if (mp_iszero(b) != MP_YES) {
+ b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+ }
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_neg.c */
+
+/* Start: bn_mp_or.c */
+#include <tommath.h>
+#ifdef BN_MP_OR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* OR two ints together */
+int mp_or (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] |= x->dp[ix];
+ }
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_or.c */
+
+/* Start: bn_mp_prime_fermat.c */
+#include <tommath.h>
+#ifdef BN_MP_PRIME_FERMAT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* performs one Fermat test.
+ *
+ * If "a" were prime then b**a == b (mod a) since the order of
+ * the multiplicative sub-group would be phi(a) = a-1. That means
+ * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
+ *
+ * Sets result to 1 if the congruence holds, or zero otherwise.
+ */
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+{
+ mp_int t;
+ int err;
+
+ /* default to composite */
+ *result = MP_NO;
+
+ /* ensure b > 1 */
+ if (mp_cmp_d(b, 1) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* init t */
+ if ((err = mp_init (&t)) != MP_OKAY) {
+ return err;
+ }
+
+ /* compute t = b**a mod a */
+ if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
+ goto LBL_T;
+ }
+
+ /* is it equal to b? */
+ if (mp_cmp (&t, b) == MP_EQ) {
+ *result = MP_YES;
+ }
+
+ err = MP_OKAY;
+LBL_T:mp_clear (&t);
+ return err;
+}
+#endif
+
+/* End: bn_mp_prime_fermat.c */
+
+/* Start: bn_mp_prime_is_divisible.c */
+#include <tommath.h>
+#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines if an integers is divisible by one
+ * of the first PRIME_SIZE primes or not
+ *
+ * sets result to 0 if not, 1 if yes
+ */
+int mp_prime_is_divisible (mp_int * a, int *result)
+{
+ int err, ix;
+ mp_digit res;
+
+ /* default to not */
+ *result = MP_NO;
+
+ for (ix = 0; ix < PRIME_SIZE; ix++) {
+ /* what is a mod LBL_prime_tab[ix] */
+ if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
+ return err;
+ }
+
+ /* is the residue zero? */
+ if (res == 0) {
+ *result = MP_YES;
+ return MP_OKAY;
+ }
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_prime_is_divisible.c */
+
+/* Start: bn_mp_prime_is_prime.c */
+#include <tommath.h>
+#ifdef BN_MP_PRIME_IS_PRIME_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* performs a variable number of rounds of Miller-Rabin
+ *
+ * Probability of error after t rounds is no more than
+
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int mp_prime_is_prime (mp_int * a, int t, int *result)
+{
+ mp_int b;
+ int ix, err, res;
+
+ /* default to no */
+ *result = MP_NO;
+
+ /* valid value of t? */
+ if (t <= 0 || t > PRIME_SIZE) {
+ return MP_VAL;
+ }
+
+ /* is the input equal to one of the primes in the table? */
+ for (ix = 0; ix < PRIME_SIZE; ix++) {
+ if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
+ *result = 1;
+ return MP_OKAY;
+ }
+ }
+
+ /* first perform trial division */
+ if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
+ return err;
+ }
+
+ /* return if it was trivially divisible */
+ if (res == MP_YES) {
+ return MP_OKAY;
+ }
+
+ /* now perform the miller-rabin rounds */
+ if ((err = mp_init (&b)) != MP_OKAY) {
+ return err;
+ }
+
+ for (ix = 0; ix < t; ix++) {
+ /* set the prime */
+ mp_set (&b, ltm_prime_tab[ix]);
+
+ if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
+
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
+ }
+
+ /* passed the test */
+ *result = MP_YES;
+LBL_B:mp_clear (&b);
+ return err;
+}
+#endif
+
+/* End: bn_mp_prime_is_prime.c */
+
+/* Start: bn_mp_prime_miller_rabin.c */
+#include <tommath.h>
+#ifdef BN_MP_PRIME_MILLER_RABIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Miller-Rabin test of "a" to the base of "b" as described in
+ * HAC pp. 139 Algorithm 4.24
+ *
+ * Sets result to 0 if definitely composite or 1 if probably prime.
+ * Randomly the chance of error is no more than 1/4 and often
+ * very much lower.
+ */
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+{
+ mp_int n1, y, r;
+ int s, j, err;
+
+ /* default */
+ *result = MP_NO;
+
+ /* ensure b > 1 */
+ if (mp_cmp_d(b, 1) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* get n1 = a - 1 */
+ if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
+ goto LBL_N1;
+ }
+
+ /* set 2**s * r = n1 */
+ if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
+ goto LBL_N1;
+ }
+
+ /* count the number of least significant bits
+ * which are zero
+ */
+ s = mp_cnt_lsb(&r);
+
+ /* now divide n - 1 by 2**s */
+ if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
+ goto LBL_R;
+ }
+
+ /* compute y = b**r mod a */
+ if ((err = mp_init (&y)) != MP_OKAY) {
+ goto LBL_R;
+ }
+ if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if y != 1 and y != n1 do */
+ if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
+ j = 1;
+ /* while j <= s-1 and y != n1 */
+ while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
+ if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if y == 1 then composite */
+ if (mp_cmp_d (&y, 1) == MP_EQ) {
+ goto LBL_Y;
+ }
+
+ ++j;
+ }
+
+ /* if y != n1 then composite */
+ if (mp_cmp (&y, &n1) != MP_EQ) {
+ goto LBL_Y;
+ }
+ }
+
+ /* probably prime now */
+ *result = MP_YES;
+LBL_Y:mp_clear (&y);
+LBL_R:mp_clear (&r);
+LBL_N1:mp_clear (&n1);
+ return err;
+}
+#endif
+
+/* End: bn_mp_prime_miller_rabin.c */
+
+/* Start: bn_mp_prime_next_prime.c */
+#include <tommath.h>
+#ifdef BN_MP_PRIME_NEXT_PRIME_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
+ */
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
+{
+ int err, res, x, y;
+ mp_digit res_tab[PRIME_SIZE], step, kstep;
+ mp_int b;
+
+ /* ensure t is valid */
+ if (t <= 0 || t > PRIME_SIZE) {
+ return MP_VAL;
+ }
+
+ /* force positive */
+ a->sign = MP_ZPOS;
+
+ /* simple algo if a is less than the largest prime in the table */
+ if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
+ /* find which prime it is bigger than */
+ for (x = PRIME_SIZE - 2; x >= 0; x--) {
+ if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
+ if (bbs_style == 1) {
+ /* ok we found a prime smaller or
+ * equal [so the next is larger]
+ *
+ * however, the prime must be
+ * congruent to 3 mod 4
+ */
+ if ((ltm_prime_tab[x + 1] & 3) != 3) {
+ /* scan upwards for a prime congruent to 3 mod 4 */
+ for (y = x + 1; y < PRIME_SIZE; y++) {
+ if ((ltm_prime_tab[y] & 3) == 3) {
+ mp_set(a, ltm_prime_tab[y]);
+ return MP_OKAY;
+ }
+ }
+ }
+ } else {
+ mp_set(a, ltm_prime_tab[x + 1]);
+ return MP_OKAY;
+ }
+ }
+ }
+ /* at this point a maybe 1 */
+ if (mp_cmp_d(a, 1) == MP_EQ) {
+ mp_set(a, 2);
+ return MP_OKAY;
+ }
+ /* fall through to the sieve */
+ }
+
+ /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
+ if (bbs_style == 1) {
+ kstep = 4;
+ } else {
+ kstep = 2;
+ }
+
+ /* at this point we will use a combination of a sieve and Miller-Rabin */
+
+ if (bbs_style == 1) {
+ /* if a mod 4 != 3 subtract the correct value to make it so */
+ if ((a->dp[0] & 3) != 3) {
+ if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
+ }
+ } else {
+ if (mp_iseven(a) == 1) {
+ /* force odd */
+ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
+ return err;
+ }
+ }
+ }
+
+ /* generate the restable */
+ for (x = 1; x < PRIME_SIZE; x++) {
+ if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
+ return err;
+ }
+ }
+
+ /* init temp used for Miller-Rabin Testing */
+ if ((err = mp_init(&b)) != MP_OKAY) {
+ return err;
+ }
+
+ for (;;) {
+ /* skip to the next non-trivially divisible candidate */
+ step = 0;
+ do {
+ /* y == 1 if any residue was zero [e.g. cannot be prime] */
+ y = 0;
+
+ /* increase step to next candidate */
+ step += kstep;
+
+ /* compute the new residue without using division */
+ for (x = 1; x < PRIME_SIZE; x++) {
+ /* add the step to each residue */
+ res_tab[x] += kstep;
+
+ /* subtract the modulus [instead of using division] */
+ if (res_tab[x] >= ltm_prime_tab[x]) {
+ res_tab[x] -= ltm_prime_tab[x];
+ }
+
+ /* set flag if zero */
+ if (res_tab[x] == 0) {
+ y = 1;
+ }
+ }
+ } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
+
+ /* add the step */
+ if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* if didn't pass sieve and step == MAX then skip test */
+ if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
+ continue;
+ }
+
+ /* is this prime? */
+ for (x = 0; x < t; x++) {
+ mp_set(&b, ltm_prime_tab[t]);
+ if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if (res == MP_NO) {
+ break;
+ }
+ }
+
+ if (res == MP_YES) {
+ break;
+ }
+ }
+
+ err = MP_OKAY;
+LBL_ERR:
+ mp_clear(&b);
+ return err;
+}
+
+#endif
+
+/* End: bn_mp_prime_next_prime.c */
+
+/* Start: bn_mp_prime_rabin_miller_trials.c */
+#include <tommath.h>
+#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+
+static const struct {
+ int k, t;
+} sizes[] = {
+{ 128, 28 },
+{ 256, 16 },
+{ 384, 10 },
+{ 512, 7 },
+{ 640, 6 },
+{ 768, 5 },
+{ 896, 4 },
+{ 1024, 4 }
+};
+
+/* returns # of RM trials required for a given bit size */
+int mp_prime_rabin_miller_trials(int size)
+{
+ int x;
+
+ for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
+ if (sizes[x].k == size) {
+ return sizes[x].t;
+ } else if (sizes[x].k > size) {
+ return (x == 0) ? sizes[0].t : sizes[x - 1].t;
+ }
+ }
+ return sizes[x-1].t + 1;
+}
+
+
+#endif
+
+/* End: bn_mp_prime_rabin_miller_trials.c */
+
+/* Start: bn_mp_prime_random_ex.c */
+#include <tommath.h>
+#ifdef BN_MP_PRIME_RANDOM_EX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* makes a truly random prime of a given size (bits),
+ *
+ * Flags are as follows:
+ *
+ * LTM_PRIME_BBS - make prime congruent to 3 mod 4
+ * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
+ * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
+ * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ */
+
+/* This is possibly the mother of all prime generation functions, muahahahahaha! */
+int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
+{
+ unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
+ int res, err, bsize, maskOR_msb_offset;
+
+ /* sanity check the input */
+ if (size <= 1 || t <= 0) {
+ return MP_VAL;
+ }
+
+ /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
+ if (flags & LTM_PRIME_SAFE) {
+ flags |= LTM_PRIME_BBS;
+ }
+
+ /* calc the byte size */
+ bsize = (size>>3) + ((size&7)?1:0);
+
+ /* we need a buffer of bsize bytes */
+ tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
+ if (tmp == NULL) {
+ return MP_MEM;
+ }
+
+ /* calc the maskAND value for the MSbyte*/
+ maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
+
+ /* calc the maskOR_msb */
+ maskOR_msb = 0;
+ maskOR_msb_offset = (size - 2) >> 3;
+ if (flags & LTM_PRIME_2MSB_ON) {
+ maskOR_msb |= 1 << ((size - 2) & 7);
+ } else if (flags & LTM_PRIME_2MSB_OFF) {
+ maskAND &= ~(1 << ((size - 2) & 7));
+ }
+
+ /* get the maskOR_lsb */
+ maskOR_lsb = 0;
+ if (flags & LTM_PRIME_BBS) {
+ maskOR_lsb |= 3;
+ }
+
+ do {
+ /* read the bytes */
+ if (cb(tmp, bsize, dat) != bsize) {
+ err = MP_VAL;
+ goto error;
+ }
+
+ /* work over the MSbyte */
+ tmp[0] &= maskAND;
+ tmp[0] |= 1 << ((size - 1) & 7);
+
+ /* mix in the maskORs */
+ tmp[maskOR_msb_offset] |= maskOR_msb;
+ tmp[bsize-1] |= maskOR_lsb;
+
+ /* read it in */
+ if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
+
+ /* is it prime? */
+ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
+ if (res == MP_NO) {
+ continue;
+ }
+
+ if (flags & LTM_PRIME_SAFE) {
+ /* see if (a-1)/2 is prime */
+ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
+ if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
+
+ /* is it prime? */
+ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
+ }
+ } while (res == MP_NO);
+
+ if (flags & LTM_PRIME_SAFE) {
+ /* restore a to the original value */
+ if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
+ if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
+ }
+
+ err = MP_OKAY;
+error:
+ XFREE(tmp);
+ return err;
+}
+
+
+#endif
+
+/* End: bn_mp_prime_random_ex.c */
+
+/* Start: bn_mp_radix_size.c */
+#include <tommath.h>
+#ifdef BN_MP_RADIX_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* returns size of ASCII reprensentation */
+int mp_radix_size (mp_int * a, int radix, int *size)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+
+ *size = 0;
+
+ /* special case for binary */
+ if (radix == 2) {
+ *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
+ return MP_OKAY;
+ }
+
+ /* make sure the radix is in range */
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* init a copy of the input */
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* digs is the digit count */
+ digs = 0;
+
+ /* if it's negative add one for the sign */
+ if (t.sign == MP_NEG) {
+ ++digs;
+ t.sign = MP_ZPOS;
+ }
+
+ /* fetch out all of the digits */
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ ++digs;
+ }
+ mp_clear (&t);
+
+ /* return digs + 1, the 1 is for the NULL byte that would be required. */
+ *size = digs + 1;
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_mp_radix_size.c */
+
+/* Start: bn_mp_radix_smap.c */
+#include <tommath.h>
+#ifdef BN_MP_RADIX_SMAP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* chars used in radix conversions */
+const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+#endif
+
+/* End: bn_mp_radix_smap.c */
+
+/* Start: bn_mp_rand.c */
+#include <tommath.h>
+#ifdef BN_MP_RAND_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* makes a pseudo-random int of a given size */
+int
+mp_rand (mp_int * a, int digits)
+{
+ int res;
+ mp_digit d;
+
+ mp_zero (a);
+ if (digits <= 0) {
+ return MP_OKAY;
+ }
+
+ /* first place a random non-zero digit */
+ do {
+ d = ((mp_digit) abs (rand ()));
+ } while (d == 0);
+
+ if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
+ return res;
+ }
+
+ while (digits-- > 0) {
+ if ((res = mp_lshd (a, 1)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_rand.c */
+
+/* Start: bn_mp_read_radix.c */
+#include <tommath.h>
+#ifdef BN_MP_READ_RADIX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* read a string [ASCII] in a given radix */
+int mp_read_radix (mp_int * a, char *str, int radix)
+{
+ int y, res, neg;
+ char ch;
+
+ /* make sure the radix is ok */
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* if the leading digit is a
+ * minus set the sign to negative.
+ */
+ if (*str == '-') {
+ ++str;
+ neg = MP_NEG;
+ } else {
+ neg = MP_ZPOS;
+ }
+
+ /* set the integer to the default of zero */
+ mp_zero (a);
+
+ /* process each digit of the string */
+ while (*str) {
+ /* if the radix < 36 the conversion is case insensitive
+ * this allows numbers like 1AB and 1ab to represent the same value
+ * [e.g. in hex]
+ */
+ ch = (char) ((radix < 36) ? toupper (*str) : *str);
+ for (y = 0; y < 64; y++) {
+ if (ch == mp_s_rmap[y]) {
+ break;
+ }
+ }
+
+ /* if the char was found in the map
+ * and is less than the given radix add it
+ * to the number, otherwise exit the loop.
+ */
+ if (y < radix) {
+ if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
+ return res;
+ }
+ if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
+ return res;
+ }
+ } else {
+ break;
+ }
+ ++str;
+ }
+
+ /* set the sign only if a != 0 */
+ if (mp_iszero(a) != 1) {
+ a->sign = neg;
+ }
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_read_radix.c */
+
+/* Start: bn_mp_read_signed_bin.c */
+#include <tommath.h>
+#ifdef BN_MP_READ_SIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* read signed bin, big endian, first byte is 0==positive or 1==negative */
+int
+mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
+{
+ int res;
+
+ /* read magnitude */
+ if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* first byte is 0 for positive, non-zero for negative */
+ if (b[0] == 0) {
+ a->sign = MP_ZPOS;
+ } else {
+ a->sign = MP_NEG;
+ }
+
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_read_signed_bin.c */
+
+/* Start: bn_mp_read_unsigned_bin.c */
+#include <tommath.h>
+#ifdef BN_MP_READ_UNSIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reads a unsigned char array, assumes the msb is stored first [big endian] */
+int
+mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
+{
+ int res;
+
+ /* make sure there are at least two digits */
+ if (a->alloc < 2) {
+ if ((res = mp_grow(a, 2)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* zero the int */
+ mp_zero (a);
+
+ /* read the bytes in */
+ while (c-- > 0) {
+ if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
+ return res;
+ }
+
+#ifndef MP_8BIT
+ a->dp[0] |= *b++;
+ a->used += 1;
+#else
+ a->dp[0] = (*b & MP_MASK);
+ a->dp[1] |= ((*b++ >> 7U) & 1);
+ a->used += 2;
+#endif
+ }
+ mp_clamp (a);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_read_unsigned_bin.c */
+
+/* Start: bn_mp_reduce.c */
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reduces x mod m, assumes 0 < x < m**2, mu is
+ * precomputed via mp_reduce_setup.
+ * From HAC pp.604 Algorithm 14.42
+ */
+int
+mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+{
+ mp_int q;
+ int res, um = m->used;
+
+ /* q = x */
+ if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
+ return res;
+ }
+
+ /* q1 = x / b**(k-1) */
+ mp_rshd (&q, um - 1);
+
+ /* according to HAC this optimization is ok */
+ if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
+ if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ } else {
+#ifdef BN_S_MP_MUL_HIGH_DIGS_C
+ if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
+ if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+#else
+ {
+ res = MP_VAL;
+ goto CLEANUP;
+ }
+#endif
+ }
+
+ /* q3 = q2 / b**(k+1) */
+ mp_rshd (&q, um + 1);
+
+ /* x = x mod b**(k+1), quick (no division) */
+ if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* q = q * m mod b**(k+1), quick (no division) */
+ if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* x = x - q */
+ if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* If x < 0, add b**(k+1) to it */
+ if (mp_cmp_d (x, 0) == MP_LT) {
+ mp_set (&q, 1);
+ if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+ goto CLEANUP;
+ if ((res = mp_add (x, &q, x)) != MP_OKAY)
+ goto CLEANUP;
+ }
+
+ /* Back off if it's too big */
+ while (mp_cmp (x, m) != MP_LT) {
+ if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ }
+
+CLEANUP:
+ mp_clear (&q);
+
+ return res;
+}
+#endif
+
+/* End: bn_mp_reduce.c */
+
+/* Start: bn_mp_reduce_2k.c */
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_2K_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reduces a modulo n where n is of the form 2**p - d */
+int
+mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
+{
+ mp_int q;
+ int p, res;
+
+ if ((res = mp_init(&q)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(n);
+top:
+ /* q = a/2**p, a = a mod 2**p */
+ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (d != 1) {
+ /* q = q * d */
+ if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
+ goto ERR;
+ }
+ }
+
+ /* a = a + q */
+ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (mp_cmp_mag(a, n) != MP_LT) {
+ s_mp_sub(a, n, a);
+ goto top;
+ }
+
+ERR:
+ mp_clear(&q);
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_reduce_2k.c */
+
+/* Start: bn_mp_reduce_2k_setup.c */
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_2K_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines the setup value */
+int
+mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+{
+ int res, p;
+ mp_int tmp;
+
+ if ((res = mp_init(&tmp)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(a);
+ if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ *d = tmp.dp[0];
+ mp_clear(&tmp);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_reduce_2k_setup.c */
+
+/* Start: bn_mp_reduce_is_2k.c */
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_IS_2K_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* determines if mp_reduce_2k can be used */
+int mp_reduce_is_2k(mp_int *a)
+{
+ int ix, iy, iw;
+ mp_digit iz;
+
+ if (a->used == 0) {
+ return 0;
+ } else if (a->used == 1) {
+ return 1;
+ } else if (a->used > 1) {
+ iy = mp_count_bits(a);
+ iz = 1;
+ iw = 1;
+
+ /* Test every bit from the second digit up, must be 1 */
+ for (ix = DIGIT_BIT; ix < iy; ix++) {
+ if ((a->dp[iw] & iz) == 0) {
+ return 0;
+ }
+ iz <<= 1;
+ if (iz > (mp_digit)MP_MASK) {
+ ++iw;
+ iz = 1;
+ }
+ }
+ }
+ return 1;
+}
+
+#endif
+
+/* End: bn_mp_reduce_is_2k.c */
+
+/* Start: bn_mp_reduce_setup.c */
+#include <tommath.h>
+#ifdef BN_MP_REDUCE_SETUP_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* pre-calculate the value required for Barrett reduction
+ * For a given modulus "b" it calulates the value required in "a"
+ */
+int mp_reduce_setup (mp_int * a, mp_int * b)
+{
+ int res;
+
+ if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ return mp_div (a, b, a, NULL);
+}
+#endif
+
+/* End: bn_mp_reduce_setup.c */
+
+/* Start: bn_mp_rshd.c */
+#include <tommath.h>
+#ifdef BN_MP_RSHD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shift right a certain amount of digits */
+void mp_rshd (mp_int * a, int b)
+{
+ int x;
+
+ /* if b <= 0 then ignore it */
+ if (b <= 0) {
+ return;
+ }
+
+ /* if b > used then simply zero it and return */
+ if (a->used <= b) {
+ mp_zero (a);
+ return;
+ }
+
+ {
+ register mp_digit *bottom, *top;
+
+ /* shift the digits down */
+
+ /* bottom */
+ bottom = a->dp;
+
+ /* top [offset into digits] */
+ top = a->dp + b;
+
+ /* this is implemented as a sliding window where
+ * the window is b-digits long and digits from
+ * the top of the window are copied to the bottom
+ *
+ * e.g.
+
+ b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
+ /\ | ---->
+ \-------------------/ ---->
+ */
+ for (x = 0; x < (a->used - b); x++) {
+ *bottom++ = *top++;
+ }
+
+ /* zero the top digits */
+ for (; x < a->used; x++) {
+ *bottom++ = 0;
+ }
+ }
+
+ /* remove excess digits */
+ a->used -= b;
+}
+#endif
+
+/* End: bn_mp_rshd.c */
+
+/* Start: bn_mp_set.c */
+#include <tommath.h>
+#ifdef BN_MP_SET_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* set to a digit */
+void mp_set (mp_int * a, mp_digit b)
+{
+ mp_zero (a);
+ a->dp[0] = b & MP_MASK;
+ a->used = (a->dp[0] != 0) ? 1 : 0;
+}
+#endif
+
+/* End: bn_mp_set.c */
+
+/* Start: bn_mp_set_int.c */
+#include <tommath.h>
+#ifdef BN_MP_SET_INT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* set a 32-bit const */
+int mp_set_int (mp_int * a, unsigned long b)
+{
+ int x, res;
+
+ mp_zero (a);
+
+ /* set four bits at a time */
+ for (x = 0; x < 8; x++) {
+ /* shift the number up four bits */
+ if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* OR in the top four bits of the source */
+ a->dp[0] |= (b >> 28) & 15;
+
+ /* shift the source up to the next four bits */
+ b <<= 4;
+
+ /* ensure that digits are not clamped off */
+ a->used += 1;
+ }
+ mp_clamp (a);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_set_int.c */
+
+/* Start: bn_mp_shrink.c */
+#include <tommath.h>
+#ifdef BN_MP_SHRINK_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* shrink a bignum */
+int mp_shrink (mp_int * a)
+{
+ mp_digit *tmp;
+ if (a->alloc != a->used && a->used > 0) {
+ if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
+ return MP_MEM;
+ }
+ a->dp = tmp;
+ a->alloc = a->used;
+ }
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_shrink.c */
+
+/* Start: bn_mp_signed_bin_size.c */
+#include <tommath.h>
+#ifdef BN_MP_SIGNED_BIN_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* get the size for an signed equivalent */
+int mp_signed_bin_size (mp_int * a)
+{
+ return 1 + mp_unsigned_bin_size (a);
+}
+#endif
+
+/* End: bn_mp_signed_bin_size.c */
+
+/* Start: bn_mp_sqr.c */
+#include <tommath.h>
+#ifdef BN_MP_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* computes b = a*a */
+int
+mp_sqr (mp_int * a, mp_int * b)
+{
+ int res;
+
+#ifdef BN_MP_TOOM_SQR_C
+ /* use Toom-Cook? */
+ if (a->used >= TOOM_SQR_CUTOFF) {
+ res = mp_toom_sqr(a, b);
+ /* Karatsuba? */
+ } else
+#endif
+#ifdef BN_MP_KARATSUBA_SQR_C
+if (a->used >= KARATSUBA_SQR_CUTOFF) {
+ res = mp_karatsuba_sqr (a, b);
+ } else
+#endif
+ {
+#ifdef BN_FAST_S_MP_SQR_C
+ /* can we use the fast comba multiplier? */
+ if ((a->used * 2 + 1) < MP_WARRAY &&
+ a->used <
+ (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
+ res = fast_s_mp_sqr (a, b);
+ } else
+#endif
+#ifdef BN_S_MP_SQR_C
+ res = s_mp_sqr (a, b);
+#else
+ res = MP_VAL;
+#endif
+ }
+ b->sign = MP_ZPOS;
+ return res;
+}
+#endif
+
+/* End: bn_mp_sqr.c */
+
+/* Start: bn_mp_sqrmod.c */
+#include <tommath.h>
+#ifdef BN_MP_SQRMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* c = a * a (mod b) */
+int
+mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res;
+ mp_int t;
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_sqr (a, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, b, c);
+ mp_clear (&t);
+ return res;
+}
+#endif
+
+/* End: bn_mp_sqrmod.c */
+
+/* Start: bn_mp_sqrt.c */
+#include <tommath.h>
+#ifdef BN_MP_SQRT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* this function is less generic than mp_n_root, simpler and faster */
+int mp_sqrt(mp_int *arg, mp_int *ret)
+{
+ int res;
+ mp_int t1,t2;
+
+ /* must be positive */
+ if (arg->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* easy out */
+ if (mp_iszero(arg) == MP_YES) {
+ mp_zero(ret);
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init(&t2)) != MP_OKAY) {
+ goto E2;
+ }
+
+ /* First approx. (not very bad for large arg) */
+ mp_rshd (&t1,t1.used/2);
+
+ /* t1 > 0 */
+ if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ /* And now t1 > sqrt(arg) */
+ do {
+ if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
+ goto E1;
+ }
+ /* t1 >= sqrt(arg) >= t2 at this point */
+ } while (mp_cmp_mag(&t1,&t2) == MP_GT);
+
+ mp_exch(&t1,ret);
+
+E1: mp_clear(&t2);
+E2: mp_clear(&t1);
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_sqrt.c */
+
+/* Start: bn_mp_sub.c */
+#include <tommath.h>
+#ifdef BN_MP_SUB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* high level subtraction (handles signs) */
+int
+mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+ int sa, sb, res;
+
+ sa = a->sign;
+ sb = b->sign;
+
+ if (sa != sb) {
+ /* subtract a negative from a positive, OR */
+ /* subtract a positive from a negative. */
+ /* In either case, ADD their magnitudes, */
+ /* and use the sign of the first number. */
+ c->sign = sa;
+ res = s_mp_add (a, b, c);
+ } else {
+ /* subtract a positive from a positive, OR */
+ /* subtract a negative from a negative. */
+ /* First, take the difference between their */
+ /* magnitudes, then... */
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ /* Copy the sign from the first */
+ c->sign = sa;
+ /* The first has a larger or equal magnitude */
+ res = s_mp_sub (a, b, c);
+ } else {
+ /* The result has the *opposite* sign from */
+ /* the first number. */
+ c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+ /* The second has a larger magnitude */
+ res = s_mp_sub (b, a, c);
+ }
+ }
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_sub.c */
+
+/* Start: bn_mp_sub_d.c */
+#include <tommath.h>
+#ifdef BN_MP_SUB_D_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* single digit subtraction */
+int
+mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
+{
+ mp_digit *tmpa, *tmpc, mu;
+ int res, ix, oldused;
+
+ /* grow c as required */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* if a is negative just do an unsigned
+ * addition [with fudged signs]
+ */
+ if (a->sign == MP_NEG) {
+ a->sign = MP_ZPOS;
+ res = mp_add_d(a, b, c);
+ a->sign = c->sign = MP_NEG;
+ return res;
+ }
+
+ /* setup regs */
+ oldused = c->used;
+ tmpa = a->dp;
+ tmpc = c->dp;
+
+ /* if a <= b simply fix the single digit */
+ if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
+ if (a->used == 1) {
+ *tmpc++ = b - *tmpa;
+ } else {
+ *tmpc++ = b;
+ }
+ ix = 1;
+
+ /* negative/1digit */
+ c->sign = MP_NEG;
+ c->used = 1;
+ } else {
+ /* positive/size */
+ c->sign = MP_ZPOS;
+ c->used = a->used;
+
+ /* subtract first digit */
+ *tmpc = *tmpa++ - b;
+ mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ *tmpc++ &= MP_MASK;
+
+ /* handle rest of the digits */
+ for (ix = 1; ix < a->used; ix++) {
+ *tmpc = *tmpa++ - mu;
+ mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* zero excess digits */
+ while (ix++ < oldused) {
+ *tmpc++ = 0;
+ }
+ mp_clamp(c);
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_mp_sub_d.c */
+
+/* Start: bn_mp_submod.c */
+#include <tommath.h>
+#ifdef BN_MP_SUBMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* d = a - b (mod c) */
+int
+mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+{
+ int res;
+ mp_int t;
+
+
+ if ((res = mp_init (&t)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ res = mp_mod (&t, c, d);
+ mp_clear (&t);
+ return res;
+}
+#endif
+
+/* End: bn_mp_submod.c */
+
+/* Start: bn_mp_to_signed_bin.c */
+#include <tommath.h>
+#ifdef BN_MP_TO_SIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* store in signed [big endian] format */
+int
+mp_to_signed_bin (mp_int * a, unsigned char *b)
+{
+ int res;
+
+ if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
+ return res;
+ }
+ b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_to_signed_bin.c */
+
+/* Start: bn_mp_to_unsigned_bin.c */
+#include <tommath.h>
+#ifdef BN_MP_TO_UNSIGNED_BIN_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* store in unsigned [big endian] format */
+int
+mp_to_unsigned_bin (mp_int * a, unsigned char *b)
+{
+ int x, res;
+ mp_int t;
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ x = 0;
+ while (mp_iszero (&t) == 0) {
+#ifndef MP_8BIT
+ b[x++] = (unsigned char) (t.dp[0] & 255);
+#else
+ b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
+#endif
+ if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ }
+ bn_reverse (b, x);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_to_unsigned_bin.c */
+
+/* Start: bn_mp_toom_mul.c */
+#include <tommath.h>
+#ifdef BN_MP_TOOM_MUL_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiplication using the Toom-Cook 3-way algorithm
+ *
+ * Much more complicated than Karatsuba but has a lower asymptotic running time of
+ * O(N**1.464). This algorithm is only particularly useful on VERY large
+ * inputs (we're talking 1000s of digits here...).
+*/
+int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
+ &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = MIN(a->used, b->used) / 3;
+
+ /* a = a2 * B**2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* b = b2 * B**2 + b1 * B + b0 */
+ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(b, &b1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&b1, B);
+ mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
+
+ if ((res = mp_copy(b, &b2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&b2, B*2);
+
+ /* w0 = a0*b0 */
+ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * b2 */
+ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts,
+ 2 small divisions and 1 small multiplication
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
+ &b2, &tmp1, &tmp2, NULL);
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_toom_mul.c */
+
+/* Start: bn_mp_toom_sqr.c */
+#include <tommath.h>
+#ifdef BN_MP_TOOM_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* squaring using Toom-Cook 3-way algorithm */
+int
+mp_toom_sqr(mp_int *a, mp_int *b)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = a->used / 3;
+
+ /* a = a2 * B**2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* w0 = a0*a0 */
+ if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * a2 */
+ if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))**2 */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))**2 */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)**2 */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_toom_sqr.c */
+
+/* Start: bn_mp_toradix.c */
+#include <tommath.h>
+#ifdef BN_MP_TORADIX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* stores a bignum as a ASCII string in a given radix (2..64) */
+int mp_toradix (mp_int * a, char *str, int radix)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+ char *_s = str;
+
+ /* check range of the radix */
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* quick out if its zero */
+ if (mp_iszero(a) == 1) {
+ *str++ = '0';
+ *str = '\0';
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* if it is negative output a - */
+ if (t.sign == MP_NEG) {
+ ++_s;
+ *str++ = '-';
+ t.sign = MP_ZPOS;
+ }
+
+ digs = 0;
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ *str++ = mp_s_rmap[d];
+ ++digs;
+ }
+
+ /* reverse the digits of the string. In this case _s points
+ * to the first digit [exluding the sign] of the number]
+ */
+ bn_reverse ((unsigned char *)_s, digs);
+
+ /* append a NULL so the string is properly terminated */
+ *str = '\0';
+
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_mp_toradix.c */
+
+/* Start: bn_mp_toradix_n.c */
+#include <tommath.h>
+#ifdef BN_MP_TORADIX_N_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* stores a bignum as a ASCII string in a given radix (2..64)
+ *
+ * Stores upto maxlen-1 chars and always a NULL byte
+ */
+int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
+{
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+ char *_s = str;
+
+ /* check range of the maxlen, radix */
+ if (maxlen < 3 || radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* quick out if its zero */
+ if (mp_iszero(a) == 1) {
+ *str++ = '0';
+ *str = '\0';
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* if it is negative output a - */
+ if (t.sign == MP_NEG) {
+ /* we have to reverse our digits later... but not the - sign!! */
+ ++_s;
+
+ /* store the flag and mark the number as positive */
+ *str++ = '-';
+ t.sign = MP_ZPOS;
+
+ /* subtract a char */
+ --maxlen;
+ }
+
+ digs = 0;
+ while (mp_iszero (&t) == 0) {
+ if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear (&t);
+ return res;
+ }
+ *str++ = mp_s_rmap[d];
+ ++digs;
+
+ if (--maxlen == 1) {
+ /* no more room */
+ break;
+ }
+ }
+
+ /* reverse the digits of the string. In this case _s points
+ * to the first digit [exluding the sign] of the number]
+ */
+ bn_reverse ((unsigned char *)_s, digs);
+
+ /* append a NULL so the string is properly terminated */
+ *str = '\0';
+
+ mp_clear (&t);
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_mp_toradix_n.c */
+
+/* Start: bn_mp_unsigned_bin_size.c */
+#include <tommath.h>
+#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* get the size for an unsigned equivalent */
+int
+mp_unsigned_bin_size (mp_int * a)
+{
+ int size = mp_count_bits (a);
+ return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+}
+#endif
+
+/* End: bn_mp_unsigned_bin_size.c */
+
+/* Start: bn_mp_xor.c */
+#include <tommath.h>
+#ifdef BN_MP_XOR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* XOR two ints together */
+int
+mp_xor (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+
+ }
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_mp_xor.c */
+
+/* Start: bn_mp_zero.c */
+#include <tommath.h>
+#ifdef BN_MP_ZERO_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* set to zero */
+void
+mp_zero (mp_int * a)
+{
+ a->sign = MP_ZPOS;
+ a->used = 0;
+ memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
+}
+#endif
+
+/* End: bn_mp_zero.c */
+
+/* Start: bn_prime_tab.c */
+#include <tommath.h>
+#ifdef BN_PRIME_TAB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+const mp_digit ltm_prime_tab[] = {
+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
+#ifndef MP_8BIT
+ 0x0083,
+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+#endif
+};
+#endif
+
+/* End: bn_prime_tab.c */
+
+/* Start: bn_reverse.c */
+#include <tommath.h>
+#ifdef BN_REVERSE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* reverse an array, used for radix code */
+void
+bn_reverse (unsigned char *s, int len)
+{
+ int ix, iy;
+ unsigned char t;
+
+ ix = 0;
+ iy = len - 1;
+ while (ix < iy) {
+ t = s[ix];
+ s[ix] = s[iy];
+ s[iy] = t;
+ ++ix;
+ --iy;
+ }
+}
+#endif
+
+/* End: bn_reverse.c */
+
+/* Start: bn_s_mp_add.c */
+#include <tommath.h>
+#ifdef BN_S_MP_ADD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* low level addition, based on HAC pp.594, Algorithm 14.7 */
+int
+s_mp_add (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int *x;
+ int olduse, res, min, max;
+
+ /* find sizes, we let |a| <= |b| which means we have to sort
+ * them. "x" will point to the input with the most digits
+ */
+ if (a->used > b->used) {
+ min = b->used;
+ max = a->used;
+ x = a;
+ } else {
+ min = a->used;
+ max = b->used;
+ x = b;
+ }
+
+ /* init result */
+ if (c->alloc < max + 1) {
+ if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* get old used digit count and set new one */
+ olduse = c->used;
+ c->used = max + 1;
+
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
+
+ /* alias for digit pointers */
+
+ /* first input */
+ tmpa = a->dp;
+
+ /* second input */
+ tmpb = b->dp;
+
+ /* destination */
+ tmpc = c->dp;
+
+ /* zero the carry */
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+ *tmpc = *tmpa++ + *tmpb++ + u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* now copy higher words if any, that is in A+B
+ * if A or B has more digits add those in
+ */
+ if (min != max) {
+ for (; i < max; i++) {
+ /* T[i] = X[i] + U */
+ *tmpc = x->dp[i] + u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* add carry */
+ *tmpc++ = u;
+
+ /* clear digits above oldused */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_s_mp_add.c */
+
+/* Start: bn_s_mp_exptmod.c */
+#include <tommath.h>
+#ifdef BN_S_MP_EXPTMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+#ifdef MP_LOW_MEM
+ #define TAB_SIZE 32
+#else
+ #define TAB_SIZE 256
+#endif
+
+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ mp_int M[TAB_SIZE], res, mu;
+ mp_digit buf;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+#ifdef MP_LOW_MEM
+ if (winsize > 5) {
+ winsize = 5;
+ }
+#endif
+
+ /* init M array */
+ /* init first cell */
+ if ((err = mp_init(&M[1])) != MP_OKAY) {
+ return err;
+ }
+
+ /* now init the second half of the array */
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ if ((err = mp_init(&M[x])) != MP_OKAY) {
+ for (y = 1<<(winsize-1); y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ mp_clear(&M[1]);
+ return err;
+ }
+ }
+
+ /* create mu, used for Barrett reduction */
+ if ((err = mp_init (&mu)) != MP_OKAY) {
+ goto LBL_M;
+ }
+ if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* create M table
+ *
+ * The M table contains powers of the base,
+ * e.g. M[x] = G**x mod P
+ *
+ * The first half of the table is not
+ * computed though accept for M[0] and M[1]
+ */
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring
+ * M[1] (winsize-1) times
+ */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)],
+ &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
+ * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
+ */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ mp_set (&res, 1);
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset the bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int) DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0) {
+ continue;
+ }
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+ }
+ }
+
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+LBL_RES:mp_clear (&res);
+LBL_MU:mp_clear (&mu);
+LBL_M:
+ mp_clear(&M[1]);
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
+#endif
+
+/* End: bn_s_mp_exptmod.c */
+
+/* Start: bn_s_mp_mul_digs.c */
+#include <tommath.h>
+#ifdef BN_S_MP_MUL_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiplies |a| * |b| and only computes upto digs digits of result
+ * HAC pp. 595, Algorithm 14.12 Modified so you can control how
+ * many digits of output are created.
+ */
+int
+s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+ /* can we use the fast multiplier? */
+ if (((digs) < MP_WARRAY) &&
+ MIN (a->used, b->used) <
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_s_mp_mul_digs (a, b, c, digs);
+ }
+
+ if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
+ return res;
+ }
+ t.used = digs;
+
+ /* compute the digits of the product directly */
+ pa = a->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* set the carry to zero */
+ u = 0;
+
+ /* limit ourselves to making digs digits of output */
+ pb = MIN (b->used, digs - ix);
+
+ /* setup some aliases */
+ /* copy of the digit from a used within the nested loop */
+ tmpx = a->dp[ix];
+
+ /* an alias for the destination shifted ix places */
+ tmpt = t.dp + ix;
+
+ /* an alias for the digits of b */
+ tmpy = b->dp;
+
+ /* compute the columns of the output and propagate the carry */
+ for (iy = 0; iy < pb; iy++) {
+ /* compute the column as a mp_word */
+ r = ((mp_word)*tmpt) +
+ ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+ ((mp_word) u);
+
+ /* the new column is the lower part of the result */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry word from the result */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ /* set carry if it is placed below digs */
+ if (ix + iy < digs) {
+ *tmpt = u;
+ }
+ }
+
+ mp_clamp (&t);
+ mp_exch (&t, c);
+
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_s_mp_mul_digs.c */
+
+/* Start: bn_s_mp_mul_high_digs.c */
+#include <tommath.h>
+#ifdef BN_S_MP_MUL_HIGH_DIGS_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* multiplies |a| * |b| and does not compute the lower digs digits
+ * [meant to get the higher part of the product]
+ */
+int
+s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+ /* can we use the fast multiplier? */
+#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
+ if (((a->used + b->used + 1) < MP_WARRAY)
+ && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_s_mp_mul_high_digs (a, b, c, digs);
+ }
+#endif
+
+ if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ t.used = a->used + b->used + 1;
+
+ pa = a->used;
+ pb = b->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* clear the carry */
+ u = 0;
+
+ /* left hand side of A[ix] * B[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias to the address of where the digits will be stored */
+ tmpt = &(t.dp[digs]);
+
+ /* alias for where to read the right hand side from */
+ tmpy = b->dp + (digs - ix);
+
+ for (iy = digs - ix; iy < pb; iy++) {
+ /* calculate the double precision result */
+ r = ((mp_word)*tmpt) +
+ ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+ ((mp_word) u);
+
+ /* get the lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* carry the carry */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ *tmpt = u;
+ }
+ mp_clamp (&t);
+ mp_exch (&t, c);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_s_mp_mul_high_digs.c */
+
+/* Start: bn_s_mp_sqr.c */
+#include <tommath.h>
+#ifdef BN_S_MP_SQR_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+int
+s_mp_sqr (mp_int * a, mp_int * b)
+{
+ mp_int t;
+ int res, ix, iy, pa;
+ mp_word r;
+ mp_digit u, tmpx, *tmpt;
+
+ pa = a->used;
+ if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* default used is maximum possible size */
+ t.used = 2*pa + 1;
+
+ for (ix = 0; ix < pa; ix++) {
+ /* first calculate the digit at 2*ix */
+ /* calculate double precision result */
+ r = ((mp_word) t.dp[2*ix]) +
+ ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+
+ /* store lower part in result */
+ t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry */
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+ /* left hand side of A[ix] * A[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias for where to store the results */
+ tmpt = t.dp + (2*ix + 1);
+
+ for (iy = ix + 1; iy < pa; iy++) {
+ /* first calculate the product */
+ r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+
+ /* now calculate the double precision result, note we use
+ * addition instead of *2 since it's easier to optimize
+ */
+ r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
+
+ /* store lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get carry */
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+ }
+ /* propagate upwards */
+ while (u != ((mp_digit) 0)) {
+ r = ((mp_word) *tmpt) + ((mp_word) u);
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+ }
+ }
+
+ mp_clamp (&t);
+ mp_exch (&t, b);
+ mp_clear (&t);
+ return MP_OKAY;
+}
+#endif
+
+/* End: bn_s_mp_sqr.c */
+
+/* Start: bn_s_mp_sub.c */
+#include <tommath.h>
+#ifdef BN_S_MP_SUB_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
+int
+s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
+{
+ int olduse, res, min, max;
+
+ /* find sizes */
+ min = b->used;
+ max = a->used;
+
+ /* init result */
+ if (c->alloc < max) {
+ if ((res = mp_grow (c, max)) != MP_OKAY) {
+ return res;
+ }
+ }
+ olduse = c->used;
+ c->used = max;
+
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
+
+ /* alias for digit pointers */
+ tmpa = a->dp;
+ tmpb = b->dp;
+ tmpc = c->dp;
+
+ /* set carry to zero */
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* T[i] = A[i] - B[i] - U */
+ *tmpc = *tmpa++ - *tmpb++ - u;
+
+ /* U = carry bit of T[i]
+ * Note this saves performing an AND operation since
+ * if a carry does occur it will propagate all the way to the
+ * MSB. As a result a single shift is enough to get the carry
+ */
+ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* now copy higher words if any, e.g. if A has more digits than B */
+ for (; i < max; i++) {
+ /* T[i] = A[i] - U */
+ *tmpc = *tmpa++ - u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* clear digits above used (since we may not have grown result above) */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
+ }
+
+ mp_clamp (c);
+ return MP_OKAY;
+}
+
+#endif
+
+/* End: bn_s_mp_sub.c */
+
+/* Start: bncore.c */
+#include <tommath.h>
+#ifdef BNCORE_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+
+/* Known optimal configurations
+
+ CPU /Compiler /MUL CUTOFF/SQR CUTOFF
+-------------------------------------------------------------
+ Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
+
+*/
+
+int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
+ KARATSUBA_SQR_CUTOFF = 128, /* Min. number of digits before Karatsuba squaring is used. */
+
+ TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
+ TOOM_SQR_CUTOFF = 400;
+#endif
+
+/* End: bncore.c */
+
+
+/* EOF */
diff --git a/libtommath/pretty.build b/libtommath/pretty.build
new file mode 100644
index 0000000..a708b8a
--- /dev/null
+++ b/libtommath/pretty.build
@@ -0,0 +1,66 @@
+#!/bin/perl -w
+#
+# Cute little builder for perl
+# Total waste of development time...
+#
+# This will build all the object files and then the archive .a file
+# requires GCC, GNU make and a sense of humour.
+#
+# Tom St Denis
+use strict;
+
+my $count = 0;
+my $starttime = time;
+my $rate = 0;
+print "Scanning for source files...\n";
+foreach my $filename (glob "*.c") {
+ ++$count;
+}
+print "Source files to build: $count\nBuilding...\n";
+my $i = 0;
+my $lines = 0;
+my $filesbuilt = 0;
+foreach my $filename (glob "*.c") {
+ printf("Building %3.2f%%, ", (++$i/$count)*100.0);
+ if ($i % 4 == 0) { print "/, "; }
+ if ($i % 4 == 1) { print "-, "; }
+ if ($i % 4 == 2) { print "\\, "; }
+ if ($i % 4 == 3) { print "|, "; }
+ if ($rate > 0) {
+ my $tleft = ($count - $i) / $rate;
+ my $tsec = $tleft%60;
+ my $tmin = ($tleft/60)%60;
+ my $thour = ($tleft/3600)%60;
+ printf("%2d:%02d:%02d left, ", $thour, $tmin, $tsec);
+ }
+ my $cnt = ($i/$count)*30.0;
+ my $x = 0;
+ print "[";
+ for (; $x < $cnt; $x++) { print "#"; }
+ for (; $x < 30; $x++) { print " "; }
+ print "]\r";
+ my $tmp = $filename;
+ $tmp =~ s/\.c/".o"/ge;
+ if (open(SRC, "<$tmp")) {
+ close SRC;
+ } else {
+ !system("make $tmp > /dev/null 2>/dev/null") or die "\nERROR: Failed to make $tmp!!!\n";
+ open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!";
+ ++$lines while (<SRC>);
+ close SRC or die "Error closing $filename after reading: $!";
+ ++$filesbuilt;
+ }
+
+ # update timer
+ if (time != $starttime) {
+ my $delay = time - $starttime;
+ $rate = $i/$delay;
+ }
+}
+
+# finish building the library
+printf("\nFinished building source (%d seconds, %3.2f files per second).\n", time - $starttime, $rate);
+print "Compiled approximately $filesbuilt files and $lines lines of code.\n";
+print "Doing final make (building archive...)\n";
+!system("make > /dev/null 2>/dev/null") or die "\nERROR: Failed to perform last make command!!!\n";
+print "done.\n"; \ No newline at end of file
diff --git a/libtommath/tommath.h b/libtommath/tommath.h
new file mode 100644
index 0000000..7cc92c2
--- /dev/null
+++ b/libtommath/tommath.h
@@ -0,0 +1,567 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#ifndef BN_H_
+#define BN_H_
+
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <limits.h>
+
+#include <tommath_class.h>
+
+#undef MIN
+#define MIN(x,y) ((x)<(y)?(x):(y))
+#undef MAX
+#define MAX(x,y) ((x)>(y)?(x):(y))
+
+#ifdef __cplusplus
+extern "C" {
+
+/* C++ compilers don't like assigning void * to mp_digit * */
+#define OPT_CAST(x) (x *)
+
+#else
+
+/* C on the other hand doesn't care */
+#define OPT_CAST(x)
+
+#endif
+
+
+/* detect 64-bit mode if possible */
+#if defined(__x86_64__)
+ #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
+ #define MP_64BIT
+ #endif
+#endif
+
+/* some default configurations.
+ *
+ * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
+ * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
+ *
+ * At the very least a mp_digit must be able to hold 7 bits
+ * [any size beyond that is ok provided it doesn't overflow the data type]
+ */
+#ifdef MP_8BIT
+ typedef unsigned char mp_digit;
+ typedef unsigned short mp_word;
+#elif defined(MP_16BIT)
+ typedef unsigned short mp_digit;
+ typedef unsigned long mp_word;
+#elif defined(MP_64BIT)
+ /* for GCC only on supported platforms */
+#ifndef CRYPT
+ typedef unsigned long long ulong64;
+ typedef signed long long long64;
+#endif
+
+ typedef unsigned long mp_digit;
+ typedef unsigned long mp_word __attribute__ ((mode(TI)));
+
+ #define DIGIT_BIT 60
+#else
+ /* this is the default case, 28-bit digits */
+
+ /* this is to make porting into LibTomCrypt easier :-) */
+#ifndef CRYPT
+ #if defined(_MSC_VER) || defined(__BORLANDC__)
+ typedef unsigned __int64 ulong64;
+ typedef signed __int64 long64;
+ #else
+ typedef unsigned long long ulong64;
+ typedef signed long long long64;
+ #endif
+#endif
+
+ typedef unsigned long mp_digit;
+ typedef ulong64 mp_word;
+
+#ifdef MP_31BIT
+ /* this is an extension that uses 31-bit digits */
+ #define DIGIT_BIT 31
+#else
+ /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
+ #define DIGIT_BIT 28
+ #define MP_28BIT
+#endif
+#endif
+
+/* define heap macros */
+#ifndef CRYPT
+ /* default to libc stuff */
+ #ifndef XMALLOC
+ #define XMALLOC malloc
+ #define XFREE free
+ #define XREALLOC realloc
+ #define XCALLOC calloc
+ #else
+ /* prototypes for our heap functions */
+ extern void *XMALLOC(size_t n);
+ extern void *REALLOC(void *p, size_t n);
+ extern void *XCALLOC(size_t n, size_t s);
+ extern void XFREE(void *p);
+ #endif
+#endif
+
+
+/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
+#ifndef DIGIT_BIT
+ #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */
+#endif
+
+#define MP_DIGIT_BIT DIGIT_BIT
+#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
+#define MP_DIGIT_MAX MP_MASK
+
+/* equalities */
+#define MP_LT -1 /* less than */
+#define MP_EQ 0 /* equal to */
+#define MP_GT 1 /* greater than */
+
+#define MP_ZPOS 0 /* positive integer */
+#define MP_NEG 1 /* negative */
+
+#define MP_OKAY 0 /* ok result */
+#define MP_MEM -2 /* out of mem */
+#define MP_VAL -3 /* invalid input */
+#define MP_RANGE MP_VAL
+
+#define MP_YES 1 /* yes response */
+#define MP_NO 0 /* no response */
+
+/* Primality generation flags */
+#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
+#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
+#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
+#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
+
+typedef int mp_err;
+
+/* you'll have to tune these... */
+extern int KARATSUBA_MUL_CUTOFF,
+ KARATSUBA_SQR_CUTOFF,
+ TOOM_MUL_CUTOFF,
+ TOOM_SQR_CUTOFF;
+
+/* define this to use lower memory usage routines (exptmods mostly) */
+/* #define MP_LOW_MEM */
+
+/* default precision */
+#ifndef MP_PREC
+ #ifndef MP_LOW_MEM
+ #define MP_PREC 64 /* default digits of precision */
+ #else
+ #define MP_PREC 8 /* default digits of precision */
+ #endif
+#endif
+
+/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
+#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
+
+/* the infamous mp_int structure */
+typedef struct {
+ int used, alloc, sign;
+ mp_digit *dp;
+} mp_int;
+
+/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+
+
+#define USED(m) ((m)->used)
+#define DIGIT(m,k) ((m)->dp[(k)])
+#define SIGN(m) ((m)->sign)
+
+/* error code to char* string */
+char *mp_error_to_string(int code);
+
+/* ---> init and deinit bignum functions <--- */
+/* init a bignum */
+int mp_init(mp_int *a);
+
+/* free a bignum */
+void mp_clear(mp_int *a);
+
+/* init a null terminated series of arguments */
+int mp_init_multi(mp_int *mp, ...);
+
+/* clear a null terminated series of arguments */
+void mp_clear_multi(mp_int *mp, ...);
+
+/* exchange two ints */
+void mp_exch(mp_int *a, mp_int *b);
+
+/* shrink ram required for a bignum */
+int mp_shrink(mp_int *a);
+
+/* grow an int to a given size */
+int mp_grow(mp_int *a, int size);
+
+/* init to a given number of digits */
+int mp_init_size(mp_int *a, int size);
+
+/* ---> Basic Manipulations <--- */
+#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
+#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
+#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
+
+/* set to zero */
+void mp_zero(mp_int *a);
+
+/* set to a digit */
+void mp_set(mp_int *a, mp_digit b);
+
+/* set a 32-bit const */
+int mp_set_int(mp_int *a, unsigned long b);
+
+/* get a 32-bit value */
+unsigned long mp_get_int(mp_int * a);
+
+/* initialize and set a digit */
+int mp_init_set (mp_int * a, mp_digit b);
+
+/* initialize and set 32-bit value */
+int mp_init_set_int (mp_int * a, unsigned long b);
+
+/* copy, b = a */
+int mp_copy(mp_int *a, mp_int *b);
+
+/* inits and copies, a = b */
+int mp_init_copy(mp_int *a, mp_int *b);
+
+/* trim unused digits */
+void mp_clamp(mp_int *a);
+
+/* ---> digit manipulation <--- */
+
+/* right shift by "b" digits */
+void mp_rshd(mp_int *a, int b);
+
+/* left shift by "b" digits */
+int mp_lshd(mp_int *a, int b);
+
+/* c = a / 2**b */
+int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
+
+/* b = a/2 */
+int mp_div_2(mp_int *a, mp_int *b);
+
+/* c = a * 2**b */
+int mp_mul_2d(mp_int *a, int b, mp_int *c);
+
+/* b = a*2 */
+int mp_mul_2(mp_int *a, mp_int *b);
+
+/* c = a mod 2**d */
+int mp_mod_2d(mp_int *a, int b, mp_int *c);
+
+/* computes a = 2**b */
+int mp_2expt(mp_int *a, int b);
+
+/* Counts the number of lsbs which are zero before the first zero bit */
+int mp_cnt_lsb(mp_int *a);
+
+/* I Love Earth! */
+
+/* makes a pseudo-random int of a given size */
+int mp_rand(mp_int *a, int digits);
+
+/* ---> binary operations <--- */
+/* c = a XOR b */
+int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a OR b */
+int mp_or(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a AND b */
+int mp_and(mp_int *a, mp_int *b, mp_int *c);
+
+/* ---> Basic arithmetic <--- */
+
+/* b = -a */
+int mp_neg(mp_int *a, mp_int *b);
+
+/* b = |a| */
+int mp_abs(mp_int *a, mp_int *b);
+
+/* compare a to b */
+int mp_cmp(mp_int *a, mp_int *b);
+
+/* compare |a| to |b| */
+int mp_cmp_mag(mp_int *a, mp_int *b);
+
+/* c = a + b */
+int mp_add(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a - b */
+int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a * b */
+int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+
+/* b = a*a */
+int mp_sqr(mp_int *a, mp_int *b);
+
+/* a/b => cb + d == a */
+int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* c = a mod b, 0 <= c < b */
+int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+
+/* ---> single digit functions <--- */
+
+/* compare against a single digit */
+int mp_cmp_d(mp_int *a, mp_digit b);
+
+/* c = a + b */
+int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a - b */
+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a * b */
+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* a/b => cb + d == a */
+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+
+/* a/3 => 3c + d == a */
+int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+
+/* c = a**b */
+int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a mod b, 0 <= c < b */
+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+
+/* ---> number theory <--- */
+
+/* d = a + b (mod c) */
+int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* d = a - b (mod c) */
+int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* d = a * b (mod c) */
+int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* c = a * a (mod b) */
+int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = 1/a (mod b) */
+int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = (a, b) */
+int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+
+/* produces value such that U1*a + U2*b = U3 */
+int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+
+/* c = [a, b] or (a*b)/(a, b) */
+int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+
+/* finds one of the b'th root of a, such that |c|**b <= |a|
+ *
+ * returns error if a < 0 and b is even
+ */
+int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+
+/* special sqrt algo */
+int mp_sqrt(mp_int *arg, mp_int *ret);
+
+/* is number a square? */
+int mp_is_square(mp_int *arg, int *ret);
+
+/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
+int mp_jacobi(mp_int *a, mp_int *n, int *c);
+
+/* used to setup the Barrett reduction for a given modulus b */
+int mp_reduce_setup(mp_int *a, mp_int *b);
+
+/* Barrett Reduction, computes a (mod b) with a precomputed value c
+ *
+ * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
+ * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
+ */
+int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+
+/* setups the montgomery reduction */
+int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+
+/* computes a = B**n mod b without division or multiplication useful for
+ * normalizing numbers in a Montgomery system.
+ */
+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+
+/* computes x/R == x (mod N) via Montgomery Reduction */
+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+
+/* returns 1 if a is a valid DR modulus */
+int mp_dr_is_modulus(mp_int *a);
+
+/* sets the value of "d" required for mp_dr_reduce */
+void mp_dr_setup(mp_int *a, mp_digit *d);
+
+/* reduces a modulo b using the Diminished Radix method */
+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+
+/* returns true if a can be reduced with mp_reduce_2k */
+int mp_reduce_is_2k(mp_int *a);
+
+/* determines k value for 2k reduction */
+int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+
+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+
+/* d = a**b (mod c) */
+int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* ---> Primes <--- */
+
+/* number of primes */
+#ifdef MP_8BIT
+ #define PRIME_SIZE 31
+#else
+ #define PRIME_SIZE 256
+#endif
+
+/* table of first PRIME_SIZE primes */
+extern const mp_digit ltm_prime_tab[];
+
+/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
+int mp_prime_is_divisible(mp_int *a, int *result);
+
+/* performs one Fermat test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+
+/* performs one Miller-Rabin test of "a" using base "b".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+
+/* This gives [for a given bit size] the number of trials required
+ * such that Miller-Rabin gives a prob of failure lower than 2^-96
+ */
+int mp_prime_rabin_miller_trials(int size);
+
+/* performs t rounds of Miller-Rabin on "a" using the first
+ * t prime bases. Also performs an initial sieve of trial
+ * division. Determines if "a" is prime with probability
+ * of error no more than (1/4)**t.
+ *
+ * Sets result to 1 if probably prime, 0 otherwise
+ */
+int mp_prime_is_prime(mp_int *a, int t, int *result);
+
+/* finds the next prime after the number "a" using "t" trials
+ * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
+ */
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
+
+/* makes a truly random prime of a given size (bytes),
+ * call with bbs = 1 if you want it to be congruent to 3 mod 4
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ * The prime generated will be larger than 2^(8*size).
