summaryrefslogtreecommitdiffstats
path: root/compat
Commit message (Expand)AuthorAgeFilesLines
* eliminate dependancy of compat/*.h on tcl.hjan.nijtmans2012-12-265-151/+115
* Now that we're no longer using SCM based on RCS, the RCS Keyword lines causedgp2011-03-0219-38/+0
|\
| * Now that we're no longer using SCM based on RCS, the RCS Keyword lines causedgp2011-03-0124-53/+0
| * Fixed obvious stupid error. [Bug 1786647]dkf2007-09-061-1/+1
| * * compat/memcmp.c (memcmp): Fixed the VOID / CONST typo introducedandreas_kupries2007-01-221-2/+2
| * Fix [Bug 1631017]dkf2007-01-221-4/+5
| * Bug 1317477Kevin B Kenny2005-11-041-12/+20
| * * compat/string.h: fixed memchr() protoype for __APPLE__ so that wedas2005-04-261-1/+5
| * added definition of NULL to strstr.c for Bug 1175161Kevin B Kenny2005-04-121-1/+6
| * * compat/strftime.c (_conv): Corrected a problem where hour 0Kevin B Kenny2004-09-081-4/+10
| * * compat/strftime.c (_fmt, ISO8601Week): Kevin B Kenny2004-05-181-21/+77
* | * compat/tmpnam.c (removed): The routine tmpnam() is no longerdgp2007-10-181-42/+0
* | * generic/tclCmdMZ.c: Correct [string is (wide)integer] failuredgp2007-10-112-362/+0
* | Complete the purge of K&R function definitions from manually-written code.dkf2007-04-1612-317/+299
* | Fix [Bug 1631017]dkf2007-01-221-22/+28
* | * compat/tclErrno.h: Removed obsolete file.dgp2005-10-131-99/+0
* | Merged kennykb-numerics-branch back to the head; TIPs 132 and 232Kevin B Kenny2005-05-104-4/+4
* | * compat/string.h: fixed memchr() protoype for __APPLE__ so that wedas2005-04-261-1/+5
* | added definition of NULL to strstr.c for Bug 1175161Kevin B Kenny2005-04-121-1/+4
* | many more TIP 173 changesKevin B Kenny2004-09-271-538/+0
* | * compat/strftime.c (_conv): Corrected a problem where hour 0Kevin B Kenny2004-09-081-4/+10
* | * compat/strftime.c (_fmt, ISO8601Week): Kevin B Kenny2004-05-181-21/+77
* | Patch 922727 committed. Implements three changes:dgp2004-04-0611-21/+13
* | Made HEAD build on Windows VC++ again.Kevin B Kenny2004-03-192-4/+4
* | Removed support for Mac OS Classic platform [Patch 918142]das2004-03-171-3/+1
* | Added missing CONST'ification usage.davygrvy2003-08-271-11/+11
* | Changed Win32 platform #define from 'WIN32' to '__WIN32__' as thisdavygrvy2003-08-271-4/+4
* | * compat/strftime.c (_fmt): Fixed syst array intializer thatdavygrvy2003-08-271-12/+11
* | * compat/strftime.c: Modified TclpStrftime to return its Kevin B Kenny2003-05-181-16/+43
|/
* Make sure EOVERFLOW is defined on Unix.dkf2002-06-071-84/+83
* * tests/clock.test: added clock-9.1hobbs2002-05-291-4/+13
* * doc/clock.n:hobbs2002-04-221-7/+56
* * compat/strtod.c (strtod): simplified #includesdgp2002-02-251-2/+2
* simplified the #include linesdgp2002-02-251-8/+2
* Minor cleanup of compat functions to get rid of GCC warnings.dkf2002-02-253-11/+13
* * compat/strtoull.c (strtoull):dgp2002-02-243-14/+58
* Const-ifying declarations of strtoll/strtoull and new compat code.dkf2002-02-222-12/+12
* Further changes to the TIP 72 patch to make it compile under VC++Kevin B Kenny2002-02-153-9/+21
* TIP#72 implementation. See ChangeLog for details.dkf2002-02-152-0/+351
* * Sought out and eliminated instances of CONST-casting that are nodgp2002-01-261-2/+2
* ** upport to 8.4 of mac code changes for 8.3.3 & various newdas2001-11-232-5/+4
* * Fixed failure to handle expressionsdgp2001-09-041-1/+7
* * compat/string.h: Fixed function prototypes for strpbrk andericm2000-07-181-3/+4
* added IsLeapYear macro (from tclGetDate.y)hobbs2000-01-151-2/+3
* * unix/tclUnixTime.c: New clock format format.ericm2000-01-141-2/+12
* * compat/waitpid.c: use pid_t type instead of int [Bug: 3999]hobbs2000-01-111-5/+9
* revert changes to TclpStrftime, not needed for internal functions.redman1999-07-221-6/+6
* * doc/Utf.3:redman1999-07-221-6/+6
* merged tcl 8.1 branch back into the main trunkstanton1999-04-164-7/+72
* Replaced SCCS strings, fixed binary filescore_8_0_3stanton1998-09-1421-25/+24
href='#n1557'>1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://www.hdfgroup.org/licenses.               *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/* Programmer:  Mike McGreevy
 *              October 7, 2010
 */
#include "h5test.h"

