diff options
Diffstat (limited to 'win/tclWinThrd.c')
-rw-r--r-- | win/tclWinThrd.c | 900 |
1 files changed, 900 insertions, 0 deletions
diff --git a/win/tclWinThrd.c b/win/tclWinThrd.c new file mode 100644 index 0000000..ade458e --- /dev/null +++ b/win/tclWinThrd.c @@ -0,0 +1,900 @@ +/* + * tclWinThread.c -- + * + * This file implements the Windows-specific thread operations. + * + * Copyright (c) 1998 by Sun Microsystems, Inc. + * Copyright (c) 1999 by Scriptics Corporation + * + * See the file "license.terms" for information on usage and redistribution + * of this file, and for a DISCLAIMER OF ALL WARRANTIES. + * + * SCCS: @(#) tclWinThrd.c 1.13 98/02/18 14:00:23 + */ + +#include "tclWinInt.h" + +#include <dos.h> +#include <fcntl.h> +#include <io.h> +#include <sys/stat.h> + +/* + * This is the master lock used to serialize access to other + * serialization data structures. + */ + +static CRITICAL_SECTION masterLock; +static int init = 0; +#define MASTER_LOCK EnterCriticalSection(&masterLock) +#define MASTER_UNLOCK LeaveCriticalSection(&masterLock) + +/* + * This is the master lock used to serialize initialization and finalization + * of Tcl as a whole. + */ + +static CRITICAL_SECTION initLock; + +/* + * Condition variables are implemented with a combination of a + * per-thread Windows Event and a per-condition waiting queue. + * The idea is that each thread has its own Event that it waits + * on when it is doing a ConditionWait; it uses the same event for + * all condition variables because it only waits on one at a time. + * Each condition variable has a queue of waiting threads, and a + * mutex used to serialize access to this queue. + * + * Special thanks to David Nichols and + * Jim Davidson for advice on the Condition Variable implementation. + */ + +/* + * The per-thread event and queue pointers. + */ + +typedef struct ThreadSpecificData { + HANDLE condEvent; /* Per-thread condition event */ + struct ThreadSpecificData *nextPtr; /* Queue pointers */ + struct ThreadSpecificData *prevPtr; + int flags; /* See flags below */ +} ThreadSpecificData; +static Tcl_ThreadDataKey dataKey; + +/* + * State bits for the thread. + * WIN_THREAD_UNINIT Uninitialized. Must be zero because + * of the way ThreadSpecificData is created. + * WIN_THREAD_RUNNING Running, not waiting. + * WIN_THREAD_BLOCKED Waiting, or trying to wait. + * WIN_THREAD_DEAD Dying - no per-thread event anymore. + */ + +#define WIN_THREAD_UNINIT 0x0 +#define WIN_THREAD_RUNNING 0x1 +#define WIN_THREAD_BLOCKED 0x2 +#define WIN_THREAD_DEAD 0x4 + +/* + * The per condition queue pointers and the + * Mutex used to serialize access to the queue. + */ + +typedef struct WinCondition { + CRITICAL_SECTION condLock; /* Lock to serialize queuing on the condition */ + struct ThreadSpecificData *firstPtr; /* Queue pointers */ + struct ThreadSpecificData *lastPtr; +} WinCondition; + +static void FinalizeConditionEvent(ClientData data); + + +/* + *---------------------------------------------------------------------- + * + * TclpThreadCreate -- + * + * This procedure creates a new thread. + * + * Results: + * TCL_OK if the thread could be created. The thread ID is + * returned in a parameter. + * + * Side effects: + * A new thread is created. + * + *---------------------------------------------------------------------- + */ + +int +TclpThreadCreate(idPtr, proc, clientData) + Tcl_ThreadId *idPtr; /* Return, the ID of the thread */ + Tcl_ThreadCreateProc proc; /* Main() function of the thread */ + ClientData clientData; /* The one argument to Main() */ +{ + HANDLE tHandle; + + tHandle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) proc, + (DWORD *)clientData, 0, (DWORD *)idPtr); + if (tHandle == NULL) { + return TCL_ERROR; + } else { + return TCL_OK; + } +} + +/* + *---------------------------------------------------------------------- + * + * TclpThreadExit -- + * + * This procedure terminates the current thread. + * + * Results: + * None. + * + * Side effects: + * This procedure terminates the current thread. + * + *---------------------------------------------------------------------- + */ + +void +TclpThreadExit(status) + int status; +{ + ExitThread((DWORD)status); +} + + +/* + *---------------------------------------------------------------------- + * + * Tcl_GetCurrentThread -- + * + * This procedure returns the ID of the currently running thread. + * + * Results: + * A thread ID. + * + * Side effects: + * None. + * + *---------------------------------------------------------------------- + */ + +Tcl_ThreadId +Tcl_GetCurrentThread() +{ + return (Tcl_ThreadId)GetCurrentThreadId(); +} + + +/* + *---------------------------------------------------------------------- + * + * TclpInitLock + * + * This procedure is used to grab a lock that serializes initialization + * and finalization of Tcl. On some platforms this may also initialize + * the mutex used to serialize creation of more mutexes and thread + * local storage keys. + * + * Results: + * None. + * + * Side effects: + * Acquire the initialization mutex. + * + *---------------------------------------------------------------------- + */ + +void +TclpInitLock() +{ + if (!init) { + /* + * There is a fundamental race here that is solved by creating + * the first Tcl interpreter in a single threaded environment. + * Once the interpreter has been created, it is safe to create + * more threads that create interpreters in parallel. + */ + init = 1; + InitializeCriticalSection(&initLock); + InitializeCriticalSection(&masterLock); + } + EnterCriticalSection(&initLock); +} + + +/* + *---------------------------------------------------------------------- + * + * TclpInitUnlock + * + * This procedure is used to release a lock that serializes initialization + * and finalization of Tcl. + * + * Results: + * None. + * + * Side effects: + * Release the initialization mutex. + * + *---------------------------------------------------------------------- + */ + +void +TclpInitUnlock() +{ + LeaveCriticalSection(&initLock); +} + + +/* + *---------------------------------------------------------------------- + * + * TclpMasterLock + * + * This procedure is used to grab a lock that serializes creation + * of mutexes, condition variables, and thread local storage keys. + * + * This lock must be different than the initLock because the + * initLock is held during creation of syncronization objects. + * + * Results: + * None. + * + * Side effects: + * Acquire the master mutex. + * + *---------------------------------------------------------------------- + */ + +void +TclpMasterLock() +{ + if (!init) { + /* + * There is a fundamental race here that is solved by creating + * the first Tcl interpreter in a single threaded environment. + * Once the interpreter has been created, it is safe to create + * more threads that create interpreters in parallel. + */ + init = 1; + InitializeCriticalSection(&initLock); + InitializeCriticalSection(&masterLock); + } + EnterCriticalSection(&masterLock); +} + + +/* + *---------------------------------------------------------------------- + * + * TclpMasterUnlock + * + * This procedure is used to release a lock that serializes creation + * and deletion of synchronization objects. + * + * Results: + * None. + * + * Side effects: + * Release the master mutex. + * + *---------------------------------------------------------------------- + */ + +void +TclpMasterUnlock() +{ + LeaveCriticalSection(&masterLock); +} + +#ifdef TCL_THREADS + +/* + *---------------------------------------------------------------------- + * + * TclpMutexInit -- + * TclpMutexLock -- + * TclpMutexUnlock -- + * + * These procedures use an explicitly initialized mutex. + * These are used by memory allocators for their own mutex. + * + * Results: + * None. + * + * Side effects: + * Initialize, Lock, and Unlock the mutex. + * + *---------------------------------------------------------------------- + */ + +void +TclpMutexInit(mPtr) + TclpMutex *mPtr; +{ + InitializeCriticalSection((CRITICAL_SECTION *)mPtr); +} +void +TclpMutexLock(mPtr) + TclpMutex *mPtr; +{ + EnterCriticalSection((CRITICAL_SECTION *)mPtr); +} +void +TclpMutexUnlock(mPtr) + TclpMutex *mPtr; +{ + LeaveCriticalSection((CRITICAL_SECTION *)mPtr); +} + + +/* + *---------------------------------------------------------------------- + * + * Tcl_MutexLock -- + * + * This procedure is invoked to lock a mutex. This is a self + * initializing mutex that is automatically finalized during + * Tcl_Finalize. + * + * Results: + * None. + * + * Side effects: + * May block the current thread. The mutex is aquired when + * this returns. + * + *---------------------------------------------------------------------- + */ + +void +Tcl_MutexLock(mutexPtr) + Tcl_Mutex *mutexPtr; /* The lock */ +{ + CRITICAL_SECTION *csPtr; + if (*mutexPtr == NULL) { + MASTER_LOCK; + + /* + * Double inside master lock check to avoid a race. + */ + + if (*mutexPtr == NULL) { + csPtr = (CRITICAL_SECTION *)ckalloc(sizeof(CRITICAL_SECTION)); + InitializeCriticalSection(csPtr); + *mutexPtr = (Tcl_Mutex)csPtr; + TclRememberMutex(mutexPtr); + } + MASTER_UNLOCK; + } + csPtr = *((CRITICAL_SECTION **)mutexPtr); + EnterCriticalSection(csPtr); +} + + +/* + *---------------------------------------------------------------------- + * + * Tcl_MutexUnlock -- + * + * This procedure is invoked to unlock a mutex. + * + * Results: + * None. + * + * Side effects: + * The mutex is released when this returns. + * + *---------------------------------------------------------------------- + */ + +void +Tcl_MutexUnlock(mutexPtr) + Tcl_Mutex *mutexPtr; /* The lock */ +{ + CRITICAL_SECTION *csPtr = *((CRITICAL_SECTION **)mutexPtr); + LeaveCriticalSection(csPtr); +} + + +/* + *---------------------------------------------------------------------- + * + * TclpFinalizeMutex -- + * + * This procedure is invoked to clean up one mutex. This is only + * safe to call at the end of time. + * + * Results: + * None. + * + * Side effects: + * The mutex list is deallocated. + * + *---------------------------------------------------------------------- + */ + +void +TclpFinalizeMutex(mutexPtr) + Tcl_Mutex *mutexPtr; +{ + CRITICAL_SECTION *csPtr = *(CRITICAL_SECTION **)mutexPtr; + if (csPtr != NULL) { + ckfree((char *)csPtr); + *mutexPtr = NULL; + } +} + + +/* + *---------------------------------------------------------------------- + * + * TclpThreadDataKeyInit -- + * + * This procedure initializes a thread specific data block key. + * Each thread has table of pointers to thread specific data. + * all threads agree on which table entry is used by each module. + * this is remembered in a "data key", that is just an index into + * this table. To allow self initialization, the interface + * passes a pointer to this key and the first thread to use + * the key fills in the pointer to the key. The key should be + * a process-wide static. + * + * Results: + * None. + * + * Side effects: + * Will allocate memory the first time this process calls for + * this key. In this case it modifies its argument + * to hold the pointer to information about the key. + * + *---------------------------------------------------------------------- + */ + +void +TclpThreadDataKeyInit(keyPtr) + Tcl_ThreadDataKey *keyPtr; /* Identifier for the data chunk, + * really (DWORD **) */ +{ + DWORD *indexPtr; + + MASTER_LOCK; + if (*keyPtr == NULL) { + indexPtr = (DWORD *)ckalloc(sizeof(DWORD)); + *indexPtr = TlsAlloc(); + *keyPtr = (Tcl_ThreadDataKey)indexPtr; + TclRememberDataKey(keyPtr); + } + MASTER_UNLOCK; +} + + +/* + *---------------------------------------------------------------------- + * + * TclpThreadDataKeyGet -- + * + * This procedure returns a pointer to a block of thread local storage. + * + * Results: + * A thread-specific pointer to the data structure, or NULL + * if the memory has not been assigned to this key for this thread. + * + * Side effects: + * None. + * + *---------------------------------------------------------------------- + */ + +VOID * +TclpThreadDataKeyGet(keyPtr) + Tcl_ThreadDataKey *keyPtr; /* Identifier for the data chunk, + * really (DWORD **) */ +{ + DWORD *indexPtr = *(DWORD **)keyPtr; + if (indexPtr == NULL) { + return NULL; + } else { + return (VOID *) TlsGetValue(*indexPtr); + } +} + + +/* + *---------------------------------------------------------------------- + * + * TclpThreadDataKeySet -- + * + * This procedure sets the pointer to a block of thread local storage. + * + * Results: + * None. + * + * Side effects: + * Sets up the thread so future calls to TclpThreadDataKeyGet with + * this key will return the data pointer. + * + *---------------------------------------------------------------------- + */ + +void +TclpThreadDataKeySet(keyPtr, data) + Tcl_ThreadDataKey *keyPtr; /* Identifier for the data chunk, + * really (pthread_key_t **) */ + VOID *data; /* Thread local storage */ +{ + DWORD *indexPtr = *(DWORD **)keyPtr; + TlsSetValue(*indexPtr, (void *)data); +} + + +/* + *---------------------------------------------------------------------- + * + * TclpFinalizeThreadData -- + * + * This procedure cleans up the thread-local storage. This is + * called once for each thread. + * + * Results: + * None. + * + * Side effects: + * Frees up the memory. + * + *---------------------------------------------------------------------- + */ + +void +TclpFinalizeThreadData(keyPtr) + Tcl_ThreadDataKey *keyPtr; +{ + VOID *result; + DWORD *indexPtr; + + if (*keyPtr != NULL) { + indexPtr = *(DWORD **)keyPtr; + result = (VOID *)TlsGetValue(*indexPtr); + if (result != NULL) { + ckfree((char *)result); + TlsSetValue(*indexPtr, (void *)NULL); + } + } +} + +/* + *---------------------------------------------------------------------- + * + * TclpFinalizeThreadDataKey -- + * + * This procedure is invoked to clean up one key. This is a + * process-wide storage identifier. The thread finalization code + * cleans up the thread local storage itself. + * + * This assumes the master lock is held. + * + * Results: + * None. + * + * Side effects: + * The key is deallocated. + * + *---------------------------------------------------------------------- + */ + +void +TclpFinalizeThreadDataKey(keyPtr) + Tcl_ThreadDataKey *keyPtr; +{ + DWORD *indexPtr; + if (*keyPtr != NULL) { + indexPtr = *(DWORD **)keyPtr; + TlsFree(*indexPtr); + ckfree((char *)indexPtr); + *keyPtr = NULL; + } +} + +/* + *---------------------------------------------------------------------- + * + * Tcl_ConditionWait -- + * + * This procedure is invoked to wait on a condition variable. + * The mutex is automically released as part of the wait, and + * automatically grabbed when the condition is signaled. + * + * The mutex must be held when this procedure is called. + * + * Results: + * None. + * + * Side effects: + * May block the current thread. The mutex is aquired when + * this returns. Will allocate