+ */
+#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
+
+/* makes a truly random prime of a given size (bits),
+ *
+ * Flags are as follows:
+ *
+ * LTM_PRIME_BBS - make prime congruent to 3 mod 4
+ * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
+ * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
+ * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
+ *
+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ */
+int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
+
+/* ---> radix conversion <--- */
+int mp_count_bits(mp_int *a);
+
+int mp_unsigned_bin_size(mp_int *a);
+int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
+int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+
+int mp_signed_bin_size(mp_int *a);
+int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
+int mp_to_signed_bin(mp_int *a, unsigned char *b);
+
+int mp_read_radix(mp_int *a, char *str, int radix);
+int mp_toradix(mp_int *a, char *str, int radix);
+int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
+int mp_radix_size(mp_int *a, int radix, int *size);
+
+int mp_fread(mp_int *a, int radix, FILE *stream);
+int mp_fwrite(mp_int *a, int radix, FILE *stream);
+
+#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
+#define mp_raw_size(mp) mp_signed_bin_size(mp)
+#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
+#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
+#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
+#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
+
+#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
+#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
+#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
+#define mp_tohex(M, S) mp_toradix((M), (S), 16)
+
+/* lowlevel functions, do not call! */
+int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
+int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
+#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
+int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+int fast_s_mp_sqr(mp_int *a, mp_int *b);
+int s_mp_sqr(mp_int *a, mp_int *b);
+int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_karatsuba_sqr(mp_int *a, mp_int *b);
+int mp_toom_sqr(mp_int *a, mp_int *b);
+int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
+int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
+void bn_reverse(unsigned char *s, int len);
+
+extern const char *mp_s_rmap;
+
+#ifdef __cplusplus
+ }
+#endif
+
+#endif
+
diff --git a/libtommath/tommath.out b/libtommath/tommath.out
new file mode 100644
index 0000000..9f62617
--- /dev/null
+++ b/libtommath/tommath.out
@@ -0,0 +1,139 @@
+\BOOKMARK [0][-]{chapter.1}{Introduction}{}
+\BOOKMARK [1][-]{section.1.1}{Multiple Precision Arithmetic}{chapter.1}
+\BOOKMARK [2][-]{subsection.1.1.1}{What is Multiple Precision Arithmetic?}{section.1.1}
+\BOOKMARK [2][-]{subsection.1.1.2}{The Need for Multiple Precision Arithmetic}{section.1.1}
+\BOOKMARK [2][-]{subsection.1.1.3}{Benefits of Multiple Precision Arithmetic}{section.1.1}
+\BOOKMARK [1][-]{section.1.2}{Purpose of This Text}{chapter.1}
+\BOOKMARK [1][-]{section.1.3}{Discussion and Notation}{chapter.1}
+\BOOKMARK [2][-]{subsection.1.3.1}{Notation}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.2}{Precision Notation}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.3}{Algorithm Inputs and Outputs}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.4}{Mathematical Expressions}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.5}{Work Effort}{section.1.3}
+\BOOKMARK [1][-]{section.1.4}{Exercises}{chapter.1}
+\BOOKMARK [1][-]{section.1.5}{Introduction to LibTomMath}{chapter.1}
+\BOOKMARK [2][-]{subsection.1.5.1}{What is LibTomMath?}{section.1.5}
+\BOOKMARK [2][-]{subsection.1.5.2}{Goals of LibTomMath}{section.1.5}
+\BOOKMARK [1][-]{section.1.6}{Choice of LibTomMath}{chapter.1}
+\BOOKMARK [2][-]{subsection.1.6.1}{Code Base}{section.1.6}
+\BOOKMARK [2][-]{subsection.1.6.2}{API Simplicity}{section.1.6}
+\BOOKMARK [2][-]{subsection.1.6.3}{Optimizations}{section.1.6}
+\BOOKMARK [2][-]{subsection.1.6.4}{Portability and Stability}{section.1.6}
+\BOOKMARK [2][-]{subsection.1.6.5}{Choice}{section.1.6}
+\BOOKMARK [0][-]{chapter.2}{Getting Started}{}
+\BOOKMARK [1][-]{section.2.1}{Library Basics}{chapter.2}
+\BOOKMARK [1][-]{section.2.2}{What is a Multiple Precision Integer?}{chapter.2}
+\BOOKMARK [2][-]{subsection.2.2.1}{The mp\137int Structure}{section.2.2}
+\BOOKMARK [1][-]{section.2.3}{Argument Passing}{chapter.2}
+\BOOKMARK [1][-]{section.2.4}{Return Values}{chapter.2}
+\BOOKMARK [1][-]{section.2.5}{Initialization and Clearing}{chapter.2}
+\BOOKMARK [2][-]{subsection.2.5.1}{Initializing an mp\137int}{section.2.5}
+\BOOKMARK [2][-]{subsection.2.5.2}{Clearing an mp\137int}{section.2.5}
+\BOOKMARK [1][-]{section.2.6}{Maintenance Algorithms}{chapter.2}
+\BOOKMARK [2][-]{subsection.2.6.1}{Augmenting an mp\137int's Precision}{section.2.6}
+\BOOKMARK [2][-]{subsection.2.6.2}{Initializing Variable Precision mp\137ints}{section.2.6}
+\BOOKMARK [2][-]{subsection.2.6.3}{Multiple Integer Initializations and Clearings}{section.2.6}
+\BOOKMARK [2][-]{subsection.2.6.4}{Clamping Excess Digits}{section.2.6}
+\BOOKMARK [0][-]{chapter.3}{Basic Operations}{}
+\BOOKMARK [1][-]{section.3.1}{Introduction}{chapter.3}
+\BOOKMARK [1][-]{section.3.2}{Assigning Values to mp\137int Structures}{chapter.3}
+\BOOKMARK [2][-]{subsection.3.2.1}{Copying an mp\137int}{section.3.2}
+\BOOKMARK [2][-]{subsection.3.2.2}{Creating a Clone}{section.3.2}
+\BOOKMARK [1][-]{section.3.3}{Zeroing an Integer}{chapter.3}
+\BOOKMARK [1][-]{section.3.4}{Sign Manipulation}{chapter.3}
+\BOOKMARK [2][-]{subsection.3.4.1}{Absolute Value}{section.3.4}
+\BOOKMARK [2][-]{subsection.3.4.2}{Integer Negation}{section.3.4}
+\BOOKMARK [1][-]{section.3.5}{Small Constants}{chapter.3}
+\BOOKMARK [2][-]{subsection.3.5.1}{Setting Small Constants}{section.3.5}
+\BOOKMARK [2][-]{subsection.3.5.2}{Setting Large Constants}{section.3.5}
+\BOOKMARK [1][-]{section.3.6}{Comparisons}{chapter.3}
+\BOOKMARK [2][-]{subsection.3.6.1}{Unsigned Comparisions}{section.3.6}
+\BOOKMARK [2][-]{subsection.3.6.2}{Signed Comparisons}{section.3.6}
+\BOOKMARK [0][-]{chapter.4}{Basic Arithmetic}{}
+\BOOKMARK [1][-]{section.4.1}{Introduction}{chapter.4}
+\BOOKMARK [1][-]{section.4.2}{Addition and Subtraction}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.2.1}{Low Level Addition}{section.4.2}
+\BOOKMARK [2][-]{subsection.4.2.2}{Low Level Subtraction}{section.4.2}
+\BOOKMARK [2][-]{subsection.4.2.3}{High Level Addition}{section.4.2}
+\BOOKMARK [2][-]{subsection.4.2.4}{High Level Subtraction}{section.4.2}
+\BOOKMARK [1][-]{section.4.3}{Bit and Digit Shifting}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.3.1}{Multiplication by Two}{section.4.3}
+\BOOKMARK [2][-]{subsection.4.3.2}{Division by Two}{section.4.3}
+\BOOKMARK [1][-]{section.4.4}{Polynomial Basis Operations}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.4.1}{Multiplication by x}{section.4.4}
+\BOOKMARK [2][-]{subsection.4.4.2}{Division by x}{section.4.4}
+\BOOKMARK [1][-]{section.4.5}{Powers of Two}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.5.1}{Multiplication by Power of Two}{section.4.5}
+\BOOKMARK [2][-]{subsection.4.5.2}{Division by Power of Two}{section.4.5}
+\BOOKMARK [2][-]{subsection.4.5.3}{Remainder of Division by Power of Two}{section.4.5}
+\BOOKMARK [0][-]{chapter.5}{Multiplication and Squaring}{}
+\BOOKMARK [1][-]{section.5.1}{The Multipliers}{chapter.5}
+\BOOKMARK [1][-]{section.5.2}{Multiplication}{chapter.5}
+\BOOKMARK [2][-]{subsection.5.2.1}{The Baseline Multiplication}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.2}{Faster Multiplication by the ``Comba'' Method}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.3}{Polynomial Basis Multiplication}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.4}{Karatsuba Multiplication}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.5}{Toom-Cook 3-Way Multiplication}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.6}{Signed Multiplication}{section.5.2}
+\BOOKMARK [1][-]{section.5.3}{Squaring}{chapter.5}
+\BOOKMARK [2][-]{subsection.5.3.1}{The Baseline Squaring Algorithm}{section.5.3}
+\BOOKMARK [2][-]{subsection.5.3.2}{Faster Squaring by the ``Comba'' Method}{section.5.3}
+\BOOKMARK [2][-]{subsection.5.3.3}{Polynomial Basis Squaring}{section.5.3}
+\BOOKMARK [2][-]{subsection.5.3.4}{Karatsuba Squaring}{section.5.3}
+\BOOKMARK [2][-]{subsection.5.3.5}{Toom-Cook Squaring}{section.5.3}
+\BOOKMARK [2][-]{subsection.5.3.6}{High Level Squaring}{section.5.3}
+\BOOKMARK [0][-]{chapter.6}{Modular Reduction}{}
+\BOOKMARK [1][-]{section.6.1}{Basics of Modular Reduction}{chapter.6}
+\BOOKMARK [1][-]{section.6.2}{The Barrett Reduction}{chapter.6}
+\BOOKMARK [2][-]{subsection.6.2.1}{Fixed Point Arithmetic}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.2}{Choosing a Radix Point}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.3}{Trimming the Quotient}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.4}{Trimming the Residue}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.5}{The Barrett Algorithm}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.6}{The Barrett Setup Algorithm}{section.6.2}
+\BOOKMARK [1][-]{section.6.3}{The Montgomery Reduction}{chapter.6}
+\BOOKMARK [2][-]{subsection.6.3.1}{Digit Based Montgomery Reduction}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.2}{Baseline Montgomery Reduction}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.3}{Faster ``Comba'' Montgomery Reduction}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.4}{Montgomery Setup}{section.6.3}
+\BOOKMARK [1][-]{section.6.4}{The Diminished Radix Algorithm}{chapter.6}
+\BOOKMARK [2][-]{subsection.6.4.1}{Choice of Moduli}{section.6.4}
+\BOOKMARK [2][-]{subsection.6.4.2}{Choice of k}{section.6.4}
+\BOOKMARK [2][-]{subsection.6.4.3}{Restricted Diminished Radix Reduction}{section.6.4}
+\BOOKMARK [2][-]{subsection.6.4.4}{Unrestricted Diminished Radix Reduction}{section.6.4}
+\BOOKMARK [1][-]{section.6.5}{Algorithm Comparison}{chapter.6}
+\BOOKMARK [0][-]{chapter.7}{Exponentiation}{}
+\BOOKMARK [1][-]{section.7.1}{Exponentiation Basics}{chapter.7}
+\BOOKMARK [2][-]{subsection.7.1.1}{Single Digit Exponentiation}{section.7.1}
+\BOOKMARK [1][-]{section.7.2}{k-ary Exponentiation}{chapter.7}
+\BOOKMARK [2][-]{subsection.7.2.1}{Optimal Values of k}{section.7.2}
+\BOOKMARK [2][-]{subsection.7.2.2}{Sliding-Window Exponentiation}{section.7.2}
+\BOOKMARK [1][-]{section.7.3}{Modular Exponentiation}{chapter.7}
+\BOOKMARK [2][-]{subsection.7.3.1}{Barrett Modular Exponentiation}{section.7.3}
+\BOOKMARK [1][-]{section.7.4}{Quick Power of Two}{chapter.7}
+\BOOKMARK [0][-]{chapter.8}{Higher Level Algorithms}{}
+\BOOKMARK [1][-]{section.8.1}{Integer Division with Remainder}{chapter.8}
+\BOOKMARK [2][-]{subsection.8.1.1}{Quotient Estimation}{section.8.1}
+\BOOKMARK [2][-]{subsection.8.1.2}{Normalized Integers}{section.8.1}
+\BOOKMARK [2][-]{subsection.8.1.3}{Radix- Division with Remainder}{section.8.1}
+\BOOKMARK [1][-]{section.8.2}{Single Digit Helpers}{chapter.8}
+\BOOKMARK [2][-]{subsection.8.2.1}{Single Digit Addition and Subtraction}{section.8.2}
+\BOOKMARK [2][-]{subsection.8.2.2}{Single Digit Multiplication}{section.8.2}
+\BOOKMARK [2][-]{subsection.8.2.3}{Single Digit Division}{section.8.2}
+\BOOKMARK [2][-]{subsection.8.2.4}{Single Digit Root Extraction}{section.8.2}
+\BOOKMARK [1][-]{section.8.3}{Random Number Generation}{chapter.8}
+\BOOKMARK [1][-]{section.8.4}{Formatted Representations}{chapter.8}
+\BOOKMARK [2][-]{subsection.8.4.1}{Reading Radix-n Input}{section.8.4}
+\BOOKMARK [2][-]{subsection.8.4.2}{Generating Radix-n Output}{section.8.4}
+\BOOKMARK [0][-]{chapter.9}{Number Theoretic Algorithms}{}
+\BOOKMARK [1][-]{section.9.1}{Greatest Common Divisor}{chapter.9}
+\BOOKMARK [2][-]{subsection.9.1.1}{Complete Greatest Common Divisor}{section.9.1}
+\BOOKMARK [1][-]{section.9.2}{Least Common Multiple}{chapter.9}
+\BOOKMARK [1][-]{section.9.3}{Jacobi Symbol Computation}{chapter.9}
+\BOOKMARK [2][-]{subsection.9.3.1}{Jacobi Symbol}{section.9.3}
+\BOOKMARK [1][-]{section.9.4}{Modular Inverse}{chapter.9}
+\BOOKMARK [2][-]{subsection.9.4.1}{General Case}{section.9.4}
+\BOOKMARK [1][-]{section.9.5}{Primality Tests}{chapter.9}
+\BOOKMARK [2][-]{subsection.9.5.1}{Trial Division}{section.9.5}
+\BOOKMARK [2][-]{subsection.9.5.2}{The Fermat Test}{section.9.5}
+\BOOKMARK [2][-]{subsection.9.5.3}{The Miller-Rabin Test}{section.9.5}
diff --git a/libtommath/tommath.pdf b/libtommath/tommath.pdf
new file mode 100644
index 0000000..88e2dc7
--- /dev/null
+++ b/libtommath/tommath.pdf
Binary files differ
diff --git a/libtommath/tommath.src b/libtommath/tommath.src
new file mode 100644
index 0000000..6ee842d
--- /dev/null
+++ b/libtommath/tommath.src
@@ -0,0 +1,6314 @@
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Draft Edition }
+\author{\mbox{
+%\begin{small}
+\begin{tabular}{c}
+Tom St Denis \\
+Algonquin College \\
+\\
+Mads Rasmussen \\
+Open Communications Security \\
+\\
+Greg Rose \\
+QUALCOMM Australia \\
+\end{tabular}
+%\end{small}
+}
+}
+\maketitle
+This text has been placed in the public domain. This text corresponds to the v0.30 release of the
+LibTomMath project.
+
+\begin{alltt}
+Tom St Denis
+111 Banning Rd
+Ottawa, Ontario
+K2L 1C3
+Canada
+
+Phone: 1-613-836-3160
+Email: tomstdenis@iahu.ca
+\end{alltt}
+
+This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{}
+{\em book} macro package and the Perl {\em booker} package.
+
+\tableofcontents
+\listoffigures
+\chapter*{Prefaces to the Draft Edition}
+I started this text in April 2003 to complement my LibTomMath library. That is, explain how to implement the functions
+contained in LibTomMath. The goal is to have a textbook that any Computer Science student can use when implementing their
+own multiple precision arithmetic. The plan I wanted to follow was flesh out all the
+ideas and concepts I had floating around in my head and then work on it afterwards refining a little bit at a time. Chance
+would have it that I ended up with my summer off from Algonquin College and I was given four months solid to work on the
+text.
+
+Choosing to not waste any time I dove right into the project even before my spring semester was finished. I wrote a bit
+off and on at first. The moment my exams were finished I jumped into long 12 to 16 hour days. The result after only
+a couple of months was a ten chapter, three hundred page draft that I quickly had distributed to anyone who wanted
+to read it. I had Jean-Luc Cooke print copies for me and I brought them to Crypto'03 in Santa Barbara. So far I have
+managed to grab a certain level of attention having people from around the world ask me for copies of the text was certain
+rewarding.
+
+Now we are past December 2003. By this time I had pictured that I would have at least finished my second draft of the text.
+Currently I am far off from this goal. I've done partial re-writes of chapters one, two and three but they are not even
+finished yet. I haven't given up on the project, only had some setbacks. First O'Reilly declined to publish the text then
+Addison-Wesley and Greg is tried another which I don't know the name of. However, at this point I want to focus my energy
+onto finishing the book not securing a contract.
+
+So why am I writing this text? It seems like a lot of work right? Most certainly it is a lot of work writing a textbook.
+Even the simplest introductory material has to be lined with references and figures. A lot of the text has to be re-written
+from point form to prose form to ensure an easier read. Why am I doing all this work for free then? Simple. My philosophy
+is quite simply ``Open Source. Open Academia. Open Minds'' which means that to achieve a goal of open minds, that is,
+people willing to accept new ideas and explore the unknown you have to make available material they can access freely
+without hinderance.
+
+I've been writing free software since I was about sixteen but only recently have I hit upon software that people have come
+to depend upon. I started LibTomCrypt in December 2001 and now several major companies use it as integral portions of their
+software. Several educational institutions use it as a matter of course and many freelance developers use it as
+part of their projects. To further my contributions I started the LibTomMath project in December 2002 aimed at providing
+multiple precision arithmetic routines that students could learn from. That is write routines that are not only easy
+to understand and follow but provide quite impressive performance considering they are all in standard portable ISO C.
+
+The second leg of my philosophy is ``Open Academia'' which is where this textbook comes in. In the end, when all is
+said and done the text will be useable by educational institutions as a reference on multiple precision arithmetic.
+
+At this time I feel I should share a little information about myself. The most common question I was asked at
+Crypto'03, perhaps just out of professional courtesy, was which school I either taught at or attended. The unfortunate
+truth is that I neither teach at or attend a school of academic reputation. I'm currently at Algonquin College which
+is what I'd like to call ``somewhat academic but mostly vocational'' college. In otherwords, job training.
+
+I'm a 21 year old computer science student mostly self-taught in the areas I am aware of (which includes a half-dozen
+computer science fields, a few fields of mathematics and some English). I look forward to teaching someday but I am
+still far off from that goal.
+
+Now it would be improper for me to not introduce the rest of the texts co-authors. While they are only contributing
+corrections and editorial feedback their support has been tremendously helpful in presenting the concepts laid out
+in the text so far. Greg has always been there for me. He has tracked my LibTom projects since their inception and even
+sent cheques to help pay tuition from time to time. His background has provided a wonderful source to bounce ideas off
+of and improve the quality of my writing. Mads is another fellow who has just ``been there''. I don't even recall what
+his interest in the LibTom projects is but I'm definitely glad he has been around. His ability to catch logical errors
+in my written English have saved me on several occasions to say the least.
+
+What to expect next? Well this is still a rough draft. I've only had the chance to update a few chapters. However, I've
+been getting the feeling that people are starting to use my text and I owe them some updated material. My current tenative
+plan is to edit one chapter every two weeks starting January 4th. It seems insane but my lower course load at college
+should provide ample time. By Crypto'04 I plan to have a 2nd draft of the text polished and ready to hand out to as many
+people who will take it.
+
+\begin{flushright} Tom St Denis \end{flushright}
+
+\newpage
+I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also
+contribute to educate others facing the problem of having to handle big number mathematical calculations.
+
+This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of
+how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about
+the layout and language used.
+
+I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the
+practical aspects of cryptography.
+
+Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a
+great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up
+multiple precision calculations is often very important since we deal with outdated machine architecture where modular
+reductions, for example, become painfully slow.
+
+This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks
+themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
+
+\begin{flushright}
+Mads Rasmussen
+
+S\~{a}o Paulo - SP
+
+Brazil
+\end{flushright}
+
+\newpage
+It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about
+Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not
+really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
+
+At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the
+sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
+contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity.
+Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
+
+When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully,
+and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close
+friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort,
+and I'm pleased to be involved with it.
+
+\begin{flushright}
+Greg Rose, Sydney, Australia, June 2003.
+\end{flushright}
+
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{Multiple Precision Arithmetic}
+
+\subsection{What is Multiple Precision Arithmetic?}
+When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively
+raise or lower the precision of the numbers we are dealing with. For example, in decimal we almost immediate can
+reason that $7$ times $6$ is $42$. However, $42$ has two digits of precision as opposed to one digit we started with.
+Further multiplications of say $3$ result in a larger precision result $126$. In these few examples we have multiple
+precisions for the numbers we are working with. Despite the various levels of precision a single subset\footnote{With the occasional optimization.}
+ of algorithms can be designed to accomodate them.
+
+By way of comparison a fixed or single precision operation would lose precision on various operations. For example, in
+the decimal system with fixed precision $6 \cdot 7 = 2$.
+
+Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in
+schools to manually add, subtract, multiply and divide.
+
+\subsection{The Need for Multiple Precision Arithmetic}
+The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
+of public-key cryptography algorithms. Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require
+integers of significant magnitude to resist known cryptanalytic attacks. For example, at the time of this writing a
+typical RSA modulus would be at least greater than $10^{309}$. However, modern programming languages such as ISO C \cite{ISOC} and
+Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{|r|c|}
+\hline \textbf{Data Type} & \textbf{Range} \\
+\hline char & $-128 \ldots 127$ \\
+\hline short & $-32768 \ldots 32767$ \\
+\hline long & $-2147483648 \ldots 2147483647$ \\
+\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Typical Data Types for the C Programming Language}
+\label{fig:ISOC}
+\end{figure}
+
+The largest data type guaranteed to be provided by the ISO C programming
+language\footnote{As per the ISO C standard. However, each compiler vendor is allowed to augment the precision as they
+see fit.} can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is
+insufficient to accomodate the magnitude required for the problem at hand. An RSA modulus of magnitude $10^{19}$ could be
+trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer,
+rendering any protocol based on the algorithm insecure. Multiple precision algorithms solve this very problem by
+extending the range of representable integers while using single precision data types.
+
+Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic
+primitives. Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in
+various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient. In fact, several
+major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and
+deployment of efficient algorithms.
+
+However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.
+Another auxiliary use of multiple precision integers is high precision floating point data types.
+The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.
+Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE. Since IEEE
+floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small
+(\textit{23, 48 and 64 bits}). The mantissa is merely an integer and a multiple precision integer could be used to create
+a mantissa of much larger precision than hardware alone can efficiently support. This approach could be useful where
+scientific applications must minimize the total output error over long calculations.
+
+Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
+In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
+
+\subsection{Benefits of Multiple Precision Arithmetic}
+\index{precision}
+The benefit of multiple precision representations over single or fixed precision representations is that
+no precision is lost while representing the result of an operation which requires excess precision. For example,
+the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully. A multiple
+precision algorithm would augment the precision of the destination to accomodate the result while a single precision system
+would truncate excess bits to maintain a fixed level of precision.
+
+It is possible to implement algorithms which require large integers with fixed precision algorithms. For example, elliptic
+curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum
+size the system will ever need. Such an approach can lead to vastly simpler algorithms which can accomodate the
+integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard
+processor has an 8 bit accumulator.}. However, as efficient as such an approach may be, the resulting source code is not
+normally very flexible. It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
+
+Multiple precision algorithms have the most overhead of any style of arithmetic. For the the most part the
+overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
+platforms. However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the
+inputs. That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input
+without the designer's explicit forethought. This leads to lower cost of ownership for the code as it only has to
+be written and tested once.
+
+\section{Purpose of This Text}
+The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms.
+That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping''
+elements that are neglected by authors of other texts on the subject. Several well reknowned texts \cite{TAOCPV2,HAC}
+give considerably detailed explanations of the theoretical aspects of algorithms and often very little information
+regarding the practical implementation aspects.
+
+In most cases how an algorithm is explained and how it is actually implemented are two very different concepts. For
+example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple
+algorithm for performing multiple precision integer addition. However, the description lacks any discussion concerning
+the fact that the two integer inputs may be of differing magnitudes. As a result the implementation is not as simple
+as the text would lead people to believe. Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not
+discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
+
+Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers
+and fast modular inversion, which we consider practical oversights. These optimal algorithms are vital to achieve
+any form of useful performance in non-trivial applications.
+
+To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
+package. As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.org}} package is used
+to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field
+tested and work very well. The LibTomMath library is freely available on the Internet for all uses and this text
+discusses a very large portion of the inner workings of the library.
+
+The algorithms that are presented will always include at least one ``pseudo-code'' description followed
+by the actual C source code that implements the algorithm. The pseudo-code can be used to implement the same
+algorithm in other programming languages as the reader sees fit.
+
+This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch. Showing
+the reader how the algorithms fit together as well as where to start on various taskings.
+
+\section{Discussion and Notation}
+\subsection{Notation}
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
+the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$. The elements of the array $x$ are said to be the radix $\beta$ digits
+of the integer. For example, $x = (1,2,3)_{10}$ would represent the integer
+$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
+
+\index{mp\_int}
+The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well
+as auxilary data required to manipulate the data. These additional members are discussed further in section
+\ref{sec:MPINT}. For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be
+synonymous. When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members
+are present as well. An expression of the type \textit{variablename.item} implies that it should evaluate to the
+member named ``item'' of the variable. For example, a string of characters may have a member ``length'' which would
+evaluate to the number of characters in the string. If the string $a$ equals ``hello'' then it follows that
+$a.length = 5$.
+
+For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
+to solve a given problem. When an algorithm is described as accepting an integer input it is assumed the input is
+a plain integer with no additional multiple-precision members. That is, algorithms that use integers as opposed to
+mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management. These
+algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
+precision algorithm to solve the same problem.
+
+\subsection{Precision Notation}
+The variable $\beta$ represents the radix of a single digit of a multiple precision integer and
+must be of the form $q^p$ for $q, p \in \Z^+$. A single precision variable must be able to represent integers in
+the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range
+$0 \le x < q \beta^2$. The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the
+carry. Since all modern computers are binary, it is assumed that $q$ is two.
+
+\index{mp\_digit} \index{mp\_word}
+Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent
+a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type. In
+several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.
+For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to
+the $j$'th digit of a double precision array. Whenever an expression is to be assigned to a double precision
+variable it is assumed that all single precision variables are promoted to double precision during the evaluation.
+Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
+precision data type.
+
+For example, if $\beta = 10^2$ a single precision data type may represent a value in the
+range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$. Let
+$a = 23$ and $b = 49$ represent two single precision variables. The single precision product shall be written
+as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
+In this particular case, $\hat c = 1127$ and $c = 127$. The most significant digit of the product would not fit
+in a single precision data type and as a result $c \ne \hat c$.
+
+\subsection{Algorithm Inputs and Outputs}
+Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
+as indicated. The only exception to this rule is when variables have been indicated to be of type mp\_int. This
+distinction is important as scalars are often used as array indicies and various other counters.
+
+\subsection{Mathematical Expressions}
+The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression
+itself. For example, $\lfloor 5.7 \rfloor = 5$. Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
+rounded to an integer not less than the expression itself. For example, $\lceil 5.1 \rceil = 6$. Typically when
+the $/$ division symbol is used the intention is to perform an integer division with truncation. For example,
+$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When an expression is written as a
+fraction a real value division is implied, for example ${5 \over 2} = 2.5$.
+
+The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
+of the integer. For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.
+
+\subsection{Work Effort}
+\index{big-Oh}
+To measure the efficiency of the specified algorithms, a modified big-Oh notation is used. In this system all
+single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.
+That is a single precision addition, multiplication and division are assumed to take the same time to
+complete. While this is generally not true in practice, it will simplify the discussions considerably.
+
+Some algorithms have slight advantages over others which is why some constants will not be removed in
+the notation. For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a
+baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work. In standard big-Oh notation these
+would both be said to be equivalent to $O(n^2)$. However,
+in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small. As a
+result small constant factors in the work effort will make an observable difference in algorithm efficiency.
+
+All of the algorithms presented in this text have a polynomial time work level. That is, of the form
+$O(n^k)$ for $n, k \in \Z^{+}$. This will help make useful comparisons in terms of the speed of the algorithms and how
+various optimizations will help pay off in the long run.
+
+\section{Exercises}
+Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to
+the discussion at hand. These exercises are not designed to be prize winning problems, but instead to be thought
+provoking. Wherever possible the problems are forward minded, stating problems that will be answered in subsequent
+chapters. The reader is encouraged to finish the exercises as they appear to get a better understanding of the
+subject material.
+
+That being said, the problems are designed to affirm knowledge of a particular subject matter. Students in particular
+are encouraged to verify they can answer the problems correctly before moving on.
+
+Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
+the problem. However, unlike \cite{TAOCPV2} the problems do not get nearly as hard. The scoring of these
+exercises ranges from one (the easiest) to five (the hardest). The following table sumarizes the
+scoring system used.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|l|}
+\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
+ & minutes to solve. Usually does not involve much computer time \\
+ & to solve. \\
+\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
+ & time usage. Usually requires a program to be written to \\
+ & solve the problem. \\
+\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
+ & of work. Usually involves trivial research and development of \\
+ & new theory from the perspective of a student. \\
+\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
+ & of work and research, the solution to which will demonstrate \\
+ & a higher mastery of the subject matter. \\
+\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
+ & novice to solve. Solutions to these problems will demonstrate a \\
+ & complete mastery of the given subject. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Exercise Scoring System}
+\end{figure}
+
+Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
+devising new theory. These problems are quick tests to see if the material is understood. Problems at the second level
+are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer. These
+two levels are essentially entry level questions.
+
+Problems at the third level are meant to be a bit more difficult than the first two levels. The answer is often
+fairly obvious but arriving at an exacting solution requires some thought and skill. These problems will almost always
+involve devising a new algorithm or implementing a variation of another algorithm previously presented. Readers who can
+answer these questions will feel comfortable with the concepts behind the topic at hand.
+
+Problems at the fourth level are meant to be similar to those of the level three questions except they will require
+additional research to be completed. The reader will most likely not know the answer right away, nor will the text provide
+the exact details of the answer until a subsequent chapter.
+
+Problems at the fifth level are meant to be the hardest
+problems relative to all the other problems in the chapter. People who can correctly answer fifth level problems have a
+mastery of the subject matter at hand.
+
+Often problems will be tied together. The purpose of this is to start a chain of thought that will be discussed in future chapters. The reader
+is encouraged to answer the follow-up problems and try to draw the relevance of problems.
+
+\section{Introduction to LibTomMath}
+
+\subsection{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C. By portable it
+is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on
+any given platform.
+
+The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
+trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such
+as the Gameboy Advance. The library is designed to contain enough functionality to be able to develop applications such
+as public key cryptosystems and still maintain a relatively small footprint.
+
+\subsection{Goals of LibTomMath}
+
+Libraries which obtain the most efficiency are rarely written in a high level programming language such as C. However,
+even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the
+library. Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM
+processors. Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window
+exponentiation and Montgomery reduction have been provided to make the library more efficient.
+
+Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
+(\textit{API}) has been kept as simple as possible. Often generic place holder routines will make use of specialized
+algorithms automatically without the developer's specific attention. One such example is the generic multiplication
+algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
+based on the magnitude of the inputs and the configuration of the library.
+
+Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
+be source compatible with another popular library which makes it more attractive for developers to use. In this case the
+MPI library was used as a API template for all the basic functions. MPI was chosen because it is another library that fits
+in the same niche as LibTomMath. Even though LibTomMath uses MPI as the template for the function names and argument
+passing conventions, it has been written from scratch by Tom St Denis.
+
+The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum''
+library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
+integer arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points.
+
+\section{Choice of LibTomMath}
+LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
+for more worthy reasons. Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL
+\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for
+reasons that will be explained in the following sub-sections.
+
+\subsection{Code Base}
+The LibTomMath code base is all portable ISO C source code. This means that there are no platform dependent conditional
+segments of code littered throughout the source. This clean and uncluttered approach to the library means that a
+developer can more readily discern the true intent of a given section of source code without trying to keep track of
+what conditional code will be used.
+
+The code base of LibTomMath is well organized. Each function is in its own separate source code file
+which allows the reader to find a given function very quickly. On average there are $76$ lines of code per source
+file which makes the source very easily to follow. By comparison MPI and LIP are single file projects making code tracing
+very hard. GMP has many conditional code segments which also hinder tracing.
+
+When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
+ which is fairly small compared to GMP (over $250$KiB). LibTomMath is slightly larger than MPI (which compiles to about
+$50$KiB) but LibTomMath is also much faster and more complete than MPI.
+
+\subsection{API Simplicity}
+LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build
+with LibTomMath without change. The function names correlate directly to the action they perform. Almost all of the
+functions share the same parameter passing convention. The learning curve is fairly shallow with the API provided
+which is an extremely valuable benefit for the student and developer alike.
+
+The LIP library is an example of a library with an API that is awkward to work with. LIP uses function names that are often ``compressed'' to
+illegible short hand. LibTomMath does not share this characteristic.
+
+The GMP library also does not return error codes. Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors
+are signaled to the host application. This happens to be the fastest approach but definitely not the most versatile. In
+effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely
+undersireable in many situations.
+
+\subsection{Optimizations}
+While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
+feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring. GMP
+and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations. GMP lacks a few
+of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
+only had Barrett and Montgomery modular reduction algorithms.}.
+
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
+exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
+slower than the best libraries such as GMP and OpenSSL by only a small factor.
+
+\subsection{Portability and Stability}
+LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler
+(\textit{GCC}). This means that without changes the library will build without configuration or setting up any
+variables. LIP and MPI will build ``out of the box'' as well but have numerous known bugs. Most notably the author of
+MPI has recently stopped working on his library and LIP has long since been discontinued.
+
+GMP requires a configuration script to run and will not build out of the box. GMP and LibTomMath are still in active
+development and are very stable across a variety of platforms.
+
+\subsection{Choice}
+LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
+the case study of this text. Various source files from the LibTomMath project will be included within the text. However,
+the reader is encouraged to download their own copy of the library to actually be able to work with the library.
+
+\chapter{Getting Started}
+\section{Library Basics}
+The trick to writing any useful library of source code is to build a solid foundation and work outwards from it. First,
+a problem along with allowable solution parameters should be identified and analyzed. In this particular case the
+inability to accomodate multiple precision integers is the problem. Futhermore, the solution must be written
+as portable source code that is reasonably efficient across several different computer platforms.
+
+After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.
+That is, to implement the lowest level dependencies first and work towards the most abstract functions last. For example,
+before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
+By building outwards from a base foundation instead of using a parallel design methodology the resulting project is
+highly modular. Being highly modular is a desirable property of any project as it often means the resulting product
+has a small footprint and updates are easy to perform.
+
+Usually when I start a project I will begin with the header files. I define the data types I think I will need and
+prototype the initial functions that are not dependent on other functions (within the library). After I
+implement these base functions I prototype more dependent functions and implement them. The process repeats until
+I implement all of the functions I require. For example, in the case of LibTomMath I implemented functions such as
+mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod(). As an example as to
+why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the
+dependent function mp\_exptmod() was written. Adding the new multiplication algorithms did not require changes to the
+mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development
+for new algorithms. This methodology allows new algorithms to be tested in a complete framework with relative ease.
+
+FIGU,design_process,Design Flow of the First Few Original LibTomMath Functions.
+
+Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
+the source code. For example, one day I may audit the multipliers and the next day the polynomial basis functions.
+
+It only makes sense to begin the text with the preliminary data types and support algorithms required as well.
+This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot
+be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is
+to use fixed precision data types to create and manipulate multiple precision integers which may represent values
+that are very large.
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system
+the largest single digit value is $9$. However, by concatenating digits together larger numbers may be represented. Newly prepended digits
+(\textit{to the left}) are said to be in a different power of ten column. That is, the number $123$ can be described as having a $1$ in the hundreds
+column, $2$ in the tens column and $3$ in the ones column. Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$. Computer based
+multiple precision arithmetic is essentially the same concept. Larger integers are represented by adjoining fixed
+precision computer words with the exception that a different radix is used.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision
+integer. For example, the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive,
+that is the sign of this particular integer is positive as opposed to negative. Second, the integer has three digits in
+its representation. There is an additional property that the integer posesses that does not concern pencil-and-paper
+arithmetic. The third property is how many digits placeholders are available to hold the integer.
+
+The human analogy of this third property is ensuring there is enough space on the paper to write the integer. For example,
+if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.
+Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
+will not exceed the allowed boundaries. These three properties make up what is known as a multiple precision
+integer or mp\_int for short.
+
+\subsection{The mp\_int Structure}
+\label{sec:MPINT}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for
+any such data type but it does provide for making composite data types known as structures. The following is the structure definition
+used within LibTomMath.
+
+\index{mp\_int}
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+%\begin{verbatim}
+\begin{tabular}{|l|}
+\hline
+typedef struct \{ \\
+\hspace{3mm}int used, alloc, sign;\\
+\hspace{3mm}mp\_digit *dp;\\
+\} \textbf{mp\_int}; \\
+\hline
+\end{tabular}
+%\end{verbatim}
+\end{small}
+\caption{The mp\_int Structure}
+\label{fig:mpint}
+\end{center}
+\end{figure}
+
+The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer. The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.
+
+\item The \textbf{alloc} parameter denotes how
+many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
+array to accommodate the precision of the result.
+
+\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple
+precision integer. It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits. The array is maintained in a least
+significant digit order. As a pencil and paper analogy the array is organized such that the right most digits are stored
+first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array. For example,
+if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then
+it would represent the integer $a + b\beta + c\beta^2 + \ldots$
+
+\index{MP\_ZPOS} \index{MP\_NEG}
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+\end{enumerate}
+
+\subsubsection{Valid mp\_int Structures}
+Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.
+The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
+
+\begin{enumerate}
+\item The value of \textbf{alloc} may not be less than one. That is \textbf{dp} always points to a previously allocated
+array of digits.
+\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
+\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero. That is,
+leading zero digits in the most significant positions must be trimmed.
+ \begin{enumerate}
+ \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
+ \end{enumerate}
+\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero;
+this represents the mp\_int value of zero.
+\end{enumerate}
+
+\section{Argument Passing}
+A convention of argument passing must be adopted early on in the development of any library. Making the function
+prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.
+In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int
+structures. That means that the source (input) operands are placed on the left and the destination (output) on the right.
+Consider the following examples.
+
+\begin{verbatim}
+ mp_mul(&a, &b, &c); /* c = a * b */
+ mp_add(&a, &b, &a); /* a = a + b */
+ mp_sqr(&a, &b); /* b = a * a */
+\end{verbatim}
+
+The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
+functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''.
+
+Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
+of assignment expressions. That is, the destination (output) is on the left and arguments (inputs) are on the right. In
+truth, it is entirely a matter of preference. In the case of LibTomMath the convention from the MPI library has been
+adopted.
+
+Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a
+destination. For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important
+feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.
+However, to implement this feature specific care has to be given to ensure the destination is not modified before the
+source is fully read.
+
+\section{Return Values}
+A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them
+to the caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. However, the end
+developer can still manage to cause a library to crash. For example, by passing an invalid pointer an application may
+fault by dereferencing memory not owned by the application.
+
+In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for
+instance) and memory allocation errors. It will not check that the mp\_int passed to any function is valid nor
+will it check pointers for validity. Any function that can cause a runtime error will return an error code as an
+\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
+
+\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value} & \textbf{Meaning} \\
+\hline \textbf{MP\_OKAY} & The function was successful \\
+\hline \textbf{MP\_VAL} & One of the input value(s) was invalid \\
+\hline \textbf{MP\_MEM} & The function ran out of heap memory \\
+\hline
+\end{tabular}
+\end{center}
+\caption{LibTomMath Error Codes}
+\label{fig:errcodes}
+\end{figure}
+
+When an error is detected within a function it should free any memory it allocated, often during the initialization of
+temporary mp\_ints, and return as soon as possible. The goal is to leave the system in the same state it was when the
+function was called. Error checking with this style of API is fairly simple.
+
+\begin{verbatim}
+ int err;
+ if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
+ printf("Error: %s\n", mp_error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+\end{verbatim}
+
+The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
+
+\section{Initialization and Clearing}
+The logical starting point when actually writing multiple precision integer functions is the initialization and
+clearing of the mp\_int structures. These two algorithms will be used by the majority of the higher level algorithms.
+
+Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
+the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even though
+the initial integer will represent zero. If only a single digit were allocated quite a few subsequent re-allocations
+would occur when operations are performed on the integers. There is a tradeoff between how many default digits to allocate
+and how many re-allocations are tolerable. Obviously allocating an excessive amount of digits initially will waste
+memory and become unmanageable.
+
+If the memory for the digits has been successfully allocated then the rest of the members of the structure must
+be initialized. Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
+to zero. The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
+
+\subsection{Initializing an mp\_int}
+An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
+structure are set to valid values. The mp\_init algorithm will perform such an action.
+
+\index{mp\_init}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Allocate memory and initialize $a$ to a known valid mp\_int state. \\
+\hline \\
+1. Allocate memory for \textbf{MP\_PREC} digits. \\
+2. If the allocation failed return(\textit{MP\_MEM}) \\
+3. for $n$ from $0$ to $MP\_PREC - 1$ do \\
+\hspace{3mm}3.1 $a_n \leftarrow 0$\\
+4. $a.sign \leftarrow MP\_ZPOS$\\
+5. $a.used \leftarrow 0$\\
+6. $a.alloc \leftarrow MP\_PREC$\\
+7. Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init}
+\end{figure}
+
+\textbf{Algorithm mp\_init.}
+The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
+manipulte it. It is assumed that the input may not have had any of its members previously initialized which is certainly
+a valid assumption if the input resides on the stack.
+
+Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
+the digits is allocated. If this fails the function returns before setting any of the other members. The \textbf{MP\_PREC}
+name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.}
+used to dictate the minimum precision of newly initialized mp\_int integers. Ideally, it is at least equal to the smallest
+precision number you'll be working with.
+
+Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
+heap operations later functions will have to perform in the future. If \textbf{MP\_PREC} is set correctly the slack
+memory and the number of heap operations will be trivial.
+
+Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
+\textbf{alloc} members initialized. This ensures that the mp\_int will always represent the default state of zero regardless
+of the original condition of the input.
+
+\textbf{Remark.}
+This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
+when the ``to'' keyword is placed between two expressions. For example, ``for $a$ from $b$ to $c$ do'' means that
+a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$. In each
+iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$. If $b > c$ occured
+the loop would not iterate. By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate
+decrementally.
+
+EXAM,bn_mp_init.c
+
+One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure. It
+is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack. The
+call to mp\_init() is used only to initialize the members of the structure to a known default state.
+
+Here we see (line @23,XMALLOC@) the memory allocation is performed first. This allows us to exit cleanly and quickly
+if there is an error. If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
+was a memory error. The function XMALLOC is what actually allocates the memory. Technically XMALLOC is not a function
+but a macro defined in ``tommath.h``. By default, XMALLOC will evaluate to malloc() which is the C library's built--in
+memory allocation routine.
+
+In order to assure the mp\_int is in a known state the digits must be set to zero. On most platforms this could have been
+accomplished by using calloc() instead of malloc(). However, to correctly initialize a integer type to a given value in a
+portable fashion you have to actually assign the value. The for loop (line @28,for@) performs this required
+operation.
+
+After the memory has been successfully initialized the remainder of the members are initialized
+(lines @29,used@ through @31,sign@) to their respective default states. At this point the algorithm has succeeded and
+a success code is returned to the calling function. If this function returns \textbf{MP\_OKAY} it is safe to assume the
+mp\_int structure has been properly initialized and is safe to use with other functions within the library.
+
+\subsection{Clearing an mp\_int}
+When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
+returned to the application's memory pool with the mp\_clear algorithm.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clear}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. The memory for $a$ shall be deallocated. \\
+\hline \\
+1. If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
+2. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1 $a_n \leftarrow 0$ \\
+3. Free the memory allocated for the digits of $a$. \\
+4. $a.used \leftarrow 0$ \\
+5. $a.alloc \leftarrow 0$ \\
+6. $a.sign \leftarrow MP\_ZPOS$ \\
+7. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clear}
+\end{figure}
+
+\textbf{Algorithm mp\_clear.}
+This algorithm accomplishes two goals. First, it clears the digits and the other mp\_int members. This ensures that
+if a developer accidentally re-uses a cleared structure it is less likely to cause problems. The second goal
+is to free the allocated memory.
+
+The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
+algorithm will not try to free the memory multiple times. Cleared mp\_ints are detectable by having a pre-defined invalid
+digit pointer \textbf{dp} setting.
+
+Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
+
+EXAM,bn_mp_clear.c
+
+The algorithm only operates on the mp\_int if it hasn't been previously cleared. The if statement (line @23,a->dp != NULL@)
+checks to see if the \textbf{dp} member is not \textbf{NULL}. If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
+\textbf{NULL} in which case the if statement will evaluate to true.
+
+The digits of the mp\_int are cleared by the for loop (line @25,for@) which assigns a zero to every digit. Similar to mp\_init()
+the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.
+
+The digits are deallocated off the heap via the XFREE macro. Similar to XMALLOC the XFREE macro actually evaluates to
+a standard C library function. In this case the free() function. Since free() only deallocates the memory the pointer
+still has to be reset to \textbf{NULL} manually (line @33,NULL@).
+
+Now that the digits have been cleared and deallocated the other members are set to their final values (lines @34,= 0@ and @35,ZPOS@).
+
+\section{Maintenance Algorithms}
+
+The previous sections describes how to initialize and clear an mp\_int structure. To further support operations
+that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
+able to augment the precision of an mp\_int and
+initialize mp\_ints with differing initial conditions.
+
+These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
+algorithms such as addition, multiplication and modular exponentiation.
+
+\subsection{Augmenting an mp\_int's Precision}
+When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire
+result of an operation without loss of precision. Quite often the size of the array given by the \textbf{alloc} member
+is large enough to simply increase the \textbf{used} digit count. However, when the size of the array is too small it
+must be re-sized appropriately to accomodate the result. The mp\_grow algorithm will provide this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_grow}. \\
+\textbf{Input}. An mp\_int $a$ and an integer $b$. \\
+\textbf{Output}. $a$ is expanded to accomodate $b$ digits. \\
+\hline \\
+1. if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
+2. $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
+3. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+4. Re-allocate the array of digits $a$ to size $v$ \\
+5. If the allocation failed then return(\textit{MP\_MEM}). \\
+6. for n from a.alloc to $v - 1$ do \\
+\hspace{+3mm}6.1 $a_n \leftarrow 0$ \\
+7. $a.alloc \leftarrow v$ \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_grow}
+\end{figure}
+
+\textbf{Algorithm mp\_grow.}
+It is ideal to prevent re-allocations from being performed if they are not required (step one). This is useful to
+prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.
+
+The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).
+This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.
+
+It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact. This is much
+akin to how the \textit{realloc} function from the standard C library works. Since the newly allocated digits are
+assumed to contain undefined values they are initially set to zero.
+
+EXAM,bn_mp_grow.c
+
+A quick optimization is to first determine if a memory re-allocation is required at all. The if statement (line @23,if@) checks
+if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count. If the count is not larger than \textbf{alloc}
+the function skips the re-allocation part thus saving time.
+
+When a re-allocation is performed it is turned into an optimal request to save time in the future. The requested digit count is
+padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line @25, size@). The XREALLOC function is used
+to re-allocate the memory. As per the other functions XREALLOC is actually a macro which evaluates to realloc by default. The realloc
+function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
+the re-allocation. All that is left is to clear the newly allocated digits and return.
+
+Note that the re-allocation result is actually stored in a temporary pointer $tmp$. This is to allow this function to return
+an error with a valid pointer. Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$. That would
+result in a memory leak if XREALLOC ever failed.
+
+\subsection{Initializing Variable Precision mp\_ints}
+Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size
+of input mp\_ints to a given algorithm. The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
+will allocate \textit{at least} a specified number of digits.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_size}. \\
+\textbf{Input}. An mp\_int $a$ and the requested number of digits $b$. \\
+\textbf{Output}. $a$ is initialized to hold at least $b$ digits. \\
+\hline \\
+1. $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
+2. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+3. Allocate $v$ digits. \\
+4. for $n$ from $0$ to $v - 1$ do \\
+\hspace{3mm}4.1 $a_n \leftarrow 0$ \\
+5. $a.sign \leftarrow MP\_ZPOS$\\
+6. $a.used \leftarrow 0$\\
+7. $a.alloc \leftarrow v$\\
+8. Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_init\_size}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_size.}
+This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of
+digits allocated can be controlled by the second input argument $b$. The input size is padded upwards so it is a
+multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits. This padding is used to prevent trivial
+allocations from becoming a bottleneck in the rest of the algorithms.
+
+Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero. This
+particular algorithm is useful if it is known ahead of time the approximate size of the input. If the approximation is
+correct no further memory re-allocations are required to work with the mp\_int.
+
+EXAM,bn_mp_init_size.c
+
+The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmenting it to the next multiple of
+\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result. If the memory can be successfully allocated the
+mp\_int is placed in a default state representing the integer zero. Otherwise, the error code \textbf{MP\_MEM} will be
+returned (line @27,return@).
+
+The digits are allocated and set to zero at the same time with the calloc() function (line @25,XCALLOC@). The
+\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set
+to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@). If the function
+returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the
+functions to work with.
+
+\subsection{Multiple Integer Initializations and Clearings}
+Occasionally a function will require a series of mp\_int data types to be made available simultaneously.
+The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
+statement. It is essentially a shortcut to multiple initializations.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_multi}. \\
+\textbf{Input}. Variable length array $V_k$ of mp\_int variables of length $k$. \\
+\textbf{Output}. The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
+\hline \\
+1. for $n$ from 0 to $k - 1$ do \\
+\hspace{+3mm}1.1. Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
+\hspace{+3mm}1.2. If initialization failed then do \\
+\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\
+\hspace{+9mm}1.2.1.1. Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
+\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\
+2. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_multi}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_multi.}
+The algorithm will initialize the array of mp\_int variables one at a time. If a runtime error has been detected
+(\textit{step 1.2}) all of the previously initialized variables are cleared. The goal is an ``all or nothing''
+initialization which allows for quick recovery from runtime errors.
+
+EXAM,bn_mp_init_multi.c
+
+This function intializes a variable length list of mp\_int structure pointers. However, instead of having the mp\_int
+structures in an actual C array they are simply passed as arguments to the function. This function makes use of the
+``...'' argument syntax of the C programming language. The list is terminated with a final \textbf{NULL} argument
+appended on the right.
+
+The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function. A count
+$n$ of succesfully initialized mp\_int structures is maintained (line @47,n++@) such that if a failure does occur,
+the algorithm can backtrack and free the previously initialized structures (lines @27,if@ to @46,}@).
+
+
+\subsection{Clamping Excess Digits}
+When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
+the function instead of checking during the computation. For example, a multiplication of a $i$ digit number by a
+$j$ digit produces a result of at most $i + j$ digits. It is entirely possible that the result is $i + j - 1$
+though, with no final carry into the last position. However, suppose the destination had to be first expanded
+(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.
+That would be a considerable waste of time since heap operations are relatively slow.
+
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
+terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked
+there would be an excess high order zero digit.
+
+For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$. The leading zero digit
+will not contribute to the precision of the result. In fact, through subsequent operations more leading zero digits would
+accumulate to the point the size of the integer would be prohibitive. As a result even though the precision is very
+low the representation is excessively large.
+
+The mp\_clamp algorithm is designed to solve this very problem. It will trim high-order zeros by decrementing the
+\textbf{used} count until a non-zero most significant digit is found. Also in this system, zero is considered to be a
+positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
+\textbf{MP\_ZPOS}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clamp}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Any excess leading zero digits of $a$ are removed \\
+\hline \\
+1. while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
+\hspace{+3mm}1.1 $a.used \leftarrow a.used - 1$ \\
+2. if $a.used = 0$ then do \\
+\hspace{+3mm}2.1 $a.sign \leftarrow MP\_ZPOS$ \\
+\hline \\
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clamp}
+\end{figure}
+
+\textbf{Algorithm mp\_clamp.}
+As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at
+the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for
+when all of the digits are zero to ensure that the mp\_int is valid at all times.
+
+EXAM,bn_mp_clamp.c
+
+Note on line @27,while@ how to test for the \textbf{used} count is made on the left of the \&\& operator. In the C programming
+language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails. This is
+important since if the \textbf{used} is zero the test on the right would fetch below the array. That is obviously
+undesirable. The parenthesis on line @28,a->used@ is used to make sure the \textbf{used} count is decremented and not
+the pointer ``a''.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
+ & \\
+$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations. \\
+ & \\
+$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
+ & encryption when $\beta = 2^{28}$. \\
+ & \\
+$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp. What does it prevent? \\
+ & \\
+$\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy might be useful. \\
+ & \\
+\end{tabular}
+
+
+%%%
+% CHAPTER FOUR
+%%%
+
+\chapter{Basic Operations}
+
+\section{Introduction}
+In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
+mp\_int structures. This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low
+level basis of the entire library. While these algorithm are relatively trivial it is important to understand how they
+work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
+
+The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
+mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
+represent.
+
+\section{Assigning Values to mp\_int Structures}
+\subsection{Copying an mp\_int}
+Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
+a copy for the purposes of this text. The copy of the mp\_int will be a separate entity that represents the same
+value as the mp\_int it was copied from. The mp\_copy algorithm provides this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_copy}. \\
+\textbf{Input}. An mp\_int $a$ and $b$. \\
+\textbf{Output}. Store a copy of $a$ in $b$. \\
+\hline \\
+1. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\
+2. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1 $b_{n} \leftarrow a_{n}$ \\
+3. for $n$ from $a.used$ to $b.used - 1$ do \\
+\hspace{3mm}3.1 $b_{n} \leftarrow 0$ \\
+4. $b.used \leftarrow a.used$ \\
+5. $b.sign \leftarrow a.sign$ \\
+6. return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_copy.}
+This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
+represent the same integer as the mp\_int $a$. The mp\_int $b$ shall be a complete and distinct copy of the
+mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
+
+If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow
+algorithm. The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
+and three). The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
+$b$.
+
+\textbf{Remark.} This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
+text. The error return codes of other algorithms are not explicitly checked in the pseudo-code presented. For example, in
+step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded. Text space is
+limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
+the error code itself. However, the C code presented will demonstrate all of the error handling logic required to
+implement the pseudo-code.
+
+EXAM,bn_mp_copy.c
+
+Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
+mp\_int structures passed to a function are one and the same. For this case it is optimal to return immediately without
+copying digits (line @24,a == b@).
+
+The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$. If $b.alloc$ is less than
+$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines @29,alloc@ to @33,}@). In order to
+simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
+of the mp\_ints $a$ and $b$ respectively. These aliases (lines @42,tmpa@ and @45,tmpb@) allow the compiler to access the digits without first dereferencing the
+mp\_int pointers and then subsequently the pointer to the digits.
+
+After the aliases are established the digits from $a$ are copied into $b$ (lines @48,for@ to @50,}@) and then the excess
+digits of $b$ are set to zero (lines @53,for@ to @55,}@). Both ``for'' loops make use of the pointer aliases and in
+fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits. This optimization
+allows the alias to stay in a machine register fairly easy between the two loops.
+
+\textbf{Remarks.} The use of pointer aliases is an implementation methodology first introduced in this function that will
+be used considerably in other functions. Technically, a pointer alias is simply a short hand alias used to lower the
+number of pointer dereferencing operations required to access data. For example, a for loop may resemble
+
+\begin{alltt}
+for (x = 0; x < 100; x++) \{
+ a->num[4]->dp[x] = 0;
+\}
+\end{alltt}
+
+This could be re-written using aliases as
+
+\begin{alltt}
+mp_digit *tmpa;
+a = a->num[4]->dp;
+for (x = 0; x < 100; x++) \{
+ *a++ = 0;
+\}
+\end{alltt}
+
+In this case an alias is used to access the
+array of digits within an mp\_int structure directly. It may seem that a pointer alias is strictly not required
+as a compiler may optimize out the redundant pointer operations. However, there are two dominant reasons to use aliases.
+
+The first reason is that most compilers will not effectively optimize pointer arithmetic. For example, some optimizations
+may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Also some optimizations may
+work for GCC and not MSVC. As such it is ideal to find a common ground for as many compilers as possible. Pointer
+aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code
+stands a better chance of being faster.
+
+The second reason is that pointer aliases often can make an algorithm simpler to read. Consider the first ``for''
+loop of the function mp\_copy() re-written to not use pointer aliases.
+
+\begin{alltt}
+ /* copy all the digits */
+ for (n = 0; n < a->used; n++) \{
+ b->dp[n] = a->dp[n];
+ \}
+\end{alltt}
+
+Whether this code is harder to read depends strongly on the individual. However, it is quantifiably slightly more
+complicated as there are four variables within the statement instead of just two.
+
+\subsubsection{Nested Statements}
+Another commonly used technique in the source routines is that certain sections of code are nested. This is used in
+particular with the pointer aliases to highlight code phases. For example, a Comba multiplier (discussed in chapter six)
+will typically have three different phases. First the temporaries are initialized, then the columns calculated and
+finally the carries are propagated. In this example the middle column production phase will typically be nested as it
+uses temporary variables and aliases the most.
+
+The nesting also simplies the source code as variables that are nested are only valid for their scope. As a result
+the various temporary variables required do not propagate into other sections of code.
+
+
+\subsection{Creating a Clone}
+Another common operation is to make a local temporary copy of an mp\_int argument. To initialize an mp\_int
+and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone. This is
+useful within functions that need to modify an argument but do not wish to actually modify the original copy. The
+mp\_init\_copy algorithm has been designed to help perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_copy}. \\
+\textbf{Input}. An mp\_int $a$ and $b$\\
+\textbf{Output}. $a$ is initialized to be a copy of $b$. \\
+\hline \\
+1. Init $a$. (\textit{mp\_init}) \\
+2. Copy $b$ to $a$. (\textit{mp\_copy}) \\
+3. Return the status of the copy operation. \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_copy.}
+This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it. As
+such this algorithm will perform two operations in one step.
+
+EXAM,bn_mp_init_copy.c
+
+This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}. Note that
+\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
+and \textbf{a} will be left intact.
+
+\section{Zeroing an Integer}
+Reseting an mp\_int to the default state is a common step in many algorithms. The mp\_zero algorithm will be the algorithm used to
+perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_zero}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Zero the contents of $a$ \\
+\hline \\
+1. $a.used \leftarrow 0$ \\
+2. $a.sign \leftarrow$ MP\_ZPOS \\
+3. for $n$ from 0 to $a.alloc - 1$ do \\
+\hspace{3mm}3.1 $a_n \leftarrow 0$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_zero}
+\end{figure}
+
+\textbf{Algorithm mp\_zero.}
+This algorithm simply resets a mp\_int to the default state.
+
+EXAM,bn_mp_zero.c
+
+After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the
+\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
+
+\section{Sign Manipulation}
+\subsection{Absolute Value}
+With the mp\_int representation of an integer, calculating the absolute value is trivial. The mp\_abs algorithm will compute
+the absolute value of an mp\_int.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_abs}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Computes $b = \vert a \vert$ \\
+\hline \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
+2. If the copy failed return(\textit{MP\_MEM}). \\
+3. $b.sign \leftarrow MP\_ZPOS$ \\
+4. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_abs}
+\end{figure}
+
+\textbf{Algorithm mp\_abs.}
+This algorithm computes the absolute of an mp\_int input. First it copies $a$ over $b$. This is an example of an
+algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful. This allows,
+for instance, the developer to pass the same mp\_int as the source and destination to this function without addition
+logic to handle it.
+
+EXAM,bn_mp_abs.c
+
+\subsection{Integer Negation}
+With the mp\_int representation of an integer, calculating the negation is also trivial. The mp\_neg algorithm will compute
+the negative of an mp\_int input.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_neg}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Computes $b = -a$ \\
+\hline \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
+2. If the copy failed return(\textit{MP\_MEM}). \\
+3. If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
+4. If $a.sign = MP\_ZPOS$ then do \\
+\hspace{3mm}4.1 $b.sign = MP\_NEG$. \\
+5. else do \\
+\hspace{3mm}5.1 $b.sign = MP\_ZPOS$. \\
+6. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_neg}
+\end{figure}
+
+\textbf{Algorithm mp\_neg.}
+This algorithm computes the negation of an input. First it copies $a$ over $b$. If $a$ has no used digits then
+the algorithm returns immediately. Otherwise it flips the sign flag and stores the result in $b$. Note that if
+$a$ had no digits then it must be positive by definition. Had step three been omitted then the algorithm would return
+zero as negative.
+
+EXAM,bn_mp_neg.c
+
+\section{Small Constants}
+\subsection{Setting Small Constants}
+Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For these cases the mp\_set algorithm is useful.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set}. \\
+\textbf{Input}. An mp\_int $a$ and a digit $b$ \\
+\textbf{Output}. Make $a$ equivalent to $b$ \\
+\hline \\
+1. Zero $a$ (\textit{mp\_zero}). \\
+2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
+3. $a.used \leftarrow \left \lbrace \begin{array}{ll}
+ 1 & \mbox{if }a_0 > 0 \\
+ 0 & \mbox{if }a_0 = 0
+ \end{array} \right .$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set}
+\end{figure}
+
+\textbf{Algorithm mp\_set.}
+This algorithm sets a mp\_int to a small single digit value. Step number 1 ensures that the integer is reset to the default state. The
+single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
+
+EXAM,bn_mp_set.c
+
+Line @21,mp_zero@ calls mp\_zero() to clear the mp\_int and reset the sign. Line @22,MP_MASK@ copies the digit
+into the least significant location. Note the usage of a new constant \textbf{MP\_MASK}. This constant is used to quickly
+reduce an integer modulo $\beta$. Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with
+$MP\_MASK = 2^k - 1$ to perform the reduction. Finally line @23,a->used@ will set the \textbf{used} member with respect to the
+digit actually set. This function will always make the integer positive.
+
+One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses
+this function should take that into account. Only trivially small constants can be set using this function.
+
+\subsection{Setting Large Constants}
+To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal. It accepts a ``long''
+data type as input and will always treat it as a 32-bit integer.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set\_int}. \\
+\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\
+\textbf{Output}. Make $a$ equivalent to $b$ \\
+\hline \\
+1. Zero $a$ (\textit{mp\_zero}) \\
+2. for $n$ from 0 to 7 do \\
+\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
+\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
+\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\
+\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\
+3. Clamp excess used digits (\textit{mp\_clamp}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set\_int}
+\end{figure}
+
+\textbf{Algorithm mp\_set\_int.}
+The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
+mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
+incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+zero digits used and the newly added four bits would be ignored.
+
+Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
+
+EXAM,bn_mp_set_int.c
+
+This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes. The weird
+addition on line @38,a->used@ ensures that the newly added in bits are added to the number of digits. While it may not
+seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line @27,mp_mul_2d@
+as well as the call to mp\_clamp() on line @40,mp_clamp@. Both functions will clamp excess leading digits which keeps
+the number of used digits low.
+
+\section{Comparisons}
+\subsection{Unsigned Comparisions}
+Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers. For example,
+to compare $1,234$ to $1,264$ the digits are extracted by their positions. That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
+to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude
+positions. If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.
+
+The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
+mp\_int variables alone. It will ignore the sign of the two inputs. Such a function is useful when an absolute comparison is required or if the
+signs are known to agree in advance.
+
+To facilitate working with the results of the comparison functions three constants are required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|r|l|}
+\hline \textbf{Constant} & \textbf{Meaning} \\
+\hline \textbf{MP\_GT} & Greater Than \\
+\hline \textbf{MP\_EQ} & Equal To \\
+\hline \textbf{MP\_LT} & Less Than \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Return Codes}
+\end{figure}
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp\_mag}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$. \\
+\textbf{Output}. Unsigned comparison results ($a$ to the left of $b$). \\
+\hline \\
+1. If $a.used > b.used$ then return(\textit{MP\_GT}) \\
+2. If $a.used < b.used$ then return(\textit{MP\_LT}) \\
+3. for n from $a.used - 1$ to 0 do \\
+\hspace{+3mm}3.1 if $a_n > b_n$ then return(\textit{MP\_GT}) \\
+\hspace{+3mm}3.2 if $a_n < b_n$ then return(\textit{MP\_LT}) \\
+4. Return(\textit{MP\_EQ}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp\_mag}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp\_mag.}
+By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
+\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$. The first two steps compare the number of digits used in both $a$ and $b$.
+Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.
+If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
+
+By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
+the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
+
+EXAM,bn_mp_cmp_mag.c
+
+The two if statements on lines @24,if@ and @28,if@ compare the number of digits in the two inputs. These two are performed before all of the digits
+are compared since it is a very cheap test to perform and can potentially save considerable time. The implementation given is also not valid
+without those two statements. $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the
+array of digits.
+
+\subsection{Signed Comparisons}
+Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
+comparison a trivial signed comparison algorithm can be written.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. Signed Comparison Results ($a$ to the left of $b$) \\
+\hline \\
+1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
+2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
+3. if $a.sign = MP\_NEG$ then \\
+\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
+4 Otherwise \\
+\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp.}
+The first two steps compare the signs of the two inputs. If the signs do not agree then it can return right away with the appropriate
+comparison code. When the signs are equal the digits of the inputs must be compared to determine the correct result. In step
+three the unsigned comparision flips the order of the arguments since they are both negative. For instance, if $-a > -b$ then
+$\vert a \vert < \vert b \vert$. Step number four will compare the two when they are both positive.
+
+EXAM,bn_mp_cmp.c
+
+The two if statements on lines @22,if@ and @26,if@ perform the initial sign comparison. If the signs are not the equal then which ever
+has the positive sign is larger. At line @30,if@, the inputs are compared based on magnitudes. If the signs were both negative then
+the unsigned comparison is performed in the opposite direction (\textit{line @31,mp_cmp_mag@}). Otherwise, the signs are assumed to
+be both positive and a forward direction unsigned comparison is performed.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
+ & \\
+$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits \\
+ & of two random digits (of equal magnitude) before a difference is found. \\
+ & \\
+$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based \\
+ & on the observations made in the previous problem. \\
+ &
+\end{tabular}
+
+\chapter{Basic Arithmetic}
+\section{Introduction}
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
+established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important
+that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
+which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
+
+MARK,SHIFTS
+All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
+logical shifts respectively. A logical shift is analogous to sliding the decimal point of radix-10 representations. For example, the real
+number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).
+Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.
+For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
+
+One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
+from the number. For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$. However, with a logical shift the
+result is $110_2$.
+
+\section{Addition and Subtraction}
+In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus. For example, with 32-bit integers
+$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$ since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.
+As a result subtraction can be performed with a trivial series of logical operations and an addition.
+
+However, in multiple precision arithmetic negative numbers are not represented in the same way. Instead a sign flag is used to keep track of the
+sign of the integer. As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or
+subtraction algorithms with the sign fixed up appropriately.
+
+The lower level algorithms will add or subtract integers without regard to the sign flag. That is they will add or subtract the magnitude of
+the integers respectively.
+
+\subsection{Low Level Addition}
+An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers. That is to add the
+trailing digits first and propagate the resulting carry upwards. Since this is a lower level algorithm the name will have a ``s\_'' prefix.
+Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
+
+\newpage
+\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_add}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
+\hline \\
+1. if $a.used > b.used$ then \\
+\hspace{+3mm}1.1 $min \leftarrow b.used$ \\
+\hspace{+3mm}1.2 $max \leftarrow a.used$ \\
+\hspace{+3mm}1.3 $x \leftarrow a$ \\
+2. else \\
+\hspace{+3mm}2.1 $min \leftarrow a.used$ \\
+\hspace{+3mm}2.2 $max \leftarrow b.used$ \\
+\hspace{+3mm}2.3 $x \leftarrow b$ \\
+3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
+4. $oldused \leftarrow c.used$ \\
+5. $c.used \leftarrow max + 1$ \\
+6. $u \leftarrow 0$ \\
+7. for $n$ from $0$ to $min - 1$ do \\
+\hspace{+3mm}7.1 $c_n \leftarrow a_n + b_n + u$ \\
+\hspace{+3mm}7.2 $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8. if $min \ne max$ then do \\
+\hspace{+3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
+\hspace{+6mm}8.1.1 $c_n \leftarrow x_n + u$ \\
+\hspace{+6mm}8.1.2 $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. $c_{max} \leftarrow u$ \\
+10. if $olduse > max$ then \\
+\hspace{+3mm}10.1 for $n$ from $max + 1$ to $oldused - 1$ do \\
+\hspace{+6mm}10.1.1 $c_n \leftarrow 0$ \\
+11. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_add}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_add.}
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the
+MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+
+The first thing that has to be accomplished is to sort out which of the two inputs is the largest. The addition logic
+will simply add all of the smallest input to the largest input and store that first part of the result in the
+destination. Then it will apply a simpler addition loop to excess digits of the larger input.
+
+The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two
+inputs. The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
+same number of digits. After the inputs are sorted the destination $c$ is grown as required to accomodate the sum
+of the two inputs. The original \textbf{used} count of $c$ is copied and set to the new used count.
+
+At this point the first addition loop will go through as many digit positions that both inputs have. The carry
+variable $\mu$ is set to zero outside the loop. Inside the loop an ``addition'' step requires three statements to produce
+one digit of the summand. First
+two digits from $a$ and $b$ are added together along with the carry $\mu$. The carry of this step is extracted and stored
+in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
+
+Now all of the digit positions that both inputs have in common have been exhausted. If $min \ne max$ then $x$ is an alias
+for one of the inputs that has more digits. A simplified addition loop is then used to essentially copy the remaining digits
+and the carry to the destination.
+
+The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
+
+
+EXAM,bn_s_mp_add.c
+
+Lines @27,if@ to @35,}@ perform the initial sorting of the inputs and determine the $min$ and $max$ variables. Note that $x$ is a pointer to a
+mp\_int assigned to the largest input, in effect it is a local alias. Lines @37,init@ to @42,}@ ensure that the destination is grown to
+accomodate the result of the addition.
+
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on
+lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively. These aliases are used to ensure the
+compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
+
+The initial carry $u$ is cleared on line @65,u = 0@, note that $u$ is of type mp\_digit which ensures type compatibility within the
+implementation. The initial addition loop begins on line @66,for@ and ends on line @75,}@. Similarly the conditional addition loop
+begins on line @81,for@ and ends on line @90,}@. The addition is finished with the final carry being stored in $tmpc$ on line @94,tmpc++@.
+Note the ``++'' operator on the same line. After line @94,tmpc++@ $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful
+for the next loop on lines @97,for@ to @99,}@ which set any old upper digits to zero.
+
+\subsection{Low Level Subtraction}
+The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principle difference is that the
+unsigned subtraction algorithm requires the result to be positive. That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must
+be met for this algorithm to function properly. Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.
+This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
+
+MARK,GAMMA
+
+For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent
+the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma = 32$.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sub}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
+\textbf{Output}. The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
+\hline \\
+1. $min \leftarrow b.used$ \\
+2. $max \leftarrow a.used$ \\
+3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\
+4. $oldused \leftarrow c.used$ \\
+5. $c.used \leftarrow max$ \\
+6. $u \leftarrow 0$ \\
+7. for $n$ from $0$ to $min - 1$ do \\
+\hspace{3mm}7.1 $c_n \leftarrow a_n - b_n - u$ \\
+\hspace{3mm}7.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8. if $min < max$ then do \\
+\hspace{3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
+\hspace{6mm}8.1.1 $c_n \leftarrow a_n - u$ \\
+\hspace{6mm}8.1.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. if $oldused > max$ then do \\
+\hspace{3mm}9.1 for $n$ from $max$ to $oldused - 1$ do \\
+\hspace{6mm}9.1.1 $c_n \leftarrow 0$ \\
+10. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_sub}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sub.}
+This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive. That is when
+passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly. This
+algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well. As was the case
+of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
+
+The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2
+set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
+most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
+set to the maximal count for the operation.
+
+The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
+subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
+loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
+
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to
+the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the
+third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the
+way to the most significant bit.