#define H5F_FRIEND  /*suppress error about including H5Fpkg	  */
#define H5FD_FRIEND /*suppress error about including H5FDpkg	  */
#define H5FD_TESTING
#include "H5Fpkg.h"
#include "H5FDpkg.h"

#include "H5CXprivate.h" /* API Contexts                         */
#include "H5Iprivate.h"
#include "H5VLprivate.h" /* Virtual Object Layer                     */

/* Filename */
/* (The file names are the same as the define in accum_swmr_reader.c) */
const char *FILENAME[] = {"accum", "accum_swmr_big", NULL};

/* The reader forked by test_swmr_write_big() */
#define SWMR_READER "accum_swmr_reader"

/* "big" I/O test values */
#define BIG_BUF_SIZE (6 * 1024 * 1024)

/* Random I/O test values */
#define RANDOM_BUF_SIZE     (1 * 1024 * 1024)
#define MAX_RANDOM_SEGMENTS (5 * 1024)
#define RAND_SEG_LEN        (1024)
#define RANDOM_BASE_OFF     (1024 * 1024)

/* Function Prototypes */
unsigned test_write_read(H5F_t *f);
unsigned test_write_read_nonacc_front(H5F_t *f);
unsigned test_write_read_nonacc_end(H5F_t *f);
unsigned test_accum_overlap(H5F_t *f);
unsigned test_accum_overlap_clean(H5F_t *f);
unsigned test_accum_overlap_size(H5F_t *f);
unsigned test_accum_non_overlap_size(H5F_t *f);
unsigned test_accum_adjust(H5F_t *f);
unsigned test_read_after(H5F_t *f);
unsigned test_free(H5F_t *f);
unsigned test_big(H5F_t *f);
unsigned test_random_write(H5F_t *f);
unsigned test_swmr_write_big(hbool_t newest_format);

/* Helper Function Prototypes */
void accum_printf(const H5F_t *f);

/* Private Test H5Faccum Function Wrappers */
#define accum_write(a, s, b) H5F_block_write(f, H5FD_MEM_DEFAULT, (haddr_t)(a), (size_t)(s), (b))
#define accum_read(a, s, b)  H5F_block_read(f, H5FD_MEM_DEFAULT, (haddr_t)(a), (size_t)(s), (b))
#define accum_free(f, a, s)  H5F__accum_free(f->shared, H5FD_MEM_DEFAULT, (haddr_t)(a), (hsize_t)(s))
#define accum_flush(f)       H5F__accum_flush(f->shared)
#define accum_reset(f)       H5F__accum_reset(f->shared, TRUE)

/* ================= */
/* Main Test Routine */
/* ================= */

/*-------------------------------------------------------------------------
 * Function:    main
 *
 * Purpose:     Test the metadata accumulator code
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Mike McGreevy
 *              October 7, 2010
 *
 *-------------------------------------------------------------------------
 */
int
main(void)
{
    unsigned nerrors        = 0;     /* track errors */
    hbool_t  api_ctx_pushed = FALSE; /* Whether API context pushed */
    hid_t    fid            = -1;
    hid_t    fapl           = -1; /* File access property list */
    char     filename[1024];
    H5F_t *  f = NULL; /* File for all tests */

    /* Test Setup */
    HDputs("Testing the metadata accumulator");

    /* File access property list */
    h5_reset();
    if ((fapl = h5_fileaccess()) < 0)
        FAIL_STACK_ERROR;
    h5_fixname(FILENAME[0], fapl, filename, sizeof filename);