memory for a HANDLE + * and initialize this the first time this Tcl_Condition is used. + * + *---------------------------------------------------------------------- + */ + +void +Tcl_ConditionWait(condPtr, mutexPtr, timePtr) + Tcl_Condition *condPtr; /* Really (WinCondition **) */ + Tcl_Mutex *mutexPtr; /* Really (CRITICAL_SECTION **) */ + Tcl_Time *timePtr; /* Timeout on waiting period */ +{ + WinCondition *winCondPtr; /* Per-condition queue head */ + CRITICAL_SECTION *csPtr; /* Caller's Mutex, after casting */ + DWORD wtime; /* Windows time value */ + int timeout; /* True if we got a timeout */ + int doExit = 0; /* True if we need to do exit setup */ + ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); + + if (tsdPtr->flags & WIN_THREAD_DEAD) { + /* + * No more per-thread event on which to wait. + */ + + return; + } + + /* + * Self initialize the two parts of the contition. + * The per-condition and per-thread parts need to be + * handled independently. + */ + + if (tsdPtr->flags == WIN_THREAD_UNINIT) { + MASTER_LOCK; + + /* + * Create the per-thread event and queue pointers. + */ + + if (tsdPtr->flags == WIN_THREAD_UNINIT) { + tsdPtr->condEvent = CreateEvent(NULL, TRUE /* manual reset */, + FALSE /* non signaled */, NULL); + tsdPtr->nextPtr = NULL; + tsdPtr->prevPtr = NULL; + tsdPtr->flags = WIN_THREAD_RUNNING; + doExit = 1; + } + MASTER_UNLOCK; + + if (doExit) { + /* + * Create a per-thread exit handler to clean up the condEvent. + * We must be careful do do this outside the Master Lock + * because Tcl_CreateThreadExitHandler uses its own + * ThreadSpecificData, and initializing that may drop + * back into the Master Lock. + */ + + Tcl_CreateThreadExitHandler(FinalizeConditionEvent, + (ClientData) tsdPtr); + } + } + + if (*condPtr == NULL) { + MASTER_LOCK; + + /* + * Initialize the per-condition queue pointers and Mutex. + */ + + if (*condPtr == NULL) { + winCondPtr = (WinCondition *)ckalloc(sizeof(WinCondition)); + InitializeCriticalSection(&winCondPtr->condLock); + winCondPtr->firstPtr = NULL; + winCondPtr->lastPtr = NULL; + *condPtr = (Tcl_Condition)winCondPtr; + TclRememberCondition(condPtr); + } + MASTER_UNLOCK; + } + csPtr = *((CRITICAL_SECTION **)mutexPtr); + winCondPtr = *((WinCondition **)condPtr); + if (timePtr == NULL) { + wtime = INFINITE; + } else { + wtime = timePtr->sec * 1000 + timePtr->usec / 1000; + } + + /* + * Queue the thread on the condition, using + * the per-condition lock for serialization. + */ + + tsdPtr->flags = WIN_THREAD_BLOCKED; + tsdPtr->nextPtr = NULL; + EnterCriticalSection(&winCondPtr->condLock); + tsdPtr->prevPtr = winCondPtr->lastPtr; /* A: */ + winCondPtr->lastPtr = tsdPtr; + if (tsdPtr->prevPtr != NULL) { + tsdPtr->prevPtr->nextPtr = tsdPtr; + } + if (winCondPtr->firstPtr == NULL) { + winCondPtr->firstPtr = tsdPtr; + } + + /* + * Unlock the caller's mutex and wait for the condition, or a timeout. + * There is a minor issue here in that we don't count down the + * timeout if we get notified, but another thread grabs the condition + * before we do. In that race condition we'll wait again for the + * full timeout. Timed waits are dubious anyway. Either you have + * the locking protocol wrong and are masking a deadlock, + * or you are using conditions to pause your thread. + */ + + LeaveCriticalSection(csPtr); + timeout = 0; + while (!timeout && (tsdPtr->flags & WIN_THREAD_BLOCKED)) { + ResetEvent(tsdPtr->condEvent); + LeaveCriticalSection(&winCondPtr->condLock); + if (WaitForSingleObject(tsdPtr->condEvent, wtime) == WAIT_TIMEOUT) { + timeout = 1; + } + EnterCriticalSection(&winCondPtr->condLock); + } + + /* + * Be careful on timeouts because the signal might arrive right around + * time time limit and someone