+
+Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
+significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
+carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
+
+If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step
+10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
+
+EXAM,bn_s_mp_sub.c
+
+Line @24,min@ and @25,max@ perform the initial hardcoded sorting of the inputs. In reality the $min$ and $max$ variables are only aliases and are only
+used to make the source code easier to read. Again the pointer alias optimization is used within this algorithm. Lines @42,tmpa@, @43,tmpb@ and @44,tmpc@ initialize the aliases for
+$a$, $b$ and $c$ respectively.
+
+The first subtraction loop occurs on lines @47,u = 0@ through @61,}@. The theory behind the subtraction loop is exactly the same as that for
+the addition loop. As remarked earlier there is an implementation reason for using the ``awkward'' method of extracting the carry
+(\textit{see line @57, >>@}). The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND
+the least significant bit. The AND operation is required because all of the bits above the $\lg(\beta)$'th bit will be set to one after a carry
+occurs from subtraction. This carry extraction requires two relatively cheap operations to extract the carry. The other method is to simply
+shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This optimization only works on
+twos compliment machines which is a safe assumption to make.
+
+If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines @64,for@ through @73,}@}) is required to propagate the carry through
+$a$ and copy the result to $c$.
+
+\subsection{High Level Addition}
+Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
+established. This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data
+types.
+
+Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
+flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The signed addition $c = a + b$. \\
+\hline \\
+1. if $a.sign = b.sign$ then do \\
+\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
+2. else do \\
+\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_add}
+\end{figure}
+
+\textbf{Algorithm mp\_add.}
+This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from
+either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations. The algorithm is fairly
+straightforward but restricted since subtraction can only produce positive results.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $+$ & No & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & No & $c = a + b$ & $a.sign$ \\
+\hline &&&&\\
+
+\hline $+$ & $-$ & No & $c = b - a$ & $b.sign$ \\
+\hline $-$ & $+$ & No & $c = b - a$ & $b.sign$ \\
+
+\hline &&&&\\
+
+\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Addition Guide Chart}
+\label{fig:AddChart}
+\end{figure}
+
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three
+specific cases need to be handled. The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are
+forwarded to step three to check for errors. This simplifies the description of the algorithm considerably and best
+follows how the implementation actually was achieved.
+
+Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms
+s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits. The mp\_clamp algorithm will set the \textbf{sign}
+to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
+
+For example, consider performing $-a + a$ with algorithm mp\_add. By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
+produce a result of $-0$. However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp
+within algorithm s\_mp\_add will force $-0$ to become $0$.
+
+EXAM,bn_mp_add.c
+
+The source code follows the algorithm fairly closely. The most notable new source code addition is the usage of the $res$ integer variable which
+is used to pass result of the unsigned operations forward. Unlike in the algorithm, the variable $res$ is merely returned as is without
+explicitly checking it and returning the constant \textbf{MP\_OKAY}. The observation is this algorithm will succeed or fail only if the lower
+level functions do so. Returning their return code is sufficient.
+
+\subsection{High Level Subtraction}
+The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sub}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The signed subtraction $c = a - b$. \\
+\hline \\
+1. if $a.sign \ne b.sign$ then do \\
+\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
+2. else do \\
+\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll}
+ MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\
+ MP\_NEG & \mbox{otherwise} \\
+ \end{array} \right .$ \\
+\hspace{6mm}2.2.2 $c \leftarrow \vert b \vert - \vert a \vert$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_sub}
+\end{figure}
+
+\textbf{Algorithm mp\_sub.}
+This algorithm performs the signed subtraction of two inputs. Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or
+\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. Chart \ref{fig:SubChart} lists the eight possible inputs and
+the operations required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $-$ & No & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & No & $c = a + b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline $-$ & $-$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Subtraction Guide Chart}
+\label{fig:SubChart}
+\end{figure}
+
+Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction. That is to prevent the
+algorithm from producing $-a - -a = -0$ as a result.
+
+EXAM,bn_mp_sub.c
+
+Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
+and forward it to the end of the function. On line @38, != MP_LT@ the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a
+``greater than or equal to'' comparison.
+
+\section{Bit and Digit Shifting}
+MARK,POLY
+It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.
+This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.
+
+In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established. That is to shift
+the digits left or right as well to shift individual bits of the digits left and right. It is important to note that not all ``shift'' operations
+are on radix-$\beta$ digits.
+
+\subsection{Multiplication by Two}
+
+In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
+operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2}. \\
+\textbf{Input}. One mp\_int $a$ \\
+\textbf{Output}. $b = 2a$. \\
+\hline \\
+1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\
+2. $oldused \leftarrow b.used$ \\
+3. $b.used \leftarrow a.used$ \\
+4. $r \leftarrow 0$ \\
+5. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}5.1 $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
+\hspace{3mm}5.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.3 $r \leftarrow rr$ \\
+6. If $r \ne 0$ then do \\
+\hspace{3mm}6.1 $b_{n + 1} \leftarrow r$ \\
+\hspace{3mm}6.2 $b.used \leftarrow b.used + 1$ \\
+7. If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
+8. $b.sign \leftarrow a.sign$ \\
+9. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2.}
+This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two. Neither \cite{TAOCPV2} nor \cite{HAC} describe such
+an algorithm despite the fact it arises often in other algorithms. The algorithm is setup much like the lower level algorithm s\_mp\_add since
+it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.
+
+Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result. The initial \textbf{used} count
+is set to $a.used$ at step 4. Only if there is a final carry will the \textbf{used} count require adjustment.
+
+Step 6 is an optimization implementation of the addition loop for this specific case. That is since the two values being added together
+are the same there is no need to perform two reads from the digits of $a$. Step 6.1 performs a single precision shift on the current digit $a_n$ to
+obtain what will be the carry for the next iteration. Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
+the previous carry. Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with
+forwarding the carry to the next iteration.
+
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
+
+EXAM,bn_mp_mul_2.c
+
+This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input. The only noteworthy difference
+is the use of the logical shift operator on line @52,<<@ to perform a single precision doubling.
+
+\subsection{Division by Two}
+A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2}. \\
+\textbf{Input}. One mp\_int $a$ \\
+\textbf{Output}. $b = a/2$. \\
+\hline \\
+1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\
+2. If the reallocation failed return(\textit{MP\_MEM}). \\
+3. $oldused \leftarrow b.used$ \\
+4. $b.used \leftarrow a.used$ \\
+5. $r \leftarrow 0$ \\
+6. for $n$ from $b.used - 1$ to $0$ do \\
+\hspace{3mm}6.1 $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
+\hspace{3mm}6.2 $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}6.3 $r \leftarrow rr$ \\
+7. If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
+8. $b.sign \leftarrow a.sign$ \\
+9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\
+10. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2.}
+This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition
+core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm
+could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
+reading past the end of the array of digits.
+
+Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
+least significant bit not the most significant bit.
+
+EXAM,bn_mp_div_2.c
+
+\section{Polynomial Basis Operations}
+Recall from ~POLY~ that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$. Such a representation is also known as
+the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single
+place. The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
+division and Karatsuba multiplication.
+
+Converting from an array of digits to polynomial basis is very simple. Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
+$y = \sum_{i=0}^{2} a_i \beta^i$. Simply replace $\beta$ with $x$ and the expression is in polynomial basis. For example, $f(x) = 8x + 9$ is the
+polynomial basis representation for $89$ using radix ten. That is, $f(10) = 8(10) + 9 = 89$.
+
+\subsection{Multiplication by $x$}
+
+Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one
+degree. In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$. From a scalar basis point of view multiplying by $x$ is equivalent to
+multiplying by the integer $\beta$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lshd}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
+\hline \\
+1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\
+2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\
+3. If the reallocation failed return(\textit{MP\_MEM}). \\
+4. $a.used \leftarrow a.used + b$ \\
+5. $i \leftarrow a.used - 1$ \\
+6. $j \leftarrow a.used - 1 - b$ \\
+7. for $n$ from $a.used - 1$ to $b$ do \\
+\hspace{3mm}7.1 $a_{i} \leftarrow a_{j}$ \\
+\hspace{3mm}7.2 $i \leftarrow i - 1$ \\
+\hspace{3mm}7.3 $j \leftarrow j - 1$ \\
+8. for $n$ from 0 to $b - 1$ do \\
+\hspace{3mm}8.1 $a_n \leftarrow 0$ \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lshd}
+\end{figure}
+
+\textbf{Algorithm mp\_lshd.}
+This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The
+motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required. The algorithm will return success immediately if
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
+
+First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over
+the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
+The loop on step 7 copies the digit from the tail to the head. In each iteration the window is moved down one digit. The last loop on
+step 8 sets the lower $b$ digits to zero.
+
+\newpage
+FIGU,sliding_window,Sliding Window Movement
+
+EXAM,bn_mp_lshd.c
+
+The if statement on line @24,if@ ensures that the $b$ variable is greater than zero. The \textbf{used} count is incremented by $b$ before
+the copy loop begins. This elminates the need for an additional variable in the for loop. The variable $top$ on line @42,top@ is an alias
+for the leading digit while $bottom$ on line @45,bottom@ is an alias for the trailing edge. The aliases form a window of exactly $b$ digits
+over the input.
+
+\subsection{Division by $x$}
+
+Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rshd}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
+\hline \\
+1. If $b \le 0$ then return. \\
+2. If $a.used \le b$ then do \\
+\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\
+\hspace{3mm}2.2 Return. \\
+3. $i \leftarrow 0$ \\
+4. $j \leftarrow b$ \\
+5. for $n$ from 0 to $a.used - b - 1$ do \\
+\hspace{3mm}5.1 $a_i \leftarrow a_j$ \\
+\hspace{3mm}5.2 $i \leftarrow i + 1$ \\
+\hspace{3mm}5.3 $j \leftarrow j + 1$ \\
+6. for $n$ from $a.used - b$ to $a.used - 1$ do \\
+\hspace{3mm}6.1 $a_n \leftarrow 0$ \\
+7. $a.used \leftarrow a.used - b$ \\
+8. Return. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rshd}
+\end{figure}
+
+\textbf{Algorithm mp\_rshd.}
+This algorithm divides the input in place by the $b$'th power of $x$. It is analogous to dividing by a $\beta^b$ but much quicker since
+it does not require single precision division. This algorithm does not actually return an error code as it cannot fail.
+
+If the input $b$ is less than one the algorithm quickly returns without performing any work. If the \textbf{used} count is less than or equal
+to the shift count $b$ then it will simply zero the input and return.
+
+After the trivial cases of inputs have been handled the sliding window is setup. Much like the case of algorithm mp\_lshd a sliding window that
+is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
+Also the digits are copied from the leading to the trailing edge.
+
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
+
+EXAM,bn_mp_rshd.c
+
+The only noteworthy element of this routine is the lack of a return type.
+
+-- Will update later to give it a return type...Tom
+
+\section{Powers of Two}
+
+Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required. For
+example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful. Instead of performing single
+shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.
+
+\subsection{Multiplication by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\
+\hline \\
+1. $c \leftarrow a$. (\textit{mp\_copy}) \\
+2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
+3. If the reallocation failed return(\textit{MP\_MEM}). \\
+4. If $b \ge lg(\beta)$ then \\
+\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
+\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\
+5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6. If $d \ne 0$ then do \\
+\hspace{3mm}6.1 $mask \leftarrow 2^d$ \\
+\hspace{3mm}6.2 $r \leftarrow 0$ \\
+\hspace{3mm}6.3 for $n$ from $0$ to $c.used - 1$ do \\
+\hspace{6mm}6.3.1 $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2 $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
+\hspace{3mm}6.4 If $r > 0$ then do \\
+\hspace{6mm}6.4.1 $c_{c.used} \leftarrow r$ \\
+\hspace{6mm}6.4.2 $c.used \leftarrow c.used + 1$ \\
+7. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2d.}
+This algorithm multiplies $a$ by $2^b$ and stores the result in $c$. The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
+quickly compute the product.
+
+First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than
+$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
+left.
+
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts
+required. If it is non-zero a modified shift loop is used to calculate the remaining product.
+Essentially the loop is a generic version of algorith mp\_mul2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$
+variable is used to extract the upper $d$ bits to form the carry for the next iteration.
+
+This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to
+complete. It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
+
+EXAM,bn_mp_mul_2d.c
+
+Notes to be revised when code is updated. -- Tom
+
+\subsection{Division by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then do \\
+\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\
+2. $c \leftarrow a$ \\
+3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+4. If $b \ge lg(\beta)$ then do \\
+\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
+5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6. If $k \ne 0$ then do \\
+\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\
+\hspace{3mm}6.2 $r \leftarrow 0$ \\
+\hspace{3mm}6.3 for $n$ from $c.used - 1$ to $0$ do \\
+\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
+\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
+7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2d.}
+This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder. The algorithm is designed much like algorithm
+mp\_mul\_2d by first using whole digit shifts then single precision shifts. This algorithm will also produce the remainder of the division
+by using algorithm mp\_mod\_2d.
+
+EXAM,bn_mp_div_2d.c
+
+The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally
+ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the
+result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
+
+The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. (-- Fix this paragraph up later, Tom).
+
+\subsection{Remainder of Division by Power of Two}
+
+The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This
+algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mod\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then do \\
+\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $b > a.used \cdot lg(\beta)$ then do \\
+\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}2.2 Return the result of step 2.1. \\
+3. $c \leftarrow a$ \\
+4. If step 3 failed return(\textit{MP\_MEM}). \\
+5. for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
+\hspace{3mm}5.1 $c_n \leftarrow 0$ \\
+6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
+8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mod\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mod\_2d.}
+This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$. First if $b$ is less than or equal to zero the
+result is set to zero. If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns. Otherwise, $a$
+is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
+
+EXAM,bn_mp_mod_2d.c
+
+-- Add comments later, Tom.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
+ & in $O(n)$ time. \\
+ &\\
+$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming \\
+ & weight values such as $3$, $5$ and $9$. Extend it to handle all values \\
+ & upto $64$ with a hamming weight less than three. \\
+ &\\
+$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
+ & $2^k - 1$ as well. \\
+ &\\
+$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
+ & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
+ & any $n$-bit input. Note that the time of addition is ignored in the \\
+ & calculation. \\
+ & \\
+$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
+ & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\
+ & the cost of addition. \\
+ & \\
+$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
+ & for $n = 64 \ldots 1024$ in steps of $64$. \\
+ & \\
+$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
+ & calculating the result of a signed comparison. \\
+ &
+\end{tabular}
+
+\chapter{Multiplication and Squaring}
+\section{The Multipliers}
+For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of
+algorithms of any multiple precision integer package. The set of multiplier algorithms include integer multiplication, squaring and modular reduction
+where in each of the algorithms single precision multiplication is the dominant operation performed. This chapter will discuss integer multiplication
+and squaring, leaving modular reductions for the subsequent chapter.
+
+The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular
+exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$. During a modular
+exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions,
+35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision
+multiplications.
+
+For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied
+against every digit of the other multiplicand. Traditional long-hand multiplication is based on this process; while the techniques can differ the
+overall algorithm used is essentially the same. Only ``recently'' have faster algorithms been studied. First Karatsuba multiplication was discovered in
+1962. This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.
+This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.
+
+\section{Multiplication}
+\subsection{The Baseline Multiplication}
+\label{sec:basemult}
+\index{baseline multiplication}
+Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
+algorithm that school children are taught. The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision
+multiplications are required. More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required. To
+simplify most discussions, it will be assumed that the inputs have comparable number of digits.
+
+The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be
+used. This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible. One important
+facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution. The importance of this
+modification will become evident during the discussion of Barrett modular reduction. Recall that for a $n$ and $m$ digit input the product
+will be at most $n + m$ digits. Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.
+
+Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}. We shall now extend the variable set to
+include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}. This implies that $2^{\alpha} > 2 \cdot \beta^2$. The
+constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+1. If min$(a.used, b.used) < \delta$ then do \\
+\hspace{3mm}1.1 Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}). \\
+\hspace{3mm}1.2 Return the result of step 1.1 \\
+\\
+Allocate and initialize a temporary mp\_int. \\
+2. Init $t$ to be of size $digs$ \\
+3. If step 2 failed return(\textit{MP\_MEM}). \\
+4. $t.used \leftarrow digs$ \\
+\\
+Compute the product. \\
+5. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}5.1 $u \leftarrow 0$ \\
+\hspace{3mm}5.2 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}5.3 If $pb < 1$ then goto step 6. \\
+\hspace{3mm}5.4 for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}5.4.1 $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
+\hspace{6mm}5.4.2 $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.5 if $ix + pb < digs$ then do \\
+\hspace{6mm}5.5.1 $t_{ix + pb} \leftarrow u$ \\
+6. Clamp excess digits of $t$. \\
+7. Swap $c$ with $t$ \\
+8. Clear $t$ \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_mul\_digs}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_mul\_digs.}
+This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits. While it may seem
+a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent
+algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.
+Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the
+inputs.
+
+The first thing this algorithm checks for is whether a Comba multiplier can be used instead. If the minimum digit count of either
+input is less than $\delta$, then the Comba method may be used instead. After the Comba method is ruled out, the baseline algorithm begins. A
+temporary mp\_int variable $t$ is used to hold the intermediate result of the product. This allows the algorithm to be used to
+compute products when either $a = c$ or $b = c$ without overwriting the inputs.
+
+All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output. The $pb$ variable
+is given the count of digits to read from $b$ inside the nested loop. If $pb \le 1$ then no more output digits can be produced and the algorithm
+will exit the loop. The best way to think of the loops are as a series of $pb \times 1$ multiplications. That is, in each pass of the
+innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.
+
+For example, consider multiplying $576$ by $241$. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
+visualized in the following table.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|l|}
+\hline && & 5 & 7 & 6 & \\
+\hline $\times$&& & 2 & 4 & 1 & \\
+\hline &&&&&&\\
+ && & 5 & 7 & 6 & $10^0(1)(576)$ \\
+ &2 & 3 & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
+ 1 & 3 & 8 & 8 & 1 & 6 & $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Long-Hand Multiplication Diagram}
+\end{figure}
+
+Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate
+count. That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
+
+Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable. The multiplication on that step
+is assumed to be a double wide output single precision multiplication. That is, two single precision variables are multiplied to produce a
+double precision result. The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
+5.4.1 is propagated through the nested loop. If the carry was not propagated immediately it would overflow the single precision digit
+$t_{ix+iy}$ and the result would be lost.
+
+At step 5.5 the nested loop is finished and any carry that was left over should be forwarded. The carry does not have to be added to the $ix+pb$'th
+digit since that digit is assumed to be zero at this point. However, if $ix + pb \ge digs$ the carry is not set as it would make the result
+exceed the precision requested.
+
+EXAM,bn_s_mp_mul_digs.c
+
+Lines @31,if@ to @35,}@ determine if the Comba method can be used first. The conditions for using the Comba routine are that min$(a.used, b.used) < \delta$ and
+the number of digits of output is less than \textbf{MP\_WARRAY}. This new constant is used to control
+the stack usage in the Comba routines. By default it is set to $\delta$ but can be reduced when memory is at a premium.
+
+Of particular importance is the calculation of the $ix+iy$'th column on lines @64,mp_word@, @65,mp_word@ and @66,mp_word@. Note how all of the
+variables are cast to the type \textbf{mp\_word}, which is also the type of variable $\hat r$. That is to ensure that double precision operations
+are used instead of single precision. The multiplication on line @65,) * (@ makes use of a specific GCC optimizer behaviour. On the outset it looks like
+the compiler will have to use a double precision multiplication to produce the result required. Such an operation would be horribly slow on most
+processors and drag this to a crawl. However, GCC is smart enough to realize that double wide output single precision multipliers can be used. For
+example, the instruction ``MUL'' on the x86 processor can multiply two 32-bit values and produce a 64-bit result.
+
+\subsection{Faster Multiplication by the ``Comba'' Method}
+MARK,COMBA
+
+One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards. This
+makes the nested loop very sequential and hard to unroll and implement in parallel. The ``Comba'' \cite{COMBA} method is named after little known
+(\textit{in cryptographic venues}) Paul G. Comba who described a method of implementing fast multipliers that do not require nested
+carry fixup operations. As an interesting aside it seems that Paul Barrett describes a similar technique in
+his 1986 paper \cite{BARRETT} written five years before.
+
+At the heart of the Comba technique is once again the long-hand algorithm. Except in this case a slight twist is placed on how
+the columns of the result are produced. In the standard long-hand algorithm rows of products are produced then added together to form the
+final result. In the baseline algorithm the columns are added together after each iteration to get the result instantaneously.
+
+In the Comba algorithm the columns of the result are produced entirely independently of each other. That is at the $O(n^2)$ level a
+simple multiplication and addition step is performed. The carries of the columns are propagated after the nested loop to reduce the amount
+of work requiored. Succintly the first step of the algorithm is to compute the product vector $\vec x$ as follows.
+
+\begin{equation}
+\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
+\end{equation}
+
+Where $\vec x_n$ is the $n'th$ column of the output vector. Consider the following example which computes the vector $\vec x$ for the multiplication
+of $576$ and $241$.
+
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|}
+ \hline & & 5 & 7 & 6 & First Input\\
+ \hline $\times$ & & 2 & 4 & 1 & Second Input\\
+\hline & & $1 \cdot 5 = 5$ & $1 \cdot 7 = 7$ & $1 \cdot 6 = 6$ & First pass \\
+ & $4 \cdot 5 = 20$ & $4 \cdot 7+5=33$ & $4 \cdot 6+7=31$ & 6 & Second pass \\
+ $2 \cdot 5 = 10$ & $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31 & 6 & Third pass \\
+\hline 10 & 34 & 45 & 31 & 6 & Final Result \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Comba Multiplication Diagram}
+\end{figure}
+
+At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.
+Now the columns must be fixed by propagating the carry upwards. The resultant vector will have one extra dimension over the input vector which is
+congruent to adding a leading zero digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Comba Fixup}. \\
+\textbf{Input}. Vector $\vec x$ of dimension $k$ \\
+\textbf{Output}. Vector $\vec x$ such that the carries have been propagated. \\
+\hline \\
+1. for $n$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
+\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
+2. Return($\vec x$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Comba Fixup}
+\end{figure}
+
+With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$. In this case
+$241 \cdot 576$ is in fact $138816$ and the procedure succeeded. If the algorithm is correct and as will be demonstrated shortly more
+efficient than the baseline algorithm why not simply always use this algorithm?
+
+\subsubsection{Column Weight.}
+At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output
+independently. A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
+the carries. For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
+three single precision multiplications. If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
+an overflow can occur and the carry information will be lost. For any $m$ and $n$ digit inputs the maximum weight of any column is
+min$(m, n)$ which is fairly obvious.
+
+The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used. Recall
+from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision. Given these
+two quantities we must not violate the following
+
+\begin{equation}
+k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
+\end{equation}
+
+Which reduces to
+
+\begin{equation}
+k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
+\end{equation}
+
+Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit. By further re-arrangement of the equation the final solution is
+found.
+
+\begin{equation}
+k < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
+\end{equation}
+
+The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$. In this configuration
+the smaller input may not have more than $256$ digits if the Comba method is to be used. This is quite satisfactory for most applications since
+$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} double precision digits named $\hat W$ on the stack. \\
+1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
+2. If step 1 failed return(\textit{MP\_MEM}).\\
+\\
+Zero the temporary array $\hat W$. \\
+3. for $n$ from $0$ to $digs - 1$ do \\
+\hspace{3mm}3.1 $\hat W_n \leftarrow 0$ \\
+\\
+Compute the columns. \\
+4. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}4.1 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}4.2 If $pb < 1$ then goto step 5. \\
+\hspace{3mm}4.3 for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}4.3.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}b_{iy}$ \\
+\\
+Propagate the carries upwards. \\
+5. $oldused \leftarrow c.used$ \\
+6. $c.used \leftarrow digs$ \\
+7. If $digs > 1$ then do \\
+\hspace{3mm}7.1. for $ix$ from $1$ to $digs - 1$ do \\
+\hspace{6mm}7.1.1 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix-1} / \beta \rfloor$ \\
+\hspace{6mm}7.1.2 $c_{ix - 1} \leftarrow \hat W_{ix - 1} \mbox{ (mod }\beta\mbox{)}$ \\
+8. else do \\
+\hspace{3mm}8.1 $ix \leftarrow 0$ \\
+9. $c_{ix} \leftarrow \hat W_{ix} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Zero excess digits. \\
+10. If $digs < oldused$ then do \\
+\hspace{3mm}10.1 for $n$ from $digs$ to $oldused - 1$ do \\
+\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
+11. Clamp excessive digits of $c$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_mul\_digs}
+\label{fig:COMBAMULT}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
+This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision. The algorithm
+essentially peforms the same calculation as algorithm s\_mp\_mul\_digs, just much faster.
+
+The array $\hat W$ is meant to be on the stack when the algorithm is used. The size of the array does not change which is ideal. Note also that
+unlike algorithm s\_mp\_mul\_digs no temporary mp\_int is required since the result is calculated directly in $\hat W$.
+
+The $O(n^2)$ loop on step four is where the Comba method's advantages begin to show through in comparison to the baseline algorithm. The lack of
+a carry variable or propagation in this loop allows the loop to be performed with only single precision multiplication and additions. Now that each
+iteration of the inner loop can be performed independent of the others the inner loop can be performed with a high level of parallelism.
+
+To measure the benefits of the Comba method over the baseline method consider the number of operations that are required. If the
+cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require
+$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers. The Comba method requires only $O(pn^2 + qn)$ time, however in practice,
+the speed increase is actually much more. With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
+and addition operations in the nested loop in parallel.
+
+EXAM,bn_fast_s_mp_mul_digs.c
+
+The memset on line @47,memset@ clears the initial $\hat W$ array to zero in a single step. Like the slower baseline multiplication
+implementation a series of aliases (\textit{lines @67, tmpx@, @70, tmpy@ and @75,_W@}) are used to simplify the inner $O(n^2)$ loop.
+In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.
+
+The inner loop on lines @83,for@, @84,mp_word@ and @85,}@ is where the algorithm will spend the majority of the time, which is why it has been
+stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}. On x86 processors the multiplication and additions amount to at the
+very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three
+(\textit{one load, one store, one multiply-add}). For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop
+and scheduling the instructions so there are very few dependency stalls.
+
+In theory the difference between the baseline and comba algorithms is a mere $O(qn)$ time difference. However, in the $O(n^2)$ nested loop of the
+baseline method there are dependency stalls as the algorithm must wait for the multiplier to finish before propagating the carry to the next
+digit. As a result fewer of the often multiple execution units\footnote{The AMD Athlon has three execution units and the Intel P4 has four.} can
+be simultaneously used.
+
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
+$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+
+The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and would in practice be slower than the Comba technique.
+
+However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown
+coefficients. This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with
+Gaussian elimination. This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in
+effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.
+
+The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible. However, since
+$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place. The benefit of this technique stems from the
+fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. As a result finding the $2n + 1$ relations required
+by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$. Note that the
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
+
+If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points}
+$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. The term ``mirror point'' stems from the fact that
+$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$. For
+example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
+
+\begin{eqnarray}
+\zeta_{2} = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
+16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
+\end{eqnarray}
+
+Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts. For example, when $n = 2$ the
+polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$. This technique of polynomial representation is known as Horner's method.
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of
+multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). Figure~\ref{fig:exponent}
+summarizes the exponents for various values of $n$.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\label{fig:exponent}
+\end{figure}
+
+At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$. However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.
+
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However,
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes the
+polynomial basis approach more costly to use with small inputs.
+
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
+
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
+
+\begin{enumerate}
+\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.
+
+\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits
+grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This
+directly reflects on the ratio previous mentioned.
+
+\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
+
+\end{enumerate}
+
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when
+a high resolution timer is available.
+
+\subsection{Karatsuba Multiplication}
+Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with
+light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
+
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) - (ac + bd))x + bd
+\end{equation}
+
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
+this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
+$\zeta_0$, $\zeta_{\infty}$ and $-\zeta_{-1}$. Consider the resultant system of equations.
+
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ & $=$ & & & & & $w_0$ \\
+$-\zeta_{-1}$ & $=$ & $-w_2$ & $+$ & $w_1$ & $-$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\
+\end{tabular}
+\end{center}
+
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity
+of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman. It is worth noting that the point
+$\zeta_1$ could be substituted for $-\zeta_{-1}$. In this case the first and third row are subtracted instead of added to the second row.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
+\hline \\
+1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2. If step 2 failed then return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\
+3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
+6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
+7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
+\\
+Calculate the three products. \\
+8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
+9. $x1y1 \leftarrow x1 \cdot y1$ \\
+10. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+11. $x0 \leftarrow y1 - y0$ \\
+12. $t1 \leftarrow t1 \cdot x0$ \\
+\\
+Calculate the middle term. \\
+13. $x0 \leftarrow x0y0 + x1y1$ \\
+14. $t1 \leftarrow x0 - t1$ \\
+\\
+Calculate the final product. \\
+15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
+16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
+17. $t1 \leftarrow x0y0 + t1$ \\
+18. $c \leftarrow t1 + x1y1$ \\
+19. Clear all of the temporary variables. \\
+20. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm. It is loosely based on the description
+from Knuth \cite[pp. 294-295]{TAOCPV2}.
+
+\index{radix point}
+In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen. The radix point chosen must
+be used for both of the inputs meaning that it must be smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the
+smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5
+compute the lower halves. Step 6 and 7 computer the upper halves.
+
+After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 - x0$ has been computed. By using $x0$ instead
+of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
+
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
+
+EXAM,bn_mp_karatsuba_mul.c
+
+The new coding element in this routine, not seen in previous routines, is the usage of goto statements. The conventional
+wisdom is that goto statements should be avoided. This is generally true, however when every single function call can fail, it makes sense
+to handle error recovery with a single piece of code. Lines @61,if@ to @75,if@ handle initializing all of the temporary variables
+required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
+
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the
+additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
+
+The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves, the respective code has been placed inline within the body of the function. To initialize the halves, the \textbf{used} and
+\textbf{sign} members are copied first. The first for loop on line @98,for@ copies the lower halves. Since they are both the same magnitude it
+is simpler to calculate both lower halves in a single loop. The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and
+$y1$ respectively.
+
+By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
+
+When line @152,err@ is reached, the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.
+
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points are
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. Here, the points $\zeta_{0}$,
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients
+of the $W(x)$.
+
+With the five relations that Toom-Cook specifies, the following system of equations is formed.
+
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\
+$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\
+$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\
+$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\
+\end{tabular}
+\end{center}
+
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time, meaning that
+the algorithm can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b $ \\
+\hline \\
+Split $a$ and $b$ into three pieces. E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
+1. $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
+2. $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+3. $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+4. $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+5. $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+6. $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+7. $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+\\
+Find the five equations for $w_0, w_1, ..., w_4$. \\
+8. $w_0 \leftarrow a_0 \cdot b_0$ \\
+9. $w_4 \leftarrow a_2 \cdot b_2$ \\
+10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
+11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
+13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
+14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
+15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
+16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
+\\
+Continued on the next page.\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b $ \\
+\hline \\
+Now solve the system of equations. \\
+18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
+19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
+20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
+21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
+23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
+24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
+\\
+Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
+26. for $n$ from $1$ to $4$ do \\
+\hspace{3mm}26.1 $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
+27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
+28. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul (continued)}
+\end{figure}
+
+\textbf{Algorithm mp\_toom\_mul.}
+This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach. Compared to the Karatsuba multiplication, this
+algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead. In this
+description, several statements have been compounded to save space. The intention is that the statements are executed from left to right across
+any given step.
+
+The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively. From these smaller
+integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
+
+The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively. The relation $w_1, w_2$ and $w_3$ correspond
+to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively. These are found using logical shifts to independently find
+$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
+
+After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients
+$w_1, w_2$ and $w_3$ to be isolated. The steps 18 through 25 perform the system reduction required as previously described. Each step of
+the reduction represents the comparable matrix operation that would be performed had this been performed by pencil. For example, step 18 indicates
+that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.
+
+Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known. By substituting $\beta^{k}$ for $x$, the integer
+result $a \cdot b$ is produced.
+
+EXAM,bn_mp_toom_mul.c
+
+-- Comments to be added during editing phase.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required. So far all
+of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b$ \\
+\hline \\
+1. If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\
+2. else \\
+\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\
+3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\
+\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5. else \\
+\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\
+\hspace{3mm}5.3 else \\
+\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\
+6. $c.sign \leftarrow sign$ \\
+7. Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms
+available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.
+
+EXAM,bn_mp_mul.c
+
+The implementation is rather simplistic and is not particularly noteworthy. Line @22,?@ computes the sign of the result using the ``?''
+operator from the C programming language. Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
+
+\section{Squaring}
+\label{sec:basesquare}
+
+Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization
+available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider
+the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$
+and $3 \cdot 1 = 1 \cdot 3$.
+
+For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
+required for multiplication. The following diagram gives an example of the operations required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+ & $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+ $1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+MARK,SQUARE
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$
+represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every non-square term of a column will
+appear twice hence the name ``double product''. Every odd column is made up entirely of double products. In fact every column is made up of double
+products and at most one square (\textit{see the exercise section}).
+
+The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row,
+occurs at column $2k + 1$. For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero.
+Column two of row one is a square and column three is the first unique column.
+
+\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
+will not handle.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\
+2. If step 1 failed return(\textit{MP\_MEM}) \\
+3. $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4. For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5 While $u > 0$ do \\
+\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\
+6. Exchange $b$ and $t$. \\
+7. Clear $t$ (\textit{mp\_clear}) \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of HAC
+\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring. This allows the
+destination mp\_int to be the same as the source mp\_int.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
+the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
+the carry and compute the double products.
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiplied by two, it can be properly represented by a mp\_word.
+
+Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial
+results calculated so far. This involves expensive carry propagation which will be eliminated in the next algorithm.
+
+EXAM,bn_s_mp_sqr.c
+
+Inside the outer loop (\textit{see line @32,for@}) the square term is calculated on line @35,r =@. Line @42,>>@ extracts the carry from the square
+term. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines @45,tmpx@ and @48,tmpt@ respectively. The doubling is performed using two
+additions (\textit{see line @57,r + r@}) since it is usually faster than shifting,if not at least as fast.
+
+\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop. Squaring has an additional
+drawback that it must double the product inside the inner loop as well. As for multiplication, the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry
+propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
+
+However, we cannot simply double all of the columns, since the squares appear only once per row. The most practical solution is to have two mp\_word
+arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and carry propagation can be
+moved to a $O(n)$ work level outside the $O(n^2)$ level.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+Place two arrays of \textbf{MP\_WARRAY} mp\_words named $\hat W$ and $\hat {X}$ on the stack. \\
+1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\
+2. If step 1 failed return(\textit{MP\_MEM}). \\
+3. for $ix$ from $0$ to $2a.used + 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+\hspace{3mm}3.2 $\hat {X}_{ix} \leftarrow 0$ \\
+4. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}Compute the square.\\
+\hspace{3mm}4.1 $\hat {X}_{ix+ix} \leftarrow \left ( a_{ix} \right )^2$ \\
+\\
+\hspace{3mm}Compute the double products.\\
+\hspace{3mm}4.2 for $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}a_{iy}$ \\
+5. $oldused \leftarrow b.used$ \\
+6. $b.used \leftarrow 2a.used + 1$ \\
+\\
+Double the products and propagate the carries simultaneously. \\
+7. $\hat W_0 \leftarrow 2 \hat W_0 + \hat {X}_0$ \\
+8. for $ix$ from $1$ to $2a.used$ do \\
+\hspace{3mm}8.1 $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ \\
+\hspace{3mm}8.2 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix - 1} / \beta \rfloor$ \\
+\hspace{3mm}8.3 $b_{ix-1} \leftarrow W_{ix-1} \mbox{ (mod }\beta\mbox{)}$ \\
+9. $b_{2a.used} \leftarrow \hat W_{2a.used} \mbox{ (mod }\beta\mbox{)}$ \\
+10. if $2a.used + 1 < oldused$ then do \\
+\hspace{3mm}10.1 for $ix$ from $2a.used + 1$ to $oldused$ do \\
+\hspace{6mm}10.1.1 $b_{ix} \leftarrow 0$ \\
+11. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm s\_mp\_sqr when
+the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
+
+This routine requires two arrays of mp\_words to be placed on the stack. The first array $\hat W$ will hold the double products and the second
+array $\hat X$ will hold the squares. Though only at most $MP\_WARRAY \over 2$ words of $\hat X$ are used, it has proven faster on most
+processors to simply make it a full size array.
+
+The loop on step 3 will zero the two arrays to prepare them for the squaring step. Step 4.1 computes the squares of the product. Note how
+it simply assigns the value into the $\hat X$ array. The nested loop on step 4.2 computes the doubles of the products. This loop
+computes the sum of the products for each column. They are not doubled until later.
+
+After the squaring loop, the products stored in $\hat W$ musted be doubled and the carries propagated forwards. It makes sense to do both
+operations at the same time. The expression $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ computes the sum of the double product and the
+squares in place.
+
+EXAM,bn_fast_s_mp_sqr.c
+
+-- Write something deep and insightful later, Tom.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception
+is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. Instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations, squaring operations are performed instead.
+
+\subsection{Karatsuba Squaring}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a
+number with the following equation.
+
+\begin{equation}
+h(x) = a^2x^2 + \left (a^2 + b^2 - (a - b)^2 \right )x + b^2
+\end{equation}
+
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a - b)^2$. As in
+Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
+$O \left ( n^{lg(3)} \right )$.
+
+If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
+instead? The answer to this arises from the cutoff point for squaring. As in multiplication there exists a cutoff point, at which the
+time required for a Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff
+point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.
+
+Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared.
+The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm. If Karatsuba multiplication
+were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1\beta^B + x0$ \\
+3. $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7. $x1x1 \leftarrow x1^2$ \\
+8. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+9. $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11. $t1 \leftarrow t2 - t1$ \\
+\\
+Compute final product. \\
+12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14. $t1 \leftarrow t1 + x0x0$ \\
+15. $b \leftarrow t1 + x1x1$ \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very similar to the Karatsuba based
+multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
+
+The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
+placed just below the middle. Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
+
+By expanding $\left (x1 - x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $x1^2 + x0^2 - (x1 - x0)^2 = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster. Assuming no further recursions occur, the difference can be estimated with the following inequality.
+
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}.
+
+\begin{equation}
+5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+${5n \over 3} + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\
+${5 \over 3} + 3n + 3$ & $<$ & ${1 \over 3} + 6n$ \\
+${13 \over 9}$ & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 2$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a
+ratio of 1:7. } than simpler operations such as addition.
+
+EXAM,bn_mp_karatsuba_sqr.c
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and
+shift the input into the two halves. The loop from line @54,{@ to line @70,}@ has been modified since only one input exists. The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are redirected to
+the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and mp\_clears are executed normally.
+
+\textit{Last paragraph sucks. re-write! -- Tom}
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
+instead of multiplication to find the five relations.. The reader is encouraged to read the description of the latter algorithm and try to
+derive their own Toom-Cook squaring algorithm.
+
+\subsection{High Level Squaring}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\
+\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3. else \\
+\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\
+\hspace{3mm}3.3 else \\
+\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\
+4. $b.sign \leftarrow MP\_ZPOS$ \\
+5. Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
+
+EXAM,bn_mp_sqr.c
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+ & that have different number of digits in Karatsuba multiplication. \\
+ & \\
+$\left [ 3 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\
+ & of double products and at most one square is stated. Prove this statement. \\
+ & \\
+$\left [ 2 \right ] $ & In the Comba squaring algorithm half of the $\hat X$ variables are not used. \\
+ & Revise algorithm fast\_s\_mp\_sqr to shrink the $\hat X$ array. \\
+ & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+ & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+ & \\
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+ & required for equation $6.7$ to be true. \\
+ & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+MARK,REDUCTION
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms,
+such as factoring. Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set. A number $a$ is said to be \textit{reduced}
+modulo another number $b$ by finding the remainder of the division $a/b$. Full integer division with remainder is a topic to be covered
+in~\ref{sec:division}.
+
+Modular reduction is equivalent to solving for $r$ in the following equation. $a = bq + r$ where $q = \lfloor a/b \rfloor$. The result
+$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$. In other vernacular $r$ is known as the
+``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.
+
+Modular reductions are normally used to create either finite groups, rings or fields. The most common usage for performance driven modular reductions
+is in modular exponentiation algorithms. That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. This operation is used in the
+RSA and Diffie-Hellman public key algorithms, for example. Modular multiplication and squaring also appears as a fundamental operation in
+Elliptic Curve cryptographic algorithms. As will be discussed in the subsequent chapter there exist fast algorithms for computing modular
+exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications. These algorithms will produce partial results in the
+range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms. They have also been used to create redundancy check
+algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper
+targeted the DSP56K processor.} intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal. However,
+DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.
+It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed
+point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were
+fairly slow if not unavailable. The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit
+integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by
+moving the implied decimal point back to where it should be. For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted
+to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the
+fixed point representation of $5$. The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.
+
+This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
+of two fixed point numbers. Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal. If $2^q$ is
+equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic. Using this fact dividing an integer
+$a$ by another integer $b$ can be achieved with the following expression.
+
+\begin{equation}
+\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations
+are considerably faster than division on most processors.
+
+Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct. The value of $2^q$ must be close to or ideally
+larger than the dividend. In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
+to work correctly. Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. In the context of Barrett
+reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
+precision.
+
+Let $n$ represent the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
+another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to
+reduce the number.
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation. The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
+By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best
+that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.
+See~\ref{sec:division} for further details.} might as well be used in its place. The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.
+
+Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent
+the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if
+two $m$-digit numbers have been multiplied. Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the
+$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$. Another way to
+express this is by re-writing $a$ as two parts. If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then
+${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$. Since $a'$ is bound to be less than $b$ the quotient
+is bound by $0 \le {a' \over b} < 1$.
+
+Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits
+``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the irrelevant digits trimmed. Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the
+exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$. If the optimization had not been performed the divisor
+would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two. The original fixed point quotient can be off
+by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
+can be off by an additional value of one for a total of at most two. This implies that
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally subtracting
+$b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications, ignoring the subtractions required. In total $2m^2 + m$ single precision multiplications are required to find the residue.
+This is considerably faster than the original attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
+represent the value of which the residue is desired. In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.
+With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$
+is found.
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for
+optimization.
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision
+multiplications. If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.
+In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.
+
+The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
+\textbf{Output}. $a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$. \\
+1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\
+2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\
+4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5. $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7. $a \leftarrow a - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8. If $a < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3 $a \leftarrow a + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9. While $a \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1 $c \leftarrow a - b$ \\
+10. Clear $q$. \\
+11. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of HAC
+\cite[pp. 602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}. The algorithm has several restrictions and assumptions which must
+be adhered to for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision. If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
+Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The value of $\mu$ is passed as an argument to this
+algorithm and is assumed to be calculated and stored before the algorithm is used.
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. The algorithm is based on $s\_mp\_mul\_digs$ except that
+instead of stopping at a given level of precision it starts at a given level of precision. This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.
+
+While it is known that
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied
+``borrow'' from the higher digits might leave a negative result. After the multiple of the modulus has been subtracted from $a$ the residue must be
+fixed up in case it is negative. The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is
+performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+EXAM,bn_mp_reduce.c
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves
+the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus. In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}. mp\_int $a$ ($a > 1$) \\
+\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\
+2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which
+is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+EXAM,bn_mp_reduce_setup.c
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL. As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the
+remainder to be passed as NULL meaning to ignore the value.
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
+form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
+residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of
+$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$. Another way
+to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$. Adding zero will not change the value of the residue.
+
+\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. Actually
+this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to
+multiplication by $k^{-1}$ modulo $n$.
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1 If $x$ is odd then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\
+\hspace{3mm}1.2 $x \leftarrow x/2$ \\
+2. Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two. Since
+$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$. Let $r$ represent the
+final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
+$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
+\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
+\hline $2$ & $x/2 = 1453$ \\
+\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
+\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
+\hline $5$ & $x/2 = 278$ \\
+\hline $6$ & $x/2 = 139$ \\
+\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
+\hline $8$ & $x/2 = 99$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (I)}
+\label{fig:MONT1}
+\end{figure}
+
+Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 8$. The result of the algorithm $r = 99$ is
+congruent to the value of $2^{-8} \cdot 5555 \mbox{ (mod }257\mbox{)}$. When $r$ is multiplied by $2^8$ modulo $257$ the correct residue
+$r \equiv 158$ is produced.
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\
+2. Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|r|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
+\hline -- & $5555$ & $1010110110011$ \\
+\hline $1$ & $x + 2^{0}n = 5812$ & $1011010110100$ \\
+\hline $2$ & $5812$ & $1011010110100$ \\
+\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
+\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
+\hline $5$ & $8896$ & $10001011000000$ \\
+\hline $6$ & $8896$ & $10001011000000$ \\
+\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
+\hline $8$ & $25344$ & $110001100000000$ \\
+\hline -- & $x/2^k = 99$ & \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (II)}
+\label{fig:MONT2}
+\end{figure}
+
+Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 8$.
+With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the
+loop. Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed. In those iterations the $t$'th bit of $x$ is
+zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\
+2. Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This
+problem breaks down to solving the following congruency.
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
+extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
+
+For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline -- & $33$ & --\\
+\hline $0$ & $33 + \mu n = 50$ & $1$ \\
+\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
+which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
+Montgomery reductions.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. $digs \leftarrow 2n.used + 1$ \\
+2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4. $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5. For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2 $u \leftarrow 0$ \\
+\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4 While $u > 0$ do \\
+\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7. If $x \ge n$ then \\
+\hspace{3mm}7.1 $x \leftarrow x - n$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The
+restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as
+for the Barrett algorithm. Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$. $\rho$ must be calculated in
+advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$.
+
+Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on
+the size of the input. This algorithm is discussed in ~COMBARED~.
+
+Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and
+multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
+in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.
+
+EXAM,bn_mp_montgomery_reduce.c
+
+This is the baseline implementation of the Montgomery reduction algorithm. Lines @30,digs@ to @35,}@ determine if the Comba based
+routine can be used instead. Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop.
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+MARK,COMBARED
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times.
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple.
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2. For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\
+3. For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4. for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5. for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6. for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7. if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\
+8. $x.used \leftarrow n.used + 1$ \\
+9. Clamp excessive digits of $x$. \\
+10. If $x \ge n$ then \\
+\hspace{3mm}10.1 $x \leftarrow x - n$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions
+on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the
+contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step
+4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note
+how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propagate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.
+
+EXAM,bn_fast_mp_montgomery_reduce.c
+
+The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@. Both loops share
+the same alias variables to make the code easier to read.
+
+The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line @101,>>@ fixes the carry
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line @113,for@ propagates the rest of the carries upwards through the columns. The for loop on line @126,for@ reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1. $b \leftarrow n_0$ \\
+2. If $b$ is even return(\textit{MP\_VAL}) \\
+3. $x \leftarrow ((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4. for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
+\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\
+5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
+to calculate $1/n_0$ when $\beta$ is a power of two.
+
+EXAM,bn_mp_montgomery_setup.c
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.
+
+\section{The Diminished Radix Algorithm}
+The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
+or Montgomery methods for certain forms of moduli. The technique is based on the following simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that
+then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
+of the above equation is very simple. First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces modulo $n - k$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
+into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}. Integer $x$, $n$, $k$ \\
+\textbf{Output}. $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1. $q \leftarrow \lfloor x / n \rfloor$ \\
+2. $q \leftarrow k \cdot q$ \\
+3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4. $x \leftarrow x + q$ \\
+5. If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2 Goto step 1. \\
+6. Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation}
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$. By step four the sum $x + q$ is bounded by
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
+range $0 \le x < (n - k - 1)^2$.
+
+\begin{figure}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|}
+\hline
+$x = 123456789, n = 256, k = 3$ \\
+\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
+$q \leftarrow q*k = 1446759$ \\
+$x \leftarrow x \mbox{ mod } n = 21$ \\
+$x \leftarrow x + q = 1446780$ \\
+$x \leftarrow x - (n - k) = 1446527$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
+$q \leftarrow q*k = 16950$ \\
+$x \leftarrow x \mbox{ mod } n = 127$ \\
+$x \leftarrow x + q = 17077$ \\
+$x \leftarrow x - (n - k) = 16824$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 65$ \\
+$q \leftarrow q*k = 195$ \\
+$x \leftarrow x \mbox{ mod } n = 184$ \\
+$x \leftarrow x + q = 379$ \\
+$x \leftarrow x - (n - k) = 126$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example Diminished Radix Reduction}
+\label{fig:EXDR}
+\end{figure}
+
+Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$. Note that even while $x$
+is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast. In this case only
+three passes were required to find the residue $x \equiv 126$.
+
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other
+modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
+
+Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used.
+Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right. Similarly division
+by two (\textit{or powers of two}) is very simple for binary computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
+
+However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be
+performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might
+as well be a single digit. The smaller the value of $k$ is the faster the algorithm will be.
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$. This algorithm can reduce
+an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition
+of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
+exponentiations are performed.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
+\textbf{Output}. $x \mbox{ mod } n$ \\
+\hline \\
+1. $m \leftarrow n.used$ \\
+2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3. $\mu \leftarrow 0$ \\
+4. for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. $x_{m} \leftarrow \mu$ \\
+6. for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\
+7. Clamp excess digits of $x$. \\
+8. If $x \ge n$ then \\
+\hspace{3mm}8.1 $x \leftarrow x - n$ \\
+\hspace{3mm}8.2 Goto step 3. \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.
+
+This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization. The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4. The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed. Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
+$x$ before the addition of the multiple of the upper half.
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.
+
+EXAM,bn_mp_dr_reduce.c
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line @49,top:@ is where
+the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free. The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line @71,for@ the
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
+With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = \beta - n_0$ \\
+\hline \\
+1. $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+EXAM,bn_mp_dr_setup.c
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1. If $n.used < 2$ then return($0$). \\
+2. for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\
+3. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to
+step 3 then $n$ must be of Diminished Radix form.
+
+EXAM,bn_mp_dr_is_modulus.c
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+2. While $a \ge n$ do \\
+\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5 If $a \ge n$ then do \\
+\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$. Division by $2^p$ is emulated with a right
+shift which makes the algorithm fairly inexpensive to use.
+
+EXAM,bn_mp_reduce_2k.c
+
+The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$. The call to mp\_div\_2d
+on line @31,mp_div_2d@ calculates both the quotient $q$ and the remainder $a$ required. By doing both in a single function call the code size
+is kept fairly small. The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
+any multiplications.
+
+The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are
+positive. By using the unsigned versions the overhead is kept to a minimum.
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = 2^p - n$ \\
+\hline
+1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4. $k \leftarrow x_0$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k. By making a temporary variable $x$ equal to $2^p$ a subtraction
+is sufficient to solve for $k$. Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.
+
+EXAM,bn_mp_reduce_2k_setup.c
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item The number has only one digit.
+\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$. If the input is only
+one digit than it will always be of the correct form. Otherwise all of the bits above the first digit must be one. This arises from the fact
+that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
+significant bit. The resulting sum will be a power of two.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if of proper form, $0$ otherwise \\
+\hline
+1. If $n.used = 0$ then return($0$). \\
+2. If $n.used = 1$ then return($1$). \\
+3. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+4. for $x$ from $lg(\beta)$ to $p$ do \\
+\hspace{3mm}4.1 If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
+5. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_is\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_is\_2k.}
+This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.
+
+EXAM,bn_mp_reduce_is_2k.c
+
+
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\
+\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}. In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+ & calculates the correct value of $\rho$. \\
+ & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\
+ & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+ & (\textit{figure~\ref{fig:DR}}) terminates. Also prove the probability that it will \\
+ & terminate within $1 \le k \le 10$ iterations. \\
+ & \\
+\end{tabular}
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key
+cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size
+the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least
+significant bit. If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$. This observation forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
+be computed in an auxilary variable. Consider the following equivalent algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$ and $k$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\label{fig:LTOR}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.
+
+For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is
+called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature.
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended
+to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
+$b$ that are greater than three.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2. $c \leftarrow 1$ (\textit{mp\_set}) \\
+3. for $x$ from 1 to $lg(\beta)$ do \\
+\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3 $b \leftarrow b << 1$ \\
+4. Clear $g$. \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
+exponent is a fixed width.
+
+A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$. The result is set to the initial value of
+$1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first down to the least significant bit. First $c$ is invariably squared
+on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$. The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit. In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+EXAM,bn_mp_expt_d.c
+
+Line @29,mp_set@ sets the initial value of the result to $1$. Next the loop on line @31,for@ steps through each bit of the exponent starting from
+the most significant down towards the least significant. The invariant squaring operation placed on line @333,mp_sqr@ is performed first. After
+the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set. The shift on line
+@47,<<@ moves all of the bits of the exponent upwards towards the most significant location.
+
+\section{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose instead it referred to
+the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
+computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a small window on only a
+portion of the entire exponent. Consider the following modification to the basic left to right exponentiation algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\label{fig:KARY}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
+
+Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Optimal Values of $k$}
+An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$. The simplest
+approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result. Table~\ref{fig:OPTK} lists optimal values of $k$
+for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
+\hline $16$ & $2$ & $27$ & $24$ \\
+\hline $32$ & $3$ & $49$ & $48$ \\
+\hline $64$ & $3$ & $92$ & $96$ \\
+\hline $128$ & $4$ & $175$ & $192$ \\
+\hline $256$ & $4$ & $335$ & $384$ \\
+\hline $512$ & $5$ & $645$ & $768$ \\
+\hline $1024$ & $6$ & $1257$ & $1536$ \\
+\hline $2048$ & $6$ & $2452$ & $3072$ \\
+\hline $4096$ & $7$ & $4808$ & $6144$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
+\label{fig:OPTK}
+\end{figure}
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
+
+Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm~\ref{fig:KARY}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
+\hline $16$ & $3$ & $24$ & $27$ \\
+\hline $32$ & $3$ & $45$ & $49$ \\
+\hline $64$ & $4$ & $87$ & $92$ \\
+\hline $128$ & $4$ & $167$ & $175$ \\
+\hline $256$ & $5$ & $322$ & $335$ \\
+\hline $512$ & $6$ & $628$ & $645$ \\
+\hline $1024$ & $6$ & $1225$ & $1257$ \\
+\hline $2048$ & $7$ & $2403$ & $2452$ \\
+\hline $4096$ & $8$ & $4735$ & $4808$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
+\label{fig:OPTK2}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half
+the size as the previous table.
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$
+squarings. The second method requires $8$ multiplications and $18$ squarings.
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+one of the algorithms presented in ~REDUCTION~.
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}). If no inverse exists the algorithm
+terminates with an error.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3. if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
+\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4. else \\
+\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm
+which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation
+except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
+
+EXAM,bn_mp_exptmod.c
+
+In order to keep the algorithms in a known state the first step on line @29,if@ is to reject any negative modulus as input. If the exponent is
+negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$. The temporary variable $tmpG$ is assigned
+the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$. The algorithm will recuse with these new values with a positive
+exponent.
+
+If the exponent is positive the algorithm resumes the exponentiation. Line @63,dr_@ determines if the modulus is of the restricted Diminished Radix
+form. If it is not line @65,reduce@ attempts to determine if it is of a unrestricted Diminished Radix form. The integer $dr$ will take on one
+of three values.
+
+\begin{enumerate}
+\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
+\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
+\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
+\end{enumerate}
+
+Line @69,if@ determines if the fast modular exponentiation algorithm can be used. It is allowed if $dr \ne 0$ or if the modulus is odd. Otherwise,
+the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. $k \leftarrow lg(x)$ \\
+2. $winsize \leftarrow \left \lbrace \begin{array}{ll}
+ 2 & \mbox{if }k \le 7 \\
+ 3 & \mbox{if }7 < k \le 36 \\
+ 4 & \mbox{if }36 < k \le 140 \\
+ 5 & \mbox{if }140 < k \le 450 \\
+ 6 & \mbox{if }450 < k \le 1303 \\
+ 7 & \mbox{if }1303 < k \le 3529 \\
+ 8 & \mbox{if }3529 < k \\
+ \end{array} \right .$ \\
+3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6. $k \leftarrow 2^{winsize - 1}$ \\
+7. $M_{k} \leftarrow M_1$ \\
+8. for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
+\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10. $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12. Loop \\
+\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2 If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3 Goto step 12. \\
+\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9 $mode \leftarrow 2$ \\
+\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left. Check for residual bits of exponent. \\
+13. If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14. $y \leftarrow res$ \\
+15. Clear $res$, $mu$ and the $M$ array. \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the
+larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
+
+After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.
+\begin{enumerate}
+ \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
+ $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.
+ \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits
+ are read and a single squaring is performed. If a non-zero bit is read a new window is created.
+ \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+ downwards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit
+ is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent.
+\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and
+ the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.
+\end{enumerate}
+
+All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the
+algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.
+
+FIGU,expt_state,Sliding Window State Diagram
+
+By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then
+a Left-to-Right algorithm is used to process the remaining few bits.
+
+EXAM,bn_s_mp_exptmod.c
+
+Lines @26,if@ through @40,}@ determine the optimal window size based on the length of the exponent in bits. The window divisions are sorted
+from smallest to greatest so that in each \textbf{if} statement only one condition must be tested. For example, by the \textbf{if} statement
+on line @32,if@ the value of $x$ is already known to be greater than $140$.
+
+The conditional piece of code beginning on line @42,ifdef@ allows the window size to be restricted to five bits. This logic is used to ensure
+the table of precomputed powers of $G$ remains relatively small.
+
+The for loop on line @49,for@ initializes the $M$ array while lines @59,mp_init@ and @62,mp_reduce@ compute the value of $\mu$ required for
+Barrett reduction.
+
+-- More later.
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}. integer $b$ \\
+\textbf{Output}. $a \leftarrow 2^b$ \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+EXAM,bn_mp_2expt.c
+
+\chapter{Higher Level Algorithms}
+
+This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package. These
+routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.
+
+The first section describes a method of integer division with remainder that is universally well known. It provides the signed division logic
+for the package. The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.
+These algorithms serve mostly to simplify other algorithms where small constants are required. The last two sections discuss how to manipulate
+various representations of integers. For example, converting from an mp\_int to a string of character.
+
+\section{Integer Division with Remainder}
+\label{sec:division}
+
+Integer division aside from modular exponentiation is the most intensive algorithm to compute. Like addition, subtraction and multiplication
+the basis of this algorithm is the long-hand division algorithm taught to school children. Throughout this discussion several common variables
+will be used. Let $x$ represent the divisor and $y$ represent the dividend. Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
+let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$. The following simple algorithm will be used to start the discussion.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
+\textbf{Input}. integer $x$ and $y$ \\
+\textbf{Output}. $q = \lfloor y/x\rfloor, r = y - xq$ \\
+\hline \\
+1. $q \leftarrow 0$ \\
+2. $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
+3. for $t$ from $n$ down to $0$ do \\
+\hspace{3mm}3.1 Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
+\hspace{3mm}3.2 $q \leftarrow q + k\beta^t$ \\
+\hspace{3mm}3.3 $y \leftarrow y - kx\beta^t$ \\
+4. $r \leftarrow y$ \\
+5. Return($q, r$) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Radix-$\beta$ Integer Division}
+\label{fig:raddiv}
+\end{figure}
+
+As children we are taught this very simple algorithm for the case of $\beta = 10$. Almost instinctively several optimizations are taught for which
+their reason of existing are never explained. For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
+
+To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and
+simultaneously $(k + 1)x\beta^t$ is greater than $y$. Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have. The habitual method
+used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient. By only using leading
+digits a much simpler division may be used to form an educated guess at what the value must be. In this case $k = \lfloor 54/23\rfloor = 2$ quickly
+arises as a possible solution. Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.
+As a result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
+
+Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder
+$y = 841 - 3x\beta = 181$. Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
+remainder $y = 181 - 7x = 20$. The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since
+$237 \cdot 23 + 20 = 5471$ is true.
+
+\subsection{Quotient Estimation}
+\label{sec:divest}
+As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend. When $p$ leading
+digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows. Technically
+speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
+dividend and divisor are zero.
+
+The value of the estimation may off by a few values in either direction and in general is fairly correct. A simplification \cite[pp. 271]{TAOCPV2}
+of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$. The estimate
+using this technique is never too small. For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
+represent the most significant digits of the dividend and divisor respectively.
+
+\textbf{Proof.}\textit{ The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to
+$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
+The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger. For all other
+cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$. The latter portion of the inequalility
+$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values. Next a series of
+inequalities will prove the hypothesis.
+
+\begin{equation}
+y - \hat k x \le y - \hat k x_s\beta^s
+\end{equation}
+
+This is trivially true since $x \ge x_s\beta^s$. Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.
+
+\begin{equation}
+y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
+\end{equation}
+
+By simplifying the previous inequality the following inequality is formed.
+
+\begin{equation}
+y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
+\end{equation}
+
+Subsequently,
+
+\begin{equation}
+y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s < x_s\beta^s \le x
+\end{equation}
+
+Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof. \textbf{QED}
+
+
+\subsection{Normalized Integers}
+For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$. By multiplying both
+$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
+remainder. The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
+lie in the domain of a single digit. Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.
+
+\begin{equation}
+{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta}
+\end{equation}
+
+At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
+
+\subsection{Radix-$\beta$ Division with Remainder}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div}. \\
+\textbf{Input}. mp\_int $a, b$ \\
+\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+1. If $b = 0$ return(\textit{MP\_VAL}). \\
+2. If $\vert a \vert < \vert b \vert$ then do \\
+\hspace{3mm}2.1 $d \leftarrow a$ \\
+\hspace{3mm}2.2 $c \leftarrow 0$ \\
+\hspace{3mm}2.3 Return(\textit{MP\_OKAY}). \\
+\\
+Setup the quotient to receive the digits. \\
+3. Grow $q$ to $a.used + 2$ digits. \\
+4. $q \leftarrow 0$ \\
+5. $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
+6. $sign \leftarrow \left \lbrace \begin{array}{ll}
+ MP\_ZPOS & \mbox{if }a.sign = b.sign \\
+ MP\_NEG & \mbox{otherwise} \\
+ \end{array} \right .$ \\
+\\
+Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
+7. $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
+8. $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
+\\
+Find the leading digit of the quotient. \\
+9. $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
+10. $y \leftarrow y \cdot \beta^{n - t}$ \\
+11. While ($x \ge y$) do \\
+\hspace{3mm}11.1 $q_{n - t} \leftarrow q_{n - t} + 1$ \\
+\hspace{3mm}11.2 $x \leftarrow x - y$ \\
+12. $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
+\\
+Continued on the next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div} (continued). \\
+\textbf{Input}. mp\_int $a, b$ \\
+\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+Now find the remainder fo the digits. \\
+13. for $i$ from $n$ down to $(t + 1)$ do \\
+\hspace{3mm}13.1 If $i > x.used$ then jump to the next iteration of this loop. \\
+\hspace{3mm}13.2 If $x_{i} = y_{t}$ then \\
+\hspace{6mm}13.2.1 $q_{i - t - 1} \leftarrow \beta - 1$ \\
+\hspace{3mm}13.3 else \\
+\hspace{6mm}13.3.1 $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
+\hspace{6mm}13.3.2 $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
+\hspace{6mm}13.3.3 $q_{i - t - 1} \leftarrow \hat r$ \\
+\hspace{3mm}13.4 $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
+\\
+Fixup quotient estimation. \\
+\hspace{3mm}13.5 Loop \\
+\hspace{6mm}13.5.1 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\hspace{6mm}13.5.2 t$1 \leftarrow 0$ \\
+\hspace{6mm}13.5.3 t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
+\hspace{6mm}13.5.4 $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
+\hspace{6mm}13.5.5 t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
+\hspace{6mm}13.5.6 If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
+\hspace{3mm}13.6 t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
+\hspace{3mm}13.7 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{3mm}13.8 $x \leftarrow x - $ t$1$ \\
+\hspace{3mm}13.9 If $x.sign = MP\_NEG$ then \\
+\hspace{6mm}13.10 t$1 \leftarrow y$ \\
+\hspace{6mm}13.11 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{6mm}13.12 $x \leftarrow x + $ t$1$ \\
+\hspace{6mm}13.13 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\\
+Finalize the result. \\
+14. Clamp excess digits of $q$ \\
+15. $c \leftarrow q, c.sign \leftarrow sign$ \\
+16. $x.sign \leftarrow a.sign$ \\
+17. $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
+18. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div (continued)}
+\end{figure}
+\textbf{Algorithm mp\_div.}
+This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor. The algorithm is a signed
+division and will produce a fully qualified quotient and remainder.
+
+First the divisor $b$ must be non-zero which is enforced in step one. If the divisor is larger than the dividend than the quotient is implicitly
+zero and the remainder is the dividend.
+
+After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient. Two unsigned copies of the
+divisor $y$ and dividend $x$ are made as well. The core of the division algorithm is an unsigned division and will only work if the values are
+positive. Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.
+This is performed by shifting both to the left by enough bits to get the desired normalization.
+
+At this point the division algorithm can begin producing digits of the quotient. Recall that maximum value of the estimation used is
+$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means. In this case $y$ is shifted
+to the left (\textit{step ten}) so that it has the same number of digits as $x$. The loop on step eleven will subtract multiples of the
+shifted copy of $y$ until $x$ is smaller. Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
+times to produce the desired leading digit of the quotient.
+
+Now the remainder of the digits can be produced. The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
+accurately approximate the true quotient digit. The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
+induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.
+
+Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high. The next step of the estimation process is
+to refine the estimation. The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
+order approximation to adjust the quotient digit.
+
+After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
+by optimizing Barrett reduction.}. Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
+algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.
+
+Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the
+remainder. An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
+is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie
+outside their respective boundaries. For example, if $t = 0$ or $i \le 1$ then the digits would be undefined. In those cases the digits should
+respectively be replaced with a zero.
+
+EXAM,bn_mp_div.c
+
+The implementation of this algorithm differs slightly from the pseudo code presented previously. In this algorithm either of the quotient $c$ or
+remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired. For example, the C code to call the division
+algorithm with only the quotient is
+
+\begin{verbatim}
+mp_div(&a, &b, &c, NULL); /* c = [a/b] */
+\end{verbatim}
+
+Lines @37,if@ and @42,if@ handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor
+respectively. After the two trivial cases all of the temporary variables are initialized. Line @76,neg@ determines the sign of
+the quotient and line @77,sign@ ensures that both $x$ and $y$ are positive.
+
+The number of bits in the leading digit is calculated on line @80,norm@. Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
+of precision which when reduced modulo $lg(\beta)$ produces the value of $k$. In this case $k$ is the number of bits in the leading digit which is
+exactly what is required. For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
+them to the left by $lg(\beta) - 1 - k$ bits.