    /* Create a test file */
    if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
        FAIL_STACK_ERROR;

    /* Push API context */
    if (H5CX_push() < 0)
        FAIL_STACK_ERROR;
    api_ctx_pushed = TRUE;

    /* Get H5F_t * to internal file structure */
    if (NULL == (f = (H5F_t *)H5VL_object(fid)))
        FAIL_STACK_ERROR;

    /* We'll be writing lots of garbage data, so extend the
        file a ways. 10MB should do. */
    if (H5FD_set_eoa(f->shared->lf, H5FD_MEM_DEFAULT, (haddr_t)(1024 * 1024 * 10)) < 0)
        FAIL_STACK_ERROR;

    /* Reset metadata accumulator for the file */
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Test Functions */
    nerrors += test_write_read(f);
    nerrors += test_write_read_nonacc_front(f);
    nerrors += test_write_read_nonacc_end(f);
    nerrors += test_accum_overlap(f);
    nerrors += test_accum_overlap_clean(f);
    nerrors += test_accum_overlap_size(f);
    nerrors += test_accum_non_overlap_size(f);
    nerrors += test_accum_adjust(f);
    nerrors += test_read_after(f);
    nerrors += test_free(f);
    nerrors += test_big(f);
    nerrors += test_random_write(f);

    /* Pop API context */
    if (api_ctx_pushed && H5CX_pop(FALSE) < 0)
        FAIL_STACK_ERROR;
    api_ctx_pushed = FALSE;

    /* End of test code, close and delete file */
    if (H5Fclose(fid) < 0)
        TEST_ERROR;

    /* This test uses a different file */
    nerrors += test_swmr_write_big(TRUE);
    nerrors += test_swmr_write_big(FALSE);

    if (nerrors)
        goto error;
    HDputs("All metadata accumulator tests passed.");
    h5_cleanup(FILENAME, fapl);

    return 0;

error:
    if (api_ctx_pushed)
        H5CX_pop(FALSE);

    HDputs("*** TESTS FAILED ***");
    return 1;
} /* end main() */

/* ============================= */
/* Individual Unit Test Routines */
/* ============================= */

/*-------------------------------------------------------------------------
 * Function:    test_write_read
 *
 * Purpose:     Simple test to write to then read from metadata accumulator.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Mike McGreevy
 *              October 7, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_write_read(H5F_t *f)
{
    int  i = 0;
    int *write_buf, *read_buf;

    TESTING("simple write/read to/from metadata accumulator");

    /* Allocate buffers */
    write_buf = (int *)HDmalloc(1024 * sizeof(int));
    HDassert(write_buf);
    read_buf = (int *)HDcalloc((size_t)1024, sizeof(int));
    HDassert(read_buf);

    /* Fill buffer with data, zero out read buffer */
    for (i = 0; i < 1024; i++)
        write_buf[i] = i + 1;

    /* Do a simple write/read/verify of data */
    /* Write 1KB at Address 0 */
    if (accum_write(0, 1024, write_buf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(0, 1024, read_buf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(write_buf, read_buf, (size_t)1024) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(write_buf);
    HDfree(read_buf);

    return 0;

error:
    /* Release memory */
    HDfree(write_buf);
    HDfree(read_buf);

    return 1;
} /* test_write_read */

/*-------------------------------------------------------------------------
 * Function:    test_write_read_nonacc_front
 *
 * Purpose:     Simple test to write to then read from before metadata accumulator.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Allen Byrne
 *              October 8, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_write_read_nonacc_front(H5F_t *f)
{
    int  i = 0;
    int *write_buf, *read_buf;

    TESTING("simple write/read to/from before metadata accumulator");

    /* Allocate buffers */
    write_buf = (int *)HDmalloc(2048 * sizeof(int));
    HDassert(write_buf);
    read_buf = (int *)HDcalloc((size_t)2048, sizeof(int));
    HDassert(read_buf);

    /* Fill buffer with data, zero out read buffer */
    for (i = 0; i < 2048; i++)
        write_buf[i] = i + 1;