else could have taken us off the queue. + */ + + if (timeout) { + if (tsdPtr->flags & WIN_THREAD_RUNNING) { + timeout = 0; + } else { + /* + * When dequeuing, we can leave the tsdPtr->nextPtr + * and tsdPtr->prevPtr with dangling pointers because + * they are reinitialilzed w/out reading them when the + * thread is enqueued later. + */ + + if (winCondPtr->firstPtr == tsdPtr) { + winCondPtr->firstPtr = tsdPtr->nextPtr; + } else { + tsdPtr->prevPtr->nextPtr = tsdPtr->nextPtr; + } + if (winCondPtr->lastPtr == tsdPtr) { + winCondPtr->lastPtr = tsdPtr->prevPtr; + } else { + tsdPtr->nextPtr->prevPtr = tsdPtr->prevPtr; + } + tsdPtr->flags = WIN_THREAD_RUNNING; + } + } + + LeaveCriticalSection(&winCondPtr->condLock); + EnterCriticalSection(csPtr); +} + + +/* + *---------------------------------------------------------------------- + * + * Tcl_ConditionNotify -- + * + * This procedure is invoked to signal a condition variable. + * + * The mutex must be held during this call to avoid races, + * but this interface does not enforce that. + * + * Results: + * None. + * + * Side effects: + * May unblock another thread. + * + *---------------------------------------------------------------------- + */ + +void +Tcl_ConditionNotify(condPtr) + Tcl_Condition *condPtr; +{ + WinCondition *winCondPtr; + ThreadSpecificData *tsdPtr; + if (condPtr != NULL) { + winCondPtr = *((WinCondition **)condPtr); + + /* + * Loop through all the threads waiting on the condition + * and notify them (i.e., broadcast semantics). The queue + * manipulation is guarded by the per-condition coordinating mutex. + */ + + EnterCriticalSection(&winCondPtr->condLock); + while (winCondPtr->firstPtr != NULL) { + tsdPtr = winCondPtr->firstPtr; + winCondPtr->firstPtr = tsdPtr->nextPtr; + if (winCondPtr->lastPtr == tsdPtr) { + winCondPtr->lastPtr = NULL; + } + tsdPtr->flags = WIN_THREAD_RUNNING; + tsdPtr->nextPtr = NULL; + tsdPtr->prevPtr = NULL; /* Not strictly necessary, see A: */ + SetEvent(tsdPtr->condEvent); + } + LeaveCriticalSection(&winCondPtr->condLock); + } else { + /* + * Noone has used the condition variable, so there are no waiters. + */ + } +} + + +/* + *---------------------------------------------------------------------- + * + * FinalizeConditionEvent -- + * + * This procedure is invoked to clean up the per-thread + * event used to implement condition waiting. + * This is only safe to call at the end of time. + * + * Results: + * None. + * + * Side effects: + * The per-thread event is closed. + * + *---------------------------------------------------------------------- + */ + +static void +FinalizeConditionEvent(data) + ClientData data; +{ + ThreadSpecificData *tsdPtr = (ThreadSpecificData *)data; + tsdPtr->flags = WIN_THREAD_DEAD; + CloseHandle(tsdPtr->condEvent); +} + +/* + *---------------------------------------------------------------------- + * + * TclpFinalizeCondition -- + * + * This procedure is invoked to clean up a condition variable. + * This is only safe to call at the end of time. + * + * This assumes the Master Lock is held. + * + * Results: + * None. + * + * Side effects: + * The condition variable is deallocated. + * + *---------------------------------------------------------------------- + */ + +void +TclpFinalizeCondition(condPtr) + Tcl_Condition *condPtr; +{ + WinCondition *winCondPtr = *(WinCondition **)condPtr; + + /* + * Note - this is called long after the thread-local storage is + * reclaimed. The per-thread condition waiting event is + * reclaimed earlier in a per-thread exit handler, which is + * called before thread local storage is reclaimed. + */ + + if (winCondPtr != NULL) { + ckfree((char *)winCondPtr); + *condPtr = NULL; + } +} +#endif /* TCL_THREADS */ |