+
+Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively. These are first used to produce the
+leading digit of the quotient. The loop beginning on line @113,for@ will produce the remainder of the quotient digits.
+
+The conditional ``continue'' on line @114,if@ is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
+algorithm eliminates multiple non-zero digits in a single iteration. This ensures that $x_i$ is always non-zero since by definition the digits
+above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.
+
+Lines @142,t1@, @143,t1@ and @150,t2@ through @152,t2@ manually construct the high accuracy estimations by setting the digits of the two mp\_int
+variables directly.
+
+\section{Single Digit Helpers}
+
+This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants. All of
+the helper functions assume the single digit input is positive and will treat them as such.
+
+\subsection{Single Digit Addition and Subtraction}
+
+Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
+algorithms. As a result these algorithms are subtantially simpler with a slight cost in performance.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = a + b$ \\
+\hline \\
+1. $t \leftarrow b$ (\textit{mp\_set}) \\
+2. $c \leftarrow a + t$ \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_add\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_add\_d.}
+This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
+
+EXAM,bn_mp_add_d.c
+
+Clever use of the letter 't'.
+
+\subsubsection{Subtraction}
+The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
+
+\subsection{Single Digit Multiplication}
+Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
+multiplication algorithm. Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
+only has one digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = ab$ \\
+\hline \\
+1. $pa \leftarrow a.used$ \\
+2. Grow $c$ to at least $pa + 1$ digits. \\
+3. $oldused \leftarrow c.used$ \\
+4. $c.used \leftarrow pa + 1$ \\
+5. $c.sign \leftarrow a.sign$ \\
+6. $\mu \leftarrow 0$ \\
+7. for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}7.1 $\hat r \leftarrow \mu + a_{ix}b$ \\
+\hspace{3mm}7.2 $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}7.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+8. $c_{pa} \leftarrow \mu$ \\
+9. for $ix$ from $pa + 1$ to $oldused$ do \\
+\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
+10. Clamp excess digits of $c$. \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_d}
+\end{figure}
+\textbf{Algorithm mp\_mul\_d.}
+This algorithm quickly multiplies an mp\_int by a small single digit value. It is specially tailored to the job and has a minimal of overhead.
+Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.
+
+EXAM,bn_mp_mul_d.c
+
+In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is
+read from the source. This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.
+
+\subsection{Single Digit Division}
+Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion. Since the
+divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = \lfloor a / b \rfloor, d = a - cb$ \\
+\hline \\
+1. If $b = 0$ then return(\textit{MP\_VAL}).\\
+2. If $b = 3$ then use algorithm mp\_div\_3 instead. \\
+3. Init $q$ to $a.used$ digits. \\
+4. $q.used \leftarrow a.used$ \\
+5. $q.sign \leftarrow a.sign$ \\
+6. $\hat w \leftarrow 0$ \\
+7. for $ix$ from $a.used - 1$ down to $0$ do \\
+\hspace{3mm}7.1 $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
+\hspace{3mm}7.2 If $\hat w \ge b$ then \\
+\hspace{6mm}7.2.1 $t \leftarrow \lfloor \hat w / b \rfloor$ \\
+\hspace{6mm}7.2.2 $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}7.3 else\\
+\hspace{6mm}7.3.1 $t \leftarrow 0$ \\
+\hspace{3mm}7.4 $q_{ix} \leftarrow t$ \\
+8. $d \leftarrow \hat w$ \\
+9. Clamp excess digits of $q$. \\
+10. $c \leftarrow q$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_d}
+\end{figure}
+\textbf{Algorithm mp\_div\_d.}
+This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach. Essentially in every iteration of the
+algorithm another digit of the dividend is reduced and another digit of quotient produced. Provided $b < \beta$ the value of $\hat w$
+after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.
+
+If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3. It replaces the division by three with
+a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup. In essence it is much like the Barrett reduction
+from chapter seven.
+
+EXAM,bn_mp_div_d.c
+
+Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
+indicate the respective value is not required. This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
+
+The division and remainder on lines @44,/@ and @45,%@ can be replaced often by a single division on most processors. For example, the 32-bit x86 based
+processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously. Unfortunately the GCC
+compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.
+
+\subsection{Single Digit Root Extraction}
+
+Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned. Algorithms such as the Newton-Raphson approximation
+(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.
+
+\begin{equation}
+x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
+\label{eqn:newton}
+\end{equation}
+
+In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired. The derivative of $f(x)$ is
+simply $f'(x) = nx^{n - 1}$. Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
+such as the real numbers. As a result the root found can be above the true root by few and must be manually adjusted. Ideally at the end of the
+algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_n\_root}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c^b \le a$ \\
+\hline \\
+1. If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. $sign \leftarrow a.sign$ \\
+3. $a.sign \leftarrow MP\_ZPOS$ \\
+4. t$2 \leftarrow 2$ \\
+5. Loop \\
+\hspace{3mm}5.1 t$1 \leftarrow $ t$2$ \\
+\hspace{3mm}5.2 t$3 \leftarrow $ t$1^{b - 1}$ \\
+\hspace{3mm}5.3 t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
+\hspace{3mm}5.4 t$2 \leftarrow $ t$2 - a$ \\
+\hspace{3mm}5.5 t$3 \leftarrow $ t$3 \cdot b$ \\
+\hspace{3mm}5.6 t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
+\hspace{3mm}5.7 t$2 \leftarrow $ t$1 - $ t$3$ \\
+\hspace{3mm}5.8 If t$1 \ne $ t$2$ then goto step 5. \\
+6. Loop \\
+\hspace{3mm}6.1 t$2 \leftarrow $ t$1^b$ \\
+\hspace{3mm}6.2 If t$2 > a$ then \\
+\hspace{6mm}6.2.1 t$1 \leftarrow $ t$1 - 1$ \\
+\hspace{6mm}6.2.2 Goto step 6. \\
+7. $a.sign \leftarrow sign$ \\
+8. $c \leftarrow $ t$1$ \\
+9. $c.sign \leftarrow sign$ \\
+10. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_n\_root}
+\end{figure}
+\textbf{Algorithm mp\_n\_root.}
+This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach. It is partially optimized based on the observation
+that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator. That is at first the denominator is calculated by finding
+$x^{b - 1}$. This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator. This saves a total of $b - 1$
+multiplications by t$1$ inside the loop.
+
+The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
+root. Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.
+
+EXAM,bn_mp_n_root.c
+
+\section{Random Number Generation}
+
+Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms. Pollard-Rho
+factoring for example, can make use of random values as starting points to find factors of a composite integer. In this case the algorithm presented
+is solely for simulations and not intended for cryptographic use.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rand}. \\
+\textbf{Input}. An integer $b$ \\
+\textbf{Output}. A pseudo-random number of $b$ digits \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $b \le 0$ return(\textit{MP\_OKAY}) \\
+3. Pick a non-zero random digit $d$. \\
+4. $a \leftarrow a + d$ \\
+5. for $ix$ from 1 to $d - 1$ do \\
+\hspace{3mm}5.1 $a \leftarrow a \cdot \beta$ \\
+\hspace{3mm}5.2 Pick a random digit $d$. \\
+\hspace{3mm}5.3 $a \leftarrow a + d$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rand}
+\end{figure}
+\textbf{Algorithm mp\_rand.}
+This algorithm produces a pseudo-random integer of $b$ digits. By ensuring that the first digit is non-zero the algorithm also guarantees that the
+final result has at least $b$ digits. It relies heavily on a third-part random number generator which should ideally generate uniformly all of
+the integers from $0$ to $\beta - 1$.
+
+EXAM,bn_mp_rand.c
+
+\section{Formatted Representations}
+The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties. For example, the ability to
+be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
+into a program.
+
+\subsection{Reading Radix-n Input}
+For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to
+printable characters. For example, when the character ``N'' is read it represents the integer $23$. The first $16$ characters of the
+map are for the common representations up to hexadecimal. After that they match the ``base64'' encoding scheme which are suitable chosen
+such that they are printable. While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
+mediums.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{cc|cc|cc|cc}
+\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} \\
+\hline
+0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
+4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
+8 & 8 & 9 & 9 & 10 & A & 11 & B \\
+12 & C & 13 & D & 14 & E & 15 & F \\
+16 & G & 17 & H & 18 & I & 19 & J \\
+20 & K & 21 & L & 22 & M & 23 & N \\
+24 & O & 25 & P & 26 & Q & 27 & R \\
+28 & S & 29 & T & 30 & U & 31 & V \\
+32 & W & 33 & X & 34 & Y & 35 & Z \\
+36 & a & 37 & b & 38 & c & 39 & d \\
+40 & e & 41 & f & 42 & g & 43 & h \\
+44 & i & 45 & j & 46 & k & 47 & l \\
+48 & m & 49 & n & 50 & o & 51 & p \\
+52 & q & 53 & r & 54 & s & 55 & t \\
+56 & u & 57 & v & 58 & w & 59 & x \\
+60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Lower ASCII Map}
+\label{fig:ASC}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_read\_radix}. \\
+\textbf{Input}. A string $str$ of length $sn$ and radix $r$. \\
+\textbf{Output}. The radix-$\beta$ equivalent mp\_int. \\
+\hline \\
+1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2. $ix \leftarrow 0$ \\
+3. If $str_0 =$ ``-'' then do \\
+\hspace{3mm}3.1 $ix \leftarrow ix + 1$ \\
+\hspace{3mm}3.2 $sign \leftarrow MP\_NEG$ \\
+4. else \\
+\hspace{3mm}4.1 $sign \leftarrow MP\_ZPOS$ \\
+5. $a \leftarrow 0$ \\
+6. for $iy$ from $ix$ to $sn - 1$ do \\
+\hspace{3mm}6.1 Let $y$ denote the position in the map of $str_{iy}$. \\
+\hspace{3mm}6.2 If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
+\hspace{3mm}6.3 $a \leftarrow a \cdot r$ \\
+\hspace{3mm}6.4 $a \leftarrow a + y$ \\
+7. If $a \ne 0$ then $a.sign \leftarrow sign$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_read\_radix}
+\end{figure}
+\textbf{Algorithm mp\_read\_radix.}
+This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer. A minus symbol ``-'' may precede the
+string to indicate the value is negative, otherwise it is assumed to be positive. The algorithm will read up to $sn$ characters from the input
+and will stop when it reads a character it cannot map the algorithm stops reading characters from the string. This allows numbers to be embedded
+as part of larger input without any significant problem.
+
+EXAM,bn_mp_read_radix.c
+
+\subsection{Generating Radix-$n$ Output}
+Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toradix}. \\
+\textbf{Input}. A mp\_int $a$ and an integer $r$\\
+\textbf{Output}. The radix-$r$ representation of $a$ \\
+\hline \\
+1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2. If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}). \\
+3. $t \leftarrow a$ \\
+4. $str \leftarrow$ ``'' \\
+5. if $t.sign = MP\_NEG$ then \\
+\hspace{3mm}5.1 $str \leftarrow str + $ ``-'' \\
+\hspace{3mm}5.2 $t.sign = MP\_ZPOS$ \\
+6. While ($t \ne 0$) do \\
+\hspace{3mm}6.1 $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
+\hspace{3mm}6.2 $t \leftarrow \lfloor t / r \rfloor$ \\
+\hspace{3mm}6.3 Look up $d$ in the map and store the equivalent character in $y$. \\
+\hspace{3mm}6.4 $str \leftarrow str + y$ \\
+7. If $str_0 = $``$-$'' then \\
+\hspace{3mm}7.1 Reverse the digits $str_1, str_2, \ldots str_n$. \\
+8. Otherwise \\
+\hspace{3mm}8.1 Reverse the digits $str_0, str_1, \ldots str_n$. \\
+9. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toradix}
+\end{figure}
+\textbf{Algorithm mp\_toradix.}
+This algorithm computes the radix-$r$ representation of an mp\_int $a$. The ``digits'' of the representation are extracted by reducing
+successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$. Note that instead of actually dividing by $r^k$ in
+each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration. As a result a series of trivial $n \times 1$ divisions
+are required instead of a series of $n \times k$ divisions. One design flaw of this approach is that the digits are produced in the reverse order
+(see~\ref{fig:mpradix}). To remedy this flaw the digits must be swapped or simply ``reversed''.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
+\hline $1234$ & -- & -- \\
+\hline $123$ & $4$ & ``4'' \\
+\hline $12$ & $3$ & ``43'' \\
+\hline $1$ & $2$ & ``432'' \\
+\hline $0$ & $1$ & ``4321'' \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Algorithm mp\_toradix.}
+\label{fig:mpradix}
+\end{figure}
+
+EXAM,bn_mp_toradix.c
+
+\chapter{Number Theoretic Algorithms}
+This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi
+symbol computation. These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
+various Sieve based factoring algorithms.
+
+\section{Greatest Common Divisor}
+The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
+both $a$ and $b$. That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
+simultaneously.
+
+The most common approach (cite) is to reduce one input modulo another. That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
+$r$ is also divisible by $k$. The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. While ($b > 0$) do \\
+\hspace{3mm}1.1 $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}1.2 $a \leftarrow b$ \\
+\hspace{3mm}1.3 $b \leftarrow r$ \\
+2. Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (I)}
+\label{fig:gcd1}
+\end{figure}
+
+This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly. However, divisions are
+relatively expensive operations to perform and should ideally be avoided. There is another approach based on a similar relationship of
+greatest common divisors. The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
+In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. While ($b > 0$) do \\
+\hspace{3mm}1.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}1.2 $b \leftarrow b - a$ \\
+2. Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (II)}
+\label{fig:gcd2}
+\end{figure}
+
+\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
+The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$. In other
+words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$. Since both $a$ and $b$ are always
+divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the
+second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof. \textbf{QED}.
+
+As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful. Specially if $b$ is much larger than $a$ such that
+$b - a$ is still very much larger than $a$. A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
+not divide the greatest common divisor but will divide $b - a$. In this case ${b - a} \over p$ is also an integer and still divisible by
+the greatest common divisor.
+
+However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
+Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. $k \leftarrow 0$ \\
+2. While $a$ and $b$ are both divisible by $p$ do \\
+\hspace{3mm}2.1 $a \leftarrow \lfloor a / p \rfloor$ \\
+\hspace{3mm}2.2 $b \leftarrow \lfloor b / p \rfloor$ \\
+\hspace{3mm}2.3 $k \leftarrow k + 1$ \\
+3. While $a$ is divisible by $p$ do \\
+\hspace{3mm}3.1 $a \leftarrow \lfloor a / p \rfloor$ \\
+4. While $b$ is divisible by $p$ do \\
+\hspace{3mm}4.1 $b \leftarrow \lfloor b / p \rfloor$ \\
+5. While ($b > 0$) do \\
+\hspace{3mm}5.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}5.2 $b \leftarrow b - a$ \\
+\hspace{3mm}5.3 While $b$ is divisible by $p$ do \\
+\hspace{6mm}5.3.1 $b \leftarrow \lfloor b / p \rfloor$ \\
+6. Return($a \cdot p^k$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (III)}
+\label{fig:gcd3}
+\end{figure}
+
+This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$
+decreases more rapidly. The first loop on step two removes powers of $p$ that are in common. A count, $k$, is kept which will present a common
+divisor of $p^k$. After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$. This means that $p$ can be safely
+divided out of the difference $b - a$ so long as the division leaves no remainder.
+
+In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often. It also helps that division by $p$ be easy
+to compute. The ideal choice of $p$ is two since division by two amounts to a right logical shift. Another important observation is that by
+step five both $a$ and $b$ are odd. Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the
+largest of the pair.
+
+\subsection{Complete Greatest Common Divisor}
+The algorithms presented so far cannot handle inputs which are zero or negative. The following algorithm can handle all input cases properly
+and will produce the greatest common divisor.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_gcd}. \\
+\textbf{Input}. mp\_int $a$ and $b$ \\
+\textbf{Output}. The greatest common divisor $c = (a, b)$. \\
+\hline \\
+1. If $a = 0$ and $b \ne 0$ then \\
+\hspace{3mm}1.1 $c \leftarrow b$ \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $a \ne 0$ and $b = 0$ then \\
+\hspace{3mm}2.1 $c \leftarrow a$ \\
+\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
+3. If $a = b = 0$ then \\
+\hspace{3mm}3.1 $c \leftarrow 1$ \\
+\hspace{3mm}3.2 Return(\textit{MP\_OKAY}). \\
+4. $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
+5. $k \leftarrow 0$ \\
+6. While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1 $k \leftarrow k + 1$ \\
+\hspace{3mm}6.2 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.3 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+7. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+8. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}8.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+9. While $v.used > 0$ \\
+\hspace{3mm}9.1 If $\vert u \vert > \vert v \vert$ then \\
+\hspace{6mm}9.1.1 Swap $u$ and $v$. \\
+\hspace{3mm}9.2 $v \leftarrow \vert v \vert - \vert u \vert$ \\
+\hspace{3mm}9.3 While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{6mm}9.3.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+10. $c \leftarrow u \cdot 2^k$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_gcd}
+\end{figure}
+\textbf{Algorithm mp\_gcd.}
+This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$. The algorithm was originally based on Algorithm B of
+Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain. In theory it achieves the same asymptotic working time as
+Algorithm B and in practice this appears to be true.
+
+The first three steps handle the cases where either one of or both inputs are zero. If either input is zero the greatest common divisor is the
+largest input or zero if they are both zero. If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of
+$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
+
+Step six will divide out any common factors of two and keep track of the count in the variable $k$. After this step two is no longer a
+factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even. Step
+seven and eight ensure that the $u$ and $v$ respectively have no more factors of two. At most only one of the while loops will iterate since
+they cannot both be even.
+
+By step nine both of $u$ and $v$ are odd which is required for the inner logic. First the pair are swapped such that $v$ is equal to
+or greater than $u$. This ensures that the subtraction on step 9.2 will always produce a positive and even result. Step 9.3 removes any
+factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
+
+After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six. The result
+must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.
+
+EXAM,bn_mp_gcd.c
+
+This function makes use of the macros mp\_iszero and mp\_iseven. The former evaluates to $1$ if the input mp\_int is equivalent to the
+integer zero otherwise it evaluates to $0$. The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
+it evaluates to $0$. Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero. The three
+trivial cases of inputs are handled on lines @25,zero@ through @34,}@. After those lines the inputs are assumed to be non-zero.
+
+Lines @36,if@ and @40,if@ make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively. At this point the common factors of two
+must be divided out of the two inputs. The while loop on line @49,while@ iterates so long as both are even. The local integer $k$ is used to
+keep track of how many factors of $2$ are pulled out of both values. It is assumed that the number of factors will not exceed the maximum
+value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than entries than are accessible by an ``int'' so this is not
+a limitation.}.
+
+At this point there are no more common factors of two in the two values. The while loops on lines @60,while@ and @65,while@ remove any independent
+factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm. The while loop
+on line @71, while@ performs the reduction of the pair until $v$ is equal to zero. The unsigned comparison and subtraction algorithms are used in
+place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
+
+\section{Least Common Multiple}
+The least common multiple of a pair of integers is their product divided by their greatest common divisor. For two integers $a$ and $b$ the
+least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$. For example, if $a = 2 \cdot 2 \cdot 3 = 12$
+and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
+
+The least common multiple arises often in coding theory as well as number theory. If two functions have periods of $a$ and $b$ respectively they will
+collide, that is be in synchronous states, after only $[ a, b ]$ iterations. This is why, for example, random number generators based on
+Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
+Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lcm}. \\
+\textbf{Input}. mp\_int $a$ and $b$ \\
+\textbf{Output}. The least common multiple $c = [a, b]$. \\
+\hline \\
+1. $c \leftarrow (a, b)$ \\
+2. $t \leftarrow a \cdot b$ \\
+3. $c \leftarrow \lfloor t / c \rfloor$ \\
+4. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lcm}
+\end{figure}
+\textbf{Algorithm mp\_lcm.}
+This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$. It computes the least common multiple directly by
+dividing the product of the two inputs by their greatest common divisor.
+
+EXAM,bn_mp_lcm.c
+
+\section{Jacobi Symbol Computation}
+To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg. What is the name of this?} off which the Jacobi symbol is
+defined. The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$. Numerically it is
+equivalent to equation \ref{eqn:legendre}.
+
+\begin{equation}
+a^{(p-1)/2} \equiv \begin{array}{rl}
+ -1 & \mbox{if }a\mbox{ is a quadratic non-residue.} \\
+ 0 & \mbox{if }a\mbox{ divides }p\mbox{.} \\
+ 1 & \mbox{if }a\mbox{ is a quadratic residue}.
+ \end{array} \mbox{ (mod }p\mbox{)}
+\label{eqn:legendre}
+\end{equation}
+
+\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
+An integer $a$ is a quadratic residue if the following equation has a solution.
+
+\begin{equation}
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\label{eqn:root}
+\end{equation}
+
+Consider the following equation.
+
+\begin{equation}
+0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
+\label{eqn:rooti}
+\end{equation}
+
+Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true. If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
+then the quantity in the braces must be zero. By reduction,
+
+\begin{eqnarray}
+\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0 \nonumber \\
+\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\end{eqnarray}
+
+As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue. If $a$ does not divide $p$ and $a$
+is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
+\begin{equation}
+0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
+\end{equation}
+One of the terms on the right hand side must be zero. \textbf{QED}
+
+\subsection{Jacobi Symbol}
+The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2. If $p = \prod_{i=0}^n p_i$ then
+the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
+\end{equation}
+
+By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function. The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
+further details.} will be used to derive an efficient Jacobi symbol algorithm. Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
+following are true.
+
+\begin{enumerate}
+\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$.
+\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
+\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
+\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$. Otherwise, it equals $-1$.
+\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$. More specifically
+$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.
+\end{enumerate}
+
+Using these facts if $a = 2^k \cdot a'$ then
+
+\begin{eqnarray}
+\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
+ = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right )
+\label{eqn:jacobi}
+\end{eqnarray}
+
+By fact five,
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right ) \cdot (-1)^{(p-1)(a'-1)/4}
+\end{equation}
+
+The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively. The value of
+$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$. Using this approach the
+factors of $p$ do not have to be known. Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
+Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_jacobi}. \\
+\textbf{Input}. mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
+\textbf{Output}. The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
+\hline \\
+1. If $a = 0$ then \\
+\hspace{3mm}1.1 $c \leftarrow 0$ \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $a = 1$ then \\
+\hspace{3mm}2.1 $c \leftarrow 1$ \\
+\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
+3. $a' \leftarrow a$ \\
+4. $k \leftarrow 0$ \\
+5. While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1 $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2 $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
+6. If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
+\hspace{3mm}6.1 $s \leftarrow 1$ \\
+7. else \\
+\hspace{3mm}7.1 $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
+\hspace{3mm}7.2 If $r = 1$ or $r = 7$ then \\
+\hspace{6mm}7.2.1 $s \leftarrow 1$ \\
+\hspace{3mm}7.3 else \\
+\hspace{6mm}7.3.1 $s \leftarrow -1$ \\
+8. If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
+\hspace{3mm}8.1 $s \leftarrow -s$ \\
+9. If $a' \ne 1$ then \\
+\hspace{3mm}9.1 $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
+\hspace{3mm}9.2 $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
+10. $c \leftarrow s$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_jacobi}
+\end{figure}
+\textbf{Algorithm mp\_jacobi.}
+This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three. The algorithm
+is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.
+
+Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively. Step five determines the number of two factors in the
+input $a$. If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one. If $k$ is odd than the term evaluates to one
+if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled
+the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$. The latter term evaluates to one if both $p$ and $a'$
+are congruent to one modulo four, otherwise it evaluates to negative one.
+
+By step nine if $a'$ does not equal one a recursion is required. Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
+$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
+
+EXAM,bn_mp_jacobi.c
+
+As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C
+variable name character.
+
+The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm. If the input is non-trivial the algorithm
+has to proceed compute the Jacobi. The variable $s$ is used to hold the current Jacobi product. Note that $s$ is merely a C ``int'' data type since
+the values it may obtain are merely $-1$, $0$ and $1$.
+
+After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$. Technically only the least significant
+bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same
+processor requirements and neither is faster than the other.
+
+Line @59, if@ through @70, }@ determines the value of $\left ( { 2 \over p } \right )^k$. If the least significant bit of $k$ is zero than
+$k$ is even and the value is one. Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight. The value of
+$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines @73, if@ through @75, }@.
+
+Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.
+
+\textit{-- Comment about default $s$ and such...}
+
+\section{Modular Inverse}
+\label{sec:modinv}
+The modular inverse of a number actually refers to the modular multiplicative inverse. Essentially for any integer $a$ such that $(a, p) = 1$ there
+exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$. The integer $b$ is called the multiplicative inverse of $a$ which is
+denoted as $b = a^{-1}$. Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and
+fields of integers. However, the former will be the matter of discussion.
+
+The simplest approach is to compute the algebraic inverse of the input. That is to compute $b \equiv a^{\Phi(p) - 1}$. If $\Phi(p)$ is the
+order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$. The proof of which is trivial.
+
+\begin{equation}
+ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
+\end{equation}
+
+However, as simple as this approach may be it has two serious flaws. It requires that the value of $\Phi(p)$ be known which if $p$ is composite
+requires all of the prime factors. This approach also is very slow as the size of $p$ grows.
+
+A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear
+Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
+
+\begin{equation}
+ab + pq = 1
+\end{equation}
+
+Where $a$, $b$, $p$ and $q$ are all integers. If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of
+$a$ modulo $p$. The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.
+However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place. The
+binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine
+equation.
+
+\subsection{General Case}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_invmod}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$. \\
+\textbf{Output}. The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then return(\textit{MP\_VAL}). \\
+2. If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
+3. $x \leftarrow \vert a \vert, y \leftarrow b$ \\
+4. If $x_0 \equiv y_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
+5. $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
+6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.2 If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}6.2.1 $A \leftarrow A + y$ \\
+\hspace{6mm}6.2.2 $B \leftarrow B - x$ \\
+\hspace{3mm}6.3 $A \leftarrow \lfloor A / 2 \rfloor$ \\
+\hspace{3mm}6.4 $B \leftarrow \lfloor B / 2 \rfloor$ \\
+7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+\hspace{3mm}7.2 If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}7.2.1 $C \leftarrow C + y$ \\
+\hspace{6mm}7.2.2 $D \leftarrow D - x$ \\
+\hspace{3mm}7.3 $C \leftarrow \lfloor C / 2 \rfloor$ \\
+\hspace{3mm}7.4 $D \leftarrow \lfloor D / 2 \rfloor$ \\
+8. If $u \ge v$ then \\
+\hspace{3mm}8.1 $u \leftarrow u - v$ \\
+\hspace{3mm}8.2 $A \leftarrow A - C$ \\
+\hspace{3mm}8.3 $B \leftarrow B - D$ \\
+9. else \\
+\hspace{3mm}9.1 $v \leftarrow v - u$ \\
+\hspace{3mm}9.2 $C \leftarrow C - A$ \\
+\hspace{3mm}9.3 $D \leftarrow D - B$ \\
+10. If $u \ne 0$ goto step 6. \\
+11. If $v \ne 1$ return(\textit{MP\_VAL}). \\
+12. While $C \le 0$ do \\
+\hspace{3mm}12.1 $C \leftarrow C + b$ \\
+13. While $C \ge b$ do \\
+\hspace{3mm}13.1 $C \leftarrow C - b$ \\
+14. $c \leftarrow C$ \\
+15. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\end{figure}
+\textbf{Algorithm mp\_invmod.}
+This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$. This algorithm is a variation of the
+extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}. It has been modified to only compute the modular inverse and not a complete
+Diophantine solution.
+
+If $b \le 0$ than the modulus is invalid and MP\_VAL is returned. Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
+inverse for $a$ and the error is reported.
+
+The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd. In this case
+the other variables to the Diophantine equation are solved. The algorithm terminates when $u = 0$ in which case the solution is
+
+\begin{equation}
+Ca + Db = v
+\end{equation}
+
+If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists. Otherwise, $C$
+is the modular inverse of $a$. The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie
+within $1 \le a^{-1} < b$. Step numbers twelve and thirteen adjust the inverse until it is in range. If the original input $a$ is within $0 < a < p$
+then only a couple of additions or subtractions will be required to adjust the inverse.
+
+EXAM,bn_mp_invmod.c
+
+\subsubsection{Odd Moduli}
+
+When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse. In particular by attempting to solve
+the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.
+
+The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed. This
+optimization will halve the time required to compute the modular inverse.
+
+\section{Primality Tests}
+
+A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself. For example, $a = 7$ is prime
+since the integers $2 \ldots 6$ do not evenly divide $a$. By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$.
+
+Prime numbers arise in cryptography considerably as they allow finite fields to be formed. The ability to determine whether an integer is prime or
+not quickly has been a viable subject in cryptography and number theory for considerable time. The algorithms that will be presented are all
+probablistic algorithms in that when they report an integer is composite it must be composite. However, when the algorithms report an integer is
+prime the algorithm may be incorrect.
+
+As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as
+well be zero. For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
+
+\subsection{Trial Division}
+
+Trial division means to attempt to evenly divide a candidate integer by small prime integers. If the candidate can be evenly divided it obviously
+cannot be prime. By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime. However, such a test
+would require a prohibitive amount of time as $n$ grows.
+
+Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead. By performing trial division with only a subset
+of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime. However, often it can prove a candidate is not prime.
+
+The benefit of this test is that trial division by small values is fairly efficient. Specially compared to the other algorithms that will be
+discussed shortly. The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
+$1 - {1.12 \over ln(q)}$. The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range
+$3 \le q \le 100$.
+
+At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly. At $q = 90$ further testing is generally not going to
+be of any practical use. In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate
+approximately $80\%$ of all candidate integers. The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base. The
+array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$. \\
+\hline \\
+1. for $ix$ from $0$ to $PRIME\_SIZE$ do \\
+\hspace{3mm}1.1 $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
+\hspace{3mm}1.2 If $d = 0$ then \\
+\hspace{6mm}1.2.1 $c \leftarrow 1$ \\
+\hspace{6mm}1.2.2 Return(\textit{MP\_OKAY}). \\
+2. $c \leftarrow 0$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_is\_divisible}
+\end{figure}
+\textbf{Algorithm mp\_prime\_is\_divisible.}
+This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.
+
+EXAM,bn_mp_prime_is_divisible.c
+
+The algorithm defaults to a return of $0$ in case an error occurs. The values in the prime table are all specified to be in the range of a
+mp\_digit. The table \_\_prime\_tab is defined in the following file.
+
+EXAM,bn_prime_tab.c
+
+Note that there are two possible tables. When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
+upto $1619$ are used. Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit.
+
+\subsection{The Fermat Test}
+The Fermat test is probably one the oldest tests to have a non-trivial probability of success. It is based on the fact that if $n$ is in
+fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$. The reason being that if $n$ is prime than the order of
+the multiplicative sub group is $n - 1$. Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to
+$a^1 = a$.
+
+If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$. In which case
+it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$. However, this test is not absolute as it is possible that the order
+of a base will divide $n - 1$ which would then be reported as prime. Such a base yields what is known as a Fermat pseudo-prime. Several
+integers known as Carmichael numbers will be a pseudo-prime to all valid bases. Fortunately such numbers are extremely rare as $n$ grows
+in size.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_fermat}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
+\textbf{Output}. $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$. \\
+\hline \\
+1. $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
+2. If $t = b$ then \\
+\hspace{3mm}2.1 $c = 1$ \\
+3. else \\
+\hspace{3mm}3.1 $c = 0$ \\
+4. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_fermat}
+\end{figure}
+\textbf{Algorithm mp\_prime\_fermat.}
+This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not. It uses a single modular exponentiation to
+determine the result.
+
+EXAM,bn_mp_prime_fermat.c
+
+\subsection{The Miller-Rabin Test}
+The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen
+candidate integers. The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the
+value must be equal to $-1$. The squarings are stopped as soon as $-1$ is observed. If the value of $1$ is observed first it means that
+some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
+\textbf{Output}. $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$. \\
+\hline
+1. $a' \leftarrow a - 1$ \\
+2. $r \leftarrow n1$ \\
+3. $c \leftarrow 0, s \leftarrow 0$ \\
+4. While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}4.1 $s \leftarrow s + 1$ \\
+\hspace{3mm}4.2 $r \leftarrow \lfloor r / 2 \rfloor$ \\
+5. $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
+6. If $y \nequiv \pm 1$ then \\
+\hspace{3mm}6.1 $j \leftarrow 1$ \\
+\hspace{3mm}6.2 While $j \le (s - 1)$ and $y \nequiv a'$ \\
+\hspace{6mm}6.2.1 $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
+\hspace{6mm}6.2.2 If $y = 1$ then goto step 8. \\
+\hspace{6mm}6.2.3 $j \leftarrow j + 1$ \\
+\hspace{3mm}6.3 If $y \nequiv a'$ goto step 8. \\
+7. $c \leftarrow 1$\\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_miller\_rabin}
+\end{figure}
+\textbf{Algorithm mp\_prime\_miller\_rabin.}
+This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$. It will set $c = 1$ if the algorithm cannot determine
+if $b$ is composite or $c = 0$ if $b$ is provably composite. The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.
+
+If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not. Otherwise, the algorithm will
+square $y$ upto $s - 1$ times stopping only when $y \equiv -1$. If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
+is provably composite. If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite. If $a$ is not provably
+composite then it is \textit{probably} prime.
+
+EXAM,bn_mp_prime_miller_rabin.c
+
+
+
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
+
+\bibitem[11]{RSAREF}
+R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
+
+\bibitem[12]{DHREF}
+Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
+
+\bibitem[13]{IEEE}
+IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
+
+\bibitem[14]{GMP}
+GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
+
+\bibitem[15]{MPI}
+Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
+
+\bibitem[16]{OPENSSL}
+OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
+
+\bibitem[17]{LIP}
+Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
+
+\bibitem[18]{ISOC}
+JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.''
+
+\bibitem[19]{JAVA}
+The Sun Java Website, \url{http://java.sun.com/}
+
+\end{thebibliography}
+
+\input{tommath.ind}
+
+\end{document}
diff --git a/libtommath/tommath.tex b/libtommath/tommath.tex
new file mode 100644
index 0000000..9c4dc82
--- /dev/null
+++ b/libtommath/tommath.tex
@@ -0,0 +1,10771 @@
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Draft Edition }
+\author{\mbox{
+%\begin{small}
+\begin{tabular}{c}
+Tom St Denis \\
+Algonquin College \\
+\\
+Mads Rasmussen \\
+Open Communications Security \\
+\\
+Greg Rose \\
+QUALCOMM Australia \\
+\end{tabular}
+%\end{small}
+}
+}
+\maketitle
+This text has been placed in the public domain. This text corresponds to the v0.30 release of the
+LibTomMath project.
+
+\begin{alltt}
+Tom St Denis
+111 Banning Rd
+Ottawa, Ontario
+K2L 1C3
+Canada
+
+Phone: 1-613-836-3160
+Email: tomstdenis@iahu.ca
+\end{alltt}
+
+This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{}
+{\em book} macro package and the Perl {\em booker} package.
+
+\tableofcontents
+\listoffigures
+\chapter*{Prefaces to the Draft Edition}
+I started this text in April 2003 to complement my LibTomMath library. That is, explain how to implement the functions
+contained in LibTomMath. The goal is to have a textbook that any Computer Science student can use when implementing their
+own multiple precision arithmetic. The plan I wanted to follow was flesh out all the
+ideas and concepts I had floating around in my head and then work on it afterwards refining a little bit at a time. Chance
+would have it that I ended up with my summer off from Algonquin College and I was given four months solid to work on the
+text.
+
+Choosing to not waste any time I dove right into the project even before my spring semester was finished. I wrote a bit
+off and on at first. The moment my exams were finished I jumped into long 12 to 16 hour days. The result after only
+a couple of months was a ten chapter, three hundred page draft that I quickly had distributed to anyone who wanted
+to read it. I had Jean-Luc Cooke print copies for me and I brought them to Crypto'03 in Santa Barbara. So far I have
+managed to grab a certain level of attention having people from around the world ask me for copies of the text was certain
+rewarding.
+
+Now we are past December 2003. By this time I had pictured that I would have at least finished my second draft of the text.
+Currently I am far off from this goal. I've done partial re-writes of chapters one, two and three but they are not even
+finished yet. I haven't given up on the project, only had some setbacks. First O'Reilly declined to publish the text then
+Addison-Wesley and Greg is tried another which I don't know the name of. However, at this point I want to focus my energy
+onto finishing the book not securing a contract.
+
+So why am I writing this text? It seems like a lot of work right? Most certainly it is a lot of work writing a textbook.
+Even the simplest introductory material has to be lined with references and figures. A lot of the text has to be re-written
+from point form to prose form to ensure an easier read. Why am I doing all this work for free then? Simple. My philosophy
+is quite simply ``Open Source. Open Academia. Open Minds'' which means that to achieve a goal of open minds, that is,
+people willing to accept new ideas and explore the unknown you have to make available material they can access freely
+without hinderance.
+
+I've been writing free software since I was about sixteen but only recently have I hit upon software that people have come
+to depend upon. I started LibTomCrypt in December 2001 and now several major companies use it as integral portions of their
+software. Several educational institutions use it as a matter of course and many freelance developers use it as
+part of their projects. To further my contributions I started the LibTomMath project in December 2002 aimed at providing
+multiple precision arithmetic routines that students could learn from. That is write routines that are not only easy
+to understand and follow but provide quite impressive performance considering they are all in standard portable ISO C.
+
+The second leg of my philosophy is ``Open Academia'' which is where this textbook comes in. In the end, when all is
+said and done the text will be useable by educational institutions as a reference on multiple precision arithmetic.
+
+At this time I feel I should share a little information about myself. The most common question I was asked at
+Crypto'03, perhaps just out of professional courtesy, was which school I either taught at or attended. The unfortunate
+truth is that I neither teach at or attend a school of academic reputation. I'm currently at Algonquin College which
+is what I'd like to call ``somewhat academic but mostly vocational'' college. In otherwords, job training.
+
+I'm a 21 year old computer science student mostly self-taught in the areas I am aware of (which includes a half-dozen
+computer science fields, a few fields of mathematics and some English). I look forward to teaching someday but I am
+still far off from that goal.
+
+Now it would be improper for me to not introduce the rest of the texts co-authors. While they are only contributing
+corrections and editorial feedback their support has been tremendously helpful in presenting the concepts laid out
+in the text so far. Greg has always been there for me. He has tracked my LibTom projects since their inception and even
+sent cheques to help pay tuition from time to time. His background has provided a wonderful source to bounce ideas off
+of and improve the quality of my writing. Mads is another fellow who has just ``been there''. I don't even recall what
+his interest in the LibTom projects is but I'm definitely glad he has been around. His ability to catch logical errors
+in my written English have saved me on several occasions to say the least.
+
+What to expect next? Well this is still a rough draft. I've only had the chance to update a few chapters. However, I've
+been getting the feeling that people are starting to use my text and I owe them some updated material. My current tenative
+plan is to edit one chapter every two weeks starting January 4th. It seems insane but my lower course load at college
+should provide ample time. By Crypto'04 I plan to have a 2nd draft of the text polished and ready to hand out to as many
+people who will take it.
+
+\begin{flushright} Tom St Denis \end{flushright}
+
+\newpage
+I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also
+contribute to educate others facing the problem of having to handle big number mathematical calculations.
+
+This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of
+how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about
+the layout and language used.
+
+I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the
+practical aspects of cryptography.
+
+Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a
+great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up
+multiple precision calculations is often very important since we deal with outdated machine architecture where modular
+reductions, for example, become painfully slow.
+
+This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks
+themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
+
+\begin{flushright}
+Mads Rasmussen
+
+S\~{a}o Paulo - SP
+
+Brazil
+\end{flushright}
+
+\newpage
+It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about
+Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not
+really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
+
+At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the
+sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
+contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity.
+Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
+
+When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully,
+and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close
+friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort,
+and I'm pleased to be involved with it.
+
+\begin{flushright}
+Greg Rose, Sydney, Australia, June 2003.
+\end{flushright}
+
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{Multiple Precision Arithmetic}
+
+\subsection{What is Multiple Precision Arithmetic?}
+When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively
+raise or lower the precision of the numbers we are dealing with. For example, in decimal we almost immediate can
+reason that $7$ times $6$ is $42$. However, $42$ has two digits of precision as opposed to one digit we started with.
+Further multiplications of say $3$ result in a larger precision result $126$. In these few examples we have multiple
+precisions for the numbers we are working with. Despite the various levels of precision a single subset\footnote{With the occasional optimization.}
+ of algorithms can be designed to accomodate them.
+
+By way of comparison a fixed or single precision operation would lose precision on various operations. For example, in
+the decimal system with fixed precision $6 \cdot 7 = 2$.
+
+Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in
+schools to manually add, subtract, multiply and divide.
+
+\subsection{The Need for Multiple Precision Arithmetic}
+The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
+of public-key cryptography algorithms. Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require
+integers of significant magnitude to resist known cryptanalytic attacks. For example, at the time of this writing a
+typical RSA modulus would be at least greater than $10^{309}$. However, modern programming languages such as ISO C \cite{ISOC} and
+Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{|r|c|}
+\hline \textbf{Data Type} & \textbf{Range} \\
+\hline char & $-128 \ldots 127$ \\
+\hline short & $-32768 \ldots 32767$ \\
+\hline long & $-2147483648 \ldots 2147483647$ \\
+\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Typical Data Types for the C Programming Language}
+\label{fig:ISOC}
+\end{figure}
+
+The largest data type guaranteed to be provided by the ISO C programming
+language\footnote{As per the ISO C standard. However, each compiler vendor is allowed to augment the precision as they
+see fit.} can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is
+insufficient to accomodate the magnitude required for the problem at hand. An RSA modulus of magnitude $10^{19}$ could be
+trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer,
+rendering any protocol based on the algorithm insecure. Multiple precision algorithms solve this very problem by
+extending the range of representable integers while using single precision data types.
+
+Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic
+primitives. Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in
+various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient. In fact, several
+major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and
+deployment of efficient algorithms.
+
+However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.
+Another auxiliary use of multiple precision integers is high precision floating point data types.
+The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.
+Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE. Since IEEE
+floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small
+(\textit{23, 48 and 64 bits}). The mantissa is merely an integer and a multiple precision integer could be used to create
+a mantissa of much larger precision than hardware alone can efficiently support. This approach could be useful where
+scientific applications must minimize the total output error over long calculations.
+
+Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
+In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
+
+\subsection{Benefits of Multiple Precision Arithmetic}
+\index{precision}
+The benefit of multiple precision representations over single or fixed precision representations is that
+no precision is lost while representing the result of an operation which requires excess precision. For example,
+the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully. A multiple
+precision algorithm would augment the precision of the destination to accomodate the result while a single precision system
+would truncate excess bits to maintain a fixed level of precision.
+
+It is possible to implement algorithms which require large integers with fixed precision algorithms. For example, elliptic
+curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum
+size the system will ever need. Such an approach can lead to vastly simpler algorithms which can accomodate the
+integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard
+processor has an 8 bit accumulator.}. However, as efficient as such an approach may be, the resulting source code is not
+normally very flexible. It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
+
+Multiple precision algorithms have the most overhead of any style of arithmetic. For the the most part the
+overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
+platforms. However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the
+inputs. That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input
+without the designer's explicit forethought. This leads to lower cost of ownership for the code as it only has to
+be written and tested once.
+
+\section{Purpose of This Text}
+The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms.
+That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping''
+elements that are neglected by authors of other texts on the subject. Several well reknowned texts \cite{TAOCPV2,HAC}
+give considerably detailed explanations of the theoretical aspects of algorithms and often very little information
+regarding the practical implementation aspects.
+
+In most cases how an algorithm is explained and how it is actually implemented are two very different concepts. For
+example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple
+algorithm for performing multiple precision integer addition. However, the description lacks any discussion concerning
+the fact that the two integer inputs may be of differing magnitudes. As a result the implementation is not as simple
+as the text would lead people to believe. Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not
+discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
+
+Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers
+and fast modular inversion, which we consider practical oversights. These optimal algorithms are vital to achieve
+any form of useful performance in non-trivial applications.
+
+To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
+package. As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.org}} package is used
+to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field
+tested and work very well. The LibTomMath library is freely available on the Internet for all uses and this text
+discusses a very large portion of the inner workings of the library.
+
+The algorithms that are presented will always include at least one ``pseudo-code'' description followed
+by the actual C source code that implements the algorithm. The pseudo-code can be used to implement the same
+algorithm in other programming languages as the reader sees fit.
+
+This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch. Showing
+the reader how the algorithms fit together as well as where to start on various taskings.
+
+\section{Discussion and Notation}
+\subsection{Notation}
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
+the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$. The elements of the array $x$ are said to be the radix $\beta$ digits
+of the integer. For example, $x = (1,2,3)_{10}$ would represent the integer
+$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
+
+\index{mp\_int}
+The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well
+as auxilary data required to manipulate the data. These additional members are discussed further in section
+\ref{sec:MPINT}. For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be
+synonymous. When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members
+are present as well. An expression of the type \textit{variablename.item} implies that it should evaluate to the
+member named ``item'' of the variable. For example, a string of characters may have a member ``length'' which would
+evaluate to the number of characters in the string. If the string $a$ equals ``hello'' then it follows that
+$a.length = 5$.
+
+For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
+to solve a given problem. When an algorithm is described as accepting an integer input it is assumed the input is
+a plain integer with no additional multiple-precision members. That is, algorithms that use integers as opposed to
+mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management. These
+algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
+precision algorithm to solve the same problem.
+
+\subsection{Precision Notation}
+The variable $\beta$ represents the radix of a single digit of a multiple precision integer and
+must be of the form $q^p$ for $q, p \in \Z^+$. A single precision variable must be able to represent integers in
+the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range
+$0 \le x < q \beta^2$. The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the
+carry. Since all modern computers are binary, it is assumed that $q$ is two.
+
+\index{mp\_digit} \index{mp\_word}
+Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent
+a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type. In
+several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.
+For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to
+the $j$'th digit of a double precision array. Whenever an expression is to be assigned to a double precision
+variable it is assumed that all single precision variables are promoted to double precision during the evaluation.
+Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
+precision data type.
+
+For example, if $\beta = 10^2$ a single precision data type may represent a value in the
+range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$. Let
+$a = 23$ and $b = 49$ represent two single precision variables. The single precision product shall be written
+as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
+In this particular case, $\hat c = 1127$ and $c = 127$. The most significant digit of the product would not fit
+in a single precision data type and as a result $c \ne \hat c$.
+
+\subsection{Algorithm Inputs and Outputs}
+Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
+as indicated. The only exception to this rule is when variables have been indicated to be of type mp\_int. This
+distinction is important as scalars are often used as array indicies and various other counters.
+
+\subsection{Mathematical Expressions}
+The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression
+itself. For example, $\lfloor 5.7 \rfloor = 5$. Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
+rounded to an integer not less than the expression itself. For example, $\lceil 5.1 \rceil = 6$. Typically when
+the $/$ division symbol is used the intention is to perform an integer division with truncation. For example,
+$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When an expression is written as a
+fraction a real value division is implied, for example ${5 \over 2} = 2.5$.
+
+The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
+of the integer. For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.
+
+\subsection{Work Effort}
+\index{big-Oh}
+To measure the efficiency of the specified algorithms, a modified big-Oh notation is used. In this system all
+single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.
+That is a single precision addition, multiplication and division are assumed to take the same time to
+complete. While this is generally not true in practice, it will simplify the discussions considerably.
+
+Some algorithms have slight advantages over others which is why some constants will not be removed in
+the notation. For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a
+baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work. In standard big-Oh notation these
+would both be said to be equivalent to $O(n^2)$. However,
+in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small. As a
+result small constant factors in the work effort will make an observable difference in algorithm efficiency.
+
+All of the algorithms presented in this text have a polynomial time work level. That is, of the form
+$O(n^k)$ for $n, k \in \Z^{+}$. This will help make useful comparisons in terms of the speed of the algorithms and how
+various optimizations will help pay off in the long run.
+
+\section{Exercises}
+Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to
+the discussion at hand. These exercises are not designed to be prize winning problems, but instead to be thought
+provoking. Wherever possible the problems are forward minded, stating problems that will be answered in subsequent
+chapters. The reader is encouraged to finish the exercises as they appear to get a better understanding of the
+subject material.
+
+That being said, the problems are designed to affirm knowledge of a particular subject matter. Students in particular
+are encouraged to verify they can answer the problems correctly before moving on.
+
+Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
+the problem. However, unlike \cite{TAOCPV2} the problems do not get nearly as hard. The scoring of these
+exercises ranges from one (the easiest) to five (the hardest). The following table sumarizes the
+scoring system used.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|l|}
+\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
+ & minutes to solve. Usually does not involve much computer time \\
+ & to solve. \\
+\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
+ & time usage. Usually requires a program to be written to \\
+ & solve the problem. \\
+\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
+ & of work. Usually involves trivial research and development of \\
+ & new theory from the perspective of a student. \\
+\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
+ & of work and research, the solution to which will demonstrate \\
+ & a higher mastery of the subject matter. \\
+\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
+ & novice to solve. Solutions to these problems will demonstrate a \\
+ & complete mastery of the given subject. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Exercise Scoring System}
+\end{figure}
+
+Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
+devising new theory. These problems are quick tests to see if the material is understood. Problems at the second level
+are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer. These
+two levels are essentially entry level questions.
+
+Problems at the third level are meant to be a bit more difficult than the first two levels. The answer is often
+fairly obvious but arriving at an exacting solution requires some thought and skill. These problems will almost always
+involve devising a new algorithm or implementing a variation of another algorithm previously presented. Readers who can
+answer these questions will feel comfortable with the concepts behind the topic at hand.
+
+Problems at the fourth level are meant to be similar to those of the level three questions except they will require
+additional research to be completed. The reader will most likely not know the answer right away, nor will the text provide
+the exact details of the answer until a subsequent chapter.
+
+Problems at the fifth level are meant to be the hardest
+problems relative to all the other problems in the chapter. People who can correctly answer fifth level problems have a
+mastery of the subject matter at hand.
+
+Often problems will be tied together. The purpose of this is to start a chain of thought that will be discussed in future chapters. The reader
+is encouraged to answer the follow-up problems and try to draw the relevance of problems.
+
+\section{Introduction to LibTomMath}
+
+\subsection{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C. By portable it
+is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on
+any given platform.
+
+The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
+trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such
+as the Gameboy Advance. The library is designed to contain enough functionality to be able to develop applications such
+as public key cryptosystems and still maintain a relatively small footprint.
+
+\subsection{Goals of LibTomMath}
+
+Libraries which obtain the most efficiency are rarely written in a high level programming language such as C. However,
+even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the
+library. Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM
+processors. Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window
+exponentiation and Montgomery reduction have been provided to make the library more efficient.
+
+Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
+(\textit{API}) has been kept as simple as possible. Often generic place holder routines will make use of specialized
+algorithms automatically without the developer's specific attention. One such example is the generic multiplication
+algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
+based on the magnitude of the inputs and the configuration of the library.
+
+Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
+be source compatible with another popular library which makes it more attractive for developers to use. In this case the
+MPI library was used as a API template for all the basic functions. MPI was chosen because it is another library that fits
+in the same niche as LibTomMath. Even though LibTomMath uses MPI as the template for the function names and argument
+passing conventions, it has been written from scratch by Tom St Denis.
+
+The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum''
+library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
+integer arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points.
+
+\section{Choice of LibTomMath}
+LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
+for more worthy reasons. Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL
+\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for
+reasons that will be explained in the following sub-sections.
+
+\subsection{Code Base}
+The LibTomMath code base is all portable ISO C source code. This means that there are no platform dependent conditional
+segments of code littered throughout the source. This clean and uncluttered approach to the library means that a
+developer can more readily discern the true intent of a given section of source code without trying to keep track of
+what conditional code will be used.
+
+The code base of LibTomMath is well organized. Each function is in its own separate source code file
+which allows the reader to find a given function very quickly. On average there are $76$ lines of code per source
+file which makes the source very easily to follow. By comparison MPI and LIP are single file projects making code tracing
+very hard. GMP has many conditional code segments which also hinder tracing.
+
+When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
+ which is fairly small compared to GMP (over $250$KiB). LibTomMath is slightly larger than MPI (which compiles to about
+$50$KiB) but LibTomMath is also much faster and more complete than MPI.
+
+\subsection{API Simplicity}
+LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build
+with LibTomMath without change. The function names correlate directly to the action they perform. Almost all of the
+functions share the same parameter passing convention. The learning curve is fairly shallow with the API provided
+which is an extremely valuable benefit for the student and developer alike.
+
+The LIP library is an example of a library with an API that is awkward to work with. LIP uses function names that are often ``compressed'' to
+illegible short hand. LibTomMath does not share this characteristic.
+
+The GMP library also does not return error codes. Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors
+are signaled to the host application. This happens to be the fastest approach but definitely not the most versatile. In
+effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely
+undersireable in many situations.
+
+\subsection{Optimizations}
+While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
+feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring. GMP
+and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations. GMP lacks a few
+of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
+only had Barrett and Montgomery modular reduction algorithms.}.
+
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
+exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
+slower than the best libraries such as GMP and OpenSSL by only a small factor.
+
+\subsection{Portability and Stability}
+LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler
+(\textit{GCC}). This means that without changes the library will build without configuration or setting up any
+variables. LIP and MPI will build ``out of the box'' as well but have numerous known bugs. Most notably the author of
+MPI has recently stopped working on his library and LIP has long since been discontinued.
+
+GMP requires a configuration script to run and will not build out of the box. GMP and LibTomMath are still in active
+development and are very stable across a variety of platforms.
+
+\subsection{Choice}
+LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
+the case study of this text. Various source files from the LibTomMath project will be included within the text. However,
+the reader is encouraged to download their own copy of the library to actually be able to work with the library.
+
+\chapter{Getting Started}
+\section{Library Basics}
+The trick to writing any useful library of source code is to build a solid foundation and work outwards from it. First,
+a problem along with allowable solution parameters should be identified and analyzed. In this particular case the
+inability to accomodate multiple precision integers is the problem. Futhermore, the solution must be written
+as portable source code that is reasonably efficient across several different computer platforms.
+
+After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.
+That is, to implement the lowest level dependencies first and work towards the most abstract functions last. For example,
+before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
+By building outwards from a base foundation instead of using a parallel design methodology the resulting project is
+highly modular. Being highly modular is a desirable property of any project as it often means the resulting product
+has a small footprint and updates are easy to perform.
+
+Usually when I start a project I will begin with the header files. I define the data types I think I will need and
+prototype the initial functions that are not dependent on other functions (within the library). After I
+implement these base functions I prototype more dependent functions and implement them. The process repeats until
+I implement all of the functions I require. For example, in the case of LibTomMath I implemented functions such as
+mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod(). As an example as to
+why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the
+dependent function mp\_exptmod() was written. Adding the new multiplication algorithms did not require changes to the
+mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development
+for new algorithms. This methodology allows new algorithms to be tested in a complete framework with relative ease.
+
+\begin{center}
+\begin{figure}[here]
+\includegraphics{pics/design_process.ps}
+\caption{Design Flow of the First Few Original LibTomMath Functions.}
+\label{pic:design_process}
+\end{figure}
+\end{center}
+
+Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
+the source code. For example, one day I may audit the multipliers and the next day the polynomial basis functions.
+
+It only makes sense to begin the text with the preliminary data types and support algorithms required as well.
+This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot
+be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is
+to use fixed precision data types to create and manipulate multiple precision integers which may represent values
+that are very large.
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system
+the largest single digit value is $9$. However, by concatenating digits together larger numbers may be represented. Newly prepended digits
+(\textit{to the left}) are said to be in a different power of ten column. That is, the number $123$ can be described as having a $1$ in the hundreds
+column, $2$ in the tens column and $3$ in the ones column. Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$. Computer based
+multiple precision arithmetic is essentially the same concept. Larger integers are represented by adjoining fixed
+precision computer words with the exception that a different radix is used.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision
+integer. For example, the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive,
+that is the sign of this particular integer is positive as opposed to negative. Second, the integer has three digits in
+its representation. There is an additional property that the integer posesses that does not concern pencil-and-paper
+arithmetic. The third property is how many digits placeholders are available to hold the integer.
+
+The human analogy of this third property is ensuring there is enough space on the paper to write the integer. For example,
+if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.
+Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
+will not exceed the allowed boundaries. These three properties make up what is known as a multiple precision
+integer or mp\_int for short.
+
+\subsection{The mp\_int Structure}
+\label{sec:MPINT}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for
+any such data type but it does provide for making composite data types known as structures. The following is the structure definition
+used within LibTomMath.
+
+\index{mp\_int}
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+%\begin{verbatim}
+\begin{tabular}{|l|}
+\hline
+typedef struct \{ \\
+\hspace{3mm}int used, alloc, sign;\\
+\hspace{3mm}mp\_digit *dp;\\
+\} \textbf{mp\_int}; \\
+\hline
+\end{tabular}
+%\end{verbatim}
+\end{small}
+\caption{The mp\_int Structure}
+\label{fig:mpint}
+\end{center}
+\end{figure}
+
+The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer. The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.
+
+\item The \textbf{alloc} parameter denotes how
+many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
+array to accommodate the precision of the result.
+
+\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple
+precision integer. It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits. The array is maintained in a least
+significant digit order. As a pencil and paper analogy the array is organized such that the right most digits are stored
+first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array. For example,
+if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then
+it would represent the integer $a + b\beta + c\beta^2 + \ldots$
+
+\index{MP\_ZPOS} \index{MP\_NEG}
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+\end{enumerate}
+
+\subsubsection{Valid mp\_int Structures}
+Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.
+The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
+
+\begin{enumerate}
+\item The value of \textbf{alloc} may not be less than one. That is \textbf{dp} always points to a previously allocated
+array of digits.
+\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
+\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero. That is,
+leading zero digits in the most significant positions must be trimmed.
+ \begin{enumerate}
+ \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
+ \end{enumerate}
+\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero;
+this represents the mp\_int value of zero.
+\end{enumerate}
+
+\section{Argument Passing}
+A convention of argument passing must be adopted early on in the development of any library. Making the function
+prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.
+In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int
+structures. That means that the source (input) operands are placed on the left and the destination (output) on the right.
+Consider the following examples.
+
+\begin{verbatim}
+ mp_mul(&a, &b, &c); /* c = a * b */
+ mp_add(&a, &b, &a); /* a = a + b */
+ mp_sqr(&a, &b); /* b = a * a */
+\end{verbatim}
+
+The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
+functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''.
+
+Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
+of assignment expressions. That is, the destination (output) is on the left and arguments (inputs) are on the right. In
+truth, it is entirely a matter of preference. In the case of LibTomMath the convention from the MPI library has been
+adopted.
+
+Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a
+destination. For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important
+feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.
+However, to implement this feature specific care has to be given to ensure the destination is not modified before the
+source is fully read.
+
+\section{Return Values}
+A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them
+to the caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. However, the end
+developer can still manage to cause a library to crash. For example, by passing an invalid pointer an application may
+fault by dereferencing memory not owned by the application.
+
+In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for
+instance) and memory allocation errors. It will not check that the mp\_int passed to any function is valid nor
+will it check pointers for validity. Any function that can cause a runtime error will return an error code as an
+\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
+
+\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value} & \textbf{Meaning} \\
+\hline \textbf{MP\_OKAY} & The function was successful \\
+\hline \textbf{MP\_VAL} & One of the input value(s) was invalid \\
+\hline \textbf{MP\_MEM} & The function ran out of heap memory \\
+\hline
+\end{tabular}
+\end{center}
+\caption{LibTomMath Error Codes}
+\label{fig:errcodes}
+\end{figure}
+
+When an error is detected within a function it should free any memory it allocated, often during the initialization of
+temporary mp\_ints, and return as soon as possible. The goal is to leave the system in the same state it was when the
+function was called. Error checking with this style of API is fairly simple.
+
+\begin{verbatim}
+ int err;
+ if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
+ printf("Error: %s\n", mp_error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+\end{verbatim}
+
+The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
+
+\section{Initialization and Clearing}
+The logical starting point when actually writing multiple precision integer functions is the initialization and
+clearing of the mp\_int structures. These two algorithms will be used by the majority of the higher level algorithms.
+
+Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
+the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even though
+the initial integer will represent zero. If only a single digit were allocated quite a few subsequent re-allocations
+would occur when operations are performed on the integers. There is a tradeoff between how many default digits to allocate
+and how many re-allocations are tolerable. Obviously allocating an excessive amount of digits initially will waste
+memory and become unmanageable.
+
+If the memory for the digits has been successfully allocated then the rest of the members of the structure must
+be initialized. Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
+to zero. The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
+
+\subsection{Initializing an mp\_int}
+An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
+structure are set to valid values. The mp\_init algorithm will perform such an action.
+
+\index{mp\_init}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Allocate memory and initialize $a$ to a known valid mp\_int state. \\
+\hline \\
+1. Allocate memory for \textbf{MP\_PREC} digits. \\
+2. If the allocation failed return(\textit{MP\_MEM}) \\
+3. for $n$ from $0$ to $MP\_PREC - 1$ do \\
+\hspace{3mm}3.1 $a_n \leftarrow 0$\\
+4. $a.sign \leftarrow MP\_ZPOS$\\
+5. $a.used \leftarrow 0$\\
+6. $a.alloc \leftarrow MP\_PREC$\\
+7. Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init}
+\end{figure}
+
+\textbf{Algorithm mp\_init.}
+The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
+manipulte it. It is assumed that the input may not have had any of its members previously initialized which is certainly
+a valid assumption if the input resides on the stack.
+
+Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
+the digits is allocated. If this fails the function returns before setting any of the other members. The \textbf{MP\_PREC}
+name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.}
+used to dictate the minimum precision of newly initialized mp\_int integers. Ideally, it is at least equal to the smallest
+precision number you'll be working with.
+
+Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
+heap operations later functions will have to perform in the future. If \textbf{MP\_PREC} is set correctly the slack
+memory and the number of heap operations will be trivial.
+
+Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
+\textbf{alloc} members initialized. This ensures that the mp\_int will always represent the default state of zero regardless
+of the original condition of the input.
+
+\textbf{Remark.}
+This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
+when the ``to'' keyword is placed between two expressions. For example, ``for $a$ from $b$ to $c$ do'' means that
+a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$. In each
+iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$. If $b > c$ occured
+the loop would not iterate. By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate
+decrementally.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* init a new mp_int */
+018 int mp_init (mp_int * a)
+019 \{
+020 int i;
+021
+022 /* allocate memory required and clear it */
+023 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
+024 if (a->dp == NULL) \{
+025 return MP_MEM;
+026 \}
+027
+028 /* set the digits to zero */
+029 for (i = 0; i < MP_PREC; i++) \{
+030 a->dp[i] = 0;
+031 \}
+032
+033 /* set the used to zero, allocated digits to the default precision
+034 * and sign to positive */
+035 a->used = 0;
+036 a->alloc = MP_PREC;
+037 a->sign = MP_ZPOS;
+038
+039 return MP_OKAY;
+040 \}
+041 #endif
+\end{alltt}
+\end{small}
+
+One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure. It
+is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack. The
+call to mp\_init() is used only to initialize the members of the structure to a known default state.
+
+Here we see (line 23) the memory allocation is performed first. This allows us to exit cleanly and quickly
+if there is an error. If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
+was a memory error. The function XMALLOC is what actually allocates the memory. Technically XMALLOC is not a function
+but a macro defined in ``tommath.h``. By default, XMALLOC will evaluate to malloc() which is the C library's built--in
+memory allocation routine.
+
+In order to assure the mp\_int is in a known state the digits must be set to zero. On most platforms this could have been
+accomplished by using calloc() instead of malloc(). However, to correctly initialize a integer type to a given value in a
+portable fashion you have to actually assign the value. The for loop (line 29) performs this required
+operation.
+
+After the memory has been successfully initialized the remainder of the members are initialized
+(lines 33 through 34) to their respective default states. At this point the algorithm has succeeded and
+a success code is returned to the calling function. If this function returns \textbf{MP\_OKAY} it is safe to assume the
+mp\_int structure has been properly initialized and is safe to use with other functions within the library.
+
+\subsection{Clearing an mp\_int}
+When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
+returned to the application's memory pool with the mp\_clear algorithm.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clear}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. The memory for $a$ shall be deallocated. \\
+\hline \\
+1. If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
+2. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1 $a_n \leftarrow 0$ \\
+3. Free the memory allocated for the digits of $a$. \\
+4. $a.used \leftarrow 0$ \\
+5. $a.alloc \leftarrow 0$ \\
+6. $a.sign \leftarrow MP\_ZPOS$ \\
+7. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clear}
+\end{figure}
+
+\textbf{Algorithm mp\_clear.}
+This algorithm accomplishes two goals. First, it clears the digits and the other mp\_int members. This ensures that
+if a developer accidentally re-uses a cleared structure it is less likely to cause problems. The second goal
+is to free the allocated memory.
+
+The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
+algorithm will not try to free the memory multiple times. Cleared mp\_ints are detectable by having a pre-defined invalid
+digit pointer \textbf{dp} setting.
+
+Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_clear.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* clear one (frees) */
+018 void
+019 mp_clear (mp_int * a)
+020 \{
+021 int i;
+022
+023 /* only do anything if a hasn't been freed previously */
+024 if (a->dp != NULL) \{
+025 /* first zero the digits */
+026 for (i = 0; i < a->used; i++) \{
+027 a->dp[i] = 0;
+028 \}
+029
+030 /* free ram */
+031 XFREE(a->dp);
+032
+033 /* reset members to make debugging easier */
+034 a->dp = NULL;
+035 a->alloc = a->used = 0;
+036 a->sign = MP_ZPOS;
+037 \}
+038 \}
+039 #endif
+\end{alltt}
+\end{small}
+
+The algorithm only operates on the mp\_int if it hasn't been previously cleared. The if statement (line 24)
+checks to see if the \textbf{dp} member is not \textbf{NULL}. If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
+\textbf{NULL} in which case the if statement will evaluate to true.
+
+The digits of the mp\_int are cleared by the for loop (line 26) which assigns a zero to every digit. Similar to mp\_init()
+the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.
+
+The digits are deallocated off the heap via the XFREE macro. Similar to XMALLOC the XFREE macro actually evaluates to
+a standard C library function. In this case the free() function. Since free() only deallocates the memory the pointer
+still has to be reset to \textbf{NULL} manually (line 34).
+
+Now that the digits have been cleared and deallocated the other members are set to their final values (lines 35 and 36).