    /* Do a simple write/read/verify of data */
    /* Write 1KB at Address 0 */
    if (accum_write(0, 1024, write_buf) < 0)
        FAIL_STACK_ERROR;
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(1024, 1024, write_buf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(0, 1024, read_buf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(write_buf, read_buf, (size_t)1024) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(write_buf);
    HDfree(read_buf);

    return 0;

error:
    /* Release memory */
    HDfree(write_buf);
    HDfree(read_buf);

    return 1;
} /* test_write_read */

/*-------------------------------------------------------------------------
 * Function:    test_write_read_nonacc_end
 *
 * Purpose:     Simple test to write to then read from after metadata accumulator.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Allen Byrne
 *              October 8, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_write_read_nonacc_end(H5F_t *f)
{
    int  i = 0;
    int *write_buf, *read_buf;

    TESTING("simple write/read to/from after metadata accumulator");

    /* Allocate buffers */
    write_buf = (int *)HDmalloc(2048 * sizeof(int));
    HDassert(write_buf);
    read_buf = (int *)HDcalloc((size_t)2048, sizeof(int));
    HDassert(read_buf);

    /* Fill buffer with data, zero out read buffer */
    for (i = 0; i < 2048; i++)
        write_buf[i] = i + 1;

    /* Do a simple write/read/verify of data */
    /* Write 1KB at Address 0 */
    if (accum_write(1024, 1024, write_buf) < 0)
        FAIL_STACK_ERROR;
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(0, 1024, write_buf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(1024, 1024, read_buf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(write_buf, read_buf, (size_t)1024) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(write_buf);
    HDfree(read_buf);

    return 0;

error:
    /* Release memory */
    HDfree(write_buf);
    HDfree(read_buf);

    return 1;
} /* test_write_read */

/*-------------------------------------------------------------------------
 * Function:    test_free
 *
 * Purpose:     Simple test to free metadata accumulator.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Raymond Lu
 *              October 8, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_free(H5F_t *f)
{
    int      i      = 0;
    int32_t *wbuf   = NULL;
    int32_t *rbuf   = NULL;
    int32_t *expect = NULL;

    TESTING("simple freeing metadata accumulator");

    /* Write and free the whole accumulator. */
    wbuf = (int32_t *)HDmalloc(256 * sizeof(int32_t));
    HDassert(wbuf);
    rbuf = (int32_t *)HDmalloc(256 * sizeof(int32_t));
    HDassert(rbuf);
    expect = (int32_t *)HDmalloc(256 * sizeof(int32_t));
    HDassert(expect);

    /* Fill buffer with data */
    for (i = 0; i < 256; i++)
        wbuf[i] = (int32_t)(i + 1);

    if (accum_write(0, 256 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;

    if (accum_free(f, 0, 256 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Free an empty accumulator */
    if (accum_free(f, 0, 256 * 1024 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Write second quarter of the accumulator */
    if (accum_write(64 * sizeof(int32_t), 64 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Free the second quarter of the accumulator, the requested area
     * is bigger than the data region on the right side. */
    if (accum_free(f, 64 * sizeof(int32_t), 65 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Write half of the accumulator. */
    if (accum_write(0, 128 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Free the first block of 4B */
    if (accum_free(f, 0, sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(1 * sizeof(int32_t), 127 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf + 1, rbuf, 127 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Free the block of 4B at 127*4B */
    if (accum_free(f, 127 * sizeof(int32_t), sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(1 * sizeof(int32_t), 126 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf + 1, rbuf, 126 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Free the block of 4B at 2*4B */
    if (accum_free(f, 2 * sizeof(int32_t), sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(1 * sizeof(int32_t), 1 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf + 1, rbuf, 1 * sizeof(int32_t)) != 0)
        TEST_ERROR;
    if (accum_read(3 * sizeof(int32_t), 124 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf + 3, rbuf, 124 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Test freeing section that overlaps the start of the accumulator and is
     * entirely before dirty section */
    if (accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t));
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(68 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 68, wbuf, 4 * sizeof(int32_t));
    if (accum_free(f, 62 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(66 * sizeof(int32_t), 126 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(expect + 66, rbuf, 126 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Test freeing section that overlaps the start of the accumulator and
     * completely contains dirty section */
    if (accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t));
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(68 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 68, wbuf, 4 * sizeof(int32_t));
    if (accum_free(f, 62 * sizeof(int32_t), 16 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(78 * sizeof(int32_t), 114 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(expect + 78, rbuf, 114 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Test freeing section completely contained in accumulator and is entirely
     * before dirty section */
    if (accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t));
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(72 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 72, wbuf, 4 * sizeof(int32_t));
    if (accum_free(f, 66 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(70 * sizeof(int32_t), 122 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(expect + 70, rbuf, 122 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Test freeing section completely contained in accumulator, starts before
     * dirty section, and ends in dirty section */
    if (accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t));
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(72 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 72, wbuf, 4 * sizeof(int32_t));
    if (accum_free(f, 70 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(74 * sizeof(int32_t), 118 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(expect + 74, rbuf, 118 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Test freeing section completely contained in accumulator and completely
     * contains dirty section */
    if (accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t));
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(72 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 72, wbuf, 4 * sizeof(int32_t));
    if (accum_free(f, 70 * sizeof(int32_t), 8 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(78 * sizeof(int32_t), 114 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(expect + 78, rbuf, 114 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Test freeing section completely contained in accumulator, starts at start
     * of dirty section, and ends in dirty section */
    if (accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t));
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    if (accum_write(72 * sizeof(int32_t), 8 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemcpy(expect + 72, wbuf, 8 * sizeof(int32_t));
    if (accum_free(f, 72 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0)
        FAIL_STACK_ERROR;