+
+\section{Maintenance Algorithms}
+
+The previous sections describes how to initialize and clear an mp\_int structure. To further support operations
+that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
+able to augment the precision of an mp\_int and
+initialize mp\_ints with differing initial conditions.
+
+These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
+algorithms such as addition, multiplication and modular exponentiation.
+
+\subsection{Augmenting an mp\_int's Precision}
+When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire
+result of an operation without loss of precision. Quite often the size of the array given by the \textbf{alloc} member
+is large enough to simply increase the \textbf{used} digit count. However, when the size of the array is too small it
+must be re-sized appropriately to accomodate the result. The mp\_grow algorithm will provide this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_grow}. \\
+\textbf{Input}. An mp\_int $a$ and an integer $b$. \\
+\textbf{Output}. $a$ is expanded to accomodate $b$ digits. \\
+\hline \\
+1. if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
+2. $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
+3. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+4. Re-allocate the array of digits $a$ to size $v$ \\
+5. If the allocation failed then return(\textit{MP\_MEM}). \\
+6. for n from a.alloc to $v - 1$ do \\
+\hspace{+3mm}6.1 $a_n \leftarrow 0$ \\
+7. $a.alloc \leftarrow v$ \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_grow}
+\end{figure}
+
+\textbf{Algorithm mp\_grow.}
+It is ideal to prevent re-allocations from being performed if they are not required (step one). This is useful to
+prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.
+
+The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).
+This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.
+
+It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact. This is much
+akin to how the \textit{realloc} function from the standard C library works. Since the newly allocated digits are
+assumed to contain undefined values they are initially set to zero.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_grow.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* grow as required */
+018 int mp_grow (mp_int * a, int size)
+019 \{
+020 int i;
+021 mp_digit *tmp;
+022
+023 /* if the alloc size is smaller alloc more ram */
+024 if (a->alloc < size) \{
+025 /* ensure there are always at least MP_PREC digits extra on top */
+026 size += (MP_PREC * 2) - (size % MP_PREC);
+027
+028 /* reallocate the array a->dp
+029 *
+030 * We store the return in a temporary variable
+031 * in case the operation failed we don't want
+032 * to overwrite the dp member of a.
+033 */
+034 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
+035 if (tmp == NULL) \{
+036 /* reallocation failed but "a" is still valid [can be freed] */
+037 return MP_MEM;
+038 \}
+039
+040 /* reallocation succeeded so set a->dp */
+041 a->dp = tmp;
+042
+043 /* zero excess digits */
+044 i = a->alloc;
+045 a->alloc = size;
+046 for (; i < a->alloc; i++) \{
+047 a->dp[i] = 0;
+048 \}
+049 \}
+050 return MP_OKAY;
+051 \}
+052 #endif
+\end{alltt}
+\end{small}
+
+A quick optimization is to first determine if a memory re-allocation is required at all. The if statement (line 23) checks
+if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count. If the count is not larger than \textbf{alloc}
+the function skips the re-allocation part thus saving time.
+
+When a re-allocation is performed it is turned into an optimal request to save time in the future. The requested digit count is
+padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line 26). The XREALLOC function is used
+to re-allocate the memory. As per the other functions XREALLOC is actually a macro which evaluates to realloc by default. The realloc
+function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
+the re-allocation. All that is left is to clear the newly allocated digits and return.
+
+Note that the re-allocation result is actually stored in a temporary pointer $tmp$. This is to allow this function to return
+an error with a valid pointer. Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$. That would
+result in a memory leak if XREALLOC ever failed.
+
+\subsection{Initializing Variable Precision mp\_ints}
+Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size
+of input mp\_ints to a given algorithm. The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
+will allocate \textit{at least} a specified number of digits.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_size}. \\
+\textbf{Input}. An mp\_int $a$ and the requested number of digits $b$. \\
+\textbf{Output}. $a$ is initialized to hold at least $b$ digits. \\
+\hline \\
+1. $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
+2. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+3. Allocate $v$ digits. \\
+4. for $n$ from $0$ to $v - 1$ do \\
+\hspace{3mm}4.1 $a_n \leftarrow 0$ \\
+5. $a.sign \leftarrow MP\_ZPOS$\\
+6. $a.used \leftarrow 0$\\
+7. $a.alloc \leftarrow v$\\
+8. Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_init\_size}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_size.}
+This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of
+digits allocated can be controlled by the second input argument $b$. The input size is padded upwards so it is a
+multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits. This padding is used to prevent trivial
+allocations from becoming a bottleneck in the rest of the algorithms.
+
+Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero. This
+particular algorithm is useful if it is known ahead of time the approximate size of the input. If the approximation is
+correct no further memory re-allocations are required to work with the mp\_int.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_size.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* init an mp_init for a given size */
+018 int mp_init_size (mp_int * a, int size)
+019 \{
+020 int x;
+021
+022 /* pad size so there are always extra digits */
+023 size += (MP_PREC * 2) - (size % MP_PREC);
+024
+025 /* alloc mem */
+026 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
+027 if (a->dp == NULL) \{
+028 return MP_MEM;
+029 \}
+030
+031 /* set the members */
+032 a->used = 0;
+033 a->alloc = size;
+034 a->sign = MP_ZPOS;
+035
+036 /* zero the digits */
+037 for (x = 0; x < size; x++) \{
+038 a->dp[x] = 0;
+039 \}
+040
+041 return MP_OKAY;
+042 \}
+043 #endif
+\end{alltt}
+\end{small}
+
+The number of digits $b$ requested is padded (line 23) by first augmenting it to the next multiple of
+\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result. If the memory can be successfully allocated the
+mp\_int is placed in a default state representing the integer zero. Otherwise, the error code \textbf{MP\_MEM} will be
+returned (line 28).
+
+The digits are allocated and set to zero at the same time with the calloc() function (line @25,XCALLOC@). The
+\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set
+to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines 32, 33 and 34). If the function
+returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the
+functions to work with.
+
+\subsection{Multiple Integer Initializations and Clearings}
+Occasionally a function will require a series of mp\_int data types to be made available simultaneously.
+The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
+statement. It is essentially a shortcut to multiple initializations.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_multi}. \\
+\textbf{Input}. Variable length array $V_k$ of mp\_int variables of length $k$. \\
+\textbf{Output}. The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
+\hline \\
+1. for $n$ from 0 to $k - 1$ do \\
+\hspace{+3mm}1.1. Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
+\hspace{+3mm}1.2. If initialization failed then do \\
+\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\
+\hspace{+9mm}1.2.1.1. Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
+\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\
+2. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_multi}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_multi.}
+The algorithm will initialize the array of mp\_int variables one at a time. If a runtime error has been detected
+(\textit{step 1.2}) all of the previously initialized variables are cleared. The goal is an ``all or nothing''
+initialization which allows for quick recovery from runtime errors.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_multi.c
+\vspace{-3mm}
+\begin{alltt}
+016 #include <stdarg.h>
+017
+018 int mp_init_multi(mp_int *mp, ...)
+019 \{
+020 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
+021 int n = 0; /* Number of ok inits */
+022 mp_int* cur_arg = mp;
+023 va_list args;
+024
+025 va_start(args, mp); /* init args to next argument from caller */
+026 while (cur_arg != NULL) \{
+027 if (mp_init(cur_arg) != MP_OKAY) \{
+028 /* Oops - error! Back-track and mp_clear what we already
+029 succeeded in init-ing, then return error.
+030 */
+031 va_list clean_args;
+032
+033 /* end the current list */
+034 va_end(args);
+035
+036 /* now start cleaning up */
+037 cur_arg = mp;
+038 va_start(clean_args, mp);
+039 while (n--) \{
+040 mp_clear(cur_arg);
+041 cur_arg = va_arg(clean_args, mp_int*);
+042 \}
+043 va_end(clean_args);
+044 res = MP_MEM;
+045 break;
+046 \}
+047 n++;
+048 cur_arg = va_arg(args, mp_int*);
+049 \}
+050 va_end(args);
+051 return res; /* Assumed ok, if error flagged above. */
+052 \}
+053
+054 #endif
+\end{alltt}
+\end{small}
+
+This function intializes a variable length list of mp\_int structure pointers. However, instead of having the mp\_int
+structures in an actual C array they are simply passed as arguments to the function. This function makes use of the
+``...'' argument syntax of the C programming language. The list is terminated with a final \textbf{NULL} argument
+appended on the right.
+
+The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function. A count
+$n$ of succesfully initialized mp\_int structures is maintained (line 47) such that if a failure does occur,
+the algorithm can backtrack and free the previously initialized structures (lines 27 to 46).
+
+
+\subsection{Clamping Excess Digits}
+When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
+the function instead of checking during the computation. For example, a multiplication of a $i$ digit number by a
+$j$ digit produces a result of at most $i + j$ digits. It is entirely possible that the result is $i + j - 1$
+though, with no final carry into the last position. However, suppose the destination had to be first expanded
+(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.
+That would be a considerable waste of time since heap operations are relatively slow.
+
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
+terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked
+there would be an excess high order zero digit.
+
+For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$. The leading zero digit
+will not contribute to the precision of the result. In fact, through subsequent operations more leading zero digits would
+accumulate to the point the size of the integer would be prohibitive. As a result even though the precision is very
+low the representation is excessively large.
+
+The mp\_clamp algorithm is designed to solve this very problem. It will trim high-order zeros by decrementing the
+\textbf{used} count until a non-zero most significant digit is found. Also in this system, zero is considered to be a
+positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
+\textbf{MP\_ZPOS}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clamp}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Any excess leading zero digits of $a$ are removed \\
+\hline \\
+1. while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
+\hspace{+3mm}1.1 $a.used \leftarrow a.used - 1$ \\
+2. if $a.used = 0$ then do \\
+\hspace{+3mm}2.1 $a.sign \leftarrow MP\_ZPOS$ \\
+\hline \\
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clamp}
+\end{figure}
+
+\textbf{Algorithm mp\_clamp.}
+As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at
+the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for
+when all of the digits are zero to ensure that the mp\_int is valid at all times.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_clamp.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* trim unused digits
+018 *
+019 * This is used to ensure that leading zero digits are
+020 * trimed and the leading "used" digit will be non-zero
+021 * Typically very fast. Also fixes the sign if there
+022 * are no more leading digits
+023 */
+024 void
+025 mp_clamp (mp_int * a)
+026 \{
+027 /* decrease used while the most significant digit is
+028 * zero.
+029 */
+030 while (a->used > 0 && a->dp[a->used - 1] == 0) \{
+031 --(a->used);
+032 \}
+033
+034 /* reset the sign flag if used == 0 */
+035 if (a->used == 0) \{
+036 a->sign = MP_ZPOS;
+037 \}
+038 \}
+039 #endif
+\end{alltt}
+\end{small}
+
+Note on line 27 how to test for the \textbf{used} count is made on the left of the \&\& operator. In the C programming
+language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails. This is
+important since if the \textbf{used} is zero the test on the right would fetch below the array. That is obviously
+undesirable. The parenthesis on line 30 is used to make sure the \textbf{used} count is decremented and not
+the pointer ``a''.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
+ & \\
+$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations. \\
+ & \\
+$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
+ & encryption when $\beta = 2^{28}$. \\
+ & \\
+$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp. What does it prevent? \\
+ & \\
+$\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy might be useful. \\
+ & \\
+\end{tabular}
+
+
+%%%
+% CHAPTER FOUR
+%%%
+
+\chapter{Basic Operations}
+
+\section{Introduction}
+In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
+mp\_int structures. This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low
+level basis of the entire library. While these algorithm are relatively trivial it is important to understand how they
+work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
+
+The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
+mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
+represent.
+
+\section{Assigning Values to mp\_int Structures}
+\subsection{Copying an mp\_int}
+Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
+a copy for the purposes of this text. The copy of the mp\_int will be a separate entity that represents the same
+value as the mp\_int it was copied from. The mp\_copy algorithm provides this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_copy}. \\
+\textbf{Input}. An mp\_int $a$ and $b$. \\
+\textbf{Output}. Store a copy of $a$ in $b$. \\
+\hline \\
+1. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\
+2. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1 $b_{n} \leftarrow a_{n}$ \\
+3. for $n$ from $a.used$ to $b.used - 1$ do \\
+\hspace{3mm}3.1 $b_{n} \leftarrow 0$ \\
+4. $b.used \leftarrow a.used$ \\
+5. $b.sign \leftarrow a.sign$ \\
+6. return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_copy.}
+This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
+represent the same integer as the mp\_int $a$. The mp\_int $b$ shall be a complete and distinct copy of the
+mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
+
+If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow
+algorithm. The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
+and three). The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
+$b$.
+
+\textbf{Remark.} This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
+text. The error return codes of other algorithms are not explicitly checked in the pseudo-code presented. For example, in
+step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded. Text space is
+limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
+the error code itself. However, the C code presented will demonstrate all of the error handling logic required to
+implement the pseudo-code.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_copy.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* copy, b = a */
+018 int
+019 mp_copy (mp_int * a, mp_int * b)
+020 \{
+021 int res, n;
+022
+023 /* if dst == src do nothing */
+024 if (a == b) \{
+025 return MP_OKAY;
+026 \}
+027
+028 /* grow dest */
+029 if (b->alloc < a->used) \{
+030 if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
+031 return res;
+032 \}
+033 \}
+034
+035 /* zero b and copy the parameters over */
+036 \{
+037 register mp_digit *tmpa, *tmpb;
+038
+039 /* pointer aliases */
+040
+041 /* source */
+042 tmpa = a->dp;
+043
+044 /* destination */
+045 tmpb = b->dp;
+046
+047 /* copy all the digits */
+048 for (n = 0; n < a->used; n++) \{
+049 *tmpb++ = *tmpa++;
+050 \}
+051
+052 /* clear high digits */
+053 for (; n < b->used; n++) \{
+054 *tmpb++ = 0;
+055 \}
+056 \}
+057
+058 /* copy used count and sign */
+059 b->used = a->used;
+060 b->sign = a->sign;
+061 return MP_OKAY;
+062 \}
+063 #endif
+\end{alltt}
+\end{small}
+
+Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
+mp\_int structures passed to a function are one and the same. For this case it is optimal to return immediately without
+copying digits (line 24).
+
+The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$. If $b.alloc$ is less than
+$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines 29 to 33). In order to
+simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
+of the mp\_ints $a$ and $b$ respectively. These aliases (lines 42 and 45) allow the compiler to access the digits without first dereferencing the
+mp\_int pointers and then subsequently the pointer to the digits.
+
+After the aliases are established the digits from $a$ are copied into $b$ (lines 48 to 50) and then the excess
+digits of $b$ are set to zero (lines 53 to 55). Both ``for'' loops make use of the pointer aliases and in
+fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits. This optimization
+allows the alias to stay in a machine register fairly easy between the two loops.
+
+\textbf{Remarks.} The use of pointer aliases is an implementation methodology first introduced in this function that will
+be used considerably in other functions. Technically, a pointer alias is simply a short hand alias used to lower the
+number of pointer dereferencing operations required to access data. For example, a for loop may resemble
+
+\begin{alltt}
+for (x = 0; x < 100; x++) \{
+ a->num[4]->dp[x] = 0;
+\}
+\end{alltt}
+
+This could be re-written using aliases as
+
+\begin{alltt}
+mp_digit *tmpa;
+a = a->num[4]->dp;
+for (x = 0; x < 100; x++) \{
+ *a++ = 0;
+\}
+\end{alltt}
+
+In this case an alias is used to access the
+array of digits within an mp\_int structure directly. It may seem that a pointer alias is strictly not required
+as a compiler may optimize out the redundant pointer operations. However, there are two dominant reasons to use aliases.
+
+The first reason is that most compilers will not effectively optimize pointer arithmetic. For example, some optimizations
+may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Also some optimizations may
+work for GCC and not MSVC. As such it is ideal to find a common ground for as many compilers as possible. Pointer
+aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code
+stands a better chance of being faster.
+
+The second reason is that pointer aliases often can make an algorithm simpler to read. Consider the first ``for''
+loop of the function mp\_copy() re-written to not use pointer aliases.
+
+\begin{alltt}
+ /* copy all the digits */
+ for (n = 0; n < a->used; n++) \{
+ b->dp[n] = a->dp[n];
+ \}
+\end{alltt}
+
+Whether this code is harder to read depends strongly on the individual. However, it is quantifiably slightly more
+complicated as there are four variables within the statement instead of just two.
+
+\subsubsection{Nested Statements}
+Another commonly used technique in the source routines is that certain sections of code are nested. This is used in
+particular with the pointer aliases to highlight code phases. For example, a Comba multiplier (discussed in chapter six)
+will typically have three different phases. First the temporaries are initialized, then the columns calculated and
+finally the carries are propagated. In this example the middle column production phase will typically be nested as it
+uses temporary variables and aliases the most.
+
+The nesting also simplies the source code as variables that are nested are only valid for their scope. As a result
+the various temporary variables required do not propagate into other sections of code.
+
+
+\subsection{Creating a Clone}
+Another common operation is to make a local temporary copy of an mp\_int argument. To initialize an mp\_int
+and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone. This is
+useful within functions that need to modify an argument but do not wish to actually modify the original copy. The
+mp\_init\_copy algorithm has been designed to help perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_copy}. \\
+\textbf{Input}. An mp\_int $a$ and $b$\\
+\textbf{Output}. $a$ is initialized to be a copy of $b$. \\
+\hline \\
+1. Init $a$. (\textit{mp\_init}) \\
+2. Copy $b$ to $a$. (\textit{mp\_copy}) \\
+3. Return the status of the copy operation. \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_copy.}
+This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it. As
+such this algorithm will perform two operations in one step.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_copy.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* creates "a" then copies b into it */
+018 int mp_init_copy (mp_int * a, mp_int * b)
+019 \{
+020 int res;
+021
+022 if ((res = mp_init (a)) != MP_OKAY) \{
+023 return res;
+024 \}
+025 return mp_copy (b, a);
+026 \}
+027 #endif
+\end{alltt}
+\end{small}
+
+This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}. Note that
+\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
+and \textbf{a} will be left intact.
+
+\section{Zeroing an Integer}
+Reseting an mp\_int to the default state is a common step in many algorithms. The mp\_zero algorithm will be the algorithm used to
+perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_zero}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Zero the contents of $a$ \\
+\hline \\
+1. $a.used \leftarrow 0$ \\
+2. $a.sign \leftarrow$ MP\_ZPOS \\
+3. for $n$ from 0 to $a.alloc - 1$ do \\
+\hspace{3mm}3.1 $a_n \leftarrow 0$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_zero}
+\end{figure}
+
+\textbf{Algorithm mp\_zero.}
+This algorithm simply resets a mp\_int to the default state.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_zero.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* set to zero */
+018 void
+019 mp_zero (mp_int * a)
+020 \{
+021 a->sign = MP_ZPOS;
+022 a->used = 0;
+023 memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
+024 \}
+025 #endif
+\end{alltt}
+\end{small}
+
+After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the
+\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
+
+\section{Sign Manipulation}
+\subsection{Absolute Value}
+With the mp\_int representation of an integer, calculating the absolute value is trivial. The mp\_abs algorithm will compute
+the absolute value of an mp\_int.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_abs}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Computes $b = \vert a \vert$ \\
+\hline \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
+2. If the copy failed return(\textit{MP\_MEM}). \\
+3. $b.sign \leftarrow MP\_ZPOS$ \\
+4. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_abs}
+\end{figure}
+
+\textbf{Algorithm mp\_abs.}
+This algorithm computes the absolute of an mp\_int input. First it copies $a$ over $b$. This is an example of an
+algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful. This allows,
+for instance, the developer to pass the same mp\_int as the source and destination to this function without addition
+logic to handle it.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_abs.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* b = |a|
+018 *
+019 * Simple function copies the input and fixes the sign to positive
+020 */
+021 int
+022 mp_abs (mp_int * a, mp_int * b)
+023 \{
+024 int res;
+025
+026 /* copy a to b */
+027 if (a != b) \{
+028 if ((res = mp_copy (a, b)) != MP_OKAY) \{
+029 return res;
+030 \}
+031 \}
+032
+033 /* force the sign of b to positive */
+034 b->sign = MP_ZPOS;
+035
+036 return MP_OKAY;
+037 \}
+038 #endif
+\end{alltt}
+\end{small}
+
+\subsection{Integer Negation}
+With the mp\_int representation of an integer, calculating the negation is also trivial. The mp\_neg algorithm will compute
+the negative of an mp\_int input.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_neg}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Computes $b = -a$ \\
+\hline \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
+2. If the copy failed return(\textit{MP\_MEM}). \\
+3. If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
+4. If $a.sign = MP\_ZPOS$ then do \\
+\hspace{3mm}4.1 $b.sign = MP\_NEG$. \\
+5. else do \\
+\hspace{3mm}5.1 $b.sign = MP\_ZPOS$. \\
+6. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_neg}
+\end{figure}
+
+\textbf{Algorithm mp\_neg.}
+This algorithm computes the negation of an input. First it copies $a$ over $b$. If $a$ has no used digits then
+the algorithm returns immediately. Otherwise it flips the sign flag and stores the result in $b$. Note that if
+$a$ had no digits then it must be positive by definition. Had step three been omitted then the algorithm would return
+zero as negative.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_neg.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* b = -a */
+018 int mp_neg (mp_int * a, mp_int * b)
+019 \{
+020 int res;
+021 if ((res = mp_copy (a, b)) != MP_OKAY) \{
+022 return res;
+023 \}
+024 if (mp_iszero(b) != MP_YES) \{
+025 b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+026 \}
+027 return MP_OKAY;
+028 \}
+029 #endif
+\end{alltt}
+\end{small}
+
+\section{Small Constants}
+\subsection{Setting Small Constants}
+Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For these cases the mp\_set algorithm is useful.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set}. \\
+\textbf{Input}. An mp\_int $a$ and a digit $b$ \\
+\textbf{Output}. Make $a$ equivalent to $b$ \\
+\hline \\
+1. Zero $a$ (\textit{mp\_zero}). \\
+2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
+3. $a.used \leftarrow \left \lbrace \begin{array}{ll}
+ 1 & \mbox{if }a_0 > 0 \\
+ 0 & \mbox{if }a_0 = 0
+ \end{array} \right .$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set}
+\end{figure}
+
+\textbf{Algorithm mp\_set.}
+This algorithm sets a mp\_int to a small single digit value. Step number 1 ensures that the integer is reset to the default state. The
+single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_set.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* set to a digit */
+018 void mp_set (mp_int * a, mp_digit b)
+019 \{
+020 mp_zero (a);
+021 a->dp[0] = b & MP_MASK;
+022 a->used = (a->dp[0] != 0) ? 1 : 0;
+023 \}
+024 #endif
+\end{alltt}
+\end{small}
+
+Line 20 calls mp\_zero() to clear the mp\_int and reset the sign. Line 21 copies the digit
+into the least significant location. Note the usage of a new constant \textbf{MP\_MASK}. This constant is used to quickly
+reduce an integer modulo $\beta$. Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with
+$MP\_MASK = 2^k - 1$ to perform the reduction. Finally line 22 will set the \textbf{used} member with respect to the
+digit actually set. This function will always make the integer positive.
+
+One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses
+this function should take that into account. Only trivially small constants can be set using this function.
+
+\subsection{Setting Large Constants}
+To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal. It accepts a ``long''
+data type as input and will always treat it as a 32-bit integer.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set\_int}. \\
+\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\
+\textbf{Output}. Make $a$ equivalent to $b$ \\
+\hline \\
+1. Zero $a$ (\textit{mp\_zero}) \\
+2. for $n$ from 0 to 7 do \\
+\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
+\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
+\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\
+\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\
+3. Clamp excess used digits (\textit{mp\_clamp}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set\_int}
+\end{figure}
+
+\textbf{Algorithm mp\_set\_int.}
+The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
+mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
+incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+zero digits used and the newly added four bits would be ignored.
+
+Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_set\_int.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* set a 32-bit const */
+018 int mp_set_int (mp_int * a, unsigned long b)
+019 \{
+020 int x, res;
+021
+022 mp_zero (a);
+023
+024 /* set four bits at a time */
+025 for (x = 0; x < 8; x++) \{
+026 /* shift the number up four bits */
+027 if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) \{
+028 return res;
+029 \}
+030
+031 /* OR in the top four bits of the source */
+032 a->dp[0] |= (b >> 28) & 15;
+033
+034 /* shift the source up to the next four bits */
+035 b <<= 4;
+036
+037 /* ensure that digits are not clamped off */
+038 a->used += 1;
+039 \}
+040 mp_clamp (a);
+041 return MP_OKAY;
+042 \}
+043 #endif
+\end{alltt}
+\end{small}
+
+This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes. The weird
+addition on line 38 ensures that the newly added in bits are added to the number of digits. While it may not
+seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line 27
+as well as the call to mp\_clamp() on line 40. Both functions will clamp excess leading digits which keeps
+the number of used digits low.
+
+\section{Comparisons}
+\subsection{Unsigned Comparisions}
+Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers. For example,
+to compare $1,234$ to $1,264$ the digits are extracted by their positions. That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
+to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude
+positions. If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.
+
+The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
+mp\_int variables alone. It will ignore the sign of the two inputs. Such a function is useful when an absolute comparison is required or if the
+signs are known to agree in advance.
+
+To facilitate working with the results of the comparison functions three constants are required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|r|l|}
+\hline \textbf{Constant} & \textbf{Meaning} \\
+\hline \textbf{MP\_GT} & Greater Than \\
+\hline \textbf{MP\_EQ} & Equal To \\
+\hline \textbf{MP\_LT} & Less Than \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Return Codes}
+\end{figure}
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp\_mag}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$. \\
+\textbf{Output}. Unsigned comparison results ($a$ to the left of $b$). \\
+\hline \\
+1. If $a.used > b.used$ then return(\textit{MP\_GT}) \\
+2. If $a.used < b.used$ then return(\textit{MP\_LT}) \\
+3. for n from $a.used - 1$ to 0 do \\
+\hspace{+3mm}3.1 if $a_n > b_n$ then return(\textit{MP\_GT}) \\
+\hspace{+3mm}3.2 if $a_n < b_n$ then return(\textit{MP\_LT}) \\
+4. Return(\textit{MP\_EQ}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp\_mag}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp\_mag.}
+By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
+\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$. The first two steps compare the number of digits used in both $a$ and $b$.
+Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.
+If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
+
+By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
+the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp\_mag.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* compare maginitude of two ints (unsigned) */
+018 int mp_cmp_mag (mp_int * a, mp_int * b)
+019 \{
+020 int n;
+021 mp_digit *tmpa, *tmpb;
+022
+023 /* compare based on # of non-zero digits */
+024 if (a->used > b->used) \{
+025 return MP_GT;
+026 \}
+027
+028 if (a->used < b->used) \{
+029 return MP_LT;
+030 \}
+031
+032 /* alias for a */
+033 tmpa = a->dp + (a->used - 1);
+034
+035 /* alias for b */
+036 tmpb = b->dp + (a->used - 1);
+037
+038 /* compare based on digits */
+039 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) \{
+040 if (*tmpa > *tmpb) \{
+041 return MP_GT;
+042 \}
+043
+044 if (*tmpa < *tmpb) \{
+045 return MP_LT;
+046 \}
+047 \}
+048 return MP_EQ;
+049 \}
+050 #endif
+\end{alltt}
+\end{small}
+
+The two if statements on lines 24 and 28 compare the number of digits in the two inputs. These two are performed before all of the digits
+are compared since it is a very cheap test to perform and can potentially save considerable time. The implementation given is also not valid
+without those two statements. $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the
+array of digits.
+
+\subsection{Signed Comparisons}
+Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
+comparison a trivial signed comparison algorithm can be written.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. Signed Comparison Results ($a$ to the left of $b$) \\
+\hline \\
+1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
+2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
+3. if $a.sign = MP\_NEG$ then \\
+\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
+4 Otherwise \\
+\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp.}
+The first two steps compare the signs of the two inputs. If the signs do not agree then it can return right away with the appropriate
+comparison code. When the signs are equal the digits of the inputs must be compared to determine the correct result. In step
+three the unsigned comparision flips the order of the arguments since they are both negative. For instance, if $-a > -b$ then
+$\vert a \vert < \vert b \vert$. Step number four will compare the two when they are both positive.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* compare two ints (signed)*/
+018 int
+019 mp_cmp (mp_int * a, mp_int * b)
+020 \{
+021 /* compare based on sign */
+022 if (a->sign != b->sign) \{
+023 if (a->sign == MP_NEG) \{
+024 return MP_LT;
+025 \} else \{
+026 return MP_GT;
+027 \}
+028 \}
+029
+030 /* compare digits */
+031 if (a->sign == MP_NEG) \{
+032 /* if negative compare opposite direction */
+033 return mp_cmp_mag(b, a);
+034 \} else \{
+035 return mp_cmp_mag(a, b);
+036 \}
+037 \}
+038 #endif
+\end{alltt}
+\end{small}
+
+The two if statements on lines 22 and 23 perform the initial sign comparison. If the signs are not the equal then which ever
+has the positive sign is larger. At line 31, the inputs are compared based on magnitudes. If the signs were both negative then
+the unsigned comparison is performed in the opposite direction (\textit{line 33}). Otherwise, the signs are assumed to
+be both positive and a forward direction unsigned comparison is performed.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
+ & \\
+$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits \\
+ & of two random digits (of equal magnitude) before a difference is found. \\
+ & \\
+$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based \\
+ & on the observations made in the previous problem. \\
+ &
+\end{tabular}
+
+\chapter{Basic Arithmetic}
+\section{Introduction}
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
+established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important
+that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
+which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
+
+All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
+logical shifts respectively. A logical shift is analogous to sliding the decimal point of radix-10 representations. For example, the real
+number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).
+Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.
+For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
+
+One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
+from the number. For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$. However, with a logical shift the
+result is $110_2$.
+
+\section{Addition and Subtraction}
+In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus. For example, with 32-bit integers
+$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$ since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.
+As a result subtraction can be performed with a trivial series of logical operations and an addition.
+
+However, in multiple precision arithmetic negative numbers are not represented in the same way. Instead a sign flag is used to keep track of the
+sign of the integer. As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or
+subtraction algorithms with the sign fixed up appropriately.
+
+The lower level algorithms will add or subtract integers without regard to the sign flag. That is they will add or subtract the magnitude of
+the integers respectively.
+
+\subsection{Low Level Addition}
+An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers. That is to add the
+trailing digits first and propagate the resulting carry upwards. Since this is a lower level algorithm the name will have a ``s\_'' prefix.
+Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
+
+\newpage
+\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_add}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
+\hline \\
+1. if $a.used > b.used$ then \\
+\hspace{+3mm}1.1 $min \leftarrow b.used$ \\
+\hspace{+3mm}1.2 $max \leftarrow a.used$ \\
+\hspace{+3mm}1.3 $x \leftarrow a$ \\
+2. else \\
+\hspace{+3mm}2.1 $min \leftarrow a.used$ \\
+\hspace{+3mm}2.2 $max \leftarrow b.used$ \\
+\hspace{+3mm}2.3 $x \leftarrow b$ \\
+3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
+4. $oldused \leftarrow c.used$ \\
+5. $c.used \leftarrow max + 1$ \\
+6. $u \leftarrow 0$ \\
+7. for $n$ from $0$ to $min - 1$ do \\
+\hspace{+3mm}7.1 $c_n \leftarrow a_n + b_n + u$ \\
+\hspace{+3mm}7.2 $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8. if $min \ne max$ then do \\
+\hspace{+3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
+\hspace{+6mm}8.1.1 $c_n \leftarrow x_n + u$ \\
+\hspace{+6mm}8.1.2 $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. $c_{max} \leftarrow u$ \\
+10. if $olduse > max$ then \\
+\hspace{+3mm}10.1 for $n$ from $max + 1$ to $oldused - 1$ do \\
+\hspace{+6mm}10.1.1 $c_n \leftarrow 0$ \\
+11. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_add}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_add.}
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the
+MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+
+The first thing that has to be accomplished is to sort out which of the two inputs is the largest. The addition logic
+will simply add all of the smallest input to the largest input and store that first part of the result in the
+destination. Then it will apply a simpler addition loop to excess digits of the larger input.
+
+The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two
+inputs. The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
+same number of digits. After the inputs are sorted the destination $c$ is grown as required to accomodate the sum
+of the two inputs. The original \textbf{used} count of $c$ is copied and set to the new used count.
+
+At this point the first addition loop will go through as many digit positions that both inputs have. The carry
+variable $\mu$ is set to zero outside the loop. Inside the loop an ``addition'' step requires three statements to produce
+one digit of the summand. First
+two digits from $a$ and $b$ are added together along with the carry $\mu$. The carry of this step is extracted and stored
+in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
+
+Now all of the digit positions that both inputs have in common have been exhausted. If $min \ne max$ then $x$ is an alias
+for one of the inputs that has more digits. A simplified addition loop is then used to essentially copy the remaining digits
+and the carry to the destination.
+
+The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
+
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_add.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
+018 int
+019 s_mp_add (mp_int * a, mp_int * b, mp_int * c)
+020 \{
+021 mp_int *x;
+022 int olduse, res, min, max;
+023
+024 /* find sizes, we let |a| <= |b| which means we have to sort
+025 * them. "x" will point to the input with the most digits
+026 */
+027 if (a->used > b->used) \{
+028 min = b->used;
+029 max = a->used;
+030 x = a;
+031 \} else \{
+032 min = a->used;
+033 max = b->used;
+034 x = b;
+035 \}
+036
+037 /* init result */
+038 if (c->alloc < max + 1) \{
+039 if ((res = mp_grow (c, max + 1)) != MP_OKAY) \{
+040 return res;
+041 \}
+042 \}
+043
+044 /* get old used digit count and set new one */
+045 olduse = c->used;
+046 c->used = max + 1;
+047
+048 \{
+049 register mp_digit u, *tmpa, *tmpb, *tmpc;
+050 register int i;
+051
+052 /* alias for digit pointers */
+053
+054 /* first input */
+055 tmpa = a->dp;
+056
+057 /* second input */
+058 tmpb = b->dp;
+059
+060 /* destination */
+061 tmpc = c->dp;
+062
+063 /* zero the carry */
+064 u = 0;
+065 for (i = 0; i < min; i++) \{
+066 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+067 *tmpc = *tmpa++ + *tmpb++ + u;
+068
+069 /* U = carry bit of T[i] */
+070 u = *tmpc >> ((mp_digit)DIGIT_BIT);
+071
+072 /* take away carry bit from T[i] */
+073 *tmpc++ &= MP_MASK;
+074 \}
+075
+076 /* now copy higher words if any, that is in A+B
+077 * if A or B has more digits add those in
+078 */
+079 if (min != max) \{
+080 for (; i < max; i++) \{
+081 /* T[i] = X[i] + U */
+082 *tmpc = x->dp[i] + u;
+083
+084 /* U = carry bit of T[i] */
+085 u = *tmpc >> ((mp_digit)DIGIT_BIT);
+086
+087 /* take away carry bit from T[i] */
+088 *tmpc++ &= MP_MASK;
+089 \}
+090 \}
+091
+092 /* add carry */
+093 *tmpc++ = u;
+094
+095 /* clear digits above oldused */
+096 for (i = c->used; i < olduse; i++) \{
+097 *tmpc++ = 0;
+098 \}
+099 \}
+100
+101 mp_clamp (c);
+102 return MP_OKAY;
+103 \}
+104 #endif
+\end{alltt}
+\end{small}
+
+Lines 27 to 35 perform the initial sorting of the inputs and determine the $min$ and $max$ variables. Note that $x$ is a pointer to a
+mp\_int assigned to the largest input, in effect it is a local alias. Lines 37 to 42 ensure that the destination is grown to
+accomodate the result of the addition.
+
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on
+lines 55, 58 and 61 represent the two inputs and destination variables respectively. These aliases are used to ensure the
+compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
+
+The initial carry $u$ is cleared on line 64, note that $u$ is of type mp\_digit which ensures type compatibility within the
+implementation. The initial addition loop begins on line 65 and ends on line 74. Similarly the conditional addition loop
+begins on line 80 and ends on line 90. The addition is finished with the final carry being stored in $tmpc$ on line 93.
+Note the ``++'' operator on the same line. After line 93 $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful
+for the next loop on lines 96 to 99 which set any old upper digits to zero.
+
+\subsection{Low Level Subtraction}
+The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principle difference is that the
+unsigned subtraction algorithm requires the result to be positive. That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must
+be met for this algorithm to function properly. Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.
+This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
+
+
+For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent
+the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma = 32$.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sub}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
+\textbf{Output}. The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
+\hline \\
+1. $min \leftarrow b.used$ \\
+2. $max \leftarrow a.used$ \\
+3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\
+4. $oldused \leftarrow c.used$ \\
+5. $c.used \leftarrow max$ \\
+6. $u \leftarrow 0$ \\
+7. for $n$ from $0$ to $min - 1$ do \\
+\hspace{3mm}7.1 $c_n \leftarrow a_n - b_n - u$ \\
+\hspace{3mm}7.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8. if $min < max$ then do \\
+\hspace{3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
+\hspace{6mm}8.1.1 $c_n \leftarrow a_n - u$ \\
+\hspace{6mm}8.1.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. if $oldused > max$ then do \\
+\hspace{3mm}9.1 for $n$ from $max$ to $oldused - 1$ do \\
+\hspace{6mm}9.1.1 $c_n \leftarrow 0$ \\
+10. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_sub}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sub.}
+This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive. That is when
+passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly. This
+algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well. As was the case
+of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
+
+The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2
+set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
+most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
+set to the maximal count for the operation.
+
+The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
+subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
+loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
+
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to
+the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the
+third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the
+way to the most significant bit.
+
+Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
+significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
+carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
+
+If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step
+10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sub.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
+018 int
+019 s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
+020 \{
+021 int olduse, res, min, max;
+022
+023 /* find sizes */
+024 min = b->used;
+025 max = a->used;
+026
+027 /* init result */
+028 if (c->alloc < max) \{
+029 if ((res = mp_grow (c, max)) != MP_OKAY) \{
+030 return res;
+031 \}
+032 \}
+033 olduse = c->used;
+034 c->used = max;
+035
+036 \{
+037 register mp_digit u, *tmpa, *tmpb, *tmpc;
+038 register int i;
+039
+040 /* alias for digit pointers */
+041 tmpa = a->dp;
+042 tmpb = b->dp;
+043 tmpc = c->dp;
+044
+045 /* set carry to zero */
+046 u = 0;
+047 for (i = 0; i < min; i++) \{
+048 /* T[i] = A[i] - B[i] - U */
+049 *tmpc = *tmpa++ - *tmpb++ - u;
+050
+051 /* U = carry bit of T[i]
+052 * Note this saves performing an AND operation since
+053 * if a carry does occur it will propagate all the way to the
+054 * MSB. As a result a single shift is enough to get the carry
+055 */
+056 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+057
+058 /* Clear carry from T[i] */
+059 *tmpc++ &= MP_MASK;
+060 \}
+061
+062 /* now copy higher words if any, e.g. if A has more digits than B */
+063 for (; i < max; i++) \{
+064 /* T[i] = A[i] - U */
+065 *tmpc = *tmpa++ - u;
+066
+067 /* U = carry bit of T[i] */
+068 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+069
+070 /* Clear carry from T[i] */
+071 *tmpc++ &= MP_MASK;
+072 \}
+073
+074 /* clear digits above used (since we may not have grown result above) */
+
+075 for (i = c->used; i < olduse; i++) \{
+076 *tmpc++ = 0;
+077 \}
+078 \}
+079
+080 mp_clamp (c);
+081 return MP_OKAY;
+082 \}
+083
+084 #endif
+\end{alltt}
+\end{small}
+
+Line 24 and 25 perform the initial hardcoded sorting of the inputs. In reality the $min$ and $max$ variables are only aliases and are only
+used to make the source code easier to read. Again the pointer alias optimization is used within this algorithm. Lines 41, 42 and 43 initialize the aliases for
+$a$, $b$ and $c$ respectively.
+
+The first subtraction loop occurs on lines 46 through 60. The theory behind the subtraction loop is exactly the same as that for
+the addition loop. As remarked earlier there is an implementation reason for using the ``awkward'' method of extracting the carry
+(\textit{see line 56}). The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND
+the least significant bit. The AND operation is required because all of the bits above the $\lg(\beta)$'th bit will be set to one after a carry
+occurs from subtraction. This carry extraction requires two relatively cheap operations to extract the carry. The other method is to simply
+shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This optimization only works on
+twos compliment machines which is a safe assumption to make.
+
+If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines 63 through 72}) is required to propagate the carry through
+$a$ and copy the result to $c$.
+
+\subsection{High Level Addition}
+Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
+established. This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data
+types.
+
+Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
+flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The signed addition $c = a + b$. \\
+\hline \\
+1. if $a.sign = b.sign$ then do \\
+\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
+2. else do \\
+\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_add}
+\end{figure}
+
+\textbf{Algorithm mp\_add.}
+This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from
+either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations. The algorithm is fairly
+straightforward but restricted since subtraction can only produce positive results.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $+$ & No & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & No & $c = a + b$ & $a.sign$ \\
+\hline &&&&\\
+
+\hline $+$ & $-$ & No & $c = b - a$ & $b.sign$ \\
+\hline $-$ & $+$ & No & $c = b - a$ & $b.sign$ \\
+
+\hline &&&&\\
+
+\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Addition Guide Chart}
+\label{fig:AddChart}
+\end{figure}
+
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three
+specific cases need to be handled. The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are
+forwarded to step three to check for errors. This simplifies the description of the algorithm considerably and best
+follows how the implementation actually was achieved.
+
+Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms
+s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits. The mp\_clamp algorithm will set the \textbf{sign}
+to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
+
+For example, consider performing $-a + a$ with algorithm mp\_add. By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
+produce a result of $-0$. However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp
+within algorithm s\_mp\_add will force $-0$ to become $0$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_add.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* high level addition (handles signs) */
+018 int mp_add (mp_int * a, mp_int * b, mp_int * c)
+019 \{
+020 int sa, sb, res;
+021
+022 /* get sign of both inputs */
+023 sa = a->sign;
+024 sb = b->sign;
+025
+026 /* handle two cases, not four */
+027 if (sa == sb) \{
+028 /* both positive or both negative */
+029 /* add their magnitudes, copy the sign */
+030 c->sign = sa;
+031 res = s_mp_add (a, b, c);
+032 \} else \{
+033 /* one positive, the other negative */
+034 /* subtract the one with the greater magnitude from */
+035 /* the one of the lesser magnitude. The result gets */
+036 /* the sign of the one with the greater magnitude. */
+037 if (mp_cmp_mag (a, b) == MP_LT) \{
+038 c->sign = sb;
+039 res = s_mp_sub (b, a, c);
+040 \} else \{
+041 c->sign = sa;
+042 res = s_mp_sub (a, b, c);
+043 \}
+044 \}
+045 return res;
+046 \}
+047
+048 #endif
+\end{alltt}
+\end{small}
+
+The source code follows the algorithm fairly closely. The most notable new source code addition is the usage of the $res$ integer variable which
+is used to pass result of the unsigned operations forward. Unlike in the algorithm, the variable $res$ is merely returned as is without
+explicitly checking it and returning the constant \textbf{MP\_OKAY}. The observation is this algorithm will succeed or fail only if the lower
+level functions do so. Returning their return code is sufficient.
+
+\subsection{High Level Subtraction}
+The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sub}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The signed subtraction $c = a - b$. \\
+\hline \\
+1. if $a.sign \ne b.sign$ then do \\
+\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
+2. else do \\
+\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll}
+ MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\
+ MP\_NEG & \mbox{otherwise} \\
+ \end{array} \right .$ \\
+\hspace{6mm}2.2.2 $c \leftarrow \vert b \vert - \vert a \vert$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_sub}
+\end{figure}
+
+\textbf{Algorithm mp\_sub.}
+This algorithm performs the signed subtraction of two inputs. Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or
+\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. Chart \ref{fig:SubChart} lists the eight possible inputs and
+the operations required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $-$ & No & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & No & $c = a + b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline $-$ & $-$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Subtraction Guide Chart}
+\label{fig:SubChart}
+\end{figure}
+
+Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction. That is to prevent the
+algorithm from producing $-a - -a = -0$ as a result.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_sub.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* high level subtraction (handles signs) */
+018 int
+019 mp_sub (mp_int * a, mp_int * b, mp_int * c)
+020 \{
+021 int sa, sb, res;
+022
+023 sa = a->sign;
+024 sb = b->sign;
+025
+026 if (sa != sb) \{
+027 /* subtract a negative from a positive, OR */
+028 /* subtract a positive from a negative. */
+029 /* In either case, ADD their magnitudes, */
+030 /* and use the sign of the first number. */
+031 c->sign = sa;
+032 res = s_mp_add (a, b, c);
+033 \} else \{
+034 /* subtract a positive from a positive, OR */
+035 /* subtract a negative from a negative. */
+036 /* First, take the difference between their */
+037 /* magnitudes, then... */
+038 if (mp_cmp_mag (a, b) != MP_LT) \{
+039 /* Copy the sign from the first */
+040 c->sign = sa;
+041 /* The first has a larger or equal magnitude */
+042 res = s_mp_sub (a, b, c);
+043 \} else \{
+044 /* The result has the *opposite* sign from */
+045 /* the first number. */
+046 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+047 /* The second has a larger magnitude */
+048 res = s_mp_sub (b, a, c);
+049 \}
+050 \}
+051 return res;
+052 \}
+053
+054 #endif
+\end{alltt}
+\end{small}
+
+Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
+and forward it to the end of the function. On line 38 the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a
+``greater than or equal to'' comparison.
+
+\section{Bit and Digit Shifting}
+It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.
+This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.
+
+In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established. That is to shift
+the digits left or right as well to shift individual bits of the digits left and right. It is important to note that not all ``shift'' operations
+are on radix-$\beta$ digits.
+
+\subsection{Multiplication by Two}
+
+In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
+operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2}. \\
+\textbf{Input}. One mp\_int $a$ \\
+\textbf{Output}. $b = 2a$. \\
+\hline \\
+1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\
+2. $oldused \leftarrow b.used$ \\
+3. $b.used \leftarrow a.used$ \\
+4. $r \leftarrow 0$ \\
+5. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}5.1 $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
+\hspace{3mm}5.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.3 $r \leftarrow rr$ \\
+6. If $r \ne 0$ then do \\
+\hspace{3mm}6.1 $b_{n + 1} \leftarrow r$ \\
+\hspace{3mm}6.2 $b.used \leftarrow b.used + 1$ \\
+7. If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
+8. $b.sign \leftarrow a.sign$ \\
+9. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2.}
+This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two. Neither \cite{TAOCPV2} nor \cite{HAC} describe such
+an algorithm despite the fact it arises often in other algorithms. The algorithm is setup much like the lower level algorithm s\_mp\_add since
+it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.
+
+Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result. The initial \textbf{used} count
+is set to $a.used$ at step 4. Only if there is a final carry will the \textbf{used} count require adjustment.
+
+Step 6 is an optimization implementation of the addition loop for this specific case. That is since the two values being added together
+are the same there is no need to perform two reads from the digits of $a$. Step 6.1 performs a single precision shift on the current digit $a_n$ to
+obtain what will be the carry for the next iteration. Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
+the previous carry. Recall from section 4.1 that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with
+forwarding the carry to the next iteration.
+
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* b = a*2 */
+018 int mp_mul_2(mp_int * a, mp_int * b)
+019 \{
+020 int x, res, oldused;
+021
+022 /* grow to accomodate result */
+023 if (b->alloc < a->used + 1) \{
+024 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) \{
+025 return res;
+026 \}
+027 \}
+028
+029 oldused = b->used;
+030 b->used = a->used;
+031
+032 \{
+033 register mp_digit r, rr, *tmpa, *tmpb;
+034
+035 /* alias for source */
+036 tmpa = a->dp;
+037
+038 /* alias for dest */
+039 tmpb = b->dp;
+040
+041 /* carry */
+042 r = 0;
+043 for (x = 0; x < a->used; x++) \{
+044
+045 /* get what will be the *next* carry bit from the
+046 * MSB of the current digit
+047 */
+048 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
+049
+050 /* now shift up this digit, add in the carry [from the previous] */
+051 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
+052
+053 /* copy the carry that would be from the source
+054 * digit into the next iteration
+055 */
+056 r = rr;
+057 \}
+058
+059 /* new leading digit? */
+060 if (r != 0) \{
+061 /* add a MSB which is always 1 at this point */
+062 *tmpb = 1;
+063 ++(b->used);
+064 \}
+065
+066 /* now zero any excess digits on the destination
+067 * that we didn't write to
+068 */
+069 tmpb = b->dp + b->used;
+070 for (x = b->used; x < oldused; x++) \{
+071 *tmpb++ = 0;
+072 \}
+073 \}
+074 b->sign = a->sign;
+075 return MP_OKAY;
+076 \}
+077 #endif
+\end{alltt}
+\end{small}
+
+This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input. The only noteworthy difference
+is the use of the logical shift operator on line 51 to perform a single precision doubling.
+
+\subsection{Division by Two}
+A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2}. \\
+\textbf{Input}. One mp\_int $a$ \\
+\textbf{Output}. $b = a/2$. \\
+\hline \\
+1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\
+2. If the reallocation failed return(\textit{MP\_MEM}). \\
+3. $oldused \leftarrow b.used$ \\
+4. $b.used \leftarrow a.used$ \\
+5. $r \leftarrow 0$ \\
+6. for $n$ from $b.used - 1$ to $0$ do \\
+\hspace{3mm}6.1 $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
+\hspace{3mm}6.2 $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}6.3 $r \leftarrow rr$ \\
+7. If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
+8. $b.sign \leftarrow a.sign$ \\
+9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\
+10. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2.}
+This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition
+core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm
+could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
+reading past the end of the array of digits.
+
+Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
+least significant bit not the most significant bit.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* b = a/2 */
+018 int mp_div_2(mp_int * a, mp_int * b)
+019 \{
+020 int x, res, oldused;
+021
+022 /* copy */
+023 if (b->alloc < a->used) \{
+024 if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
+025 return res;
+026 \}
+027 \}
+028
+029 oldused = b->used;
+030 b->used = a->used;
+031 \{
+032 register mp_digit r, rr, *tmpa, *tmpb;
+033
+034 /* source alias */
+035 tmpa = a->dp + b->used - 1;
+036
+037 /* dest alias */
+038 tmpb = b->dp + b->used - 1;
+039
+040 /* carry */
+041 r = 0;
+042 for (x = b->used - 1; x >= 0; x--) \{
+043 /* get the carry for the next iteration */
+044 rr = *tmpa & 1;
+045
+046 /* shift the current digit, add in carry and store */
+047 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+048
+049 /* forward carry to next iteration */
+050 r = rr;
+051 \}
+052
+053 /* zero excess digits */
+054 tmpb = b->dp + b->used;
+055 for (x = b->used; x < oldused; x++) \{
+056 *tmpb++ = 0;
+057 \}
+058 \}
+059 b->sign = a->sign;
+060 mp_clamp (b);
+061 return MP_OKAY;
+062 \}
+063 #endif
+\end{alltt}
+\end{small}
+
+\section{Polynomial Basis Operations}
+Recall from section 4.3 that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$. Such a representation is also known as
+the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single
+place. The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
+division and Karatsuba multiplication.
+
+Converting from an array of digits to polynomial basis is very simple. Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
+$y = \sum_{i=0}^{2} a_i \beta^i$. Simply replace $\beta$ with $x$ and the expression is in polynomial basis. For example, $f(x) = 8x + 9$ is the
+polynomial basis representation for $89$ using radix ten. That is, $f(10) = 8(10) + 9 = 89$.
+
+\subsection{Multiplication by $x$}
+
+Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one
+degree. In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$. From a scalar basis point of view multiplying by $x$ is equivalent to
+multiplying by the integer $\beta$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lshd}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
+\hline \\
+1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\
+2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\
+3. If the reallocation failed return(\textit{MP\_MEM}). \\
+4. $a.used \leftarrow a.used + b$ \\
+5. $i \leftarrow a.used - 1$ \\
+6. $j \leftarrow a.used - 1 - b$ \\
+7. for $n$ from $a.used - 1$ to $b$ do \\
+\hspace{3mm}7.1 $a_{i} \leftarrow a_{j}$ \\
+\hspace{3mm}7.2 $i \leftarrow i - 1$ \\
+\hspace{3mm}7.3 $j \leftarrow j - 1$ \\
+8. for $n$ from 0 to $b - 1$ do \\
+\hspace{3mm}8.1 $a_n \leftarrow 0$ \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lshd}
+\end{figure}
+
+\textbf{Algorithm mp\_lshd.}
+This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The
+motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required. The algorithm will return success immediately if
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
+
+First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over
+the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
+The loop on step 7 copies the digit from the tail to the head. In each iteration the window is moved down one digit. The last loop on
+step 8 sets the lower $b$ digits to zero.
+
+\newpage
+\begin{center}
+\begin{figure}[here]
+\includegraphics{pics/sliding_window.ps}
+\caption{Sliding Window Movement}
+\label{pic:sliding_window}
+\end{figure}
+\end{center}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_lshd.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* shift left a certain amount of digits */
+018 int mp_lshd (mp_int * a, int b)
+019 \{
+020 int x, res;
+021
+022 /* if its less than zero return */
+023 if (b <= 0) \{
+024 return MP_OKAY;
+025 \}
+026
+027 /* grow to fit the new digits */
+028 if (a->alloc < a->used + b) \{
+029 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) \{
+030 return res;
+031 \}
+032 \}
+033
+034 \{
+035 register mp_digit *top, *bottom;
+036
+037 /* increment the used by the shift amount then copy upwards */
+038 a->used += b;
+039
+040 /* top */
+041 top = a->dp + a->used - 1;
+042
+043 /* base */
+044 bottom = a->dp + a->used - 1 - b;
+045
+046 /* much like mp_rshd this is implemented using a sliding window
+047 * except the window goes the otherway around. Copying from
+048 * the bottom to the top. see bn_mp_rshd.c for more info.
+049 */
+050 for (x = a->used - 1; x >= b; x--) \{
+051 *top-- = *bottom--;
+052 \}
+053
+054 /* zero the lower digits */
+055 top = a->dp;
+056 for (x = 0; x < b; x++) \{
+057 *top++ = 0;
+058 \}
+059 \}
+060 return MP_OKAY;
+061 \}
+062 #endif
+\end{alltt}
+\end{small}
+
+The if statement on line 23 ensures that the $b$ variable is greater than zero. The \textbf{used} count is incremented by $b$ before
+the copy loop begins. This elminates the need for an additional variable in the for loop. The variable $top$ on line 41 is an alias
+for the leading digit while $bottom$ on line 44 is an alias for the trailing edge. The aliases form a window of exactly $b$ digits
+over the input.
+
+\subsection{Division by $x$}
+
+Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rshd}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
+\hline \\
+1. If $b \le 0$ then return. \\
+2. If $a.used \le b$ then do \\
+\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\
+\hspace{3mm}2.2 Return. \\
+3. $i \leftarrow 0$ \\
+4. $j \leftarrow b$ \\
+5. for $n$ from 0 to $a.used - b - 1$ do \\
+\hspace{3mm}5.1 $a_i \leftarrow a_j$ \\
+\hspace{3mm}5.2 $i \leftarrow i + 1$ \\
+\hspace{3mm}5.3 $j \leftarrow j + 1$ \\
+6. for $n$ from $a.used - b$ to $a.used - 1$ do \\
+\hspace{3mm}6.1 $a_n \leftarrow 0$ \\
+7. $a.used \leftarrow a.used - b$ \\
+8. Return. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rshd}
+\end{figure}
+
+\textbf{Algorithm mp\_rshd.}
+This algorithm divides the input in place by the $b$'th power of $x$. It is analogous to dividing by a $\beta^b$ but much quicker since
+it does not require single precision division. This algorithm does not actually return an error code as it cannot fail.
+
+If the input $b$ is less than one the algorithm quickly returns without performing any work. If the \textbf{used} count is less than or equal
+to the shift count $b$ then it will simply zero the input and return.
+
+After the trivial cases of inputs have been handled the sliding window is setup. Much like the case of algorithm mp\_lshd a sliding window that
+is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
+Also the digits are copied from the leading to the trailing edge.
+
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_rshd.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* shift right a certain amount of digits */
+018 void mp_rshd (mp_int * a, int b)
+019 \{
+020 int x;
+021
+022 /* if b <= 0 then ignore it */
+023 if (b <= 0) \{
+024 return;
+025 \}
+026
+027 /* if b > used then simply zero it and return */
+028 if (a->used <= b) \{
+029 mp_zero (a);
+030 return;
+031 \}
+032
+033 \{
+034 register mp_digit *bottom, *top;
+035
+036 /* shift the digits down */
+037
+038 /* bottom */
+039 bottom = a->dp;
+040
+041 /* top [offset into digits] */
+042 top = a->dp + b;
+043
+044 /* this is implemented as a sliding window where
+045 * the window is b-digits long and digits from
+046 * the top of the window are copied to the bottom
+047 *
+048 * e.g.
+049
+050 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
+051 /\symbol{92} | ---->
+052 \symbol{92}-------------------/ ---->
+053 */
+054 for (x = 0; x < (a->used - b); x++) \{
+055 *bottom++ = *top++;
+056 \}
+057
+058 /* zero the top digits */
+059 for (; x < a->used; x++) \{
+060 *bottom++ = 0;
+061 \}
+062 \}
+063
+064 /* remove excess digits */
+065 a->used -= b;
+066 \}
+067 #endif
+\end{alltt}
+\end{small}
+
+The only noteworthy element of this routine is the lack of a return type.
+
+-- Will update later to give it a return type...Tom
+
+\section{Powers of Two}
+
+Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required. For
+example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful. Instead of performing single
+shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.
+
+\subsection{Multiplication by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\
+\hline \\
+1. $c \leftarrow a$. (\textit{mp\_copy}) \\
+2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
+3. If the reallocation failed return(\textit{MP\_MEM}). \\
+4. If $b \ge lg(\beta)$ then \\
+\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
+\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\
+5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6. If $d \ne 0$ then do \\
+\hspace{3mm}6.1 $mask \leftarrow 2^d$ \\
+\hspace{3mm}6.2 $r \leftarrow 0$ \\
+\hspace{3mm}6.3 for $n$ from $0$ to $c.used - 1$ do \\
+\hspace{6mm}6.3.1 $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2 $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
+\hspace{3mm}6.4 If $r > 0$ then do \\
+\hspace{6mm}6.4.1 $c_{c.used} \leftarrow r$ \\
+\hspace{6mm}6.4.2 $c.used \leftarrow c.used + 1$ \\
+7. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2d.}
+This algorithm multiplies $a$ by $2^b$ and stores the result in $c$. The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
+quickly compute the product.
+
+First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than
+$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
+left.
+
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts
+required. If it is non-zero a modified shift loop is used to calculate the remaining product.
+Essentially the loop is a generic version of algorith mp\_mul2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$
+variable is used to extract the upper $d$ bits to form the carry for the next iteration.
+
+This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to
+complete. It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* shift left by a certain bit count */
+018 int mp_mul_2d (mp_int * a, int b, mp_int * c)
+019 \{
+020 mp_digit d;
+021 int res;
+022
+023 /* copy */
+024 if (a != c) \{
+025 if ((res = mp_copy (a, c)) != MP_OKAY) \{
+026 return res;
+027 \}
+028 \}
+029
+030 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) \{
+031 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) \{
+032 return res;
+033 \}
+034 \}
+035
+036 /* shift by as many digits in the bit count */
+037 if (b >= (int)DIGIT_BIT) \{
+038 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) \{
+039 return res;
+040 \}
+041 \}
+042
+043 /* shift any bit count < DIGIT_BIT */
+044 d = (mp_digit) (b % DIGIT_BIT);
+045 if (d != 0) \{
+046 register mp_digit *tmpc, shift, mask, r, rr;
+047 register int x;
+048
+049 /* bitmask for carries */
+050 mask = (((mp_digit)1) << d) - 1;
+051
+052 /* shift for msbs */
+053 shift = DIGIT_BIT - d;
+054
+055 /* alias */
+056 tmpc = c->dp;
+057
+058 /* carry */
+059 r = 0;
+060 for (x = 0; x < c->used; x++) \{
+061 /* get the higher bits of the current word */
+062 rr = (*tmpc >> shift) & mask;
+063
+064 /* shift the current word and OR in the carry */
+065 *tmpc = ((*tmpc << d) | r) & MP_MASK;
+066 ++tmpc;
+067
+068 /* set the carry to the carry bits of the current word */
+069 r = rr;
+070 \}
+071
+072 /* set final carry */
+073 if (r != 0) \{
+074 c->dp[(c->used)++] = r;
+075 \}
+076 \}
+077 mp_clamp (c);
+078 return MP_OKAY;
+079 \}
+080 #endif
+\end{alltt}
+\end{small}
+
+Notes to be revised when code is updated. -- Tom
+
+\subsection{Division by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then do \\
+\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\
+2. $c \leftarrow a$ \\
+3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+4. If $b \ge lg(\beta)$ then do \\
+\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
+5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6. If $k \ne 0$ then do \\
+\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\
+\hspace{3mm}6.2 $r \leftarrow 0$ \\
+\hspace{3mm}6.3 for $n$ from $c.used - 1$ to $0$ do \\
+\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
+\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
+7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2d.}
+This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder. The algorithm is designed much like algorithm
+mp\_mul\_2d by first using whole digit shifts then single precision shifts. This algorithm will also produce the remainder of the division
+by using algorithm mp\_mod\_2d.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* shift right by a certain bit count (store quotient in c, optional remaind
+ er in d) */
+018 int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+019 \{
+020 mp_digit D, r, rr;
+021 int x, res;
+022 mp_int t;
+023
+024
+025 /* if the shift count is <= 0 then we do no work */
+026 if (b <= 0) \{
+027 res = mp_copy (a, c);
+028 if (d != NULL) \{
+029 mp_zero (d);
+030 \}
+031 return res;
+032 \}
+033
+034 if ((res = mp_init (&t)) != MP_OKAY) \{
+035 return res;
+036 \}
+037
+038 /* get the remainder */
+039 if (d != NULL) \{
+040 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) \{
+041 mp_clear (&t);
+042 return res;
+043 \}
+044 \}
+045
+046 /* copy */
+047 if ((res = mp_copy (a, c)) != MP_OKAY) \{
+048 mp_clear (&t);
+049 return res;
+050 \}
+051
+052 /* shift by as many digits in the bit count */
+053 if (b >= (int)DIGIT_BIT) \{
+054 mp_rshd (c, b / DIGIT_BIT);
+055 \}
+056
+057 /* shift any bit count < DIGIT_BIT */
+058 D = (mp_digit) (b % DIGIT_BIT);
+059 if (D != 0) \{
+060 register mp_digit *tmpc, mask, shift;
+061
+062 /* mask */
+063 mask = (((mp_digit)1) << D) - 1;
+064
+065 /* shift for lsb */
+066 shift = DIGIT_BIT - D;
+067
+068 /* alias */
+069 tmpc = c->dp + (c->used - 1);
+070
+071 /* carry */
+072 r = 0;
+073 for (x = c->used - 1; x >= 0; x--) \{
+074 /* get the lower bits of this word in a temp */
+075 rr = *tmpc & mask;
+076
+077 /* shift the current word and mix in the carry bits from the previous
+ word */
+078 *tmpc = (*tmpc >> D) | (r << shift);
+079 --tmpc;
+080
+081 /* set the carry to the carry bits of the current word found above */
+082 r = rr;
+083 \}
+084 \}
+085 mp_clamp (c);
+086 if (d != NULL) \{
+087 mp_exch (&t, d);
+088 \}
+089 mp_clear (&t);
+090 return MP_OKAY;
+091 \}
+092 #endif
+\end{alltt}
+\end{small}
+
+The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally
+ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the
+result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
+
+The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. (-- Fix this paragraph up later, Tom).
+
+\subsection{Remainder of Division by Power of Two}
+
+The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This
+algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mod\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then do \\
+\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $b > a.used \cdot lg(\beta)$ then do \\
+\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}2.2 Return the result of step 2.1. \\
+3. $c \leftarrow a$ \\
+4. If step 3 failed return(\textit{MP\_MEM}). \\
+5. for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
+\hspace{3mm}5.1 $c_n \leftarrow 0$ \\
+6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
+8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mod\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mod\_2d.}
+This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$. First if $b$ is less than or equal to zero the
+result is set to zero. If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns. Otherwise, $a$
+is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mod\_2d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* calc a value mod 2**b */
+018 int
+019 mp_mod_2d (mp_int * a, int b, mp_int * c)
+020 \{
+021 int x, res;
+022
+023 /* if b is <= 0 then zero the int */
+024 if (b <= 0) \{
+025 mp_zero (c);
+026 return MP_OKAY;
+027 \}
+028
+029 /* if the modulus is larger than the value than return */
+030 if (b >= (int) (a->used * DIGIT_BIT)) \{
+031 res = mp_copy (a, c);
+032 return res;
+033 \}
+034
+035 /* copy */
+036 if ((res = mp_copy (a, c)) != MP_OKAY) \{
+037 return res;
+038 \}
+039
+040 /* zero digits above the last digit of the modulus */
+041 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x+
+ +) \{
+042 c->dp[x] = 0;
+043 \}
+044 /* clear the digit that is not completely outside/inside the modulus */
+045 c->dp[b / DIGIT_BIT] &=
+046 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digi
+ t) 1));
+047 mp_clamp (c);
+048 return MP_OKAY;
+049 \}
+050 #endif
+\end{alltt}
+\end{small}
+
+-- Add comments later, Tom.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
+ & in $O(n)$ time. \\
+ &\\
+$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming \\
+ & weight values such as $3$, $5$ and $9$. Extend it to handle all values \\
+ & upto $64$ with a hamming weight less than three. \\
+ &\\
+$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
+ & $2^k - 1$ as well. \\
+ &\\
+$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
+ & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
+ & any $n$-bit input. Note that the time of addition is ignored in the \\
+ & calculation. \\
+ & \\
+$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
+ & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\
+ & the cost of addition. \\
+ & \\
+$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
+ & for $n = 64 \ldots 1024$ in steps of $64$. \\
+ & \\
+$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
+ & calculating the result of a signed comparison. \\
+ &
+\end{tabular}
+
+\chapter{Multiplication and Squaring}
+\section{The Multipliers}
+For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of
+algorithms of any multiple precision integer package. The set of multiplier algorithms include integer multiplication, squaring and modular reduction
+where in each of the algorithms single precision multiplication is the dominant operation performed. This chapter will discuss integer multiplication
+and squaring, leaving modular reductions for the subsequent chapter.