    /* Check that the accumulator still contains the correct data */
    if (accum_read(76 * sizeof(int32_t), 116 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(expect + 76, rbuf, 116 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    HDfree(wbuf);
    wbuf = NULL;
    HDfree(rbuf);
    rbuf = NULL;
    HDfree(expect);
    expect = NULL;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    return 0;

error:
    if (wbuf)
        HDfree(wbuf);
    if (rbuf)
        HDfree(rbuf);
    if (expect)
        HDfree(expect);

    return 1;
} /* test_free */

/*-------------------------------------------------------------------------
 * Function:    test_accum_overlap
 *
 * Purpose:     This test will write a series of pieces of data
 *              to the accumulator with the goal of overlapping
 *              the writes in various different ways.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Mike McGreevy
 *              October 7, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_accum_overlap(H5F_t *f)
{
    int      i = 0;
    int32_t *wbuf, *rbuf;

    TESTING("overlapping write to metadata accumulator");

    /* Allocate buffers */
    wbuf = (int32_t *)HDmalloc(4096 * sizeof(int32_t));
    HDassert(wbuf);
    rbuf = (int32_t *)HDcalloc((size_t)4096, sizeof(int32_t));
    HDassert(rbuf);

    /* Case 1: No metadata in accumulator */
    /* Write 10 1's at address 40 */
    /* @0:|          1111111111| */
    /* Put some data in the accumulator initially */
    for (i = 0; i < 10; i++)
        wbuf[i] = 1;
    if (accum_write(40, 10 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(40, 10 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 2: End of new piece aligns with start of accumulated data */
    /* Write 5 2's at address 20 */
    /* @0:|     222221111111111| */
    for (i = 0; i < 5; i++)
        wbuf[i] = 2;
    if (accum_write(20, 5 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(20, 5 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 3: Start of new piece aligns with start of accumulated data */
    /* Write 3 3's at address 20 */
    /* @0:|     333221111111111| */
    for (i = 0; i < 3; i++)
        wbuf[i] = 3;
    if (accum_write(20, 3 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(20, 3 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 4: New piece overlaps start of accumulated data */
    /* Write 5 4's at address 8 */
    /* @0:|  444443221111111111| */
    for (i = 0; i < 5; i++)
        wbuf[i] = 4;
    if (accum_write(8, 5 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(8, 5 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 5: New piece completely within accumulated data */
    /* Write 4 5's at address 48 */
    /* @0:|  444443221155551111| */
    for (i = 0; i < 4; i++)
        wbuf[i] = 5;
    if (accum_write(48, 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(48, 4 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 6: End of new piece aligns with end of accumulated data */
    /* Write 3 6's at address 68 */
    /* @0:|  444443221155551666| */
    for (i = 0; i < 3; i++)
        wbuf[i] = 6;
    if (accum_write(68, 3 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(68, 3 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 7: New piece overlaps end of accumulated data */
    /* Write 5 7's at address 76 */
    /* @0:|  4444432211555516677777| */
    for (i = 0; i < 5; i++)
        wbuf[i] = 7;
    if (accum_write(76, 5 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(76, 5 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 8: Start of new piece aligns with end of accumulated data */
    /* Write 3 8's at address 96 */
    /* @0:|  4444432211555516677777888| */
    for (i = 0; i < 3; i++)
        wbuf[i] = 8;
    if (accum_write(96, 3 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(96, 3 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Set up expected data buffer and verify contents of
        accumulator as constructed by cases 1-8, above */
    for (i = 0; i < 5; i++)
        wbuf[i] = 4;
    for (i = 5; i < 6; i++)
        wbuf[i] = 3;
    for (i = 6; i < 8; i++)
        wbuf[i] = 2;
    for (i = 8; i < 10; i++)
        wbuf[i] = 1;
    for (i = 10; i < 14; i++)
        wbuf[i] = 5;
    for (i = 14; i < 15; i++)
        wbuf[i] = 1;
    for (i = 15; i < 17; i++)
        wbuf[i] = 6;
    for (i = 17; i < 22; i++)
        wbuf[i] = 7;
    for (i = 22; i < 25; i++)
        wbuf[i] = 8;
    if (accum_read(8, 25 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 25 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 9: New piece completely before accumulated data */
    /* Write 1 9 at address 0 */
    /* @0:|9 4444432211555516677777888| */
    for (i = 0; i < 1; i++)
        wbuf[i] = 9;
    if (accum_write(0, 1 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(0, 1 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 1 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 10: New piece completely after accumulated data */
    /* Write 4 3's at address 116 */
    /* @0:|9 4444432211555516677777888  3333| */
    for (i = 0; i < 4; i++)
        wbuf[i] = 3;
    if (accum_write(116, 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(116, 4 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 11: New piece completely overlaps accumulated data */
    /* Write 6 4's at address 112 */
    /* @0:|9 4444432211555516677777888 444444| */
    for (i = 0; i < 6; i++)
        wbuf[i] = 4;
    if (accum_write(112, 6 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(112, 6 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 6 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 0;

error:
    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 1;
} /* test_accum_overlap */

/*-------------------------------------------------------------------------
 * Function:    test_accum_overlap_clean
 *
 * Purpose:     This test will write a series of pieces of data
 *              to the accumulator with the goal of overlapping
 *              the writes in various different ways, with clean
 *              areas in the accumulator.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Neil Fortner
 *              October 8, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_accum_overlap_clean(H5F_t *f)
{
    int      i = 0;
    int32_t *wbuf, *rbuf;

    TESTING("overlapping write to partially clean metadata accumulator");

    /* Allocate buffers */
    wbuf = (int32_t *)HDmalloc(4096 * sizeof(int32_t));
    HDassert(wbuf);
    rbuf = (int32_t *)HDcalloc((size_t)4096, sizeof(int32_t));
    HDassert(rbuf);

    /* Case 1: No metadata in accumulator */
    /* Write 10 1's at address 40 */
    /* @0:|          1111111111| */
    /* Put some data in the accumulator initially */
    for (i = 0; i < 10; i++)
        wbuf[i] = 1;
    if (accum_write(40, 10 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(40, 10 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 2: End of new piece aligns with start of clean accumulated data */
    /* Write 5 2's at address 20 */
    /* @0:|     222221111111111| */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    for (i = 0; i < 5; i++)
        wbuf[i] = 2;
    if (accum_write(20, 5 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(20, 5 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 3: Start of new piece aligns with start of accumulated data,
     * completely encloses dirty section of accumulator */
    /* Write 6 3's at address 20 */
    /* @0:|  333333111111111| */
    for (i = 0; i < 6; i++)
        wbuf[i] = 3;
    if (accum_write(20, 6 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(20, 6 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 6 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 4: New piece completely within accumulated data, overlaps
     * end of dirty section of accumulator */
    /* Write 2 4's at address 40 */
    /* @0:|  333334411111111| */
    for (i = 0; i < 2; i++)
        wbuf[i] = 4;
    if (accum_write(40, 2 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(40, 2 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 5: New piece completely within accumulated data, completely
     * after dirty section of accumulator */
    /* Write 2 5's at address 52 */
    /* @0:|  333334415511111| */
    for (i = 0; i < 2; i++)
        wbuf[i] = 5;
    if (accum_write(52, 2 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(52, 2 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 6: New piece completely within clean accumulated data */
    /* Write 3 6's at address 44 */
    /* @0:|  333334666511111| */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    for (i = 0; i < 3; i++)
        wbuf[i] = 6;
    if (accum_write(44, 3 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(44, 3 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 7: New piece overlaps start of clean accumulated data */
    /* Write 2 7's at address 16 */
    /* @0:|  7733334666511111| */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    for (i = 0; i < 2; i++)
        wbuf[i] = 7;
    if (accum_write(16, 2 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(16, 2 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 8: New piece overlaps start of accumulated data, completely
     * encloses dirty section of accumulator */
    /* Write 4 8's at address 12 */
    /* @0:|  88883334666511111| */
    for (i = 0; i < 4; i++)
        wbuf[i] = 8;
    if (accum_write(12, 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(12, 4 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 9: Start of new piece aligns with end of clean accumulated data */
    /* Write 3 9's at address 80 */
    /* @0:|  88883334666511111999| */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    for (i = 0; i < 3; i++)