+
+The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular
+exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$. During a modular
+exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions,
+35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision
+multiplications.
+
+For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied
+against every digit of the other multiplicand. Traditional long-hand multiplication is based on this process; while the techniques can differ the
+overall algorithm used is essentially the same. Only ``recently'' have faster algorithms been studied. First Karatsuba multiplication was discovered in
+1962. This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.
+This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.
+
+\section{Multiplication}
+\subsection{The Baseline Multiplication}
+\label{sec:basemult}
+\index{baseline multiplication}
+Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
+algorithm that school children are taught. The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision
+multiplications are required. More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required. To
+simplify most discussions, it will be assumed that the inputs have comparable number of digits.
+
+The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be
+used. This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible. One important
+facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution. The importance of this
+modification will become evident during the discussion of Barrett modular reduction. Recall that for a $n$ and $m$ digit input the product
+will be at most $n + m$ digits. Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.
+
+Recall from sub-section 4.2.2 the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}. We shall now extend the variable set to
+include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}. This implies that $2^{\alpha} > 2 \cdot \beta^2$. The
+constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see sub-section 5.2.2 for more information}).
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+1. If min$(a.used, b.used) < \delta$ then do \\
+\hspace{3mm}1.1 Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}). \\
+\hspace{3mm}1.2 Return the result of step 1.1 \\
+\\
+Allocate and initialize a temporary mp\_int. \\
+2. Init $t$ to be of size $digs$ \\
+3. If step 2 failed return(\textit{MP\_MEM}). \\
+4. $t.used \leftarrow digs$ \\
+\\
+Compute the product. \\
+5. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}5.1 $u \leftarrow 0$ \\
+\hspace{3mm}5.2 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}5.3 If $pb < 1$ then goto step 6. \\
+\hspace{3mm}5.4 for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}5.4.1 $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
+\hspace{6mm}5.4.2 $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.5 if $ix + pb < digs$ then do \\
+\hspace{6mm}5.5.1 $t_{ix + pb} \leftarrow u$ \\
+6. Clamp excess digits of $t$. \\
+7. Swap $c$ with $t$ \\
+8. Clear $t$ \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_mul\_digs}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_mul\_digs.}
+This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits. While it may seem
+a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent
+algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.
+Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the
+inputs.
+
+The first thing this algorithm checks for is whether a Comba multiplier can be used instead. If the minimum digit count of either
+input is less than $\delta$, then the Comba method may be used instead. After the Comba method is ruled out, the baseline algorithm begins. A
+temporary mp\_int variable $t$ is used to hold the intermediate result of the product. This allows the algorithm to be used to
+compute products when either $a = c$ or $b = c$ without overwriting the inputs.
+
+All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output. The $pb$ variable
+is given the count of digits to read from $b$ inside the nested loop. If $pb \le 1$ then no more output digits can be produced and the algorithm
+will exit the loop. The best way to think of the loops are as a series of $pb \times 1$ multiplications. That is, in each pass of the
+innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.
+
+For example, consider multiplying $576$ by $241$. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
+visualized in the following table.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|l|}
+\hline && & 5 & 7 & 6 & \\
+\hline $\times$&& & 2 & 4 & 1 & \\
+\hline &&&&&&\\
+ && & 5 & 7 & 6 & $10^0(1)(576)$ \\
+ &2 & 3 & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
+ 1 & 3 & 8 & 8 & 1 & 6 & $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Long-Hand Multiplication Diagram}
+\end{figure}
+
+Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate
+count. That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
+
+Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable. The multiplication on that step
+is assumed to be a double wide output single precision multiplication. That is, two single precision variables are multiplied to produce a
+double precision result. The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
+5.4.1 is propagated through the nested loop. If the carry was not propagated immediately it would overflow the single precision digit
+$t_{ix+iy}$ and the result would be lost.
+
+At step 5.5 the nested loop is finished and any carry that was left over should be forwarded. The carry does not have to be added to the $ix+pb$'th
+digit since that digit is assumed to be zero at this point. However, if $ix + pb \ge digs$ the carry is not set as it would make the result
+exceed the precision requested.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_mul\_digs.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* multiplies |a| * |b| and only computes upto digs digits of result
+018 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
+019 * many digits of output are created.
+020 */
+021 int
+022 s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+023 \{
+024 mp_int t;
+025 int res, pa, pb, ix, iy;
+026 mp_digit u;
+027 mp_word r;
+028 mp_digit tmpx, *tmpt, *tmpy;
+029
+030 /* can we use the fast multiplier? */
+031 if (((digs) < MP_WARRAY) &&
+032 MIN (a->used, b->used) <
+033 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+034 return fast_s_mp_mul_digs (a, b, c, digs);
+035 \}
+036
+037 if ((res = mp_init_size (&t, digs)) != MP_OKAY) \{
+038 return res;
+039 \}
+040 t.used = digs;
+041
+042 /* compute the digits of the product directly */
+043 pa = a->used;
+044 for (ix = 0; ix < pa; ix++) \{
+045 /* set the carry to zero */
+046 u = 0;
+047
+048 /* limit ourselves to making digs digits of output */
+049 pb = MIN (b->used, digs - ix);
+050
+051 /* setup some aliases */
+052 /* copy of the digit from a used within the nested loop */
+053 tmpx = a->dp[ix];
+054
+055 /* an alias for the destination shifted ix places */
+056 tmpt = t.dp + ix;
+057
+058 /* an alias for the digits of b */
+059 tmpy = b->dp;
+060
+061 /* compute the columns of the output and propagate the carry */
+062 for (iy = 0; iy < pb; iy++) \{
+063 /* compute the column as a mp_word */
+064 r = ((mp_word)*tmpt) +
+065 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+066 ((mp_word) u);
+067
+068 /* the new column is the lower part of the result */
+069 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+070
+071 /* get the carry word from the result */
+072 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+073 \}
+074 /* set carry if it is placed below digs */
+075 if (ix + iy < digs) \{
+076 *tmpt = u;
+077 \}
+078 \}
+079
+080 mp_clamp (&t);
+081 mp_exch (&t, c);
+082
+083 mp_clear (&t);
+084 return MP_OKAY;
+085 \}
+086 #endif
+\end{alltt}
+\end{small}
+
+Lines 31 to 35 determine if the Comba method can be used first. The conditions for using the Comba routine are that min$(a.used, b.used) < \delta$ and
+the number of digits of output is less than \textbf{MP\_WARRAY}. This new constant is used to control
+the stack usage in the Comba routines. By default it is set to $\delta$ but can be reduced when memory is at a premium.
+
+Of particular importance is the calculation of the $ix+iy$'th column on lines 64, 65 and 66. Note how all of the
+variables are cast to the type \textbf{mp\_word}, which is also the type of variable $\hat r$. That is to ensure that double precision operations
+are used instead of single precision. The multiplication on line 65 makes use of a specific GCC optimizer behaviour. On the outset it looks like
+the compiler will have to use a double precision multiplication to produce the result required. Such an operation would be horribly slow on most
+processors and drag this to a crawl. However, GCC is smart enough to realize that double wide output single precision multipliers can be used. For
+example, the instruction ``MUL'' on the x86 processor can multiply two 32-bit values and produce a 64-bit result.
+
+\subsection{Faster Multiplication by the ``Comba'' Method}
+
+One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards. This
+makes the nested loop very sequential and hard to unroll and implement in parallel. The ``Comba'' \cite{COMBA} method is named after little known
+(\textit{in cryptographic venues}) Paul G. Comba who described a method of implementing fast multipliers that do not require nested
+carry fixup operations. As an interesting aside it seems that Paul Barrett describes a similar technique in
+his 1986 paper \cite{BARRETT} written five years before.
+
+At the heart of the Comba technique is once again the long-hand algorithm. Except in this case a slight twist is placed on how
+the columns of the result are produced. In the standard long-hand algorithm rows of products are produced then added together to form the
+final result. In the baseline algorithm the columns are added together after each iteration to get the result instantaneously.
+
+In the Comba algorithm the columns of the result are produced entirely independently of each other. That is at the $O(n^2)$ level a
+simple multiplication and addition step is performed. The carries of the columns are propagated after the nested loop to reduce the amount
+of work requiored. Succintly the first step of the algorithm is to compute the product vector $\vec x$ as follows.
+
+\begin{equation}
+\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
+\end{equation}
+
+Where $\vec x_n$ is the $n'th$ column of the output vector. Consider the following example which computes the vector $\vec x$ for the multiplication
+of $576$ and $241$.
+
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|}
+ \hline & & 5 & 7 & 6 & First Input\\
+ \hline $\times$ & & 2 & 4 & 1 & Second Input\\
+\hline & & $1 \cdot 5 = 5$ & $1 \cdot 7 = 7$ & $1 \cdot 6 = 6$ & First pass \\
+ & $4 \cdot 5 = 20$ & $4 \cdot 7+5=33$ & $4 \cdot 6+7=31$ & 6 & Second pass \\
+ $2 \cdot 5 = 10$ & $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31 & 6 & Third pass \\
+\hline 10 & 34 & 45 & 31 & 6 & Final Result \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Comba Multiplication Diagram}
+\end{figure}
+
+At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.
+Now the columns must be fixed by propagating the carry upwards. The resultant vector will have one extra dimension over the input vector which is
+congruent to adding a leading zero digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Comba Fixup}. \\
+\textbf{Input}. Vector $\vec x$ of dimension $k$ \\
+\textbf{Output}. Vector $\vec x$ such that the carries have been propagated. \\
+\hline \\
+1. for $n$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
+\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
+2. Return($\vec x$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Comba Fixup}
+\end{figure}
+
+With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$. In this case
+$241 \cdot 576$ is in fact $138816$ and the procedure succeeded. If the algorithm is correct and as will be demonstrated shortly more
+efficient than the baseline algorithm why not simply always use this algorithm?
+
+\subsubsection{Column Weight.}
+At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output
+independently. A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
+the carries. For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
+three single precision multiplications. If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
+an overflow can occur and the carry information will be lost. For any $m$ and $n$ digit inputs the maximum weight of any column is
+min$(m, n)$ which is fairly obvious.
+
+The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used. Recall
+from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision. Given these
+two quantities we must not violate the following
+
+\begin{equation}
+k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
+\end{equation}
+
+Which reduces to
+
+\begin{equation}
+k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
+\end{equation}
+
+Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit. By further re-arrangement of the equation the final solution is
+found.
+
+\begin{equation}
+k < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
+\end{equation}
+
+The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$. In this configuration
+the smaller input may not have more than $256$ digits if the Comba method is to be used. This is quite satisfactory for most applications since
+$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} double precision digits named $\hat W$ on the stack. \\
+1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
+2. If step 1 failed return(\textit{MP\_MEM}).\\
+\\
+Zero the temporary array $\hat W$. \\
+3. for $n$ from $0$ to $digs - 1$ do \\
+\hspace{3mm}3.1 $\hat W_n \leftarrow 0$ \\
+\\
+Compute the columns. \\
+4. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}4.1 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}4.2 If $pb < 1$ then goto step 5. \\
+\hspace{3mm}4.3 for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}4.3.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}b_{iy}$ \\
+\\
+Propagate the carries upwards. \\
+5. $oldused \leftarrow c.used$ \\
+6. $c.used \leftarrow digs$ \\
+7. If $digs > 1$ then do \\
+\hspace{3mm}7.1. for $ix$ from $1$ to $digs - 1$ do \\
+\hspace{6mm}7.1.1 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix-1} / \beta \rfloor$ \\
+\hspace{6mm}7.1.2 $c_{ix - 1} \leftarrow \hat W_{ix - 1} \mbox{ (mod }\beta\mbox{)}$ \\
+8. else do \\
+\hspace{3mm}8.1 $ix \leftarrow 0$ \\
+9. $c_{ix} \leftarrow \hat W_{ix} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Zero excess digits. \\
+10. If $digs < oldused$ then do \\
+\hspace{3mm}10.1 for $n$ from $digs$ to $oldused - 1$ do \\
+\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
+11. Clamp excessive digits of $c$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_mul\_digs}
+\label{fig:COMBAMULT}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
+This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision. The algorithm
+essentially peforms the same calculation as algorithm s\_mp\_mul\_digs, just much faster.
+
+The array $\hat W$ is meant to be on the stack when the algorithm is used. The size of the array does not change which is ideal. Note also that
+unlike algorithm s\_mp\_mul\_digs no temporary mp\_int is required since the result is calculated directly in $\hat W$.
+
+The $O(n^2)$ loop on step four is where the Comba method's advantages begin to show through in comparison to the baseline algorithm. The lack of
+a carry variable or propagation in this loop allows the loop to be performed with only single precision multiplication and additions. Now that each
+iteration of the inner loop can be performed independent of the others the inner loop can be performed with a high level of parallelism.
+
+To measure the benefits of the Comba method over the baseline method consider the number of operations that are required. If the
+cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require
+$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers. The Comba method requires only $O(pn^2 + qn)$ time, however in practice,
+the speed increase is actually much more. With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
+and addition operations in the nested loop in parallel.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_mul\_digs.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* Fast (comba) multiplier
+018 *
+019 * This is the fast column-array [comba] multiplier. It is
+020 * designed to compute the columns of the product first
+021 * then handle the carries afterwards. This has the effect
+022 * of making the nested loops that compute the columns very
+023 * simple and schedulable on super-scalar processors.
+024 *
+025 * This has been modified to produce a variable number of
+026 * digits of output so if say only a half-product is required
+027 * you don't have to compute the upper half (a feature
+028 * required for fast Barrett reduction).
+029 *
+030 * Based on Algorithm 14.12 on pp.595 of HAC.
+031 *
+032 */
+033 int
+034 fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+035 \{
+036 int olduse, res, pa, ix, iz;
+037 mp_digit W[MP_WARRAY];
+038 register mp_word _W;
+039
+040 /* grow the destination as required */
+041 if (c->alloc < digs) \{
+042 if ((res = mp_grow (c, digs)) != MP_OKAY) \{
+043 return res;
+044 \}
+045 \}
+046
+047 /* number of output digits to produce */
+048 pa = MIN(digs, a->used + b->used);
+049
+050 /* clear the carry */
+051 _W = 0;
+052 for (ix = 0; ix < pa; ix++) \{
+053 int tx, ty;
+054 int iy;
+055 mp_digit *tmpx, *tmpy;
+056
+057 /* get offsets into the two bignums */
+058 ty = MIN(b->used-1, ix);
+059 tx = ix - ty;
+060
+061 /* setup temp aliases */
+062 tmpx = a->dp + tx;
+063 tmpy = b->dp + ty;
+064
+065 /* this is the number of times the loop will iterrate, essentially its
+
+066 while (tx++ < a->used && ty-- >= 0) \{ ... \}
+067 */
+068 iy = MIN(a->used-tx, ty+1);
+069
+070 /* execute loop */
+071 for (iz = 0; iz < iy; ++iz) \{
+072 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+073 \}
+074
+075 /* store term */
+076 W[ix] = ((mp_digit)_W) & MP_MASK;
+077
+078 /* make next carry */
+079 _W = _W >> ((mp_word)DIGIT_BIT);
+080 \}
+081
+082 /* store final carry */
+083 W[ix] = _W;
+084
+085 /* setup dest */
+086 olduse = c->used;
+087 c->used = digs;
+088
+089 \{
+090 register mp_digit *tmpc;
+091 tmpc = c->dp;
+092 for (ix = 0; ix < digs; ix++) \{
+093 /* now extract the previous digit [below the carry] */
+094 *tmpc++ = W[ix];
+095 \}
+096
+097 /* clear unused digits [that existed in the old copy of c] */
+098 for (; ix < olduse; ix++) \{
+099 *tmpc++ = 0;
+100 \}
+101 \}
+102 mp_clamp (c);
+103 return MP_OKAY;
+104 \}
+105 #endif
+\end{alltt}
+\end{small}
+
+The memset on line @47,memset@ clears the initial $\hat W$ array to zero in a single step. Like the slower baseline multiplication
+implementation a series of aliases (\textit{lines 62, 63 and 76}) are used to simplify the inner $O(n^2)$ loop.
+In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.
+
+The inner loop on lines 92, 79 and 80 is where the algorithm will spend the majority of the time, which is why it has been
+stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}. On x86 processors the multiplication and additions amount to at the
+very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three
+(\textit{one load, one store, one multiply-add}). For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop
+and scheduling the instructions so there are very few dependency stalls.
+
+In theory the difference between the baseline and comba algorithms is a mere $O(qn)$ time difference. However, in the $O(n^2)$ nested loop of the
+baseline method there are dependency stalls as the algorithm must wait for the multiplier to finish before propagating the carry to the next
+digit. As a result fewer of the often multiple execution units\footnote{The AMD Athlon has three execution units and the Intel P4 has four.} can
+be simultaneously used.
+
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
+$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+
+The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and would in practice be slower than the Comba technique.
+
+However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown
+coefficients. This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with
+Gaussian elimination. This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in
+effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.
+
+The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible. However, since
+$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place. The benefit of this technique stems from the
+fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. As a result finding the $2n + 1$ relations required
+by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$. Note that the
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
+
+If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points}
+$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. The term ``mirror point'' stems from the fact that
+$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$. For
+example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
+
+\begin{eqnarray}
+\zeta_{2} = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
+16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
+\end{eqnarray}
+
+Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts. For example, when $n = 2$ the
+polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$. This technique of polynomial representation is known as Horner's method.
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of
+multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). Figure~\ref{fig:exponent}
+summarizes the exponents for various values of $n$.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\label{fig:exponent}
+\end{figure}
+
+At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$. However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.
+
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However,
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes the
+polynomial basis approach more costly to use with small inputs.
+
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
+
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
+
+\begin{enumerate}
+\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.
+
+\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits
+grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This
+directly reflects on the ratio previous mentioned.
+
+\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
+
+\end{enumerate}
+
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when
+a high resolution timer is available.
+
+\subsection{Karatsuba Multiplication}
+Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with
+light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
+
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) - (ac + bd))x + bd
+\end{equation}
+
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
+this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
+$\zeta_0$, $\zeta_{\infty}$ and $-\zeta_{-1}$. Consider the resultant system of equations.
+
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ & $=$ & & & & & $w_0$ \\
+$-\zeta_{-1}$ & $=$ & $-w_2$ & $+$ & $w_1$ & $-$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\
+\end{tabular}
+\end{center}
+
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity
+of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman. It is worth noting that the point
+$\zeta_1$ could be substituted for $-\zeta_{-1}$. In this case the first and third row are subtracted instead of added to the second row.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
+\hline \\
+1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2. If step 2 failed then return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\
+3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
+6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
+7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
+\\
+Calculate the three products. \\
+8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
+9. $x1y1 \leftarrow x1 \cdot y1$ \\
+10. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+11. $x0 \leftarrow y1 - y0$ \\
+12. $t1 \leftarrow t1 \cdot x0$ \\
+\\
+Calculate the middle term. \\
+13. $x0 \leftarrow x0y0 + x1y1$ \\
+14. $t1 \leftarrow x0 - t1$ \\
+\\
+Calculate the final product. \\
+15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
+16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
+17. $t1 \leftarrow x0y0 + t1$ \\
+18. $c \leftarrow t1 + x1y1$ \\
+19. Clear all of the temporary variables. \\
+20. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm. It is loosely based on the description
+from Knuth \cite[pp. 294-295]{TAOCPV2}.
+
+\index{radix point}
+In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen. The radix point chosen must
+be used for both of the inputs meaning that it must be smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the
+smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5
+compute the lower halves. Step 6 and 7 computer the upper halves.
+
+After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 - x0$ has been computed. By using $x0$ instead
+of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
+
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_mul.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* c = |a| * |b| using Karatsuba Multiplication using
+018 * three half size multiplications
+019 *
+020 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
+021 * let n represent half of the number of digits in
+022 * the min(a,b)
+023 *
+024 * a = a1 * B**n + a0
+025 * b = b1 * B**n + b0
+026 *
+027 * Then, a * b =>
+028 a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
+029 *
+030 * Note that a1b1 and a0b0 are used twice and only need to be
+031 * computed once. So in total three half size (half # of
+032 * digit) multiplications are performed, a0b0, a1b1 and
+033 * (a1-b1)(a0-b0)
+034 *
+035 * Note that a multiplication of half the digits requires
+036 * 1/4th the number of single precision multiplications so in
+037 * total after one call 25% of the single precision multiplications
+038 * are saved. Note also that the call to mp_mul can end up back
+039 * in this function if the a0, a1, b0, or b1 are above the threshold.
+040 * This is known as divide-and-conquer and leads to the famous
+041 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
+042 * the standard O(N**2) that the baseline/comba methods use.
+043 * Generally though the overhead of this method doesn't pay off
+044 * until a certain size (N ~ 80) is reached.
+045 */
+046 int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
+047 \{
+048 mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
+049 int B, err;
+050
+051 /* default the return code to an error */
+052 err = MP_MEM;
+053
+054 /* min # of digits */
+055 B = MIN (a->used, b->used);
+056
+057 /* now divide in two */
+058 B = B >> 1;
+059
+060 /* init copy all the temps */
+061 if (mp_init_size (&x0, B) != MP_OKAY)
+062 goto ERR;
+063 if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+064 goto X0;
+065 if (mp_init_size (&y0, B) != MP_OKAY)
+066 goto X1;
+067 if (mp_init_size (&y1, b->used - B) != MP_OKAY)
+068 goto Y0;
+069
+070 /* init temps */
+071 if (mp_init_size (&t1, B * 2) != MP_OKAY)
+072 goto Y1;
+073 if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
+074 goto T1;
+075 if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
+076 goto X0Y0;
+077
+078 /* now shift the digits */
+079 x0.used = y0.used = B;
+080 x1.used = a->used - B;
+081 y1.used = b->used - B;
+082
+083 \{
+084 register int x;
+085 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+086
+087 /* we copy the digits directly instead of using higher level functions
+088 * since we also need to shift the digits
+089 */
+090 tmpa = a->dp;
+091 tmpb = b->dp;
+092
+093 tmpx = x0.dp;
+094 tmpy = y0.dp;
+095 for (x = 0; x < B; x++) \{
+096 *tmpx++ = *tmpa++;
+097 *tmpy++ = *tmpb++;
+098 \}
+099
+100 tmpx = x1.dp;
+101 for (x = B; x < a->used; x++) \{
+102 *tmpx++ = *tmpa++;
+103 \}
+104
+105 tmpy = y1.dp;
+106 for (x = B; x < b->used; x++) \{
+107 *tmpy++ = *tmpb++;
+108 \}
+109 \}
+110
+111 /* only need to clamp the lower words since by definition the
+112 * upper words x1/y1 must have a known number of digits
+113 */
+114 mp_clamp (&x0);
+115 mp_clamp (&y0);
+116
+117 /* now calc the products x0y0 and x1y1 */
+118 /* after this x0 is no longer required, free temp [x0==t2]! */
+119 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
+120 goto X1Y1; /* x0y0 = x0*y0 */
+121 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
+122 goto X1Y1; /* x1y1 = x1*y1 */
+123
+124 /* now calc x1-x0 and y1-y0 */
+125 if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+126 goto X1Y1; /* t1 = x1 - x0 */
+127 if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
+128 goto X1Y1; /* t2 = y1 - y0 */
+129 if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
+130 goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
+131
+132 /* add x0y0 */
+133 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
+134 goto X1Y1; /* t2 = x0y0 + x1y1 */
+135 if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
+136 goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+137
+138 /* shift by B */
+139 if (mp_lshd (&t1, B) != MP_OKAY)
+140 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+141 if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
+142 goto X1Y1; /* x1y1 = x1y1 << 2*B */
+143
+144 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
+145 goto X1Y1; /* t1 = x0y0 + t1 */
+146 if (mp_add (&t1, &x1y1, c) != MP_OKAY)
+147 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
+148
+149 /* Algorithm succeeded set the return code to MP_OKAY */
+150 err = MP_OKAY;
+151
+152 X1Y1:mp_clear (&x1y1);
+153 X0Y0:mp_clear (&x0y0);
+154 T1:mp_clear (&t1);
+155 Y1:mp_clear (&y1);
+156 Y0:mp_clear (&y0);
+157 X1:mp_clear (&x1);
+158 X0:mp_clear (&x0);
+159 ERR:
+160 return err;
+161 \}
+162 #endif
+\end{alltt}
+\end{small}
+
+The new coding element in this routine, not seen in previous routines, is the usage of goto statements. The conventional
+wisdom is that goto statements should be avoided. This is generally true, however when every single function call can fail, it makes sense
+to handle error recovery with a single piece of code. Lines 61 to 75 handle initializing all of the temporary variables
+required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
+
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the
+additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
+
+The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves, the respective code has been placed inline within the body of the function. To initialize the halves, the \textbf{used} and
+\textbf{sign} members are copied first. The first for loop on line 101 copies the lower halves. Since they are both the same magnitude it
+is simpler to calculate both lower halves in a single loop. The for loop on lines 106 and 106 calculate the upper halves $x1$ and
+$y1$ respectively.
+
+By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
+
+When line 150 is reached, the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.
+
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points are
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. Here, the points $\zeta_{0}$,
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients
+of the $W(x)$.
+
+With the five relations that Toom-Cook specifies, the following system of equations is formed.
+
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\
+$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\
+$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\
+$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\
+\end{tabular}
+\end{center}
+
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time, meaning that
+the algorithm can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b $ \\
+\hline \\
+Split $a$ and $b$ into three pieces. E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
+1. $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
+2. $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+3. $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+4. $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+5. $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+6. $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+7. $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+\\
+Find the five equations for $w_0, w_1, ..., w_4$. \\
+8. $w_0 \leftarrow a_0 \cdot b_0$ \\
+9. $w_4 \leftarrow a_2 \cdot b_2$ \\
+10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
+11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
+13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
+14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
+15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
+16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
+\\
+Continued on the next page.\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b $ \\
+\hline \\
+Now solve the system of equations. \\
+18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
+19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
+20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
+21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
+23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
+24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
+\\
+Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
+26. for $n$ from $1$ to $4$ do \\
+\hspace{3mm}26.1 $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
+27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
+28. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul (continued)}
+\end{figure}
+
+\textbf{Algorithm mp\_toom\_mul.}
+This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach. Compared to the Karatsuba multiplication, this
+algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead. In this
+description, several statements have been compounded to save space. The intention is that the statements are executed from left to right across
+any given step.
+
+The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively. From these smaller
+integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
+
+The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively. The relation $w_1, w_2$ and $w_3$ correspond
+to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively. These are found using logical shifts to independently find
+$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
+
+After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients
+$w_1, w_2$ and $w_3$ to be isolated. The steps 18 through 25 perform the system reduction required as previously described. Each step of
+the reduction represents the comparable matrix operation that would be performed had this been performed by pencil. For example, step 18 indicates
+that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.
+
+Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known. By substituting $\beta^{k}$ for $x$, the integer
+result $a \cdot b$ is produced.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_toom\_mul.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* multiplication using the Toom-Cook 3-way algorithm
+018 *
+019 * Much more complicated than Karatsuba but has a lower asymptotic running t
+ ime of
+020 * O(N**1.464). This algorithm is only particularly useful on VERY large
+021 * inputs (we're talking 1000s of digits here...).
+022 */
+023 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+024 \{
+025 mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+026 int res, B;
+027
+028 /* init temps */
+029 if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
+030 &a0, &a1, &a2, &b0, &b1,
+031 &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) \{
+032 return res;
+033 \}
+034
+035 /* B */
+036 B = MIN(a->used, b->used) / 3;
+037
+038 /* a = a2 * B**2 + a1 * B + a0 */
+039 if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) \{
+040 goto ERR;
+041 \}
+042
+043 if ((res = mp_copy(a, &a1)) != MP_OKAY) \{
+044 goto ERR;
+045 \}
+046 mp_rshd(&a1, B);
+047 mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+048
+049 if ((res = mp_copy(a, &a2)) != MP_OKAY) \{
+050 goto ERR;
+051 \}
+052 mp_rshd(&a2, B*2);
+053
+054 /* b = b2 * B**2 + b1 * B + b0 */
+055 if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) \{
+056 goto ERR;
+057 \}
+058
+059 if ((res = mp_copy(b, &b1)) != MP_OKAY) \{
+060 goto ERR;
+061 \}
+062 mp_rshd(&b1, B);
+063 mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
+064
+065 if ((res = mp_copy(b, &b2)) != MP_OKAY) \{
+066 goto ERR;
+067 \}
+068 mp_rshd(&b2, B*2);
+069
+070 /* w0 = a0*b0 */
+071 if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) \{
+072 goto ERR;
+073 \}
+074
+075 /* w4 = a2 * b2 */
+076 if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) \{
+077 goto ERR;
+078 \}
+079
+080 /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+081 if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) \{
+082 goto ERR;
+083 \}
+084 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
+085 goto ERR;
+086 \}
+087 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
+088 goto ERR;
+089 \}
+090 if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) \{
+091 goto ERR;
+092 \}
+093
+094 if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) \{
+095 goto ERR;
+096 \}
+097 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
+098 goto ERR;
+099 \}
+100 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
+101 goto ERR;
+102 \}
+103 if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) \{
+104 goto ERR;
+105 \}
+106
+107 if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) \{
+108 goto ERR;
+109 \}
+110
+111 /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+112 if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) \{
+113 goto ERR;
+114 \}
+115 if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
+116 goto ERR;
+117 \}
+118 if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
+119 goto ERR;
+120 \}
+121 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
+122 goto ERR;
+123 \}
+124
+125 if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) \{
+126 goto ERR;
+127 \}
+128 if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
+129 goto ERR;
+130 \}
+131 if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
+132 goto ERR;
+133 \}
+134 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
+135 goto ERR;
+136 \}
+137
+138 if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) \{
+139 goto ERR;
+140 \}
+141
+142
+143 /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+144 if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) \{
+145 goto ERR;
+146 \}
+147 if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
+148 goto ERR;
+149 \}
+150 if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) \{
+151 goto ERR;
+152 \}
+153 if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
+154 goto ERR;
+155 \}
+156 if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) \{
+157 goto ERR;
+158 \}
+159
+160 /* now solve the matrix
+161
+162 0 0 0 0 1
+163 1 2 4 8 16
+164 1 1 1 1 1
+165 16 8 4 2 1
+166 1 0 0 0 0
+167
+168 using 12 subtractions, 4 shifts,
+169 2 small divisions and 1 small multiplication
+170 */
+171
+172 /* r1 - r4 */
+173 if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) \{
+174 goto ERR;
+175 \}
+176 /* r3 - r0 */
+177 if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) \{
+178 goto ERR;
+179 \}
+180 /* r1/2 */
+181 if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) \{
+182 goto ERR;
+183 \}
+184 /* r3/2 */
+185 if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) \{
+186 goto ERR;
+187 \}
+188 /* r2 - r0 - r4 */
+189 if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) \{
+190 goto ERR;
+191 \}
+192 if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) \{
+193 goto ERR;
+194 \}
+195 /* r1 - r2 */
+196 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
+197 goto ERR;
+198 \}
+199 /* r3 - r2 */
+200 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
+201 goto ERR;
+202 \}
+203 /* r1 - 8r0 */
+204 if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) \{
+205 goto ERR;
+206 \}
+207 if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) \{
+208 goto ERR;
+209 \}
+210 /* r3 - 8r4 */
+211 if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) \{
+212 goto ERR;
+213 \}
+214 if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) \{
+215 goto ERR;
+216 \}
+217 /* 3r2 - r1 - r3 */
+218 if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) \{
+219 goto ERR;
+220 \}
+221 if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) \{
+222 goto ERR;
+223 \}
+224 if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) \{
+225 goto ERR;
+226 \}
+227 /* r1 - r2 */
+228 if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
+229 goto ERR;
+230 \}
+231 /* r3 - r2 */
+232 if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
+233 goto ERR;
+234 \}
+235 /* r1/3 */
+236 if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) \{
+237 goto ERR;
+238 \}
+239 /* r3/3 */
+240 if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) \{
+241 goto ERR;
+242 \}
+243
+244 /* at this point shift W[n] by B*n */
+245 if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) \{
+246 goto ERR;
+247 \}
+248 if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) \{
+249 goto ERR;
+250 \}
+251 if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) \{
+252 goto ERR;
+253 \}
+254 if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) \{
+255 goto ERR;
+256 \}
+257
+258 if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) \{
+259 goto ERR;
+260 \}
+261 if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) \{
+262 goto ERR;
+263 \}
+264 if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) \{
+265 goto ERR;
+266 \}
+267 if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) \{
+268 goto ERR;
+269 \}
+270
+271 ERR:
+272 mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
+273 &a0, &a1, &a2, &b0, &b1,
+274 &b2, &tmp1, &tmp2, NULL);
+275 return res;
+276 \}
+277
+278 #endif
+\end{alltt}
+\end{small}
+
+-- Comments to be added during editing phase.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required. So far all
+of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b$ \\
+\hline \\
+1. If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\
+2. else \\
+\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\
+3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\
+\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5. else \\
+\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\
+\hspace{3mm}5.3 else \\
+\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\
+6. $c.sign \leftarrow sign$ \\
+7. Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms
+available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* high level multiplication (handles sign) */
+018 int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+019 \{
+020 int res, neg;
+021 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+022
+023 /* use Toom-Cook? */
+024 #ifdef BN_MP_TOOM_MUL_C
+025 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) \{
+026 res = mp_toom_mul(a, b, c);
+027 \} else
+028 #endif
+029 #ifdef BN_MP_KARATSUBA_MUL_C
+030 /* use Karatsuba? */
+031 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) \{
+032 res = mp_karatsuba_mul (a, b, c);
+033 \} else
+034 #endif
+035 \{
+036 /* can we use the fast multiplier?
+037 *
+038 * The fast multiplier can be used if the output will
+039 * have less than MP_WARRAY digits and the number of
+040 * digits won't affect carry propagation
+041 */
+042 int digs = a->used + b->used + 1;
+043
+044 #ifdef BN_FAST_S_MP_MUL_DIGS_C
+045 if ((digs < MP_WARRAY) &&
+046 MIN(a->used, b->used) <=
+047 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+048 res = fast_s_mp_mul_digs (a, b, c, digs);
+049 \} else
+050 #endif
+051 #ifdef BN_S_MP_MUL_DIGS_C
+052 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
+053 #else
+054 res = MP_VAL;
+055 #endif
+056
+057 \}
+058 c->sign = (c->used > 0) ? neg : MP_ZPOS;
+059 return res;
+060 \}
+061 #endif
+\end{alltt}
+\end{small}
+
+The implementation is rather simplistic and is not particularly noteworthy. Line 23 computes the sign of the result using the ``?''
+operator from the C programming language. Line 47 computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
+
+\section{Squaring}
+\label{sec:basesquare}
+
+Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization
+available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider
+the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$
+and $3 \cdot 1 = 1 \cdot 3$.
+
+For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
+required for multiplication. The following diagram gives an example of the operations required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+ & $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+ $1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$
+represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every non-square term of a column will
+appear twice hence the name ``double product''. Every odd column is made up entirely of double products. In fact every column is made up of double
+products and at most one square (\textit{see the exercise section}).
+
+The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row,
+occurs at column $2k + 1$. For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero.
+Column two of row one is a square and column three is the first unique column.
+
+\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
+will not handle.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\
+2. If step 1 failed return(\textit{MP\_MEM}) \\
+3. $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4. For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5 While $u > 0$ do \\
+\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\
+6. Exchange $b$ and $t$. \\
+7. Clear $t$ (\textit{mp\_clear}) \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of HAC
+\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring. This allows the
+destination mp\_int to be the same as the source mp\_int.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
+the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
+the carry and compute the double products.
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiplied by two, it can be properly represented by a mp\_word.
+
+Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial
+results calculated so far. This involves expensive carry propagation which will be eliminated in the next algorithm.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+018 int
+019 s_mp_sqr (mp_int * a, mp_int * b)
+020 \{
+021 mp_int t;
+022 int res, ix, iy, pa;
+023 mp_word r;
+024 mp_digit u, tmpx, *tmpt;
+025
+026 pa = a->used;
+027 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) \{
+028 return res;
+029 \}
+030
+031 /* default used is maximum possible size */
+032 t.used = 2*pa + 1;
+033
+034 for (ix = 0; ix < pa; ix++) \{
+035 /* first calculate the digit at 2*ix */
+036 /* calculate double precision result */
+037 r = ((mp_word) t.dp[2*ix]) +
+038 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+039
+040 /* store lower part in result */
+041 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+042
+043 /* get the carry */
+044 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+045
+046 /* left hand side of A[ix] * A[iy] */
+047 tmpx = a->dp[ix];
+048
+049 /* alias for where to store the results */
+050 tmpt = t.dp + (2*ix + 1);
+051
+052 for (iy = ix + 1; iy < pa; iy++) \{
+053 /* first calculate the product */
+054 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+055
+056 /* now calculate the double precision result, note we use
+057 * addition instead of *2 since it's easier to optimize
+058 */
+059 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
+060
+061 /* store lower part */
+062 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+063
+064 /* get carry */
+065 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+066 \}
+067 /* propagate upwards */
+068 while (u != ((mp_digit) 0)) \{
+069 r = ((mp_word) *tmpt) + ((mp_word) u);
+070 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+071 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+072 \}
+073 \}
+074
+075 mp_clamp (&t);
+076 mp_exch (&t, b);
+077 mp_clear (&t);
+078 return MP_OKAY;
+079 \}
+080 #endif
+\end{alltt}
+\end{small}
+
+Inside the outer loop (\textit{see line 34}) the square term is calculated on line 37. Line 44 extracts the carry from the square
+term. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines 47 and 50 respectively. The doubling is performed using two
+additions (\textit{see line 59}) since it is usually faster than shifting,if not at least as fast.
+
+\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop. Squaring has an additional
+drawback that it must double the product inside the inner loop as well. As for multiplication, the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry
+propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
+
+However, we cannot simply double all of the columns, since the squares appear only once per row. The most practical solution is to have two mp\_word
+arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and carry propagation can be
+moved to a $O(n)$ work level outside the $O(n^2)$ level.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+Place two arrays of \textbf{MP\_WARRAY} mp\_words named $\hat W$ and $\hat {X}$ on the stack. \\
+1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\
+2. If step 1 failed return(\textit{MP\_MEM}). \\
+3. for $ix$ from $0$ to $2a.used + 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+\hspace{3mm}3.2 $\hat {X}_{ix} \leftarrow 0$ \\
+4. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}Compute the square.\\
+\hspace{3mm}4.1 $\hat {X}_{ix+ix} \leftarrow \left ( a_{ix} \right )^2$ \\
+\\
+\hspace{3mm}Compute the double products.\\
+\hspace{3mm}4.2 for $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}a_{iy}$ \\
+5. $oldused \leftarrow b.used$ \\
+6. $b.used \leftarrow 2a.used + 1$ \\
+\\
+Double the products and propagate the carries simultaneously. \\
+7. $\hat W_0 \leftarrow 2 \hat W_0 + \hat {X}_0$ \\
+8. for $ix$ from $1$ to $2a.used$ do \\
+\hspace{3mm}8.1 $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ \\
+\hspace{3mm}8.2 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix - 1} / \beta \rfloor$ \\
+\hspace{3mm}8.3 $b_{ix-1} \leftarrow W_{ix-1} \mbox{ (mod }\beta\mbox{)}$ \\
+9. $b_{2a.used} \leftarrow \hat W_{2a.used} \mbox{ (mod }\beta\mbox{)}$ \\
+10. if $2a.used + 1 < oldused$ then do \\
+\hspace{3mm}10.1 for $ix$ from $2a.used + 1$ to $oldused$ do \\
+\hspace{6mm}10.1.1 $b_{ix} \leftarrow 0$ \\
+11. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm s\_mp\_sqr when
+the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
+
+This routine requires two arrays of mp\_words to be placed on the stack. The first array $\hat W$ will hold the double products and the second
+array $\hat X$ will hold the squares. Though only at most $MP\_WARRAY \over 2$ words of $\hat X$ are used, it has proven faster on most
+processors to simply make it a full size array.
+
+The loop on step 3 will zero the two arrays to prepare them for the squaring step. Step 4.1 computes the squares of the product. Note how
+it simply assigns the value into the $\hat X$ array. The nested loop on step 4.2 computes the doubles of the products. This loop
+computes the sum of the products for each column. They are not doubled until later.
+
+After the squaring loop, the products stored in $\hat W$ musted be doubled and the carries propagated forwards. It makes sense to do both
+operations at the same time. The expression $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ computes the sum of the double product and the
+squares in place.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* fast squaring
+018 *
+019 * This is the comba method where the columns of the product
+020 * are computed first then the carries are computed. This
+021 * has the effect of making a very simple inner loop that
+022 * is executed the most
+023 *
+024 * W2 represents the outer products and W the inner.
+025 *
+026 * A further optimizations is made because the inner
+027 * products are of the form "A * B * 2". The *2 part does
+028 * not need to be computed until the end which is good
+029 * because 64-bit shifts are slow!
+030 *
+031 * Based on Algorithm 14.16 on pp.597 of HAC.
+032 *
+033 */
+034 /* the jist of squaring...
+035
+036 you do like mult except the offset of the tmpx [one that starts closer to ze
+ ro]
+037 can't equal the offset of tmpy. So basically you set up iy like before then
+ you min it with
+038 (ty-tx) so that it never happens. You double all those you add in the inner
+ loop
+039
+040 After that loop you do the squares and add them in.
+041
+042 Remove W2 and don't memset W
+043
+044 */
+045
+046 int fast_s_mp_sqr (mp_int * a, mp_int * b)
+047 \{
+048 int olduse, res, pa, ix, iz;
+049 mp_digit W[MP_WARRAY], *tmpx;
+050 mp_word W1;
+051
+052 /* grow the destination as required */
+053 pa = a->used + a->used;
+054 if (b->alloc < pa) \{
+055 if ((res = mp_grow (b, pa)) != MP_OKAY) \{
+056 return res;
+057 \}
+058 \}
+059
+060 /* number of output digits to produce */
+061 W1 = 0;
+062 for (ix = 0; ix < pa; ix++) \{
+063 int tx, ty, iy;
+064 mp_word _W;
+065 mp_digit *tmpy;
+066
+067 /* clear counter */
+068 _W = 0;
+069
+070 /* get offsets into the two bignums */
+071 ty = MIN(a->used-1, ix);
+072 tx = ix - ty;
+073
+074 /* setup temp aliases */
+075 tmpx = a->dp + tx;
+076 tmpy = a->dp + ty;
+077
+078 /* this is the number of times the loop will iterrate, essentially its
+
+079 while (tx++ < a->used && ty-- >= 0) \{ ... \}
+080 */
+081 iy = MIN(a->used-tx, ty+1);
+082
+083 /* now for squaring tx can never equal ty
+084 * we halve the distance since they approach at a rate of 2x
+085 * and we have to round because odd cases need to be executed
+086 */
+087 iy = MIN(iy, (ty-tx+1)>>1);
+088
+089 /* execute loop */
+090 for (iz = 0; iz < iy; iz++) \{
+091 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+092 \}
+093
+094 /* double the inner product and add carry */
+095 _W = _W + _W + W1;
+096
+097 /* even columns have the square term in them */
+098 if ((ix&1) == 0) \{
+099 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
+100 \}
+101
+102 /* store it */
+103 W[ix] = _W;
+104
+105 /* make next carry */
+106 W1 = _W >> ((mp_word)DIGIT_BIT);
+107 \}
+108
+109 /* setup dest */
+110 olduse = b->used;
+111 b->used = a->used+a->used;
+112
+113 \{
+114 mp_digit *tmpb;
+115 tmpb = b->dp;
+116 for (ix = 0; ix < pa; ix++) \{
+117 *tmpb++ = W[ix] & MP_MASK;
+118 \}
+119
+120 /* clear unused digits [that existed in the old copy of c] */
+121 for (; ix < olduse; ix++) \{
+122 *tmpb++ = 0;
+123 \}
+124 \}
+125 mp_clamp (b);
+126 return MP_OKAY;
+127 \}
+128 #endif
+\end{alltt}
+\end{small}
+
+-- Write something deep and insightful later, Tom.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception
+is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. Instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations, squaring operations are performed instead.
+
+\subsection{Karatsuba Squaring}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a
+number with the following equation.
+
+\begin{equation}
+h(x) = a^2x^2 + \left (a^2 + b^2 - (a - b)^2 \right )x + b^2
+\end{equation}
+
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a - b)^2$. As in
+Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
+$O \left ( n^{lg(3)} \right )$.
+
+If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
+instead? The answer to this arises from the cutoff point for squaring. As in multiplication there exists a cutoff point, at which the
+time required for a Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff
+point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.
+
+Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared.
+The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm. If Karatsuba multiplication
+were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1\beta^B + x0$ \\
+3. $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7. $x1x1 \leftarrow x1^2$ \\
+8. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+9. $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11. $t1 \leftarrow t2 - t1$ \\
+\\
+Compute final product. \\
+12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14. $t1 \leftarrow t1 + x0x0$ \\
+15. $b \leftarrow t1 + x1x1$ \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very similar to the Karatsuba based
+multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
+
+The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
+placed just below the middle. Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
+
+By expanding $\left (x1 - x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $x1^2 + x0^2 - (x1 - x0)^2 = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster. Assuming no further recursions occur, the difference can be estimated with the following inequality.
+
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}.
+
+\begin{equation}
+5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+${5n \over 3} + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\
+${5 \over 3} + 3n + 3$ & $<$ & ${1 \over 3} + 6n$ \\
+${13 \over 9}$ & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 2$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a
+ratio of 1:7. } than simpler operations such as addition.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* Karatsuba squaring, computes b = a*a using three
+018 * half size squarings
+019 *
+020 * See comments of karatsuba_mul for details. It
+021 * is essentially the same algorithm but merely
+022 * tuned to perform recursive squarings.
+023 */
+024 int mp_karatsuba_sqr (mp_int * a, mp_int * b)
+025 \{
+026 mp_int x0, x1, t1, t2, x0x0, x1x1;
+027 int B, err;
+028
+029 err = MP_MEM;
+030
+031 /* min # of digits */
+032 B = a->used;
+033
+034 /* now divide in two */
+035 B = B >> 1;
+036
+037 /* init copy all the temps */
+038 if (mp_init_size (&x0, B) != MP_OKAY)
+039 goto ERR;
+040 if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+041 goto X0;
+042
+043 /* init temps */
+044 if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
+045 goto X1;
+046 if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
+047 goto T1;
+048 if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
+049 goto T2;
+050 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
+051 goto X0X0;
+052
+053 \{
+054 register int x;
+055 register mp_digit *dst, *src;
+056
+057 src = a->dp;
+058
+059 /* now shift the digits */
+060 dst = x0.dp;
+061 for (x = 0; x < B; x++) \{
+062 *dst++ = *src++;
+063 \}
+064
+065 dst = x1.dp;
+066 for (x = B; x < a->used; x++) \{
+067 *dst++ = *src++;
+068 \}
+069 \}
+070
+071 x0.used = B;
+072 x1.used = a->used - B;
+073
+074 mp_clamp (&x0);
+075
+076 /* now calc the products x0*x0 and x1*x1 */
+077 if (mp_sqr (&x0, &x0x0) != MP_OKAY)
+078 goto X1X1; /* x0x0 = x0*x0 */
+079 if (mp_sqr (&x1, &x1x1) != MP_OKAY)
+080 goto X1X1; /* x1x1 = x1*x1 */
+081
+082 /* now calc (x1-x0)**2 */
+083 if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+084 goto X1X1; /* t1 = x1 - x0 */
+085 if (mp_sqr (&t1, &t1) != MP_OKAY)
+086 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
+087
+088 /* add x0y0 */
+089 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
+090 goto X1X1; /* t2 = x0x0 + x1x1 */
+091 if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+092 goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
+093
+094 /* shift by B */
+095 if (mp_lshd (&t1, B) != MP_OKAY)
+096 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
+097 if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
+098 goto X1X1; /* x1x1 = x1x1 << 2*B */
+099
+100 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
+101 goto X1X1; /* t1 = x0x0 + t1 */
+102 if (mp_add (&t1, &x1x1, b) != MP_OKAY)
+103 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
+104
+105 err = MP_OKAY;
+106
+107 X1X1:mp_clear (&x1x1);
+108 X0X0:mp_clear (&x0x0);
+109 T2:mp_clear (&t2);
+110 T1:mp_clear (&t1);
+111 X1:mp_clear (&x1);
+112 X0:mp_clear (&x0);
+113 ERR:
+114 return err;
+115 \}
+116 #endif
+\end{alltt}
+\end{small}
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and
+shift the input into the two halves. The loop from line 53 to line 69 has been modified since only one input exists. The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are redirected to
+the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and mp\_clears are executed normally.
+
+\textit{Last paragraph sucks. re-write! -- Tom}
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
+instead of multiplication to find the five relations.. The reader is encouraged to read the description of the latter algorithm and try to
+derive their own Toom-Cook squaring algorithm.
+
+\subsection{High Level Squaring}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\
+\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3. else \\
+\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\
+\hspace{3mm}3.3 else \\
+\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\
+4. $b.sign \leftarrow MP\_ZPOS$ \\
+5. Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes b = a*a */
+018 int
+019 mp_sqr (mp_int * a, mp_int * b)
+020 \{
+021 int res;
+022
+023 #ifdef BN_MP_TOOM_SQR_C
+024 /* use Toom-Cook? */
+025 if (a->used >= TOOM_SQR_CUTOFF) \{
+026 res = mp_toom_sqr(a, b);
+027 /* Karatsuba? */
+028 \} else
+029 #endif
+030 #ifdef BN_MP_KARATSUBA_SQR_C
+031 if (a->used >= KARATSUBA_SQR_CUTOFF) \{
+032 res = mp_karatsuba_sqr (a, b);
+033 \} else
+034 #endif
+035 \{
+036 #ifdef BN_FAST_S_MP_SQR_C
+037 /* can we use the fast comba multiplier? */
+038 if ((a->used * 2 + 1) < MP_WARRAY &&
+039 a->used <
+040 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) \{
+041 res = fast_s_mp_sqr (a, b);
+042 \} else
+043 #endif
+044 #ifdef BN_S_MP_SQR_C
+045 res = s_mp_sqr (a, b);
+046 #else
+047 res = MP_VAL;
+048 #endif
+049 \}
+050 b->sign = MP_ZPOS;
+051 return res;
+052 \}
+053 #endif
+\end{alltt}
+\end{small}
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+ & that have different number of digits in Karatsuba multiplication. \\
+ & \\
+$\left [ 3 \right ] $ & In section 5.3 the fact that every column of a squaring is made up \\
+ & of double products and at most one square is stated. Prove this statement. \\
+ & \\
+$\left [ 2 \right ] $ & In the Comba squaring algorithm half of the $\hat X$ variables are not used. \\
+ & Revise algorithm fast\_s\_mp\_sqr to shrink the $\hat X$ array. \\
+ & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+ & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+ & \\
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+ & required for equation $6.7$ to be true. \\
+ & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms,
+such as factoring. Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set. A number $a$ is said to be \textit{reduced}
+modulo another number $b$ by finding the remainder of the division $a/b$. Full integer division with remainder is a topic to be covered
+in~\ref{sec:division}.
+
+Modular reduction is equivalent to solving for $r$ in the following equation. $a = bq + r$ where $q = \lfloor a/b \rfloor$. The result
+$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$. In other vernacular $r$ is known as the
+``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.
+
+Modular reductions are normally used to create either finite groups, rings or fields. The most common usage for performance driven modular reductions
+is in modular exponentiation algorithms. That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. This operation is used in the
+RSA and Diffie-Hellman public key algorithms, for example. Modular multiplication and squaring also appears as a fundamental operation in
+Elliptic Curve cryptographic algorithms. As will be discussed in the subsequent chapter there exist fast algorithms for computing modular
+exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications. These algorithms will produce partial results in the
+range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms. They have also been used to create redundancy check
+algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper
+targeted the DSP56K processor.} intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal. However,
+DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.
+It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed
+point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were
+fairly slow if not unavailable. The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit
+integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by
+moving the implied decimal point back to where it should be. For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted
+to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the
+fixed point representation of $5$. The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.
+
+This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
+of two fixed point numbers. Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal. If $2^q$ is
+equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic. Using this fact dividing an integer
+$a$ by another integer $b$ can be achieved with the following expression.
+
+\begin{equation}
+\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations
+are considerably faster than division on most processors.
+
+Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct. The value of $2^q$ must be close to or ideally
+larger than the dividend. In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
+to work correctly. Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. In the context of Barrett
+reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
+precision.
+
+Let $n$ represent the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
+another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to
+reduce the number.
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation. The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
+By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best
+that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.
+See~\ref{sec:division} for further details.} might as well be used in its place. The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.
+
+Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent
+the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if
+two $m$-digit numbers have been multiplied. Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the
+$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$. Another way to
+express this is by re-writing $a$ as two parts. If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then
+${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$. Since $a'$ is bound to be less than $b$ the quotient
+is bound by $0 \le {a' \over b} < 1$.
+
+Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits
+``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the irrelevant digits trimmed. Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the
+exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$. If the optimization had not been performed the divisor
+would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two. The original fixed point quotient can be off
+by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
+can be off by an additional value of one for a total of at most two. This implies that
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally subtracting
+$b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications, ignoring the subtractions required. In total $2m^2 + m$ single precision multiplications are required to find the residue.
+This is considerably faster than the original attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
+represent the value of which the residue is desired. In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.
+With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$
+is found.
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for
+optimization.
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision
+multiplications. If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.
+In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.
+
+The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
+\textbf{Output}. $a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$. \\
+1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\
+2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\
+4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5. $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7. $a \leftarrow a - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8. If $a < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3 $a \leftarrow a + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9. While $a \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1 $c \leftarrow a - b$ \\
+10. Clear $q$. \\
+11. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of HAC
+\cite[pp. 602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}. The algorithm has several restrictions and assumptions which must
+be adhered to for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision. If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
+Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The value of $\mu$ is passed as an argument to this
+algorithm and is assumed to be calculated and stored before the algorithm is used.
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. The algorithm is based on $s\_mp\_mul\_digs$ except that
+instead of stopping at a given level of precision it starts at a given level of precision. This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.
+
+While it is known that
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied
+``borrow'' from the higher digits might leave a negative result. After the multiple of the modulus has been subtracted from $a$ the residue must be
+fixed up in case it is negative. The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is
+performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* reduces x mod m, assumes 0 < x < m**2, mu is
+018 * precomputed via mp_reduce_setup.
+019 * From HAC pp.604 Algorithm 14.42
+020 */
+021 int
+022 mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+023 \{
+024 mp_int q;
+025 int res, um = m->used;
+026
+027 /* q = x */
+028 if ((res = mp_init_copy (&q, x)) != MP_OKAY) \{
+029 return res;
+030 \}
+031
+032 /* q1 = x / b**(k-1) */
+033 mp_rshd (&q, um - 1);
+034
+035 /* according to HAC this optimization is ok */
+036 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) \{
+037 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) \{
+038 goto CLEANUP;
+039 \}
+040 \} else \{
+041 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
+042 if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) \{
+043 goto CLEANUP;
+044 \}
+045 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
+046 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) \{
+047 goto CLEANUP;
+048 \}
+049 #else
+050 \{
+051 res = MP_VAL;
+052 goto CLEANUP;
+053 \}
+054 #endif
+055 \}
+056
+057 /* q3 = q2 / b**(k+1) */
+058 mp_rshd (&q, um + 1);
+059
+060 /* x = x mod b**(k+1), quick (no division) */
+061 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) \{
+062 goto CLEANUP;
+063 \}
+064
+065 /* q = q * m mod b**(k+1), quick (no division) */
+066 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) \{
+067 goto CLEANUP;
+068 \}
+069
+070 /* x = x - q */
+071 if ((res = mp_sub (x, &q, x)) != MP_OKAY) \{
+072 goto CLEANUP;
+073 \}
+074
+075 /* If x < 0, add b**(k+1) to it */
+076 if (mp_cmp_d (x, 0) == MP_LT) \{
+077 mp_set (&q, 1);
+078 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+079 goto CLEANUP;
+080 if ((res = mp_add (x, &q, x)) != MP_OKAY)
+081 goto CLEANUP;
+082 \}
+083
+084 /* Back off if it's too big */
+085 while (mp_cmp (x, m) != MP_LT) \{
+086 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) \{
+087 goto CLEANUP;
+088 \}
+089 \}
+090
+091 CLEANUP:
+092 mp_clear (&q);
+093
+094 return res;
+095 \}
+096 #endif
+\end{alltt}
+\end{small}
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves
+the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus. In the source code this is evaluated on lines 36 to 44 where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}. mp\_int $a$ ($a > 1$) \\
+\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\
+2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which
+is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* pre-calculate the value required for Barrett reduction
+018 * For a given modulus "b" it calulates the value required in "a"
+019 */
+020 int mp_reduce_setup (mp_int * a, mp_int * b)
+021 \{
+022 int res;
+023
+024 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) \{
+025 return res;
+026 \}
+027 return mp_div (a, b, a, NULL);
+028 \}
+029 #endif
+\end{alltt}
+\end{small}
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL. As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the
+remainder to be passed as NULL meaning to ignore the value.
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
+form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
+residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of
+$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$. Another way
+to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$. Adding zero will not change the value of the residue.
+
+\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. Actually
+this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to
+multiplication by $k^{-1}$ modulo $n$.
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1 If $x$ is odd then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\
+\hspace{3mm}1.2 $x \leftarrow x/2$ \\
+2. Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two. Since
+$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$. Let $r$ represent the
+final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
+$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
+\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
+\hline $2$ & $x/2 = 1453$ \\
+\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
+\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
+\hline $5$ & $x/2 = 278$ \\
+\hline $6$ & $x/2 = 139$ \\
+\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
+\hline $8$ & $x/2 = 99$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (I)}
+\label{fig:MONT1}
+\end{figure}
+
+Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 8$. The result of the algorithm $r = 99$ is
+congruent to the value of $2^{-8} \cdot 5555 \mbox{ (mod }257\mbox{)}$. When $r$ is multiplied by $2^8$ modulo $257$ the correct residue
+$r \equiv 158$ is produced.
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\
+2. Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|r|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
+\hline -- & $5555$ & $1010110110011$ \\
+\hline $1$ & $x + 2^{0}n = 5812$ & $1011010110100$ \\
+\hline $2$ & $5812$ & $1011010110100$ \\
+\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
+\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
+\hline $5$ & $8896$ & $10001011000000$ \\
+\hline $6$ & $8896$ & $10001011000000$ \\
+\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
+\hline $8$ & $25344$ & $110001100000000$ \\
+\hline -- & $x/2^k = 99$ & \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (II)}
+\label{fig:MONT2}
+\end{figure}
+
+Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 8$.
+With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the
+loop. Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed. In those iterations the $t$'th bit of $x$ is
+zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\
+2. Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This
+problem breaks down to solving the following congruency.
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
+extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
+
+For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline -- & $33$ & --\\
+\hline $0$ & $33 + \mu n = 50$ & $1$ \\
+\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
+which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
+Montgomery reductions.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. $digs \leftarrow 2n.used + 1$ \\
+2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4. $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5. For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2 $u \leftarrow 0$ \\
+\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4 While $u > 0$ do \\
+\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7. If $x \ge n$ then \\
+\hspace{3mm}7.1 $x \leftarrow x - n$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The
+restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as
+for the Barrett algorithm. Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$. $\rho$ must be calculated in
+advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$.
+
+Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on
+the size of the input. This algorithm is discussed in sub-section 6.3.3.
+
+Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and
+multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
+in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes xR**-1 == x (mod N) via Montgomery Reduction */
+018 int
+019 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+020 \{
+021 int ix, res, digs;
+022 mp_digit mu;
+023
+024 /* can the fast reduction [comba] method be used?
+025 *
+026 * Note that unlike in mul you're safely allowed *less*
+027 * than the available columns [255 per default] since carries
+028 * are fixed up in the inner loop.
+029 */
+030 digs = n->used * 2 + 1;
+031 if ((digs < MP_WARRAY) &&
+032 n->used <
+033 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+034 return fast_mp_montgomery_reduce (x, n, rho);
+035 \}
+036
+037 /* grow the input as required */
+038 if (x->alloc < digs) \{
+039 if ((res = mp_grow (x, digs)) != MP_OKAY) \{
+040 return res;
+041 \}
+042 \}
+043 x->used = digs;
+044
+045 for (ix = 0; ix < n->used; ix++) \{
+046 /* mu = ai * rho mod b
+047 *
+048 * The value of rho must be precalculated via
+049 * montgomery_setup() such that
+050 * it equals -1/n0 mod b this allows the
+051 * following inner loop to reduce the
+052 * input one digit at a time
+053 */
+054 mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+055
+056 /* a = a + mu * m * b**i */
+057 \{
+058 register int iy;
+059 register mp_digit *tmpn, *tmpx, u;
+060 register mp_word r;
+061
+062 /* alias for digits of the modulus */
+063 tmpn = n->dp;
+064
+065 /* alias for the digits of x [the input] */
+066 tmpx = x->dp + ix;
+067
+068 /* set the carry to zero */
+069 u = 0;
+070
+071 /* Multiply and add in place */
+072 for (iy = 0; iy < n->used; iy++) \{
+073 /* compute product and sum */
+074 r = ((mp_word)mu) * ((mp_word)*tmpn++) +
+075 ((mp_word) u) + ((mp_word) * tmpx);
+076
+077 /* get carry */
+078 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+079
+080 /* fix digit */
+081 *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
+082 \}
+083 /* At this point the ix'th digit of x should be zero */
+084
+085
+086 /* propagate carries upwards as required*/
+087 while (u) \{
+088 *tmpx += u;
+089 u = *tmpx >> DIGIT_BIT;
+090 *tmpx++ &= MP_MASK;
+091 \}
+092 \}
+093 \}
+094
+095 /* at this point the n.used'th least
+096 * significant digits of x are all zero
+097 * which means we can shift x to the
+098 * right by n.used digits and the
+099 * residue is unchanged.
+100 */
+101
+102 /* x = x/b**n.used */
+103 mp_clamp(x);
+104 mp_rshd (x, n->used);
+105
+106 /* if x >= n then x = x - n */
+107 if (mp_cmp_mag (x, n) != MP_LT) \{
+108 return s_mp_sub (x, n, x);
+109 \}
+110
+111 return MP_OKAY;
+112 \}
+113 #endif
+\end{alltt}
+\end{small}
+
+This is the baseline implementation of the Montgomery reduction algorithm. Lines 30 to 35 determine if the Comba based
+routine can be used instead. Line 48 computes the value of $\mu$ for that particular iteration of the outer loop.
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times.
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple.
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2. For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\
+3. For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4. for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5. for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6. for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7. if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\
+8. $x.used \leftarrow n.used + 1$ \\
+9. Clamp excessive digits of $x$. \\
+10. If $x \ge n$ then \\
+\hspace{3mm}10.1 $x \leftarrow x - n$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions
+on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the
+contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step
+4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note
+how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propagate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_mp\_montgomery\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes xR**-1 == x (mod N) via Montgomery Reduction
+018 *
+019 * This is an optimized implementation of montgomery_reduce
+020 * which uses the comba method to quickly calculate the columns of the
+021 * reduction.
+022 *
+023 * Based on Algorithm 14.32 on pp.601 of HAC.
+024 */
+025 int
+026 fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+027 \{
+028 int ix, res, olduse;
+029 mp_word W[MP_WARRAY];
+030
+031 /* get old used count */
+032 olduse = x->used;
+033
+034 /* grow a as required */
+035 if (x->alloc < n->used + 1) \{
+036 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) \{
+037 return res;
+038 \}
+039 \}
+040
+041 /* first we have to get the digits of the input into
+042 * an array of double precision words W[...]
+043 */
+044 \{
+045 register mp_word *_W;
+046 register mp_digit *tmpx;
+047
+048 /* alias for the W[] array */
+049 _W = W;
+050
+051 /* alias for the digits of x*/
+052 tmpx = x->dp;
+053
+054 /* copy the digits of a into W[0..a->used-1] */
+055 for (ix = 0; ix < x->used; ix++) \{
+056 *_W++ = *tmpx++;
+057 \}
+058
+059 /* zero the high words of W[a->used..m->used*2] */
+060 for (; ix < n->used * 2 + 1; ix++) \{
+061 *_W++ = 0;
+062 \}
+063 \}
+064
+065 /* now we proceed to zero successive digits
+066 * from the least significant upwards
+067 */
+068 for (ix = 0; ix < n->used; ix++) \{
+069 /* mu = ai * m' mod b
+070 *
+071 * We avoid a double precision multiplication (which isn't required)
+072 * by casting the value down to a mp_digit. Note this requires
+073 * that W[ix-1] have the carry cleared (see after the inner loop)
+074 */
+075 register mp_digit mu;
+076 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
+077
+078 /* a = a + mu * m * b**i
+079 *
+080 * This is computed in place and on the fly. The multiplication
+081 * by b**i is handled by offseting which columns the results
+082 * are added to.
+083 *
+084 * Note the comba method normally doesn't handle carries in the
+085 * inner loop In this case we fix the carry from the previous
+086 * column since the Montgomery reduction requires digits of the
+087 * result (so far) [see above] to work. This is
+088 * handled by fixing up one carry after the inner loop. The
+089 * carry fixups are done in order so after these loops the
+090 * first m->used words of W[] have the carries fixed
+091 */
+092 \{
+093 register int iy;
+094 register mp_digit *tmpn;
+095 register mp_word *_W;
+096
+097 /* alias for the digits of the modulus */
+098 tmpn = n->dp;
+099
+100 /* Alias for the columns set by an offset of ix */
+101 _W = W + ix;
+102
+103 /* inner loop */
+104 for (iy = 0; iy < n->used; iy++) \{
+105 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
+106 \}
+107 \}
+108
+109 /* now fix carry for next digit, W[ix+1] */
+110 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+111 \}
+112
+113 /* now we have to propagate the carries and
+114 * shift the words downward [all those least
+115 * significant digits we zeroed].
+116 */
+117 \{
+118 register mp_digit *tmpx;
+119 register mp_word *_W, *_W1;
+120
+121 /* nox fix rest of carries */
+122
+123 /* alias for current word */
+124 _W1 = W + ix;
+125
+126 /* alias for next word, where the carry goes */
+127 _W = W + ++ix;
+128
+129 for (; ix <= n->used * 2 + 1; ix++) \{
+130 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+131 \}
+132
+133 /* copy out, A = A/b**n
+134 *
+135 * The result is A/b**n but instead of converting from an
+136 * array of mp_word to mp_digit than calling mp_rshd
+137 * we just copy them in the right order
+138 */
+139
+140 /* alias for destination word */
+141 tmpx = x->dp;
+142
+143 /* alias for shifted double precision result */
+144 _W = W + n->used;
+145
+146 for (ix = 0; ix < n->used + 1; ix++) \{
+147 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
+148 \}
+149
+150 /* zero oldused digits, if the input a was larger than
+151 * m->used+1 we'll have to clear the digits
+152 */
+153 for (; ix < olduse; ix++) \{
+154 *tmpx++ = 0;
+155 \}
+156 \}
+157
+158 /* set the max used and clamp */
+159 x->used = n->used + 1;
+160 mp_clamp (x);
+161
+162 /* if A >= m then A = A - m */
+163 if (mp_cmp_mag (x, n) != MP_LT) \{
+164 return s_mp_sub (x, n, x);
+165 \}
+166 return MP_OKAY;
+167 \}
+168 #endif
+\end{alltt}
+\end{small}
+
+The $\hat W$ array is first filled with digits of $x$ on line 48 then the rest of the digits are zeroed on line 55. Both loops share
+the same alias variables to make the code easier to read.
+
+The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line 110 fixes the carry
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line 109 propagates the rest of the carries upwards through the columns. The for loop on line 126 reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1. $b \leftarrow n_0$ \\
+2. If $b$ is even return(\textit{MP\_VAL}) \\
+3. $x \leftarrow ((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4. for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
+\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\
+5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
+to calculate $1/n_0$ when $\beta$ is a power of two.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* setups the montgomery reduction stuff */
+018 int
+019 mp_montgomery_setup (mp_int * n, mp_digit * rho)
+020 \{
+021 mp_digit x, b;
+022
+023 /* fast inversion mod 2**k
+024 *
+025 * Based on the fact that
+026 *
+027 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
+028 * => 2*X*A - X*X*A*A = 1
+029 * => 2*(1) - (1) = 1
+030 */
+031 b = n->dp[0];
+032
+033 if ((b & 1) == 0) \{
+034 return MP_VAL;
+035 \}
+036
+037 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+038 x *= 2 - b * x; /* here x*a==1 mod 2**8 */
+039 #if !defined(MP_8BIT)
+040 x *= 2 - b * x; /* here x*a==1 mod 2**16 */
+041 #endif
+042 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
+043 x *= 2 - b * x; /* here x*a==1 mod 2**32 */
+044 #endif
+045 #ifdef MP_64BIT
+046 x *= 2 - b * x; /* here x*a==1 mod 2**64 */
+047 #endif
+048
+049 /* rho = -1/m mod b */
+050 *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
+051
+052 return MP_OKAY;
+053 \}
+054 #endif
+\end{alltt}
+\end{small}
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.
+
+\section{The Diminished Radix Algorithm}
+The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
+or Montgomery methods for certain forms of moduli. The technique is based on the following simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that
+then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
+of the above equation is very simple. First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces modulo $n - k$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
+into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}. Integer $x$, $n$, $k$ \\
+\textbf{Output}. $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1. $q \leftarrow \lfloor x / n \rfloor$ \\
+2. $q \leftarrow k \cdot q$ \\
+3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4. $x \leftarrow x + q$ \\
+5. If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2 Goto step 1. \\
+6. Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation}
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$. By step four the sum $x + q$ is bounded by
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
+range $0 \le x < (n - k - 1)^2$.
+
+\begin{figure}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|}
+\hline
+$x = 123456789, n = 256, k = 3$ \\
+\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
+$q \leftarrow q*k = 1446759$ \\
+$x \leftarrow x \mbox{ mod } n = 21$ \\
+$x \leftarrow x + q = 1446780$ \\
+$x \leftarrow x - (n - k) = 1446527$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
+$q \leftarrow q*k = 16950$ \\
+$x \leftarrow x \mbox{ mod } n = 127$ \\
+$x \leftarrow x + q = 17077$ \\
+$x \leftarrow x - (n - k) = 16824$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 65$ \\
+$q \leftarrow q*k = 195$ \\
+$x \leftarrow x \mbox{ mod } n = 184$ \\
+$x \leftarrow x + q = 379$ \\
+$x \leftarrow x - (n - k) = 126$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example Diminished Radix Reduction}
+\label{fig:EXDR}
+\end{figure}
+
+Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$. Note that even while $x$
+is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast. In this case only
+three passes were required to find the residue $x \equiv 126$.
+
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other
+modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
+
+Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used.
+Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right. Similarly division
+by two (\textit{or powers of two}) is very simple for binary computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
+
+However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be
+performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might
+as well be a single digit. The smaller the value of $k$ is the faster the algorithm will be.
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$. This algorithm can reduce
+an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition
+of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
+exponentiations are performed.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
+\textbf{Output}. $x \mbox{ mod } n$ \\
+\hline \\
+1. $m \leftarrow n.used$ \\
+2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3. $\mu \leftarrow 0$ \\
+4. for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. $x_{m} \leftarrow \mu$ \\
+6. for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\
+7. Clamp excess digits of $x$. \\
+8. If $x \ge n$ then \\
+\hspace{3mm}8.1 $x \leftarrow x - n$ \\
+\hspace{3mm}8.2 Goto step 3. \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.
+
+This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization. The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4. The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed. Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
+$x$ before the addition of the multiple of the upper half.
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
+018 *
+019 * Based on algorithm from the paper
+020 *
+021 * "Generating Efficient Primes for Discrete Log Cryptosystems"
+022 * Chae Hoon Lim, Pil Joong Lee,
+023 * POSTECH Information Research Laboratories
+024 *
+025 * The modulus must be of a special format [see manual]
+026 *
+027 * Has been modified to use algorithm 7.10 from the LTM book instead
+028 *
+029 * Input x must be in the range 0 <= x <= (n-1)**2
+030 */
+031 int
+032 mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+033 \{
+034 int err, i, m;
+035 mp_word r;
+036 mp_digit mu, *tmpx1, *tmpx2;
+037
+038 /* m = digits in modulus */
+039 m = n->used;
+040
+041 /* ensure that "x" has at least 2m digits */
+042 if (x->alloc < m + m) \{
+043 if ((err = mp_grow (x, m + m)) != MP_OKAY) \{
+044 return err;
+045 \}
+046 \}
+047
+048 /* top of loop, this is where the code resumes if
+049 * another reduction pass is required.
+050 */
+051 top:
+052 /* aliases for digits */
+053 /* alias for lower half of x */
+054 tmpx1 = x->dp;
+055
+056 /* alias for upper half of x, or x/B**m */
+057 tmpx2 = x->dp + m;
+058
+059 /* set carry to zero */
+060 mu = 0;
+061
+062 /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
+063 for (i = 0; i < m; i++) \{
+064 r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+065 *tmpx1++ = (mp_digit)(r & MP_MASK);
+066 mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
+067 \}
+068
+069 /* set final carry */
+070 *tmpx1++ = mu;
+071
+072 /* zero words above m */
+073 for (i = m + 1; i < x->used; i++) \{
+074 *tmpx1++ = 0;
+075 \}
+076
+077 /* clamp, sub and return */
+078 mp_clamp (x);
+079
+080 /* if x >= n then subtract and reduce again
+081 * Each successive "recursion" makes the input smaller and smaller.
+082 */
+083 if (mp_cmp_mag (x, n) != MP_LT) \{
+084 s_mp_sub(x, n, x);
+085 goto top;
+086 \}
+087 return MP_OKAY;
+088 \}
+089 #endif
+\end{alltt}
+\end{small}
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line 51 is where
+the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free. The loop on line 63 performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line 70 the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line 73 the
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
+With the same logic at line 84 the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = \beta - n_0$ \\
+\hline \\
+1. $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines the setup value */
+018 void mp_dr_setup(mp_int *a, mp_digit *d)
+019 \{
+020 /* the casts are required if DIGIT_BIT is one less than
+021 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+022 */
+023 *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+024 ((mp_word)a->dp[0]));
+025 \}
+026
+027 #endif
+\end{alltt}
+\end{small}
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1. If $n.used < 2$ then return($0$). \\
+2. for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\
+3. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to
+step 3 then $n$ must be of Diminished Radix form.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_is\_modulus.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines if a number is a valid DR modulus */
+018 int mp_dr_is_modulus(mp_int *a)
+019 \{
+020 int ix;
+021
+022 /* must be at least two digits */
+023 if (a->used < 2) \{
+024 return 0;
+025 \}
+026
+027 /* must be of the form b**k - a [a <= b] so all
+028 * but the first digit must be equal to -1 (mod b).
+029 */
+030 for (ix = 1; ix < a->used; ix++) \{
+031 if (a->dp[ix] != MP_MASK) \{
+032 return 0;
+033 \}
+034 \}
+035 return 1;
+036 \}
+037
+038 #endif
+\end{alltt}
+\end{small}
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+2. While $a \ge n$ do \\
+\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5 If $a \ge n$ then do \\
+\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$. Division by $2^p$ is emulated with a right
+shift which makes the algorithm fairly inexpensive to use.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* reduces a modulo n where n is of the form 2**p - d */
+018 int
+019 mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
+020 \{
+021 mp_int q;
+022 int p, res;
+023
+024 if ((res = mp_init(&q)) != MP_OKAY) \{
+025 return res;
+026 \}
+027
+028 p = mp_count_bits(n);
+029 top:
+030 /* q = a/2**p, a = a mod 2**p */
+031 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) \{
+032 goto ERR;
+033 \}
+034
+035 if (d != 1) \{
+036 /* q = q * d */
+037 if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) \{
+038 goto ERR;
+039 \}
+040 \}
+041
+042 /* a = a + q */
+043 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) \{
+044 goto ERR;
+045 \}
+046
+047 if (mp_cmp_mag(a, n) != MP_LT) \{
+048 s_mp_sub(a, n, a);
+049 goto top;
+050 \}
+051
+052 ERR:
+053 mp_clear(&q);
+054 return res;
+055 \}
+056
+057 #endif
+\end{alltt}
+\end{small}
+
+The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$. The call to mp\_div\_2d
+on line 31 calculates both the quotient $q$ and the remainder $a$ required. By doing both in a single function call the code size
+is kept fairly small. The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
+any multiplications.
+
+The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are
+positive. By using the unsigned versions the overhead is kept to a minimum.
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = 2^p - n$ \\
+\hline
+1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4. $k \leftarrow x_0$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k. By making a temporary variable $x$ equal to $2^p$ a subtraction
+is sufficient to solve for $k$. Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines the setup value */
+018 int
+019 mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+020 \{
+021 int res, p;
+022 mp_int tmp;
+023
+024 if ((res = mp_init(&tmp)) != MP_OKAY) \{
+025 return res;
+026 \}
+027
+028 p = mp_count_bits(a);
+029 if ((res = mp_2expt(&tmp, p)) != MP_OKAY) \{
+030 mp_clear(&tmp);
+031 return res;
+032 \}
+033
+034 if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) \{
+035 mp_clear(&tmp);
+036 return res;
+037 \}
+038
+039 *d = tmp.dp[0];
+040 mp_clear(&tmp);
+041 return MP_OKAY;
+042 \}
+043 #endif
+\end{alltt}
+\end{small}
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item The number has only one digit.
+\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$. If the input is only
+one digit than it will always be of the correct form. Otherwise all of the bits above the first digit must be one. This arises from the fact
+that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
+significant bit. The resulting sum will be a power of two.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if of proper form, $0$ otherwise \\
+\hline
+1. If $n.used = 0$ then return($0$). \\
+2. If $n.used = 1$ then return($1$). \\
+3. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+4. for $x$ from $lg(\beta)$ to $p$ do \\
+\hspace{3mm}4.1 If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
+5. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_is\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_is\_2k.}
+This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_is\_2k.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines if mp_reduce_2k can be used */
+018 int mp_reduce_is_2k(mp_int *a)
+019 \{
+020 int ix, iy, iw;
+021 mp_digit iz;
+022
+023 if (a->used == 0) \{
+024 return 0;
+025 \} else if (a->used == 1) \{
+026 return 1;
+027 \} else if (a->used > 1) \{
+028 iy = mp_count_bits(a);
+029 iz = 1;
+030 iw = 1;
+031
+032 /* Test every bit from the second digit up, must be 1 */
+033 for (ix = DIGIT_BIT; ix < iy; ix++) \{
+034 if ((a->dp[iw] & iz) == 0) \{
+035 return 0;
+036 \}
+037 iz <<= 1;
+038 if (iz > (mp_digit)MP_MASK) \{
+039 ++iw;
+040 iz = 1;
+041 \}
+042 \}
+043 \}
+044 return 1;
+045 \}
+046
+047 #endif
+\end{alltt}
+\end{small}
+
+
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\
+\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}. In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+ & calculates the correct value of $\rho$. \\
+ & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\
+ & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+ & (\textit{figure~\ref{fig:DR}}) terminates. Also prove the probability that it will \\
+ & terminate within $1 \le k \le 10$ iterations. \\
+ & \\
+\end{tabular}
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key
+cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size
+the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least
+significant bit. If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$. This observation forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
+be computed in an auxilary variable. Consider the following equivalent algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$ and $k$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\label{fig:LTOR}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.
+
+For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is
+called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature.
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended
+to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
+$b$ that are greater than three.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2. $c \leftarrow 1$ (\textit{mp\_set}) \\
+3. for $x$ from 1 to $lg(\beta)$ do \\
+\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3 $b \leftarrow b << 1$ \\
+4. Clear $g$. \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
+exponent is a fixed width.
+
+A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$. The result is set to the initial value of
+$1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first down to the least significant bit. First $c$ is invariably squared
+on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$. The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit. In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_expt\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* calculate c = a**b using a square-multiply algorithm */
+018 int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+019 \{
+020 int res, x;
+021 mp_int g;
+022
+023 if ((res = mp_init_copy (&g, a)) != MP_OKAY) \{
+024 return res;
+025 \}
+026
+027 /* set initial result */
+028 mp_set (c, 1);
+029
+030 for (x = 0; x < (int) DIGIT_BIT; x++) \{
+031 /* square */
+032 if ((res = mp_sqr (c, c)) != MP_OKAY) \{
+033 mp_clear (&g);
+034 return res;
+035 \}
+036
+037 /* if the bit is set multiply */
+038 if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) \{
+039 if ((res = mp_mul (c, &g, c)) != MP_OKAY) \{
+040 mp_clear (&g);
+041 return res;
+042 \}
+043 \}
+044
+045 /* shift to next bit */
+046 b <<= 1;
+047 \}
+048
+049 mp_clear (&g);
+050 return MP_OKAY;
+051 \}
+052 #endif
+\end{alltt}
+\end{small}
+
+Line 28 sets the initial value of the result to $1$. Next the loop on line 30 steps through each bit of the exponent starting from
+the most significant down towards the least significant. The invariant squaring operation placed on line 32 is performed first. After
+the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set. The shift on line
+46 moves all of the bits of the exponent upwards towards the most significant location.
+
+\section{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose instead it referred to
+the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
+computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a small window on only a
+portion of the entire exponent. Consider the following modification to the basic left to right exponentiation algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\label{fig:KARY}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
+
+Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Optimal Values of $k$}
+An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$. The simplest
+approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result. Table~\ref{fig:OPTK} lists optimal values of $k$
+for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
+\hline $16$ & $2$ & $27$ & $24$ \\
+\hline $32$ & $3$ & $49$ & $48$ \\
+\hline $64$ & $3$ & $92$ & $96$ \\
+\hline $128$ & $4$ & $175$ & $192$ \\
+\hline $256$ & $4$ & $335$ & $384$ \\
+\hline $512$ & $5$ & $645$ & $768$ \\
+\hline $1024$ & $6$ & $1257$ & $1536$ \\
+\hline $2048$ & $6$ & $2452$ & $3072$ \\
+\hline $4096$ & $7$ & $4808$ & $6144$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
+\label{fig:OPTK}
+\end{figure}
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
+
+Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm~\ref{fig:KARY}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
+\hline $16$ & $3$ & $24$ & $27$ \\
+\hline $32$ & $3$ & $45$ & $49$ \\
+\hline $64$ & $4$ & $87$ & $92$ \\
+\hline $128$ & $4$ & $167$ & $175$ \\
+\hline $256$ & $5$ & $322$ & $335$ \\
+\hline $512$ & $6$ & $628$ & $645$ \\
+\hline $1024$ & $6$ & $1225$ & $1257$ \\
+\hline $2048$ & $7$ & $2403$ & $2452$ \\
+\hline $4096$ & $8$ & $4735$ & $4808$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
+\label{fig:OPTK2}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half
+the size as the previous table.
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$
+squarings. The second method requires $8$ multiplications and $18$ squarings.
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+one of the algorithms presented in chapter six.
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}). If no inverse exists the algorithm
+terminates with an error.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3. if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
+\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4. else \\
+\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm
+which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation
+except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_exptmod.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017
+018 /* this is a shell function that calls either the normal or Montgomery
+019 * exptmod functions. Originally the call to the montgomery code was
+020 * embedded in the normal function but that wasted alot of stack space
+021 * for nothing (since 99% of the time the Montgomery code would be called)
+022 */
+023 int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+024 \{
+025 int dr;
+026
+027 /* modulus P must be positive */
+028 if (P->sign == MP_NEG) \{
+029 return MP_VAL;
+030 \}
+031
+032 /* if exponent X is negative we have to recurse */
+033 if (X->sign == MP_NEG) \{
+034 #ifdef BN_MP_INVMOD_C
+035 mp_int tmpG, tmpX;
+036 int err;
+037
+038 /* first compute 1/G mod P */
+039 if ((err = mp_init(&tmpG)) != MP_OKAY) \{
+040 return err;
+041 \}
+042 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) \{
+043 mp_clear(&tmpG);
+044 return err;
+045 \}
+046
+047 /* now get |X| */
+048 if ((err = mp_init(&tmpX)) != MP_OKAY) \{
+049 mp_clear(&tmpG);
+050 return err;
+051 \}
+052 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) \{
+053 mp_clear_multi(&tmpG, &tmpX, NULL);
+054 return err;
+055 \}
+056
+057 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+058 err = mp_exptmod(&tmpG, &tmpX, P, Y);
+059 mp_clear_multi(&tmpG, &tmpX, NULL);
+060 return err;
+061 #else
+062 /* no invmod */
+063 return MP_VAL;
+064 #endif
+065 \}
+066
+067 #ifdef BN_MP_DR_IS_MODULUS_C
+068 /* is it a DR modulus? */
+069 dr = mp_dr_is_modulus(P);
+070 #else
+071 dr = 0;
+072 #endif
+073
+074 #ifdef BN_MP_REDUCE_IS_2K_C
+075 /* if not, is it a uDR modulus? */
+076 if (dr == 0) \{
+077 dr = mp_reduce_is_2k(P) << 1;
+078 \}
+079 #endif
+080
+081 /* if the modulus is odd or dr != 0 use the fast method */
+082 #ifdef BN_MP_EXPTMOD_FAST_C
+083 if (mp_isodd (P) == 1 || dr != 0) \{
+084 return mp_exptmod_fast (G, X, P, Y, dr);
+085 \} else \{
+086 #endif
+087 #ifdef BN_S_MP_EXPTMOD_C
+088 /* otherwise use the generic Barrett reduction technique */
+089 return s_mp_exptmod (G, X, P, Y);
+090 #else
+091 /* no exptmod for evens */
+092 return MP_VAL;
+093 #endif
+094 #ifdef BN_MP_EXPTMOD_FAST_C
+095 \}
+096 #endif
+097 \}
+098
+099 #endif
+\end{alltt}
+\end{small}
+
+In order to keep the algorithms in a known state the first step on line 28 is to reject any negative modulus as input. If the exponent is
+negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$. The temporary variable $tmpG$ is assigned
+the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$. The algorithm will recuse with these new values with a positive
+exponent.
+
+If the exponent is positive the algorithm resumes the exponentiation. Line 69 determines if the modulus is of the restricted Diminished Radix
+form. If it is not line 77 attempts to determine if it is of a unrestricted Diminished Radix form. The integer $dr$ will take on one
+of three values.
+
+\begin{enumerate}
+\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
+\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
+\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
+\end{enumerate}
+
+Line 67 determines if the fast modular exponentiation algorithm can be used. It is allowed if $dr \ne 0$ or if the modulus is odd. Otherwise,
+the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. $k \leftarrow lg(x)$ \\
+2. $winsize \leftarrow \left \lbrace \begin{array}{ll}
+ 2 & \mbox{if }k \le 7 \\
+ 3 & \mbox{if }7 < k \le 36 \\
+ 4 & \mbox{if }36 < k \le 140 \\
+ 5 & \mbox{if }140 < k \le 450 \\
+ 6 & \mbox{if }450 < k \le 1303 \\
+ 7 & \mbox{if }1303 < k \le 3529 \\
+ 8 & \mbox{if }3529 < k \\
+ \end{array} \right .$ \\
+3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6. $k \leftarrow 2^{winsize - 1}$ \\
+7. $M_{k} \leftarrow M_1$ \\
+8. for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
+\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10. $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12. Loop \\
+\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2 If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3 Goto step 12. \\
+\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9 $mode \leftarrow 2$ \\
+\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left. Check for residual bits of exponent. \\
+13. If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14. $y \leftarrow res$ \\
+15. Clear $res$, $mu$ and the $M$ array. \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the
+larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
+
+After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.
+\begin{enumerate}
+ \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
+ $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.
+ \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits
+ are read and a single squaring is performed. If a non-zero bit is read a new window is created.
+ \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+ downwards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit
+ is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent.
+\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and
+ the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.
+\end{enumerate}
+
+All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the
+algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.
+
+\begin{center}
+\begin{figure}[here]
+\includegraphics{pics/expt_state.ps}
+\caption{Sliding Window State Diagram}
+\label{pic:expt_state}
+\end{figure}
+\end{center}
+
+By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then
+a Left-to-Right algorithm is used to process the remaining few bits.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_exptmod.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 #ifdef MP_LOW_MEM
+018 #define TAB_SIZE 32
+019 #else
+020 #define TAB_SIZE 256
+021 #endif
+022
+023 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+024 \{
+025 mp_int M[TAB_SIZE], res, mu;
+026 mp_digit buf;
+027 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+028
+029 /* find window size */
+030 x = mp_count_bits (X);
+031 if (x <= 7) \{
+032 winsize = 2;
+033 \} else if (x <= 36) \{
+034 winsize = 3;
+035 \} else if (x <= 140) \{
+036 winsize = 4;
+037 \} else if (x <= 450) \{
+038 winsize = 5;
+039 \} else if (x <= 1303) \{
+040 winsize = 6;
+041 \} else if (x <= 3529) \{
+042 winsize = 7;
+043 \} else \{
+044 winsize = 8;
+045 \}
+046
+047 #ifdef MP_LOW_MEM
+048 if (winsize > 5) \{
+049 winsize = 5;
+050 \}
+051 #endif
+052
+053 /* init M array */
+054 /* init first cell */
+055 if ((err = mp_init(&M[1])) != MP_OKAY) \{
+056 return err;
+057 \}
+058
+059 /* now init the second half of the array */
+060 for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
+061 if ((err = mp_init(&M[x])) != MP_OKAY) \{
+062 for (y = 1<<(winsize-1); y < x; y++) \{
+063 mp_clear (&M[y]);
+064 \}
+065 mp_clear(&M[1]);
+066 return err;
+067 \}
+068 \}
+069
+070 /* create mu, used for Barrett reduction */
+071 if ((err = mp_init (&mu)) != MP_OKAY) \{
+072 goto LBL_M;
+073 \}
+074 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
+075 goto LBL_MU;
+076 \}
+077
+078 /* create M table
+079 *
+080 * The M table contains powers of the base,
+081 * e.g. M[x] = G**x mod P
+082 *
+083 * The first half of the table is not
+084 * computed though accept for M[0] and M[1]
+085 */
+086 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
+087 goto LBL_MU;
+088 \}
+089
+090 /* compute the value at M[1<<(winsize-1)] by squaring
+091 * M[1] (winsize-1) times
+092 */
+093 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
+094 goto LBL_MU;
+095 \}
+096
+097 for (x = 0; x < (winsize - 1); x++) \{
+098 if ((err = mp_sqr (&M[1 << (winsize - 1)],
+099 &M[1 << (winsize - 1)])) != MP_OKAY) \{
+100 goto LBL_MU;
+101 \}
+102 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
+103 goto LBL_MU;
+104 \}
+105 \}
+106
+107 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
+108 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
+109 */
+110 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
+111 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
+112 goto LBL_MU;
+113 \}
+114 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
+115 goto LBL_MU;
+116 \}
+117 \}
+118
+119 /* setup result */
+120 if ((err = mp_init (&res)) != MP_OKAY) \{
+121 goto LBL_MU;
+122 \}
+123 mp_set (&res, 1);
+124
+125 /* set initial mode and bit cnt */
+126 mode = 0;
+127 bitcnt = 1;
+128 buf = 0;
+129 digidx = X->used - 1;
+130 bitcpy = 0;
+131 bitbuf = 0;
+132
+133 for (;;) \{
+134 /* grab next digit as required */
+135 if (--bitcnt == 0) \{
+136 /* if digidx == -1 we are out of digits */
+137 if (digidx == -1) \{
+138 break;
+139 \}
+140 /* read next digit and reset the bitcnt */
+141 buf = X->dp[digidx--];
+142 bitcnt = (int) DIGIT_BIT;
+143 \}
+144
+145 /* grab the next msb from the exponent */
+146 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+147 buf <<= (mp_digit)1;
+148
+149 /* if the bit is zero and mode == 0 then we ignore it
+150 * These represent the leading zero bits before the first 1 bit
+151 * in the exponent. Technically this opt is not required but it
+152 * does lower the # of trivial squaring/reductions used
+153 */
+154 if (mode == 0 && y == 0) \{
+155 continue;
+156 \}
+157
+158 /* if the bit is zero and mode == 1 then we square */
+159 if (mode == 1 && y == 0) \{
+160 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+161 goto LBL_RES;
+162 \}
+163 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+164 goto LBL_RES;
+165 \}
+166 continue;
+167 \}
+168
+169 /* else we add it to the window */
+170 bitbuf |= (y << (winsize - ++bitcpy));
+171 mode = 2;
+172
+173 if (bitcpy == winsize) \{
+174 /* ok window is filled so square as required and multiply */
+175 /* square first */
+176 for (x = 0; x < winsize; x++) \{
+177 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+178 goto LBL_RES;
+179 \}
+180 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+181 goto LBL_RES;
+182 \}
+183 \}
+184
+185 /* then multiply */
+186 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
+187 goto LBL_RES;
+188 \}
+189 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+190 goto LBL_RES;
+191 \}
+192
+193 /* empty window and reset */
+194 bitcpy = 0;
+195 bitbuf = 0;
+196 mode = 1;
+197 \}
+198 \}
+199
+200 /* if bits remain then square/multiply */
+201 if (mode == 2 && bitcpy > 0) \{
+202 /* square then multiply if the bit is set */
+203 for (x = 0; x < bitcpy; x++) \{
+204 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+205 goto LBL_RES;
+206 \}
+207 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+208 goto LBL_RES;
+209 \}
+210
+211 bitbuf <<= 1;
+212 if ((bitbuf & (1 << winsize)) != 0) \{
+213 /* then multiply */
+214 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
+215 goto LBL_RES;
+216 \}
+217 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+218 goto LBL_RES;
+219 \}
+220 \}
+221 \}
+222 \}
+223
+224 mp_exch (&res, Y);
+225 err = MP_OKAY;
+226 LBL_RES:mp_clear (&res);
+227 LBL_MU:mp_clear (&mu);
+228 LBL_M:
+229 mp_clear(&M[1]);
+230 for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
+231 mp_clear (&M[x]);
+232 \}
+233 return err;
+234 \}
+235 #endif
+\end{alltt}
+\end{small}
+
+Lines 31 through 41 determine the optimal window size based on the length of the exponent in bits. The window divisions are sorted
+from smallest to greatest so that in each \textbf{if} statement only one condition must be tested. For example, by the \textbf{if} statement
+on line 33 the value of $x$ is already known to be greater than $140$.
+
+The conditional piece of code beginning on line 47 allows the window size to be restricted to five bits. This logic is used to ensure
+the table of precomputed powers of $G$ remains relatively small.
+
+The for loop on line 60 initializes the $M$ array while lines 61 and 74 compute the value of $\mu$ required for
+Barrett reduction.
+
+-- More later.
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}. integer $b$ \\
+\textbf{Output}. $a \leftarrow 2^b$ \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_2expt.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes a = 2**b
+018 *
+019 * Simple algorithm which zeroes the int, grows it then just sets one bit
+020 * as required.
+021 */
+022 int
+023 mp_2expt (mp_int * a, int b)
+024 \{
+025 int res;
+026
+027 /* zero a as per default */
+028 mp_zero (a);
+029
+030 /* grow a to accomodate the single bit */
+031 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) \{
+032 return res;
+033 \}
+034
+035 /* set the used count of where the bit will go */
+036 a->used = b / DIGIT_BIT + 1;
+037
+038 /* put the single bit in its place */
+039 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
+040
+041 return MP_OKAY;
+042 \}
+043 #endif
+\end{alltt}
+\end{small}
+
+\chapter{Higher Level Algorithms}
+
+This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package. These
+routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.
+
+The first section describes a method of integer division with remainder that is universally well known. It provides the signed division logic
+for the package. The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.
+These algorithms serve mostly to simplify other algorithms where small constants are required. The last two sections discuss how to manipulate
+various representations of integers. For example, converting from an mp\_int to a string of character.
+
+\section{Integer Division with Remainder}
+\label{sec:division}
+
+Integer division aside from modular exponentiation is the most intensive algorithm to compute. Like addition, subtraction and multiplication
+the basis of this algorithm is the long-hand division algorithm taught to school children. Throughout this discussion several common variables
+will be used. Let $x$ represent the divisor and $y$ represent the dividend. Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
+let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$. The following simple algorithm will be used to start the discussion.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
+\textbf{Input}. integer $x$ and $y$ \\
+\textbf{Output}. $q = \lfloor y/x\rfloor, r = y - xq$ \\
+\hline \\
+1. $q \leftarrow 0$ \\
+2. $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
+3. for $t$ from $n$ down to $0$ do \\
+\hspace{3mm}3.1 Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
+\hspace{3mm}3.2 $q \leftarrow q + k\beta^t$ \\
+\hspace{3mm}3.3 $y \leftarrow y - kx\beta^t$ \\
+4. $r \leftarrow y$ \\
+5. Return($q, r$) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Radix-$\beta$ Integer Division}
+\label{fig:raddiv}
+\end{figure}
+
+As children we are taught this very simple algorithm for the case of $\beta = 10$. Almost instinctively several optimizations are taught for which
+their reason of existing are never explained. For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
+
+To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and
+simultaneously $(k + 1)x\beta^t$ is greater than $y$. Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have. The habitual method
+used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient. By only using leading
+digits a much simpler division may be used to form an educated guess at what the value must be. In this case $k = \lfloor 54/23\rfloor = 2$ quickly
+arises as a possible solution. Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.
+As a result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
+
+Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder
+$y = 841 - 3x\beta = 181$. Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
+remainder $y = 181 - 7x = 20$. The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since
+$237 \cdot 23 + 20 = 5471$ is true.
+
+\subsection{Quotient Estimation}
+\label{sec:divest}
+As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend. When $p$ leading
+digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows. Technically
+speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
+dividend and divisor are zero.
+
+The value of the estimation may off by a few values in either direction and in general is fairly correct. A simplification \cite[pp. 271]{TAOCPV2}
+of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$. The estimate
+using this technique is never too small. For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
+represent the most significant digits of the dividend and divisor respectively.
+
+\textbf{Proof.}\textit{ The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to
+$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
+The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger. For all other
+cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$. The latter portion of the inequalility
+$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values. Next a series of
+inequalities will prove the hypothesis.
+
+\begin{equation}
+y - \hat k x \le y - \hat k x_s\beta^s
+\end{equation}
+
+This is trivially true since $x \ge x_s\beta^s$. Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.
+
+\begin{equation}
+y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
+\end{equation}
+
+By simplifying the previous inequality the following inequality is formed.
+
+\begin{equation}
+y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
+\end{equation}
+
+Subsequently,
+
+\begin{equation}
+y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s < x_s\beta^s \le x
+\end{equation}
+
+Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof. \textbf{QED}
+
+
+\subsection{Normalized Integers}
+For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$. By multiplying both
+$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
+remainder. The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
+lie in the domain of a single digit. Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.
+
+\begin{equation}
+{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta}
+\end{equation}
+
+At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
+
+\subsection{Radix-$\beta$ Division with Remainder}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div}. \\
+\textbf{Input}. mp\_int $a, b$ \\
+\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+1. If $b = 0$ return(\textit{MP\_VAL}). \\
+2. If $\vert a \vert < \vert b \vert$ then do \\
+\hspace{3mm}2.1 $d \leftarrow a$ \\
+\hspace{3mm}2.2 $c \leftarrow 0$ \\
+\hspace{3mm}2.3 Return(\textit{MP\_OKAY}). \\
+\\
+Setup the quotient to receive the digits. \\
+3. Grow $q$ to $a.used + 2$ digits. \\
+4. $q \leftarrow 0$ \\
+5. $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
+6. $sign \leftarrow \left \lbrace \begin{array}{ll}
+ MP\_ZPOS & \mbox{if }a.sign = b.sign \\
+ MP\_NEG & \mbox{otherwise} \\
+ \end{array} \right .$ \\
+\\
+Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
+7. $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
+8. $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
+\\
+Find the leading digit of the quotient. \\
+9. $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
+10. $y \leftarrow y \cdot \beta^{n - t}$ \\
+11. While ($x \ge y$) do \\
+\hspace{3mm}11.1 $q_{n - t} \leftarrow q_{n - t} + 1$ \\
+\hspace{3mm}11.2 $x \leftarrow x - y$ \\
+12. $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
+\\
+Continued on the next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div} (continued). \\
+\textbf{Input}. mp\_int $a, b$ \\
+\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+Now find the remainder fo the digits. \\
+13. for $i$ from $n$ down to $(t + 1)$ do \\
+\hspace{3mm}13.1 If $i > x.used$ then jump to the next iteration of this loop. \\
+\hspace{3mm}13.2 If $x_{i} = y_{t}$ then \\
+\hspace{6mm}13.2.1 $q_{i - t - 1} \leftarrow \beta - 1$ \\
+\hspace{3mm}13.3 else \\
+\hspace{6mm}13.3.1 $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
+\hspace{6mm}13.3.2 $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
+\hspace{6mm}13.3.3 $q_{i - t - 1} \leftarrow \hat r$ \\
+\hspace{3mm}13.4 $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
+\\
+Fixup quotient estimation. \\
+\hspace{3mm}13.5 Loop \\
+\hspace{6mm}13.5.1 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\hspace{6mm}13.5.2 t$1 \leftarrow 0$ \\
+\hspace{6mm}13.5.3 t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
+\hspace{6mm}13.5.4 $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
+\hspace{6mm}13.5.5 t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
+\hspace{6mm}13.5.6 If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
+\hspace{3mm}13.6 t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
+\hspace{3mm}13.7 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{3mm}13.8 $x \leftarrow x - $ t$1$ \\
+\hspace{3mm}13.9 If $x.sign = MP\_NEG$ then \\
+\hspace{6mm}13.10 t$1 \leftarrow y$ \\
+\hspace{6mm}13.11 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{6mm}13.12 $x \leftarrow x + $ t$1$ \\
+\hspace{6mm}13.13 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\\
+Finalize the result. \\
+14. Clamp excess digits of $q$ \\
+15. $c \leftarrow q, c.sign \leftarrow sign$ \\
+16. $x.sign \leftarrow a.sign$ \\
+17. $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
+18. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div (continued)}
+\end{figure}
+\textbf{Algorithm mp\_div.}
+This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor. The algorithm is a signed
+division and will produce a fully qualified quotient and remainder.
+
+First the divisor $b$ must be non-zero which is enforced in step one. If the divisor is larger than the dividend than the quotient is implicitly
+zero and the remainder is the dividend.
+
+After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient. Two unsigned copies of the
+divisor $y$ and dividend $x$ are made as well. The core of the division algorithm is an unsigned division and will only work if the values are
+positive. Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.
+This is performed by shifting both to the left by enough bits to get the desired normalization.
+
+At this point the division algorithm can begin producing digits of the quotient. Recall that maximum value of the estimation used is
+$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means. In this case $y$ is shifted
+to the left (\textit{step ten}) so that it has the same number of digits as $x$. The loop on step eleven will subtract multiples of the
+shifted copy of $y$ until $x$ is smaller. Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
+times to produce the desired leading digit of the quotient.
+
+Now the remainder of the digits can be produced. The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
+accurately approximate the true quotient digit. The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
+induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.
+
+Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high. The next step of the estimation process is
+to refine the estimation. The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
+order approximation to adjust the quotient digit.
+
+After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
+by optimizing Barrett reduction.}. Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
+algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.
+
+Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the
+remainder. An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
+is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie
+outside their respective boundaries. For example, if $t = 0$ or $i \le 1$ then the digits would be undefined. In those cases the digits should
+respectively be replaced with a zero.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 #ifdef BN_MP_DIV_SMALL
+018
+019 /* slower bit-bang division... also smaller */
+020 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+021 \{
+022 mp_int ta, tb, tq, q;
+023 int res, n, n2;
+024
+025 /* is divisor zero ? */
+026 if (mp_iszero (b) == 1) \{
+027 return MP_VAL;
+028 \}
+029
+030 /* if a < b then q=0, r = a */
+031 if (mp_cmp_mag (a, b) == MP_LT) \{
+032 if (d != NULL) \{
+033 res = mp_copy (a, d);
+034 \} else \{
+035 res = MP_OKAY;
+036 \}
+037 if (c != NULL) \{
+038 mp_zero (c);
+039 \}
+040 return res;
+041 \}
+042
+043 /* init our temps */
+044 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) \{
+045 return res;
+046 \}
+047
+048
+049 mp_set(&tq, 1);
+050 n = mp_count_bits(a) - mp_count_bits(b);
+051 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
+052 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
+053 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
+054 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) \{
+055 goto LBL_ERR;
+056 \}
+057
+058 while (n-- >= 0) \{
+059 if (mp_cmp(&tb, &ta) != MP_GT) \{
+060 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
+061 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) \{
+062 goto LBL_ERR;
+063 \}
+064 \}
+065 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
+066 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) \{
+067 goto LBL_ERR;
+068 \}
+069 \}
+070
+071 /* now q == quotient and ta == remainder */
+072 n = a->sign;
+073 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
+074 if (c != NULL) \{
+075 mp_exch(c, &q);
+076 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
+077 \}
+078 if (d != NULL) \{
+079 mp_exch(d, &ta);
+080 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
+081 \}
+082 LBL_ERR:
+083 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
+084 return res;
+085 \}
+086
+087 #else
+088
+089 /* integer signed division.
+090 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
+091 * HAC pp.598 Algorithm 14.20
+092 *
+093 * Note that the description in HAC is horribly
+094 * incomplete. For example, it doesn't consider
+095 * the case where digits are removed from 'x' in
+096 * the inner loop. It also doesn't consider the
+097 * case that y has fewer than three digits, etc..
+098 *
+099 * The overall algorithm is as described as
+100 * 14.20 from HAC but fixed to treat these cases.
+101 */
+102 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+103 \{
+104 mp_int q, x, y, t1, t2;
+105 int res, n, t, i, norm, neg;
+106
+107 /* is divisor zero ? */
+108 if (mp_iszero (b) == 1) \{
+109 return MP_VAL;
+110 \}
+111
+112 /* if a < b then q=0, r = a */
+113 if (mp_cmp_mag (a, b) == MP_LT) \{
+114 if (d != NULL) \{
+115 res = mp_copy (a, d);
+116 \} else \{
+117 res = MP_OKAY;
+118 \}
+119 if (c != NULL) \{
+120 mp_zero (c);
+121 \}
+122 return res;
+123 \}
+124
+125 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) \{
+126 return res;
+127 \}
+128 q.used = a->used + 2;
+129
+130 if ((res = mp_init (&t1)) != MP_OKAY) \{
+131 goto LBL_Q;
+132 \}
+133
+134 if ((res = mp_init (&t2)) != MP_OKAY) \{
+135 goto LBL_T1;
+136 \}
+137
+138 if ((res = mp_init_copy (&x, a)) != MP_OKAY) \{
+139 goto LBL_T2;
+140 \}
+141
+142 if ((res = mp_init_copy (&y, b)) != MP_OKAY) \{
+143 goto LBL_X;
+144 \}
+145
+146 /* fix the sign */
+147 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+148 x.sign = y.sign = MP_ZPOS;
+149
+150 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+151 norm = mp_count_bits(&y) % DIGIT_BIT;
+152 if (norm < (int)(DIGIT_BIT-1)) \{
+153 norm = (DIGIT_BIT-1) - norm;
+154 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) \{
+155 goto LBL_Y;
+156 \}
+157 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) \{
+158 goto LBL_Y;
+159 \}
+160 \} else \{
+161 norm = 0;
+162 \}
+163
+164 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+165 n = x.used - 1;
+166 t = y.used - 1;
+167
+168 /* while (x >= y*b**n-t) do \{ q[n-t] += 1; x -= y*b**\{n-t\} \} */
+169 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) \{ /* y = y*b**\{n-t\} */
+170 goto LBL_Y;
+171 \}
+172
+173 while (mp_cmp (&x, &y) != MP_LT) \{
+174 ++(q.dp[n - t]);
+175 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) \{
+176 goto LBL_Y;
+177 \}
+178 \}
+179
+180 /* reset y by shifting it back down */
+181 mp_rshd (&y, n - t);
+182
+183 /* step 3. for i from n down to (t + 1) */
+184 for (i = n; i >= (t + 1); i--) \{
+185 if (i > x.used) \{
+186 continue;
+187 \}
+188
+189 /* step 3.1 if xi == yt then set q\{i-t-1\} to b-1,
+190 * otherwise set q\{i-t-1\} to (xi*b + x\{i-1\})/yt */
+191 if (x.dp[i] == y.dp[t]) \{
+192 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
+193 \} else \{
+194 mp_word tmp;
+195 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
+196 tmp |= ((mp_word) x.dp[i - 1]);
+197 tmp /= ((mp_word) y.dp[t]);
+198 if (tmp > (mp_word) MP_MASK)
+199 tmp = MP_MASK;
+200 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+201 \}
+202
+203 /* while (q\{i-t-1\} * (yt * b + y\{t-1\})) >
+204 xi * b**2 + xi-1 * b + xi-2
+205
+206 do q\{i-t-1\} -= 1;
+207 */
+208 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+209 do \{
+210 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+211
+212 /* find left hand */
+213 mp_zero (&t1);
+214 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+215 t1.dp[1] = y.dp[t];
+216 t1.used = 2;
+217 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
+218 goto LBL_Y;
+219 \}
+220
+221 /* find right hand */
+222 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+223 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+224 t2.dp[2] = x.dp[i];
+225 t2.used = 3;
+226 \} while (mp_cmp_mag(&t1, &t2) == MP_GT);
+227
+228 /* step 3.3 x = x - q\{i-t-1\} * y * b**\{i-t-1\} */
+229 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
+230 goto LBL_Y;
+231 \}
+232
+233 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
+234 goto LBL_Y;
+235 \}
+236
+237 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) \{
+238 goto LBL_Y;
+239 \}
+240
+241 /* if x < 0 then \{ x = x + y*b**\{i-t-1\}; q\{i-t-1\} -= 1; \} */
+242 if (x.sign == MP_NEG) \{
+243 if ((res = mp_copy (&y, &t1)) != MP_OKAY) \{
+244 goto LBL_Y;
+245 \}
+246 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
+247 goto LBL_Y;
+248 \}
+249 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) \{
+250 goto LBL_Y;
+251 \}
+252
+253 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+254 \}
+255 \}
+256
+257 /* now q is the quotient and x is the remainder
+258 * [which we have to normalize]
+259 */
+260
+261 /* get sign before writing to c */
+262 x.sign = x.used == 0 ? MP_ZPOS : a->sign;
+263
+264 if (c != NULL) \{
+265 mp_clamp (&q);
+266 mp_exch (&q, c);
+267 c->sign = neg;
+268 \}
+269
+270 if (d != NULL) \{
+271 mp_div_2d (&x, norm, &x, NULL);
+272 mp_exch (&x, d);
+273 \}
+274
+275 res = MP_OKAY;
+276
+277 LBL_Y:mp_clear (&y);
+278 LBL_X:mp_clear (&x);
+279 LBL_T2:mp_clear (&t2);
+280 LBL_T1:mp_clear (&t1);
+281 LBL_Q:mp_clear (&q);
+282 return res;
+283 \}
+284
+285 #endif
+286
+287 #endif
+\end{alltt}
+\end{small}
+
+The implementation of this algorithm differs slightly from the pseudo code presented previously. In this algorithm either of the quotient $c$ or
+remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired. For example, the C code to call the division
+algorithm with only the quotient is
+
+\begin{verbatim}
+mp_div(&a, &b, &c, NULL); /* c = [a/b] */
+\end{verbatim}
+
+Lines 37 and 44 handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor
+respectively. After the two trivial cases all of the temporary variables are initialized. Line 105 determines the sign of
+the quotient and line 76 ensures that both $x$ and $y$ are positive.
+
+The number of bits in the leading digit is calculated on line 105. Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
+of precision which when reduced modulo $lg(\beta)$ produces the value of $k$. In this case $k$ is the number of bits in the leading digit which is
+exactly what is required. For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
+them to the left by $lg(\beta) - 1 - k$ bits.
+
+Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively. These are first used to produce the
+leading digit of the quotient. The loop beginning on line 183 will produce the remainder of the quotient digits.
+
+The conditional ``continue'' on line 114 is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
+algorithm eliminates multiple non-zero digits in a single iteration. This ensures that $x_i$ is always non-zero since by definition the digits
+above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.
+
+Lines 130, 130 and 134 through 134 manually construct the high accuracy estimations by setting the digits of the two mp\_int
+variables directly.
+
+\section{Single Digit Helpers}
+
+This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants. All of
+the helper functions assume the single digit input is positive and will treat them as such.
+
+\subsection{Single Digit Addition and Subtraction}
+
+Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
+algorithms. As a result these algorithms are subtantially simpler with a slight cost in performance.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = a + b$ \\
+\hline \\
+1. $t \leftarrow b$ (\textit{mp\_set}) \\
+2. $c \leftarrow a + t$ \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_add\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_add\_d.}
+This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_add\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* single digit addition */
+018 int
+019 mp_add_d (mp_int * a, mp_digit b, mp_int * c)
+020 \{
+021 int res, ix, oldused;
+022 mp_digit *tmpa, *tmpc, mu;
+023
+024 /* grow c as required */
+025 if (c->alloc < a->used + 1) \{
+026 if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) \{
+027 return res;
+028 \}
+029 \}
+030
+031 /* if a is negative and |a| >= b, call c = |a| - b */
+032 if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) \{
+033 /* temporarily fix sign of a */
+034 a->sign = MP_ZPOS;
+035
+036 /* c = |a| - b */
+037 res = mp_sub_d(a, b, c);
+038
+039 /* fix sign */
+040 a->sign = c->sign = MP_NEG;
+041
+042 return res;
+043 \}
+044
+045 /* old number of used digits in c */
+046 oldused = c->used;
+047
+048 /* sign always positive */
+049 c->sign = MP_ZPOS;
+050
+051 /* source alias */
+052 tmpa = a->dp;
+053
+054 /* destination alias */
+055 tmpc = c->dp;
+056
+057 /* if a is positive */
+058 if (a->sign == MP_ZPOS) \{
+059 /* add digit, after this we're propagating
+060 * the carry.
+061 */
+062 *tmpc = *tmpa++ + b;
+063 mu = *tmpc >> DIGIT_BIT;
+064 *tmpc++ &= MP_MASK;
+065
+066 /* now handle rest of the digits */
+067 for (ix = 1; ix < a->used; ix++) \{
+068 *tmpc = *tmpa++ + mu;
+069 mu = *tmpc >> DIGIT_BIT;
+070 *tmpc++ &= MP_MASK;
+071 \}
+072 /* set final carry */
+073 ix++;
+074 *tmpc++ = mu;
+075
+076 /* setup size */
+077 c->used = a->used + 1;
+078 \} else \{
+079 /* a was negative and |a| < b */
+080 c->used = 1;
+081
+082 /* the result is a single digit */
+083 if (a->used == 1) \{
+084 *tmpc++ = b - a->dp[0];
+085 \} else \{
+086 *tmpc++ = b;
+087 \}
+088
+089 /* setup count so the clearing of oldused
+090 * can fall through correctly
+091 */
+092 ix = 1;
+093 \}
+094
+095 /* now zero to oldused */
+096 while (ix++ < oldused) \{
+097 *tmpc++ = 0;
+098 \}
+099 mp_clamp(c);
+100
+101 return MP_OKAY;
+102 \}
+103
+104 #endif
+\end{alltt}
+\end{small}
+
+Clever use of the letter 't'.
+
+\subsubsection{Subtraction}
+The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
+
+\subsection{Single Digit Multiplication}
+Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
+multiplication algorithm. Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
+only has one digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = ab$ \\
+\hline \\
+1. $pa \leftarrow a.used$ \\
+2. Grow $c$ to at least $pa + 1$ digits. \\
+3. $oldused \leftarrow c.used$ \\
+4. $c.used \leftarrow pa + 1$ \\
+5. $c.sign \leftarrow a.sign$ \\
+6. $\mu \leftarrow 0$ \\
+7. for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}7.1 $\hat r \leftarrow \mu + a_{ix}b$ \\
+\hspace{3mm}7.2 $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}7.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+8. $c_{pa} \leftarrow \mu$ \\
+9. for $ix$ from $pa + 1$ to $oldused$ do \\
+\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
+10. Clamp excess digits of $c$. \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_d}
+\end{figure}
+\textbf{Algorithm mp\_mul\_d.}
+This algorithm quickly multiplies an mp\_int by a small single digit value. It is specially tailored to the job and has a minimal of overhead.
+Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* multiply by a digit */
+018 int
+019 mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+020 \{
+021 mp_digit u, *tmpa, *tmpc;
+022 mp_word r;
+023 int ix, res, olduse;
+024
+025 /* make sure c is big enough to hold a*b */
+026 if (c->alloc < a->used + 1) \{
+027 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) \{
+028 return res;
+029 \}
+030 \}
+031
+032 /* get the original destinations used count */
+033 olduse = c->used;
+034
+035 /* set the sign */
+036 c->sign = a->sign;
+037
+038 /* alias for a->dp [source] */
+039 tmpa = a->dp;
+040
+041 /* alias for c->dp [dest] */
+042 tmpc = c->dp;
+043
+044 /* zero carry */
+045 u = 0;
+046
+047 /* compute columns */
+048 for (ix = 0; ix < a->used; ix++) \{
+049 /* compute product and carry sum for this term */
+050 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+051
+052 /* mask off higher bits to get a single digit */
+053 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+054
+055 /* send carry into next iteration */
+056 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+057 \}
+058
+059 /* store final carry [if any] */
+060 *tmpc++ = u;
+061
+062 /* now zero digits above the top */
+063 while (ix++ < olduse) \{
+064 *tmpc++ = 0;
+065 \}
+066
+067 /* set used count */
+068 c->used = a->used + 1;
+069 mp_clamp(c);
+070
+071 return MP_OKAY;
+072 \}
+073 #endif
+\end{alltt}
+\end{small}
+
+In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is
+read from the source. This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.
+
+\subsection{Single Digit Division}
+Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion. Since the
+divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = \lfloor a / b \rfloor, d = a - cb$ \\
+\hline \\
+1. If $b = 0$ then return(\textit{MP\_VAL}).\\
+2. If $b = 3$ then use algorithm mp\_div\_3 instead. \\
+3. Init $q$ to $a.used$ digits. \\
+4. $q.used \leftarrow a.used$ \\
+5. $q.sign \leftarrow a.sign$ \\
+6. $\hat w \leftarrow 0$ \\
+7. for $ix$ from $a.used - 1$ down to $0$ do \\
+\hspace{3mm}7.1 $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
+\hspace{3mm}7.2 If $\hat w \ge b$ then \\
+\hspace{6mm}7.2.1 $t \leftarrow \lfloor \hat w / b \rfloor$ \\
+\hspace{6mm}7.2.2 $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}7.3 else\\
+\hspace{6mm}7.3.1 $t \leftarrow 0$ \\
+\hspace{3mm}7.4 $q_{ix} \leftarrow t$ \\
+8. $d \leftarrow \hat w$ \\
+9. Clamp excess digits of $q$. \\
+10. $c \leftarrow q$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_d}
+\end{figure}
+\textbf{Algorithm mp\_div\_d.}
+This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach. Essentially in every iteration of the
+algorithm another digit of the dividend is reduced and another digit of quotient produced. Provided $b < \beta$ the value of $\hat w$
+after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.
+
+If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3. It replaces the division by three with
+a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup. In essence it is much like the Barrett reduction
+from chapter seven.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 static int s_is_power_of_two(mp_digit b, int *p)
+018 \{
+019 int x;
+020
+021 for (x = 1; x < DIGIT_BIT; x++) \{
+022 if (b == (((mp_digit)1)<<x)) \{
+023 *p = x;
+024 return 1;
+025 \}
+026 \}
+027 return 0;
+028 \}
+029
+030 /* single digit division (based on routine from MPI) */
+031 int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+032 \{
+033 mp_int q;
+034 mp_word w;
+035 mp_digit t;
+036 int res, ix;
+037
+038 /* cannot divide by zero */
+039 if (b == 0) \{
+040 return MP_VAL;
+041 \}
+042
+043 /* quick outs */
+044 if (b == 1 || mp_iszero(a) == 1) \{
+045 if (d != NULL) \{
+046 *d = 0;
+047 \}
+048 if (c != NULL) \{
+049 return mp_copy(a, c);
+050 \}
+051 return MP_OKAY;
+052 \}
+053
+054 /* power of two ? */
+055 if (s_is_power_of_two(b, &ix) == 1) \{
+056 if (d != NULL) \{
+057 *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
+058 \}
+059 if (c != NULL) \{
+060 return mp_div_2d(a, ix, c, NULL);
+061 \}
+062 return MP_OKAY;
+063 \}
+064
+065 #ifdef BN_MP_DIV_3_C
+066 /* three? */
+067 if (b == 3) \{
+068 return mp_div_3(a, c, d);
+069 \}
+070 #endif
+071
+072 /* no easy answer [c'est la vie]. Just division */
+073 if ((res = mp_init_size(&q, a->used)) != MP_OKAY) \{
+074 return res;
+075 \}
+076
+077 q.used = a->used;
+078 q.sign = a->sign;
+079 w = 0;
+080 for (ix = a->used - 1; ix >= 0; ix--) \{
+081 w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+082
+083 if (w >= b) \{
+084 t = (mp_digit)(w / b);
+085 w -= ((mp_word)t) * ((mp_word)b);
+086 \} else \{
+087 t = 0;
+088 \}
+089 q.dp[ix] = (mp_digit)t;
+090 \}
+091
+092 if (d != NULL) \{
+093 *d = (mp_digit)w;
+094 \}
+095
+096 if (c != NULL) \{
+097 mp_clamp(&q);
+098 mp_exch(&q, c);
+099 \}
+100 mp_clear(&q);
+101
+102 return res;
+103 \}
+104
+105 #endif
+\end{alltt}
+\end{small}
+
+Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
+indicate the respective value is not required. This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
+
+The division and remainder on lines 43 and @45,%@ can be replaced often by a single division on most processors. For example, the 32-bit x86 based
+processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously. Unfortunately the GCC
+compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.
+
+\subsection{Single Digit Root Extraction}
+
+Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned. Algorithms such as the Newton-Raphson approximation
+(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.
+
+\begin{equation}
+x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
+\label{eqn:newton}
+\end{equation}
+
+In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired. The derivative of $f(x)$ is
+simply $f'(x) = nx^{n - 1}$. Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
+such as the real numbers. As a result the root found can be above the true root by few and must be manually adjusted. Ideally at the end of the
+algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_n\_root}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c^b \le a$ \\
+\hline \\
+1. If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. $sign \leftarrow a.sign$ \\
+3. $a.sign \leftarrow MP\_ZPOS$ \\
+4. t$2 \leftarrow 2$ \\
+5. Loop \\
+\hspace{3mm}5.1 t$1 \leftarrow $ t$2$ \\
+\hspace{3mm}5.2 t$3 \leftarrow $ t$1^{b - 1}$ \\
+\hspace{3mm}5.3 t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
+\hspace{3mm}5.4 t$2 \leftarrow $ t$2 - a$ \\
+\hspace{3mm}5.5 t$3 \leftarrow $ t$3 \cdot b$ \\
+\hspace{3mm}5.6 t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
+\hspace{3mm}5.7 t$2 \leftarrow $ t$1 - $ t$3$ \\
+\hspace{3mm}5.8 If t$1 \ne $ t$2$ then goto step 5. \\
+6. Loop \\
+\hspace{3mm}6.1 t$2 \leftarrow $ t$1^b$ \\
+\hspace{3mm}6.2 If t$2 > a$ then \\
+\hspace{6mm}6.2.1 t$1 \leftarrow $ t$1 - 1$ \\
+\hspace{6mm}6.2.2 Goto step 6. \\
+7. $a.sign \leftarrow sign$ \\
+8. $c \leftarrow $ t$1$ \\
+9. $c.sign \leftarrow sign$ \\
+10. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_n\_root}
+\end{figure}
+\textbf{Algorithm mp\_n\_root.}
+This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach. It is partially optimized based on the observation
+that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator. That is at first the denominator is calculated by finding
+$x^{b - 1}$. This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator. This saves a total of $b - 1$
+multiplications by t$1$ inside the loop.
+
+The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
+root. Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_n\_root.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* find the n'th root of an integer
+018 *
+019 * Result found such that (c)**b <= a and (c+1)**b > a
+020 *
+021 * This algorithm uses Newton's approximation
+022 * x[i+1] = x[i] - f(x[i])/f'(x[i])
+023 * which will find the root in log(N) time where
+024 * each step involves a fair bit. This is not meant to
+025 * find huge roots [square and cube, etc].
+026 */
+027 int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+028 \{
+029 mp_int t1, t2, t3;
+030 int res, neg;
+031
+032 /* input must be positive if b is even */
+033 if ((b & 1) == 0 && a->sign == MP_NEG) \{
+034 return MP_VAL;
+035 \}
+036
+037 if ((res = mp_init (&t1)) != MP_OKAY) \{
+038 return res;
+039 \}
+040
+041 if ((res = mp_init (&t2)) != MP_OKAY) \{
+042 goto LBL_T1;
+043 \}
+044
+045 if ((res = mp_init (&t3)) != MP_OKAY) \{
+046 goto LBL_T2;
+047 \}
+048
+049 /* if a is negative fudge the sign but keep track */
+050 neg = a->sign;
+051 a->sign = MP_ZPOS;
+052
+053 /* t2 = 2 */
+054 mp_set (&t2, 2);
+055
+056 do \{
+057 /* t1 = t2 */
+058 if ((res = mp_copy (&t2, &t1)) != MP_OKAY) \{
+059 goto LBL_T3;
+060 \}
+061
+062 /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
+063
+064 /* t3 = t1**(b-1) */
+065 if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) \{
+066 goto LBL_T3;
+067 \}
+068
+069 /* numerator */
+070 /* t2 = t1**b */
+071 if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) \{
+072 goto LBL_T3;
+073 \}
+074
+075 /* t2 = t1**b - a */
+076 if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) \{
+077 goto LBL_T3;
+078 \}
+079
+080 /* denominator */
+081 /* t3 = t1**(b-1) * b */
+082 if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) \{
+083 goto LBL_T3;
+084 \}
+085
+086 /* t3 = (t1**b - a)/(b * t1**(b-1)) */
+087 if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) \{
+088 goto LBL_T3;
+089 \}
+090
+091 if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) \{
+092 goto LBL_T3;
+093 \}
+094 \} while (mp_cmp (&t1, &t2) != MP_EQ);
+095
+096 /* result can be off by a few so check */
+097 for (;;) \{
+098 if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) \{
+099 goto LBL_T3;
+100 \}
+101
+102 if (mp_cmp (&t2, a) == MP_GT) \{
+103 if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) \{
+104 goto LBL_T3;
+105 \}
+106 \} else \{
+107 break;
+108 \}
+109 \}
+110
+111 /* reset the sign of a first */
+112 a->sign = neg;
+113
+114 /* set the result */
+115 mp_exch (&t1, c);
+116
+117 /* set the sign of the result */
+118 c->sign = neg;
+119
+120 res = MP_OKAY;
+121
+122 LBL_T3:mp_clear (&t3);
+123 LBL_T2:mp_clear (&t2);
+124 LBL_T1:mp_clear (&t1);
+125 return res;
+126 \}
+127 #endif
+\end{alltt}
+\end{small}
+
+\section{Random Number Generation}
+
+Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms. Pollard-Rho
+factoring for example, can make use of random values as starting points to find factors of a composite integer. In this case the algorithm presented
+is solely for simulations and not intended for cryptographic use.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rand}. \\
+\textbf{Input}. An integer $b$ \\
+\textbf{Output}. A pseudo-random number of $b$ digits \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $b \le 0$ return(\textit{MP\_OKAY}) \\
+3. Pick a non-zero random digit $d$. \\
+4. $a \leftarrow a + d$ \\
+5. for $ix$ from 1 to $d - 1$ do \\
+\hspace{3mm}5.1 $a \leftarrow a \cdot \beta$ \\
+\hspace{3mm}5.2 Pick a random digit $d$. \\
+\hspace{3mm}5.3 $a \leftarrow a + d$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rand}
+\end{figure}
+\textbf{Algorithm mp\_rand.}
+This algorithm produces a pseudo-random integer of $b$ digits. By ensuring that the first digit is non-zero the algorithm also guarantees that the
+final result has at least $b$ digits. It relies heavily on a third-part random number generator which should ideally generate uniformly all of
+the integers from $0$ to $\beta - 1$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_rand.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* makes a pseudo-random int of a given size */
+018 int
+019 mp_rand (mp_int * a, int digits)
+020 \{
+021 int res;
+022 mp_digit d;
+023
+024 mp_zero (a);
+025 if (digits <= 0) \{
+026 return MP_OKAY;
+027 \}
+028
+029 /* first place a random non-zero digit */
+030 do \{
+031 d = ((mp_digit) abs (rand ()));
+032 \} while (d == 0);
+033
+034 if ((res = mp_add_d (a, d, a)) != MP_OKAY) \{
+035 return res;
+036 \}
+037
+038 while (digits-- > 0) \{
+039 if ((res = mp_lshd (a, 1)) != MP_OKAY) \{
+040 return res;
+041 \}
+042
+043 if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) \{
+044 return res;
+045 \}
+046 \}
+047
+048 return MP_OKAY;
+049 \}
+050 #endif
+\end{alltt}
+\end{small}
+
+\section{Formatted Representations}
+The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties. For example, the ability to
+be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
+into a program.
+
+\subsection{Reading Radix-n Input}
+For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to
+printable characters. For example, when the character ``N'' is read it represents the integer $23$. The first $16$ characters of the
+map are for the common representations up to hexadecimal. After that they match the ``base64'' encoding scheme which are suitable chosen
+such that they are printable. While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
+mediums.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{cc|cc|cc|cc}
+\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} \\
+\hline
+0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
+4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
+8 & 8 & 9 & 9 & 10 & A & 11 & B \\
+12 & C & 13 & D & 14 & E & 15 & F \\
+16 & G & 17 & H & 18 & I & 19 & J \\
+20 & K & 21 & L & 22 & M & 23 & N \\
+24 & O & 25 & P & 26 & Q & 27 & R \\
+28 & S & 29 & T & 30 & U & 31 & V \\
+32 & W & 33 & X & 34 & Y & 35 & Z \\
+36 & a & 37 & b & 38 & c & 39 & d \\
+40 & e & 41 & f & 42 & g & 43 & h \\
+44 & i & 45 & j & 46 & k & 47 & l \\
+48 & m & 49 & n & 50 & o & 51 & p \\
+52 & q & 53 & r & 54 & s & 55 & t \\
+56 & u & 57 & v & 58 & w & 59 & x \\
+60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Lower ASCII Map}
+\label{fig:ASC}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_read\_radix}. \\
+\textbf{Input}. A string $str$ of length $sn$ and radix $r$. \\
+\textbf{Output}. The radix-$\beta$ equivalent mp\_int. \\
+\hline \\
+1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2. $ix \leftarrow 0$ \\
+3. If $str_0 =$ ``-'' then do \\
+\hspace{3mm}3.1 $ix \leftarrow ix + 1$ \\
+\hspace{3mm}3.2 $sign \leftarrow MP\_NEG$ \\
+4. else \\
+\hspace{3mm}4.1 $sign \leftarrow MP\_ZPOS$ \\
+5. $a \leftarrow 0$ \\
+6. for $iy$ from $ix$ to $sn - 1$ do \\
+\hspace{3mm}6.1 Let $y$ denote the position in the map of $str_{iy}$. \\
+\hspace{3mm}6.2 If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
+\hspace{3mm}6.3 $a \leftarrow a \cdot r$ \\
+\hspace{3mm}6.4 $a \leftarrow a + y$ \\
+7. If $a \ne 0$ then $a.sign \leftarrow sign$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_read\_radix}
+\end{figure}
+\textbf{Algorithm mp\_read\_radix.}
+This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer. A minus symbol ``-'' may precede the
+string to indicate the value is negative, otherwise it is assumed to be positive. The algorithm will read up to $sn$ characters from the input
+and will stop when it reads a character it cannot map the algorithm stops reading characters from the string. This allows numbers to be embedded
+as part of larger input without any significant problem.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_read\_radix.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* read a string [ASCII] in a given radix */
+018 int mp_read_radix (mp_int * a, char *str, int radix)
+019 \{
+020 int y, res, neg;
+021 char ch;
+022
+023 /* make sure the radix is ok */
+024 if (radix < 2 || radix > 64) \{
+025 return MP_VAL;
+026 \}
+027
+028 /* if the leading digit is a
+029 * minus set the sign to negative.
+030 */
+031 if (*str == '-') \{
+032 ++str;
+033 neg = MP_NEG;
+034 \} else \{
+035 neg = MP_ZPOS;
+036 \}
+037
+038 /* set the integer to the default of zero */
+039 mp_zero (a);
+040
+041 /* process each digit of the string */
+042 while (*str) \{
+043 /* if the radix < 36 the conversion is case insensitive
+044 * this allows numbers like 1AB and 1ab to represent the same value
+045 * [e.g. in hex]
+046 */
+047 ch = (char) ((radix < 36) ? toupper (*str) : *str);
+048 for (y = 0; y < 64; y++) \{
+049 if (ch == mp_s_rmap[y]) \{
+050 break;
+051 \}
+052 \}
+053
+054 /* if the char was found in the map
+055 * and is less than the given radix add it
+056 * to the number, otherwise exit the loop.
+057 */
+058 if (y < radix) \{
+059 if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) \{
+060 return res;
+061 \}
+062 if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) \{
+063 return res;
+064 \}
+065 \} else \{
+066 break;
+067 \}
+068 ++str;
+069 \}
+070
+071 /* set the sign only if a != 0 */
+072 if (mp_iszero(a) != 1) \{
+073 a->sign = neg;
+074 \}
+075 return MP_OKAY;
+076 \}
+077 #endif
+\end{alltt}
+\end{small}
+
+\subsection{Generating Radix-$n$ Output}
+Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toradix}. \\
+\textbf{Input}. A mp\_int $a$ and an integer $r$\\
+\textbf{Output}. The radix-$r$ representation of $a$ \\
+\hline \\
+1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2. If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}). \\
+3. $t \leftarrow a$ \\
+4. $str \leftarrow$ ``'' \\
+5. if $t.sign = MP\_NEG$ then \\
+\hspace{3mm}5.1 $str \leftarrow str + $ ``-'' \\
+\hspace{3mm}5.2 $t.sign = MP\_ZPOS$ \\
+6. While ($t \ne 0$) do \\
+\hspace{3mm}6.1 $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
+\hspace{3mm}6.2 $t \leftarrow \lfloor t / r \rfloor$ \\
+\hspace{3mm}6.3 Look up $d$ in the map and store the equivalent character in $y$. \\
+\hspace{3mm}6.4 $str \leftarrow str + y$ \\
+7. If $str_0 = $``$-$'' then \\
+\hspace{3mm}7.1 Reverse the digits $str_1, str_2, \ldots str_n$. \\
+8. Otherwise \\
+\hspace{3mm}8.1 Reverse the digits $str_0, str_1, \ldots str_n$. \\
+9. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toradix}
+\end{figure}
+\textbf{Algorithm mp\_toradix.}
+This algorithm computes the radix-$r$ representation of an mp\_int $a$. The ``digits'' of the representation are extracted by reducing
+successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$. Note that instead of actually dividing by $r^k$ in
+each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration. As a result a series of trivial $n \times 1$ divisions
+are required instead of a series of $n \times k$ divisions. One design flaw of this approach is that the digits are produced in the reverse order
+(see~\ref{fig:mpradix}). To remedy this flaw the digits must be swapped or simply ``reversed''.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
+\hline $1234$ & -- & -- \\
+\hline $123$ & $4$ & ``4'' \\
+\hline $12$ & $3$ & ``43'' \\
+\hline $1$ & $2$ & ``432'' \\
+\hline $0$ & $1$ & ``4321'' \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Algorithm mp\_toradix.}
+\label{fig:mpradix}
+\end{figure}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_toradix.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* stores a bignum as a ASCII string in a given radix (2..64) */
+018 int mp_toradix (mp_int * a, char *str, int radix)
+019 \{
+020 int res, digs;
+021 mp_int t;
+022 mp_digit d;
+023 char *_s = str;
+024
+025 /* check range of the radix */
+026 if (radix < 2 || radix > 64) \{
+027 return MP_VAL;
+028 \}
+029
+030 /* quick out if its zero */
+031 if (mp_iszero(a) == 1) \{
+032 *str++ = '0';
+033 *str = '\symbol{92}0';
+034 return MP_OKAY;
+035 \}
+036
+037 if ((res = mp_init_copy (&t, a)) != MP_OKAY) \{
+038 return res;
+039 \}
+040
+041 /* if it is negative output a - */
+042 if (t.sign == MP_NEG) \{
+043 ++_s;
+044 *str++ = '-';
+045 t.sign = MP_ZPOS;
+046 \}
+047
+048 digs = 0;
+049 while (mp_iszero (&t) == 0) \{
+050 if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) \{
+051 mp_clear (&t);
+052 return res;
+053 \}
+054 *str++ = mp_s_rmap[d];
+055 ++digs;
+056 \}
+057
+058 /* reverse the digits of the string. In this case _s points
+059 * to the first digit [exluding the sign] of the number]
+060 */
+061 bn_reverse ((unsigned char *)_s, digs);
+062
+063 /* append a NULL so the string is properly terminated */
+064 *str = '\symbol{92}0';
+065
+066 mp_clear (&t);
+067 return MP_OKAY;
+068 \}
+069
+070 #endif
+\end{alltt}
+\end{small}
+
+\chapter{Number Theoretic Algorithms}
+This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi
+symbol computation. These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
+various Sieve based factoring algorithms.
+
+\section{Greatest Common Divisor}
+The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
+both $a$ and $b$. That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
+simultaneously.
+
+The most common approach (cite) is to reduce one input modulo another. That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
+$r$ is also divisible by $k$. The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. While ($b > 0$) do \\
+\hspace{3mm}1.1 $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}1.2 $a \leftarrow b$ \\
+\hspace{3mm}1.3 $b \leftarrow r$ \\
+2. Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (I)}
+\label{fig:gcd1}
+\end{figure}
+
+This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly. However, divisions are
+relatively expensive operations to perform and should ideally be avoided. There is another approach based on a similar relationship of
+greatest common divisors. The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
+In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. While ($b > 0$) do \\
+\hspace{3mm}1.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}1.2 $b \leftarrow b - a$ \\
+2. Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (II)}
+\label{fig:gcd2}
+\end{figure}
+
+\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
+The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$. In other
+words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$. Since both $a$ and $b$ are always
+divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the
+second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof. \textbf{QED}.
+
+As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful. Specially if $b$ is much larger than $a$ such that
+$b - a$ is still very much larger than $a$. A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
+not divide the greatest common divisor but will divide $b - a$. In this case ${b - a} \over p$ is also an integer and still divisible by
+the greatest common divisor.
+
+However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
+Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. $k \leftarrow 0$ \\
+2. While $a$ and $b$ are both divisible by $p$ do \\
+\hspace{3mm}2.1 $a \leftarrow \lfloor a / p \rfloor$ \\
+\hspace{3mm}2.2 $b \leftarrow \lfloor b / p \rfloor$ \\
+\hspace{3mm}2.3 $k \leftarrow k + 1$ \\
+3. While $a$ is divisible by $p$ do \\
+\hspace{3mm}3.1 $a \leftarrow \lfloor a / p \rfloor$ \\
+4. While $b$ is divisible by $p$ do \\
+\hspace{3mm}4.1 $b \leftarrow \lfloor b / p \rfloor$ \\
+5. While ($b > 0$) do \\
+\hspace{3mm}5.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}5.2 $b \leftarrow b - a$ \\
+\hspace{3mm}5.3 While $b$ is divisible by $p$ do \\
+\hspace{6mm}5.3.1 $b \leftarrow \lfloor b / p \rfloor$ \\
+6. Return($a \cdot p^k$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (III)}
+\label{fig:gcd3}
+\end{figure}
+
+This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$
+decreases more rapidly. The first loop on step two removes powers of $p$ that are in common. A count, $k$, is kept which will present a common
+divisor of $p^k$. After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$. This means that $p$ can be safely
+divided out of the difference $b - a$ so long as the division leaves no remainder.
+
+In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often. It also helps that division by $p$ be easy
+to compute. The ideal choice of $p$ is two since division by two amounts to a right logical shift. Another important observation is that by
+step five both $a$ and $b$ are odd. Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the
+largest of the pair.
+
+\subsection{Complete Greatest Common Divisor}
+The algorithms presented so far cannot handle inputs which are zero or negative. The following algorithm can handle all input cases properly
+and will produce the greatest common divisor.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_gcd}. \\
+\textbf{Input}. mp\_int $a$ and $b$ \\
+\textbf{Output}. The greatest common divisor $c = (a, b)$. \\
+\hline \\
+1. If $a = 0$ and $b \ne 0$ then \\
+\hspace{3mm}1.1 $c \leftarrow b$ \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $a \ne 0$ and $b = 0$ then \\
+\hspace{3mm}2.1 $c \leftarrow a$ \\
+\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
+3. If $a = b = 0$ then \\
+\hspace{3mm}3.1 $c \leftarrow 1$ \\
+\hspace{3mm}3.2 Return(\textit{MP\_OKAY}). \\
+4. $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
+5. $k \leftarrow 0$ \\
+6. While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1 $k \leftarrow k + 1$ \\
+\hspace{3mm}6.2 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.3 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+7. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+8. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}8.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+9. While $v.used > 0$ \\
+\hspace{3mm}9.1 If $\vert u \vert > \vert v \vert$ then \\
+\hspace{6mm}9.1.1 Swap $u$ and $v$. \\
+\hspace{3mm}9.2 $v \leftarrow \vert v \vert - \vert u \vert$ \\
+\hspace{3mm}9.3 While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{6mm}9.3.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+10. $c \leftarrow u \cdot 2^k$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_gcd}
+\end{figure}
+\textbf{Algorithm mp\_gcd.}
+This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$. The algorithm was originally based on Algorithm B of
+Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain. In theory it achieves the same asymptotic working time as
+Algorithm B and in practice this appears to be true.
+
+The first three steps handle the cases where either one of or both inputs are zero. If either input is zero the greatest common divisor is the
+largest input or zero if they are both zero. If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of
+$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
+
+Step six will divide out any common factors of two and keep track of the count in the variable $k$. After this step two is no longer a
+factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even. Step
+seven and eight ensure that the $u$ and $v$ respectively have no more factors of two. At most only one of the while loops will iterate since
+they cannot both be even.
+
+By step nine both of $u$ and $v$ are odd which is required for the inner logic. First the pair are swapped such that $v$ is equal to
+or greater than $u$. This ensures that the subtraction on step 9.2 will always produce a positive and even result. Step 9.3 removes any
+factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
+
+After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six. The result
+must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_gcd.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* Greatest Common Divisor using the binary method */
+018 int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+019 \{
+020 mp_int u, v;
+021 int k, u_lsb, v_lsb, res;
+022
+023 /* either zero than gcd is the largest */
+024 if (mp_iszero (a) == 1 && mp_iszero (b) == 0) \{
+025 return mp_abs (b, c);
+026 \}
+027 if (mp_iszero (a) == 0 && mp_iszero (b) == 1) \{
+028 return mp_abs (a, c);
+029 \}
+030
+031 /* optimized. At this point if a == 0 then
+032 * b must equal zero too
+033 */
+034 if (mp_iszero (a) == 1) \{
+035 mp_zero(c);
+036 return MP_OKAY;
+037 \}
+038
+039 /* get copies of a and b we can modify */
+040 if ((res = mp_init_copy (&u, a)) != MP_OKAY) \{
+041 return res;
+042 \}
+043
+044 if ((res = mp_init_copy (&v, b)) != MP_OKAY) \{
+045 goto LBL_U;
+046 \}
+047
+048 /* must be positive for the remainder of the algorithm */
+049 u.sign = v.sign = MP_ZPOS;
+050
+051 /* B1. Find the common power of two for u and v */
+052 u_lsb = mp_cnt_lsb(&u);
+053 v_lsb = mp_cnt_lsb(&v);
+054 k = MIN(u_lsb, v_lsb);
+055
+056 if (k > 0) \{
+057 /* divide the power of two out */
+058 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) \{
+059 goto LBL_V;
+060 \}
+061
+062 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) \{
+063 goto LBL_V;
+064 \}
+065 \}
+066
+067 /* divide any remaining factors of two out */
+068 if (u_lsb != k) \{
+069 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) \{
+070 goto LBL_V;
+071 \}
+072 \}
+073
+074 if (v_lsb != k) \{
+075 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) \{
+076 goto LBL_V;
+077 \}
+078 \}
+079
+080 while (mp_iszero(&v) == 0) \{
+081 /* make sure v is the largest */
+082 if (mp_cmp_mag(&u, &v) == MP_GT) \{
+083 /* swap u and v to make sure v is >= u */
+084 mp_exch(&u, &v);
+085 \}
+086
+087 /* subtract smallest from largest */
+088 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) \{
+089 goto LBL_V;
+090 \}
+091
+092 /* Divide out all factors of two */
+093 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) \{
+094 goto LBL_V;
+095 \}
+096 \}
+097
+098 /* multiply by 2**k which we divided out at the beginning */
+099 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) \{
+100 goto LBL_V;
+101 \}
+102 c->sign = MP_ZPOS;
+103 res = MP_OKAY;
+104 LBL_V:mp_clear (&u);
+105 LBL_U:mp_clear (&v);
+106 return res;
+107 \}
+108 #endif
+\end{alltt}
+\end{small}
+
+This function makes use of the macros mp\_iszero and mp\_iseven. The former evaluates to $1$ if the input mp\_int is equivalent to the
+integer zero otherwise it evaluates to $0$. The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
+it evaluates to $0$. Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero. The three
+trivial cases of inputs are handled on lines 24 through 37. After those lines the inputs are assumed to be non-zero.
+
+Lines 34 and 40 make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively. At this point the common factors of two
+must be divided out of the two inputs. The while loop on line 80 iterates so long as both are even. The local integer $k$ is used to
+keep track of how many factors of $2$ are pulled out of both values. It is assumed that the number of factors will not exceed the maximum
+value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than entries than are accessible by an ``int'' so this is not
+a limitation.}.
+
+At this point there are no more common factors of two in the two values. The while loops on lines 80 and 80 remove any independent
+factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm. The while loop
+on line 80 performs the reduction of the pair until $v$ is equal to zero. The unsigned comparison and subtraction algorithms are used in
+place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
+
+\section{Least Common Multiple}
+The least common multiple of a pair of integers is their product divided by their greatest common divisor. For two integers $a$ and $b$ the
+least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$. For example, if $a = 2 \cdot 2 \cdot 3 = 12$
+and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
+
+The least common multiple arises often in coding theory as well as number theory. If two functions have periods of $a$ and $b$ respectively they will
+collide, that is be in synchronous states, after only $[ a, b ]$ iterations. This is why, for example, random number generators based on
+Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
+Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lcm}. \\
+\textbf{Input}. mp\_int $a$ and $b$ \\
+\textbf{Output}. The least common multiple $c = [a, b]$. \\
+\hline \\
+1. $c \leftarrow (a, b)$ \\
+2. $t \leftarrow a \cdot b$ \\
+3. $c \leftarrow \lfloor t / c \rfloor$ \\
+4. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lcm}
+\end{figure}
+\textbf{Algorithm mp\_lcm.}
+This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$. It computes the least common multiple directly by
+dividing the product of the two inputs by their greatest common divisor.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_lcm.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes least common multiple as |a*b|/(a, b) */
+018 int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+019 \{
+020 int res;
+021 mp_int t1, t2;
+022
+023
+024 if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) \{
+025 return res;
+026 \}
+027
+028 /* t1 = get the GCD of the two inputs */
+029 if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) \{
+030 goto LBL_T;
+031 \}
+032
+033 /* divide the smallest by the GCD */
+034 if (mp_cmp_mag(a, b) == MP_LT) \{
+035 /* store quotient in t2 such that t2 * b is the LCM */
+036 if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) \{
+037 goto LBL_T;
+038 \}
+039 res = mp_mul(b, &t2, c);
+040 \} else \{
+041 /* store quotient in t2 such that t2 * a is the LCM */
+042 if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) \{
+043 goto LBL_T;
+044 \}
+045 res = mp_mul(a, &t2, c);
+046 \}
+047
+048 /* fix the sign to positive */
+049 c->sign = MP_ZPOS;
+050
+051 LBL_T:
+052 mp_clear_multi (&t1, &t2, NULL);
+053 return res;
+054 \}
+055 #endif
+\end{alltt}
+\end{small}
+
+\section{Jacobi Symbol Computation}
+To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg. What is the name of this?} off which the Jacobi symbol is
+defined. The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$. Numerically it is
+equivalent to equation \ref{eqn:legendre}.
+
+\begin{equation}
+a^{(p-1)/2} \equiv \begin{array}{rl}
+ -1 & \mbox{if }a\mbox{ is a quadratic non-residue.} \\
+ 0 & \mbox{if }a\mbox{ divides }p\mbox{.} \\
+ 1 & \mbox{if }a\mbox{ is a quadratic residue}.
+ \end{array} \mbox{ (mod }p\mbox{)}
+\label{eqn:legendre}
+\end{equation}
+
+\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
+An integer $a$ is a quadratic residue if the following equation has a solution.
+
+\begin{equation}
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\label{eqn:root}
+\end{equation}
+
+Consider the following equation.
+
+\begin{equation}
+0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
+\label{eqn:rooti}
+\end{equation}
+
+Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true. If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
+then the quantity in the braces must be zero. By reduction,
+
+\begin{eqnarray}
+\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0 \nonumber \\
+\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\end{eqnarray}
+
+As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue. If $a$ does not divide $p$ and $a$
+is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
+\begin{equation}
+0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
+\end{equation}
+One of the terms on the right hand side must be zero. \textbf{QED}
+
+\subsection{Jacobi Symbol}
+The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2. If $p = \prod_{i=0}^n p_i$ then
+the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
+\end{equation}
+
+By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function. The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
+further details.} will be used to derive an efficient Jacobi symbol algorithm. Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
+following are true.
+
+\begin{enumerate}
+\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$.
+\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
+\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
+\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$. Otherwise, it equals $-1$.
+\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$. More specifically
+$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.
+\end{enumerate}
+
+Using these facts if $a = 2^k \cdot a'$ then
+
+\begin{eqnarray}
+\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
+ = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right )
+\label{eqn:jacobi}
+\end{eqnarray}
+
+By fact five,
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right ) \cdot (-1)^{(p-1)(a'-1)/4}
+\end{equation}
+
+The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively. The value of
+$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$. Using this approach the
+factors of $p$ do not have to be known. Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
+Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_jacobi}. \\
+\textbf{Input}. mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
+\textbf{Output}. The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
+\hline \\
+1. If $a = 0$ then \\
+\hspace{3mm}1.1 $c \leftarrow 0$ \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $a = 1$ then \\
+\hspace{3mm}2.1 $c \leftarrow 1$ \\
+\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
+3. $a' \leftarrow a$ \\
+4. $k \leftarrow 0$ \\
+5. While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1 $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2 $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
+6. If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
+\hspace{3mm}6.1 $s \leftarrow 1$ \\
+7. else \\
+\hspace{3mm}7.1 $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
+\hspace{3mm}7.2 If $r = 1$ or $r = 7$ then \\
+\hspace{6mm}7.2.1 $s \leftarrow 1$ \\
+\hspace{3mm}7.3 else \\
+\hspace{6mm}7.3.1 $s \leftarrow -1$ \\
+8. If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
+\hspace{3mm}8.1 $s \leftarrow -s$ \\
+9. If $a' \ne 1$ then \\
+\hspace{3mm}9.1 $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
+\hspace{3mm}9.2 $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
+10. $c \leftarrow s$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_jacobi}
+\end{figure}
+\textbf{Algorithm mp\_jacobi.}
+This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three. The algorithm
+is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.
+
+Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively. Step five determines the number of two factors in the
+input $a$. If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one. If $k$ is odd than the term evaluates to one
+if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled
+the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$. The latter term evaluates to one if both $p$ and $a'$
+are congruent to one modulo four, otherwise it evaluates to negative one.
+
+By step nine if $a'$ does not equal one a recursion is required. Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
+$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_jacobi.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes the jacobi c = (a | n) (or Legendre if n is prime)
+018 * HAC pp. 73 Algorithm 2.149
+019 */
+020 int mp_jacobi (mp_int * a, mp_int * p, int *c)
+021 \{
+022 mp_int a1, p1;
+023 int k, s, r, res;
+024 mp_digit residue;
+025
+026 /* if p <= 0 return MP_VAL */
+027 if (mp_cmp_d(p, 0) != MP_GT) \{
+028 return MP_VAL;
+029 \}
+030
+031 /* step 1. if a == 0, return 0 */
+032 if (mp_iszero (a) == 1) \{
+033 *c = 0;
+034 return MP_OKAY;
+035 \}
+036
+037 /* step 2. if a == 1, return 1 */
+038 if (mp_cmp_d (a, 1) == MP_EQ) \{
+039 *c = 1;
+040 return MP_OKAY;
+041 \}
+042
+043 /* default */
+044 s = 0;
+045
+046 /* step 3. write a = a1 * 2**k */
+047 if ((res = mp_init_copy (&a1, a)) != MP_OKAY) \{
+048 return res;
+049 \}
+050
+051 if ((res = mp_init (&p1)) != MP_OKAY) \{
+052 goto LBL_A1;
+053 \}
+054
+055 /* divide out larger power of two */
+056 k = mp_cnt_lsb(&a1);
+057 if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) \{
+058 goto LBL_P1;
+059 \}
+060
+061 /* step 4. if e is even set s=1 */
+062 if ((k & 1) == 0) \{
+063 s = 1;
+064 \} else \{
+065 /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
+066 residue = p->dp[0] & 7;
+067
+068 if (residue == 1 || residue == 7) \{
+069 s = 1;
+070 \} else if (residue == 3 || residue == 5) \{
+071 s = -1;
+072 \}
+073 \}
+074
+075 /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+076 if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) \{
+077 s = -s;
+078 \}
+079
+080 /* if a1 == 1 we're done */
+081 if (mp_cmp_d (&a1, 1) == MP_EQ) \{
+082 *c = s;
+083 \} else \{
+084 /* n1 = n mod a1 */
+085 if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) \{
+086 goto LBL_P1;
+087 \}
+088 if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) \{
+089 goto LBL_P1;
+090 \}
+091 *c = s * r;
+092 \}
+093
+094 /* done */
+095 res = MP_OKAY;
+096 LBL_P1:mp_clear (&p1);
+097 LBL_A1:mp_clear (&a1);
+098 return res;
+099 \}
+100 #endif
+\end{alltt}
+\end{small}
+
+As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C
+variable name character.
+
+The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm. If the input is non-trivial the algorithm
+has to proceed compute the Jacobi. The variable $s$ is used to hold the current Jacobi product. Note that $s$ is merely a C ``int'' data type since
+the values it may obtain are merely $-1$, $0$ and $1$.
+
+After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$. Technically only the least significant
+bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same
+processor requirements and neither is faster than the other.
+
+Line 61 through 70 determines the value of $\left ( { 2 \over p } \right )^k$. If the least significant bit of $k$ is zero than
+$k$ is even and the value is one. Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight. The value of
+$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines 75 through 73.
+
+Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.
+
+\textit{-- Comment about default $s$ and such...}
+
+\section{Modular Inverse}
+\label{sec:modinv}
+The modular inverse of a number actually refers to the modular multiplicative inverse. Essentially for any integer $a$ such that $(a, p) = 1$ there
+exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$. The integer $b$ is called the multiplicative inverse of $a$ which is
+denoted as $b = a^{-1}$. Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and
+fields of integers. However, the former will be the matter of discussion.
+
+The simplest approach is to compute the algebraic inverse of the input. That is to compute $b \equiv a^{\Phi(p) - 1}$. If $\Phi(p)$ is the
+order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$. The proof of which is trivial.
+
+\begin{equation}
+ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
+\end{equation}
+
+However, as simple as this approach may be it has two serious flaws. It requires that the value of $\Phi(p)$ be known which if $p$ is composite
+requires all of the prime factors. This approach also is very slow as the size of $p$ grows.
+
+A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear
+Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
+
+\begin{equation}
+ab + pq = 1
+\end{equation}
+
+Where $a$, $b$, $p$ and $q$ are all integers. If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of
+$a$ modulo $p$. The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.
+However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place. The
+binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine
+equation.
+
+\subsection{General Case}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_invmod}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$. \\
+\textbf{Output}. The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then return(\textit{MP\_VAL}). \\
+2. If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
+3. $x \leftarrow \vert a \vert, y \leftarrow b$ \\
+4. If $x_0 \equiv y_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
+5. $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
+6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.2 If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}6.2.1 $A \leftarrow A + y$ \\
+\hspace{6mm}6.2.2 $B \leftarrow B - x$ \\
+\hspace{3mm}6.3 $A \leftarrow \lfloor A / 2 \rfloor$ \\
+\hspace{3mm}6.4 $B \leftarrow \lfloor B / 2 \rfloor$ \\
+7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+\hspace{3mm}7.2 If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}7.2.1 $C \leftarrow C + y$ \\
+\hspace{6mm}7.2.2 $D \leftarrow D - x$ \\
+\hspace{3mm}7.3 $C \leftarrow \lfloor C / 2 \rfloor$ \\
+\hspace{3mm}7.4 $D \leftarrow \lfloor D / 2 \rfloor$ \\
+8. If $u \ge v$ then \\
+\hspace{3mm}8.1 $u \leftarrow u - v$ \\
+\hspace{3mm}8.2 $A \leftarrow A - C$ \\
+\hspace{3mm}8.3 $B \leftarrow B - D$ \\
+9. else \\
+\hspace{3mm}9.1 $v \leftarrow v - u$ \\
+\hspace{3mm}9.2 $C \leftarrow C - A$ \\
+\hspace{3mm}9.3 $D \leftarrow D - B$ \\
+10. If $u \ne 0$ goto step 6. \\
+11. If $v \ne 1$ return(\textit{MP\_VAL}). \\
+12. While $C \le 0$ do \\
+\hspace{3mm}12.1 $C \leftarrow C + b$ \\
+13. While $C \ge b$ do \\
+\hspace{3mm}13.1 $C \leftarrow C - b$ \\
+14. $c \leftarrow C$ \\
+15. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\end{figure}
+\textbf{Algorithm mp\_invmod.}
+This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$. This algorithm is a variation of the
+extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}. It has been modified to only compute the modular inverse and not a complete
+Diophantine solution.
+
+If $b \le 0$ than the modulus is invalid and MP\_VAL is returned. Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
+inverse for $a$ and the error is reported.
+
+The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd. In this case
+the other variables to the Diophantine equation are solved. The algorithm terminates when $u = 0$ in which case the solution is
+
+\begin{equation}
+Ca + Db = v
+\end{equation}
+
+If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists. Otherwise, $C$
+is the modular inverse of $a$. The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie
+within $1 \le a^{-1} < b$. Step numbers twelve and thirteen adjust the inverse until it is in range. If the original input $a$ is within $0 < a < p$
+then only a couple of additions or subtractions will be required to adjust the inverse.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_invmod.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* hac 14.61, pp608 */
+018 int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+019 \{
+020 /* b cannot be negative */
+021 if (b->sign == MP_NEG || mp_iszero(b) == 1) \{
+022 return MP_VAL;
+023 \}
+024
+025 #ifdef BN_FAST_MP_INVMOD_C
+026 /* if the modulus is odd we can use a faster routine instead */
+027 if (mp_isodd (b) == 1) \{
+028 return fast_mp_invmod (a, b, c);
+029 \}
+030 #endif
+031
+032 #ifdef BN_MP_INVMOD_SLOW_C
+033 return mp_invmod_slow(a, b, c);
+034 #endif
+035
+036 return MP_VAL;
+037 \}
+038 #endif
+\end{alltt}
+\end{small}
+
+\subsubsection{Odd Moduli}
+
+When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse. In particular by attempting to solve
+the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.
+
+The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed. This
+optimization will halve the time required to compute the modular inverse.
+
+\section{Primality Tests}
+
+A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself. For example, $a = 7$ is prime
+since the integers $2 \ldots 6$ do not evenly divide $a$. By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$.
+
+Prime numbers arise in cryptography considerably as they allow finite fields to be formed. The ability to determine whether an integer is prime or
+not quickly has been a viable subject in cryptography and number theory for considerable time. The algorithms that will be presented are all
+probablistic algorithms in that when they report an integer is composite it must be composite. However, when the algorithms report an integer is
+prime the algorithm may be incorrect.
+
+As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as
+well be zero. For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
+
+\subsection{Trial Division}
+
+Trial division means to attempt to evenly divide a candidate integer by small prime integers. If the candidate can be evenly divided it obviously
+cannot be prime. By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime. However, such a test
+would require a prohibitive amount of time as $n$ grows.
+
+Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead. By performing trial division with only a subset
+of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime. However, often it can prove a candidate is not prime.
+
+The benefit of this test is that trial division by small values is fairly efficient. Specially compared to the other algorithms that will be
+discussed shortly. The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
+$1 - {1.12 \over ln(q)}$. The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range
+$3 \le q \le 100$.
+
+At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly. At $q = 90$ further testing is generally not going to
+be of any practical use. In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate
+approximately $80\%$ of all candidate integers. The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base. The
+array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$. \\
+\hline \\
+1. for $ix$ from $0$ to $PRIME\_SIZE$ do \\
+\hspace{3mm}1.1 $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
+\hspace{3mm}1.2 If $d = 0$ then \\
+\hspace{6mm}1.2.1 $c \leftarrow 1$ \\
+\hspace{6mm}1.2.2 Return(\textit{MP\_OKAY}). \\
+2. $c \leftarrow 0$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_is\_divisible}
+\end{figure}
+\textbf{Algorithm mp\_prime\_is\_divisible.}
+This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_is\_divisible.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines if an integers is divisible by one
+018 * of the first PRIME_SIZE primes or not
+019 *
+020 * sets result to 0 if not, 1 if yes
+021 */
+022 int mp_prime_is_divisible (mp_int * a, int *result)
+023 \{
+024 int err, ix;
+025 mp_digit res;
+026
+027 /* default to not */
+028 *result = MP_NO;
+029
+030 for (ix = 0; ix < PRIME_SIZE; ix++) \{
+031 /* what is a mod LBL_prime_tab[ix] */
+032 if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) \{
+033 return err;
+034 \}
+035
+036 /* is the residue zero? */
+037 if (res == 0) \{
+038 *result = MP_YES;
+039 return MP_OKAY;
+040 \}
+041 \}
+042
+043 return MP_OKAY;
+044 \}
+045 #endif
+\end{alltt}
+\end{small}
+
+The algorithm defaults to a return of $0$ in case an error occurs. The values in the prime table are all specified to be in the range of a
+mp\_digit. The table \_\_prime\_tab is defined in the following file.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_prime\_tab.c
+\vspace{-3mm}
+\begin{alltt}
+016 const mp_digit ltm_prime_tab[] = \{
+017 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+018 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+019 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+020 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
+021 #ifndef MP_8BIT
+022 0x0083,
+023 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+024 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+025 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+026 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+027
+028 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+029 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+030 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+031 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+032 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+033 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+034 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+035 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+036
+037 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+038 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+039 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+040 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+041 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+042 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+043 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+044 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+045
+046 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+047 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+048 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+049 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+050 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+051 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+052 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+053 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+054 #endif
+055 \};
+056 #endif
+\end{alltt}
+\end{small}
+
+Note that there are two possible tables. When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
+upto $1619$ are used. Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit.
+
+\subsection{The Fermat Test}
+The Fermat test is probably one the oldest tests to have a non-trivial probability of success. It is based on the fact that if $n$ is in
+fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$. The reason being that if $n$ is prime than the order of
+the multiplicative sub group is $n - 1$. Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to
+$a^1 = a$.
+
+If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$. In which case
+it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$. However, this test is not absolute as it is possible that the order
+of a base will divide $n - 1$ which would then be reported as prime. Such a base yields what is known as a Fermat pseudo-prime. Several
+integers known as Carmichael numbers will be a pseudo-prime to all valid bases. Fortunately such numbers are extremely rare as $n$ grows
+in size.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_fermat}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
+\textbf{Output}. $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$. \\
+\hline \\
+1. $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
+2. If $t = b$ then \\
+\hspace{3mm}2.1 $c = 1$ \\
+3. else \\
+\hspace{3mm}3.1 $c = 0$ \\
+4. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_fermat}
+\end{figure}
+\textbf{Algorithm mp\_prime\_fermat.}
+This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not. It uses a single modular exponentiation to
+determine the result.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_fermat.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* performs one Fermat test.
+018 *
+019 * If "a" were prime then b**a == b (mod a) since the order of
+020 * the multiplicative sub-group would be phi(a) = a-1. That means
+021 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
+022 *
+023 * Sets result to 1 if the congruence holds, or zero otherwise.
+024 */
+025 int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+026 \{
+027 mp_int t;
+028 int err;
+029
+030 /* default to composite */
+031 *result = MP_NO;
+032
+033 /* ensure b > 1 */
+034 if (mp_cmp_d(b, 1) != MP_GT) \{
+035 return MP_VAL;
+036 \}
+037
+038 /* init t */
+039 if ((err = mp_init (&t)) != MP_OKAY) \{
+040 return err;
+041 \}
+042
+043 /* compute t = b**a mod a */
+044 if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) \{
+045 goto LBL_T;
+046 \}
+047
+048 /* is it equal to b? */
+049 if (mp_cmp (&t, b) == MP_EQ) \{
+050 *result = MP_YES;
+051 \}
+052
+053 err = MP_OKAY;
+054 LBL_T:mp_clear (&t);
+055 return err;
+056 \}
+057 #endif
+\end{alltt}
+\end{small}
+
+\subsection{The Miller-Rabin Test}
+The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen
+candidate integers. The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the
+value must be equal to $-1$. The squarings are stopped as soon as $-1$ is observed. If the value of $1$ is observed first it means that
+some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
+\textbf{Output}. $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$. \\
+\hline
+1. $a' \leftarrow a - 1$ \\
+2. $r \leftarrow n1$ \\
+3. $c \leftarrow 0, s \leftarrow 0$ \\
+4. While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}4.1 $s \leftarrow s + 1$ \\
+\hspace{3mm}4.2 $r \leftarrow \lfloor r / 2 \rfloor$ \\
+5. $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
+6. If $y \nequiv \pm 1$ then \\
+\hspace{3mm}6.1 $j \leftarrow 1$ \\
+\hspace{3mm}6.2 While $j \le (s - 1)$ and $y \nequiv a'$ \\
+\hspace{6mm}6.2.1 $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
+\hspace{6mm}6.2.2 If $y = 1$ then goto step 8. \\
+\hspace{6mm}6.2.3 $j \leftarrow j + 1$ \\
+\hspace{3mm}6.3 If $y \nequiv a'$ goto step 8. \\
+7. $c \leftarrow 1$\\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_miller\_rabin}
+\end{figure}
+\textbf{Algorithm mp\_prime\_miller\_rabin.}
+This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$. It will set $c = 1$ if the algorithm cannot determine
+if $b$ is composite or $c = 0$ if $b$ is provably composite. The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.
+
+If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not. Otherwise, the algorithm will
+square $y$ upto $s - 1$ times stopping only when $y \equiv -1$. If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
+is provably composite. If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite. If $a$ is not provably
+composite then it is \textit{probably} prime.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_miller\_rabin.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* Miller-Rabin test of "a" to the base of "b" as described in
+018 * HAC pp. 139 Algorithm 4.24
+019 *
+020 * Sets result to 0 if definitely composite or 1 if probably prime.
+021 * Randomly the chance of error is no more than 1/4 and often
+022 * very much lower.
+023 */
+024 int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+025 \{
+026 mp_int n1, y, r;
+027 int s, j, err;
+028
+029 /* default */
+030 *result = MP_NO;
+031
+032 /* ensure b > 1 */
+033 if (mp_cmp_d(b, 1) != MP_GT) \{
+034 return MP_VAL;
+035 \}
+036
+037 /* get n1 = a - 1 */
+038 if ((err = mp_init_copy (&n1, a)) != MP_OKAY) \{
+039 return err;
+040 \}
+041 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) \{
+042 goto LBL_N1;
+043 \}
+044
+045 /* set 2**s * r = n1 */
+046 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) \{
+047 goto LBL_N1;
+048 \}
+049
+050 /* count the number of least significant bits
+051 * which are zero
+052 */
+053 s = mp_cnt_lsb(&r);
+054
+055 /* now divide n - 1 by 2**s */
+056 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) \{
+057 goto LBL_R;
+058 \}
+059
+060 /* compute y = b**r mod a */
+061 if ((err = mp_init (&y)) != MP_OKAY) \{
+062 goto LBL_R;
+063 \}
+064 if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) \{
+065 goto LBL_Y;
+066 \}
+067
+068 /* if y != 1 and y != n1 do */
+069 if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) \{
+070 j = 1;
+071 /* while j <= s-1 and y != n1 */
+072 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) \{
+073 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) \{
+074 goto LBL_Y;
+075 \}
+076
+077 /* if y == 1 then composite */
+078 if (mp_cmp_d (&y, 1) == MP_EQ) \{
+079 goto LBL_Y;
+080 \}
+081
+082 ++j;
+083 \}
+084
+085 /* if y != n1 then composite */
+086 if (mp_cmp (&y, &n1) != MP_EQ) \{
+087 goto LBL_Y;
+088 \}
+089 \}
+090
+091 /* probably prime now */
+092 *result = MP_YES;
+093 LBL_Y:mp_clear (&y);
+094 LBL_R:mp_clear (&r);
+095 LBL_N1:mp_clear (&n1);
+096 return err;
+097 \}
+098 #endif
+\end{alltt}
+\end{small}
+
+
+
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
+
+\bibitem[11]{RSAREF}
+R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
+
+\bibitem[12]{DHREF}
+Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
+
+\bibitem[13]{IEEE}
+IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
+
+\bibitem[14]{GMP}
+GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
+
+\bibitem[15]{MPI}
+Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
+
+\bibitem[16]{OPENSSL}
+OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
+
+\bibitem[17]{LIP}
+Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
+
+\bibitem[18]{ISOC}
+JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.''
+
+\bibitem[19]{JAVA}
+The Sun Java Website, \url{http://java.sun.com/}
+
+\end{thebibliography}
+
+\input{tommath.ind}
+
+\end{document}
diff --git a/libtommath/tommath_class.h b/libtommath/tommath_class.h
new file mode 100644
index 0000000..53bfa31
--- /dev/null
+++ b/libtommath/tommath_class.h
@@ -0,0 +1,952 @@
+#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))
+#if defined(LTM2)
+#define LTM3
+#endif
+#if defined(LTM1)
+#define LTM2
+#endif
+#define LTM1
+
+#if defined(LTM_ALL)
+#define BN_ERROR_C
+#define BN_FAST_MP_INVMOD_C
+#define BN_FAST_MP_MONTGOMERY_REDUCE_C
+#define BN_FAST_S_MP_MUL_DIGS_C
+#define BN_FAST_S_MP_MUL_HIGH_DIGS_C
+#define BN_FAST_S_MP_SQR_C
+#define BN_MP_2EXPT_C
+#define BN_MP_ABS_C
+#define BN_MP_ADD_C
+#define BN_MP_ADD_D_C
+#define BN_MP_ADDMOD_C
+#define BN_MP_AND_C
+#define BN_MP_CLAMP_C
+#define BN_MP_CLEAR_C
+#define BN_MP_CLEAR_MULTI_C
+#define BN_MP_CMP_C
+#define BN_MP_CMP_D_C
+#define BN_MP_CMP_MAG_C
+#define BN_MP_CNT_LSB_C
+#define BN_MP_COPY_C
+#define BN_MP_COUNT_BITS_C
+#define BN_MP_DIV_C
+#define BN_MP_DIV_2_C
+#define BN_MP_DIV_2D_C
+#define BN_MP_DIV_3_C
+#define BN_MP_DIV_D_C
+#define BN_MP_DR_IS_MODULUS_C
+#define BN_MP_DR_REDUCE_C
+#define BN_MP_DR_SETUP_C
+#define BN_MP_EXCH_C
+#define BN_MP_EXPT_D_C
+#define BN_MP_EXPTMOD_C
+#define BN_MP_EXPTMOD_FAST_C
+#define BN_MP_EXTEUCLID_C
+#define BN_MP_FREAD_C
+#define BN_MP_FWRITE_C
+#define BN_MP_GCD_C
+#define BN_MP_GET_INT_C
+#define BN_MP_GROW_C
+#define BN_MP_INIT_C
+#define BN_MP_INIT_COPY_C
+#define BN_MP_INIT_MULTI_C
+#define BN_MP_INIT_SET_C
+#define BN_MP_INIT_SET_INT_C
+#define BN_MP_INIT_SIZE_C
+#define BN_MP_INVMOD_C
+#define BN_MP_INVMOD_SLOW_C
+#define BN_MP_IS_SQUARE_C
+#define BN_MP_JACOBI_C
+#define BN_MP_KARATSUBA_MUL_C
+#define BN_MP_KARATSUBA_SQR_C
+#define BN_MP_LCM_C
+#define BN_MP_LSHD_C
+#define BN_MP_MOD_C
+#define BN_MP_MOD_2D_C
+#define BN_MP_MOD_D_C
+#define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+#define BN_MP_MONTGOMERY_REDUCE_C
+#define BN_MP_MONTGOMERY_SETUP_C
+#define BN_MP_MUL_C
+#define BN_MP_MUL_2_C
+#define BN_MP_MUL_2D_C
+#define BN_MP_MUL_D_C
+#define BN_MP_MULMOD_C
+#define BN_MP_N_ROOT_C
+#define BN_MP_NEG_C
+#define BN_MP_OR_C
+#define BN_MP_PRIME_FERMAT_C
+#define BN_MP_PRIME_IS_DIVISIBLE_C
+#define BN_MP_PRIME_IS_PRIME_C
+#define BN_MP_PRIME_MILLER_RABIN_C
+#define BN_MP_PRIME_NEXT_PRIME_C
+#define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
+#define BN_MP_PRIME_RANDOM_EX_C
+#define BN_MP_RADIX_SIZE_C
+#define BN_MP_RADIX_SMAP_C
+#define BN_MP_RAND_C
+#define BN_MP_READ_RADIX_C
+#define BN_MP_READ_SIGNED_BIN_C
+#define BN_MP_READ_UNSIGNED_BIN_C
+#define BN_MP_REDUCE_C
+#define BN_MP_REDUCE_2K_C
+#define BN_MP_REDUCE_2K_SETUP_C
+#define BN_MP_REDUCE_IS_2K_C
+#define BN_MP_REDUCE_SETUP_C
+#define BN_MP_RSHD_C
+#define BN_MP_SET_C
+#define BN_MP_SET_INT_C
+#define BN_MP_SHRINK_C
+#define BN_MP_SIGNED_BIN_SIZE_C
+#define BN_MP_SQR_C
+#define BN_MP_SQRMOD_C
+#define BN_MP_SQRT_C
+#define BN_MP_SUB_C
+#define BN_MP_SUB_D_C
+#define BN_MP_SUBMOD_C
+#define BN_MP_TO_SIGNED_BIN_C
+#define BN_MP_TO_UNSIGNED_BIN_C
+#define BN_MP_TOOM_MUL_C
+#define BN_MP_TOOM_SQR_C
+#define BN_MP_TORADIX_C
+#define BN_MP_TORADIX_N_C
+#define BN_MP_UNSIGNED_BIN_SIZE_C
+#define BN_MP_XOR_C
+#define BN_MP_ZERO_C
+#define BN_PRIME_TAB_C
+#define BN_REVERSE_C
+#define BN_S_MP_ADD_C
+#define BN_S_MP_EXPTMOD_C
+#define BN_S_MP_MUL_DIGS_C
+#define BN_S_MP_MUL_HIGH_DIGS_C
+#define BN_S_MP_SQR_C
+#define BN_S_MP_SUB_C
+#define BNCORE_C
+#endif
+
+#if defined(BN_ERROR_C)
+ #define BN_MP_ERROR_TO_STRING_C
+#endif
+
+#if defined(BN_FAST_MP_INVMOD_C)
+ #define BN_MP_ISEVEN_C
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_COPY_C
+ #define BN_MP_ABS_C
+ #define BN_MP_SET_C
+ #define BN_MP_DIV_2_C
+ #define BN_MP_ISODD_C
+ #define BN_MP_SUB_C
+ #define BN_MP_CMP_C
+ #define BN_MP_ISZERO_C
+ #define BN_MP_CMP_D_C
+ #define BN_MP_ADD_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_MULTI_C
+#endif
+
+#if defined(BN_FAST_MP_MONTGOMERY_REDUCE_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_S_MP_SUB_C
+#endif
+
+#if defined(BN_FAST_S_MP_MUL_DIGS_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_FAST_S_MP_SQR_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_2EXPT_C)
+ #define BN_MP_ZERO_C
+ #define BN_MP_GROW_C
+#endif
+
+#if defined(BN_MP_ABS_C)
+ #define BN_MP_COPY_C
+#endif
+
+#if defined(BN_MP_ADD_C)
+ #define BN_S_MP_ADD_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_S_MP_SUB_C
+#endif
+
+#if defined(BN_MP_ADD_D_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_SUB_D_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_ADDMOD_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_ADD_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_MOD_C
+#endif
+
+#if defined(BN_MP_AND_C)
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_CLAMP_C)
+#endif
+
+#if defined(BN_MP_CLEAR_C)
+#endif
+
+#if defined(BN_MP_CLEAR_MULTI_C)
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_CMP_C)
+ #define BN_MP_CMP_MAG_C
+#endif
+
+#if defined(BN_MP_CMP_D_C)
+#endif
+
+#if defined(BN_MP_CMP_MAG_C)
+#endif
+
+#if defined(BN_MP_CNT_LSB_C)
+ #define BN_MP_ISZERO_C
+#endif
+
+#if defined(BN_MP_COPY_C)
+ #define BN_MP_GROW_C
+#endif
+
+#if defined(BN_MP_COUNT_BITS_C)
+#endif
+
+#if defined(BN_MP_DIV_C)
+ #define BN_MP_ISZERO_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_MP_COPY_C
+ #define BN_MP_ZERO_C
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_SET_C
+ #define BN_MP_COUNT_BITS_C
+ #define BN_MP_ABS_C
+ #define BN_MP_MUL_2D_C
+ #define BN_MP_CMP_C
+ #define BN_MP_SUB_C
+ #define BN_MP_ADD_C
+ #define BN_MP_DIV_2D_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_MULTI_C
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_INIT_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_LSHD_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_MUL_D_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_DIV_2_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_DIV_2D_C)
+ #define BN_MP_COPY_C
+ #define BN_MP_ZERO_C
+ #define BN_MP_INIT_C
+ #define BN_MP_MOD_2D_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+#endif
+
+#if defined(BN_MP_DIV_3_C)
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_DIV_D_C)
+ #define BN_MP_ISZERO_C
+ #define BN_MP_COPY_C
+ #define BN_MP_DIV_2D_C
+ #define BN_MP_DIV_3_C
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_DR_IS_MODULUS_C)
+#endif
+
+#if defined(BN_MP_DR_REDUCE_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_S_MP_SUB_C
+#endif
+
+#if defined(BN_MP_DR_SETUP_C)
+#endif
+
+#if defined(BN_MP_EXCH_C)
+#endif
+
+#if defined(BN_MP_EXPT_D_C)
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_SET_C
+ #define BN_MP_SQR_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_MUL_C
+#endif
+
+#if defined(BN_MP_EXPTMOD_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_INVMOD_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_ABS_C
+ #define BN_MP_CLEAR_MULTI_C
+ #define BN_MP_DR_IS_MODULUS_C
+ #define BN_MP_REDUCE_IS_2K_C
+ #define BN_MP_ISODD_C
+ #define BN_MP_EXPTMOD_FAST_C
+ #define BN_S_MP_EXPTMOD_C
+#endif
+
+#if defined(BN_MP_EXPTMOD_FAST_C)
+ #define BN_MP_COUNT_BITS_C
+ #define BN_MP_INIT_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_MONTGOMERY_SETUP_C
+ #define BN_FAST_MP_MONTGOMERY_REDUCE_C
+ #define BN_MP_MONTGOMERY_REDUCE_C
+ #define BN_MP_DR_SETUP_C
+ #define BN_MP_DR_REDUCE_C
+ #define BN_MP_REDUCE_2K_SETUP_C
+ #define BN_MP_REDUCE_2K_C
+ #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+ #define BN_MP_MULMOD_C
+ #define BN_MP_SET_C
+ #define BN_MP_MOD_C
+ #define BN_MP_COPY_C
+ #define BN_MP_SQR_C
+ #define BN_MP_MUL_C
+ #define BN_MP_EXCH_C
+#endif
+
+#if defined(BN_MP_EXTEUCLID_C)
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_SET_C
+ #define BN_MP_COPY_C
+ #define BN_MP_ISZERO_C
+ #define BN_MP_DIV_C
+ #define BN_MP_MUL_C
+ #define BN_MP_SUB_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_MULTI_C
+#endif
+
+#if defined(BN_MP_FREAD_C)
+ #define BN_MP_ZERO_C
+ #define BN_MP_S_RMAP_C
+ #define BN_MP_MUL_D_C
+ #define BN_MP_ADD_D_C
+ #define BN_MP_CMP_D_C
+#endif
+
+#if defined(BN_MP_FWRITE_C)
+ #define BN_MP_RADIX_SIZE_C
+ #define BN_MP_TORADIX_C
+#endif
+
+#if defined(BN_MP_GCD_C)
+ #define BN_MP_ISZERO_C
+ #define BN_MP_ABS_C
+ #define BN_MP_ZERO_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_CNT_LSB_C
+ #define BN_MP_DIV_2D_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_MP_EXCH_C
+ #define BN_S_MP_SUB_C
+ #define BN_MP_MUL_2D_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_GET_INT_C)
+#endif
+
+#if defined(BN_MP_GROW_C)
+#endif
+
+#if defined(BN_MP_INIT_C)
+#endif
+
+#if defined(BN_MP_INIT_COPY_C)
+ #define BN_MP_COPY_C
+#endif
+
+#if defined(BN_MP_INIT_MULTI_C)
+ #define BN_MP_ERR_C
+ #define BN_MP_INIT_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_INIT_SET_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_SET_C
+#endif
+
+#if defined(BN_MP_INIT_SET_INT_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_SET_INT_C
+#endif
+
+#if defined(BN_MP_INIT_SIZE_C)
+ #define BN_MP_INIT_C
+#endif
+
+#if defined(BN_MP_INVMOD_C)
+ #define BN_MP_ISZERO_C
+ #define BN_MP_ISODD_C
+ #define BN_FAST_MP_INVMOD_C
+ #define BN_MP_INVMOD_SLOW_C
+#endif
+
+#if defined(BN_MP_INVMOD_SLOW_C)
+ #define BN_MP_ISZERO_C
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_COPY_C
+ #define BN_MP_ISEVEN_C
+ #define BN_MP_SET_C
+ #define BN_MP_DIV_2_C
+ #define BN_MP_ISODD_C
+ #define BN_MP_ADD_C
+ #define BN_MP_SUB_C
+ #define BN_MP_CMP_C
+ #define BN_MP_CMP_D_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_MULTI_C
+#endif
+
+#if defined(BN_MP_IS_SQUARE_C)
+ #define BN_MP_MOD_D_C
+ #define BN_MP_INIT_SET_INT_C
+ #define BN_MP_MOD_C
+ #define BN_MP_GET_INT_C
+ #define BN_MP_SQRT_C
+ #define BN_MP_SQR_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_JACOBI_C)
+ #define BN_MP_CMP_D_C
+ #define BN_MP_ISZERO_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_CNT_LSB_C
+ #define BN_MP_DIV_2D_C
+ #define BN_MP_MOD_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_KARATSUBA_MUL_C)
+ #define BN_MP_MUL_C
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_SUB_C
+ #define BN_MP_ADD_C
+ #define BN_MP_LSHD_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_KARATSUBA_SQR_C)
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_SQR_C
+ #define BN_MP_SUB_C
+ #define BN_S_MP_ADD_C
+ #define BN_MP_LSHD_C
+ #define BN_MP_ADD_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_LCM_C)
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_GCD_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_MP_DIV_C
+ #define BN_MP_MUL_C
+ #define BN_MP_CLEAR_MULTI_C
+#endif
+
+#if defined(BN_MP_LSHD_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_RSHD_C
+#endif
+
+#if defined(BN_MP_MOD_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_DIV_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_ADD_C
+ #define BN_MP_EXCH_C
+#endif
+
+#if defined(BN_MP_MOD_2D_C)
+ #define BN_MP_ZERO_C
+ #define BN_MP_COPY_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_MOD_D_C)
+ #define BN_MP_DIV_D_C
+#endif
+
+#if defined(BN_MP_MONTGOMERY_CALC_NORMALIZATION_C)
+ #define BN_MP_COUNT_BITS_C
+ #define BN_MP_2EXPT_C
+ #define BN_MP_SET_C
+ #define BN_MP_MUL_2_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_S_MP_SUB_C
+#endif
+
+#if defined(BN_MP_MONTGOMERY_REDUCE_C)
+ #define BN_FAST_MP_MONTGOMERY_REDUCE_C
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_S_MP_SUB_C
+#endif
+
+#if defined(BN_MP_MONTGOMERY_SETUP_C)
+#endif
+
+#if defined(BN_MP_MUL_C)
+ #define BN_MP_TOOM_MUL_C
+ #define BN_MP_KARATSUBA_MUL_C
+ #define BN_FAST_S_MP_MUL_DIGS_C
+ #define BN_S_MP_MUL_C
+ #define BN_S_MP_MUL_DIGS_C
+#endif
+
+#if defined(BN_MP_MUL_2_C)
+ #define BN_MP_GROW_C
+#endif
+
+#if defined(BN_MP_MUL_2D_C)
+ #define BN_MP_COPY_C
+ #define BN_MP_GROW_C
+ #define BN_MP_LSHD_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_MUL_D_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_MULMOD_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_MUL_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_MOD_C
+#endif
+
+#if defined(BN_MP_N_ROOT_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_SET_C
+ #define BN_MP_COPY_C
+ #define BN_MP_EXPT_D_C
+ #define BN_MP_MUL_C
+ #define BN_MP_SUB_C
+ #define BN_MP_MUL_D_C
+ #define BN_MP_DIV_C
+ #define BN_MP_CMP_C
+ #define BN_MP_SUB_D_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_NEG_C)
+ #define BN_MP_COPY_C
+ #define BN_MP_ISZERO_C
+#endif
+
+#if defined(BN_MP_OR_C)
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_PRIME_FERMAT_C)
+ #define BN_MP_CMP_D_C
+ #define BN_MP_INIT_C
+ #define BN_MP_EXPTMOD_C
+ #define BN_MP_CMP_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_PRIME_IS_DIVISIBLE_C)
+ #define BN_MP_MOD_D_C
+#endif
+
+#if defined(BN_MP_PRIME_IS_PRIME_C)
+ #define BN_MP_CMP_D_C
+ #define BN_MP_PRIME_IS_DIVISIBLE_C
+ #define BN_MP_INIT_C
+ #define BN_MP_SET_C
+ #define BN_MP_PRIME_MILLER_RABIN_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_PRIME_MILLER_RABIN_C)
+ #define BN_MP_CMP_D_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_SUB_D_C
+ #define BN_MP_CNT_LSB_C
+ #define BN_MP_DIV_2D_C
+ #define BN_MP_EXPTMOD_C
+ #define BN_MP_CMP_C
+ #define BN_MP_SQRMOD_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_PRIME_NEXT_PRIME_C)
+ #define BN_MP_CMP_D_C
+ #define BN_MP_SET_C
+ #define BN_MP_SUB_D_C
+ #define BN_MP_ISEVEN_C
+ #define BN_MP_MOD_D_C
+ #define BN_MP_INIT_C
+ #define BN_MP_ADD_D_C
+ #define BN_MP_PRIME_MILLER_RABIN_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_PRIME_RABIN_MILLER_TRIALS_C)
+#endif
+
+#if defined(BN_MP_PRIME_RANDOM_EX_C)
+ #define BN_MP_READ_UNSIGNED_BIN_C
+ #define BN_MP_PRIME_IS_PRIME_C
+ #define BN_MP_SUB_D_C
+ #define BN_MP_DIV_2_C
+ #define BN_MP_MUL_2_C
+ #define BN_MP_ADD_D_C
+#endif
+
+#if defined(BN_MP_RADIX_SIZE_C)
+ #define BN_MP_COUNT_BITS_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_ISZERO_C
+ #define BN_MP_DIV_D_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_RADIX_SMAP_C)
+ #define BN_MP_S_RMAP_C
+#endif
+
+#if defined(BN_MP_RAND_C)
+ #define BN_MP_ZERO_C
+ #define BN_MP_ADD_D_C
+ #define BN_MP_LSHD_C
+#endif
+
+#if defined(BN_MP_READ_RADIX_C)
+ #define BN_MP_ZERO_C
+ #define BN_MP_S_RMAP_C
+ #define BN_MP_MUL_D_C
+ #define BN_MP_ADD_D_C
+ #define BN_MP_ISZERO_C
+#endif
+
+#if defined(BN_MP_READ_SIGNED_BIN_C)
+ #define BN_MP_READ_UNSIGNED_BIN_C
+#endif
+
+#if defined(BN_MP_READ_UNSIGNED_BIN_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_ZERO_C
+ #define BN_MP_MUL_2D_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_REDUCE_C)
+ #define BN_MP_REDUCE_SETUP_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_MUL_C
+ #define BN_S_MP_MUL_HIGH_DIGS_C
+ #define BN_FAST_S_MP_MUL_HIGH_DIGS_C
+ #define BN_MP_MOD_2D_C
+ #define BN_S_MP_MUL_DIGS_C
+ #define BN_MP_SUB_C
+ #define BN_MP_CMP_D_C
+ #define BN_MP_SET_C
+ #define BN_MP_LSHD_C
+ #define BN_MP_ADD_C
+ #define BN_MP_CMP_C
+ #define BN_S_MP_SUB_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_REDUCE_2K_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_COUNT_BITS_C
+ #define BN_MP_DIV_2D_C
+ #define BN_MP_MUL_D_C
+ #define BN_S_MP_ADD_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_S_MP_SUB_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_REDUCE_2K_SETUP_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_COUNT_BITS_C
+ #define BN_MP_2EXPT_C
+ #define BN_MP_CLEAR_C
+ #define BN_S_MP_SUB_C
+#endif
+
+#if defined(BN_MP_REDUCE_IS_2K_C)
+ #define BN_MP_REDUCE_2K_C
+ #define BN_MP_COUNT_BITS_C
+#endif
+
+#if defined(BN_MP_REDUCE_SETUP_C)
+ #define BN_MP_2EXPT_C
+ #define BN_MP_DIV_C
+#endif
+
+#if defined(BN_MP_RSHD_C)
+ #define BN_MP_ZERO_C
+#endif
+
+#if defined(BN_MP_SET_C)
+ #define BN_MP_ZERO_C
+#endif
+
+#if defined(BN_MP_SET_INT_C)
+ #define BN_MP_ZERO_C
+ #define BN_MP_MUL_2D_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_SHRINK_C)
+#endif
+
+#if defined(BN_MP_SIGNED_BIN_SIZE_C)
+ #define BN_MP_UNSIGNED_BIN_SIZE_C
+#endif
+
+#if defined(BN_MP_SQR_C)
+ #define BN_MP_TOOM_SQR_C
+ #define BN_MP_KARATSUBA_SQR_C
+ #define BN_FAST_S_MP_SQR_C
+ #define BN_S_MP_SQR_C
+#endif
+
+#if defined(BN_MP_SQRMOD_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_SQR_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_MOD_C
+#endif
+
+#if defined(BN_MP_SQRT_C)
+ #define BN_MP_N_ROOT_C
+ #define BN_MP_ISZERO_C
+ #define BN_MP_ZERO_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_DIV_C
+ #define BN_MP_ADD_C
+ #define BN_MP_DIV_2_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_SUB_C)
+ #define BN_S_MP_ADD_C
+ #define BN_MP_CMP_MAG_C
+ #define BN_S_MP_SUB_C
+#endif
+
+#if defined(BN_MP_SUB_D_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_ADD_D_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_MP_SUBMOD_C)
+ #define BN_MP_INIT_C
+ #define BN_MP_SUB_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_MOD_C
+#endif
+
+#if defined(BN_MP_TO_SIGNED_BIN_C)
+ #define BN_MP_TO_UNSIGNED_BIN_C
+#endif
+
+#if defined(BN_MP_TO_UNSIGNED_BIN_C)
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_ISZERO_C
+ #define BN_MP_DIV_2D_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_TOOM_MUL_C)
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_MOD_2D_C
+ #define BN_MP_COPY_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_MUL_C
+ #define BN_MP_MUL_2_C
+ #define BN_MP_ADD_C
+ #define BN_MP_SUB_C
+ #define BN_MP_DIV_2_C
+ #define BN_MP_MUL_2D_C
+ #define BN_MP_MUL_D_C
+ #define BN_MP_DIV_3_C
+ #define BN_MP_LSHD_C
+ #define BN_MP_CLEAR_MULTI_C
+#endif
+
+#if defined(BN_MP_TOOM_SQR_C)
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_MOD_2D_C
+ #define BN_MP_COPY_C
+ #define BN_MP_RSHD_C
+ #define BN_MP_SQR_C
+ #define BN_MP_MUL_2_C
+ #define BN_MP_ADD_C
+ #define BN_MP_SUB_C
+ #define BN_MP_DIV_2_C
+ #define BN_MP_MUL_2D_C
+ #define BN_MP_MUL_D_C
+ #define BN_MP_DIV_3_C
+ #define BN_MP_LSHD_C
+ #define BN_MP_CLEAR_MULTI_C
+#endif
+
+#if defined(BN_MP_TORADIX_C)
+ #define BN_MP_ISZERO_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_DIV_D_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_S_RMAP_C
+#endif
+
+#if defined(BN_MP_TORADIX_N_C)
+ #define BN_MP_ISZERO_C
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_DIV_D_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_S_RMAP_C
+#endif
+
+#if defined(BN_MP_UNSIGNED_BIN_SIZE_C)
+ #define BN_MP_COUNT_BITS_C
+#endif
+
+#if defined(BN_MP_XOR_C)
+ #define BN_MP_INIT_COPY_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_MP_ZERO_C)
+#endif
+
+#if defined(BN_PRIME_TAB_C)
+#endif
+
+#if defined(BN_REVERSE_C)
+#endif
+
+#if defined(BN_S_MP_ADD_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BN_S_MP_EXPTMOD_C)
+ #define BN_MP_COUNT_BITS_C
+ #define BN_MP_INIT_C
+ #define BN_MP_CLEAR_C
+ #define BN_MP_REDUCE_SETUP_C
+ #define BN_MP_MOD_C
+ #define BN_MP_COPY_C
+ #define BN_MP_SQR_C
+ #define BN_MP_REDUCE_C
+ #define BN_MP_MUL_C
+ #define BN_MP_SET_C
+ #define BN_MP_EXCH_C
+#endif
+
+#if defined(BN_S_MP_MUL_DIGS_C)
+ #define BN_FAST_S_MP_MUL_DIGS_C
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_S_MP_MUL_HIGH_DIGS_C)
+ #define BN_FAST_S_MP_MUL_HIGH_DIGS_C
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_S_MP_SQR_C)
+ #define BN_MP_INIT_SIZE_C
+ #define BN_MP_CLAMP_C
+ #define BN_MP_EXCH_C
+ #define BN_MP_CLEAR_C
+#endif
+
+#if defined(BN_S_MP_SUB_C)
+ #define BN_MP_GROW_C
+ #define BN_MP_CLAMP_C
+#endif
+
+#if defined(BNCORE_C)
+#endif
+
+#ifdef LTM3
+#define LTM_LAST
+#endif
+#include <tommath_superclass.h>
+#include <tommath_class.h>
+#else
+#define LTM_LAST
+#endif
diff --git a/libtommath/tommath_superclass.h b/libtommath/tommath_superclass.h
new file mode 100644
index 0000000..b50ecb0
--- /dev/null
+++ b/libtommath/tommath_superclass.h
@@ -0,0 +1,72 @@
+/* super class file for PK algos */
+
+/* default ... include all MPI */
+#define LTM_ALL
+
+/* RSA only (does not support DH/DSA/ECC) */
+// #define SC_RSA_1
+
+/* For reference.... On an Athlon64 optimizing for speed...
+
+ LTM's mpi.o with all functions [striped] is 142KiB in size.
+
+*/
+
+/* Works for RSA only, mpi.o is 68KiB */
+#ifdef SC_RSA_1
+ #define BN_MP_SHRINK_C
+ #define BN_MP_LCM_C
+ #define BN_MP_PRIME_RANDOM_EX_C
+ #define BN_MP_INVMOD_C
+ #define BN_MP_GCD_C
+ #define BN_MP_MOD_C
+ #define BN_MP_MULMOD_C
+ #define BN_MP_ADDMOD_C
+ #define BN_MP_EXPTMOD_C
+ #define BN_MP_SET_INT_C
+ #define BN_MP_INIT_MULTI_C
+ #define BN_MP_CLEAR_MULTI_C
+ #define BN_MP_UNSIGNED_BIN_SIZE_C
+ #define BN_MP_TO_UNSIGNED_BIN_C
+ #define BN_MP_MOD_D_C
+ #define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
+ #define BN_REVERSE_C
+ #define BN_PRIME_TAB_C
+
+ /* other modifiers */
+ #define BN_MP_DIV_SMALL /* Slower division, not critical */
+
+ /* here we are on the last pass so we turn things off. The functions classes are still there
+ * but we remove them specifically from the build. This also invokes tweaks in functions
+ * like removing support for even moduli, etc...
+ */
+#ifdef LTM_LAST
+ #undef BN_MP_TOOM_MUL_C
+ #undef BN_MP_TOOM_SQR_C
+ #undef BN_MP_KARATSUBA_MUL_C
+ #undef BN_MP_KARATSUBA_SQR_C
+ #undef BN_MP_REDUCE_C
+ #undef BN_MP_REDUCE_SETUP_C
+ #undef BN_MP_DR_IS_MODULUS_C
+ #undef BN_MP_DR_SETUP_C
+ #undef BN_MP_DR_REDUCE_C
+ #undef BN_MP_REDUCE_IS_2K_C
+ #undef BN_MP_REDUCE_2K_SETUP_C
+ #undef BN_MP_REDUCE_2K_C
+ #undef BN_S_MP_EXPTMOD_C
+ #undef BN_MP_DIV_3_C
+ #undef BN_S_MP_MUL_HIGH_DIGS_C
+ #undef BN_FAST_S_MP_MUL_HIGH_DIGS_C
+ #undef BN_FAST_MP_INVMOD_C
+
+ /* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold
+ * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines]
+ * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without
+ * trouble.
+ */
+ #undef BN_S_MP_MUL_DIGS_C
+ #undef BN_S_MP_SQR_C
+ #undef BN_MP_MONTGOMERY_REDUCE_C
+#endif
+
+#endif