        wbuf[i] = 9;
    if (accum_write(80, 3 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(80, 3 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 10: New piece overlaps end of clean accumulated data */
    /* Write 3 2's at address 88 */
    /* @0:|  888833346665111119922| */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;
    for (i = 0; i < 2; i++)
        wbuf[i] = 2;
    if (accum_write(88, 2 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(88, 2 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 11: New piece overlaps end of accumulated data, completely encloses
     * dirty section of accumulator */
    /* Write 4 7's at address 84 */
    /* @0:|  8888333466651111197777| */
    for (i = 0; i < 4; i++)
        wbuf[i] = 7;
    if (accum_write(84, 4 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(84, 4 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Set up expected data buffer and verify contents of
        accumulator as constructed by cases 1-11, above */
    for (i = 0; i < 4; i++)
        wbuf[i] = 8;
    for (i = 4; i < 7; i++)
        wbuf[i] = 3;
    for (i = 7; i < 8; i++)
        wbuf[i] = 4;
    for (i = 8; i < 11; i++)
        wbuf[i] = 6;
    for (i = 11; i < 12; i++)
        wbuf[i] = 5;
    for (i = 12; i < 17; i++)
        wbuf[i] = 1;
    for (i = 17; i < 18; i++)
        wbuf[i] = 9;
    for (i = 18; i < 22; i++)
        wbuf[i] = 7;
    if (accum_read(12, 22 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 22 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 0;

error:
    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 1;
} /* test_accum_overlap_clean */

/*-------------------------------------------------------------------------
 * Function:    test_accum_non_overlap_size
 *
 * Purpose:     This test will write a series of pieces of data
 *              to the accumulator with the goal of not overlapping
 *              the writes with a data size larger then the accum size.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Allen Byrne
 *              October 8, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_accum_non_overlap_size(H5F_t *f)
{
    int      i = 0;
    int32_t *wbuf, *rbuf;

    TESTING("non-overlapping write to accumulator larger then accum_size");

    /* Allocate buffers */
    wbuf = (int *)HDmalloc(4096 * sizeof(int32_t));
    HDassert(wbuf);
    rbuf = (int *)HDcalloc((size_t)4096, sizeof(int32_t));
    HDassert(rbuf);

    /* Case 1: No metadata in accumulator */
    /* Write 10 1's at address 140 */
    /* @0:|     1111111111| */
    /* Put some data in the accumulator initially */
    for (i = 0; i < 10; i++)
        wbuf[i] = 1;
    if (accum_write(140, 10 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(140, 10 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 9: New piece completely before accumulated data */
    /* Write 20 9 at address 0 */
    /* @0:|9   1111111111| */
    for (i = 0; i < 20; i++)
        wbuf[i] = 9;
    if (accum_write(0, 20 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(0, 20 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 20 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 0;

error:
    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 1;
} /* test_accum_non_overlap_size */

/*-------------------------------------------------------------------------
 * Function:    test_accum_overlap_size
 *
 * Purpose:     This test will write a series of pieces of data
 *              to the accumulator with the goal of overlapping
 *              the writes with a data size completely overlapping
 *              the accumulator at both ends.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Allen Byrne
 *              October 8, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_accum_overlap_size(H5F_t *f)
{
    int      i = 0;
    int32_t *wbuf, *rbuf;

    TESTING("overlapping write to accumulator larger then accum_size");

    /* Allocate buffers */
    wbuf = (int32_t *)HDmalloc(4096 * sizeof(int32_t));
    HDassert(wbuf);
    rbuf = (int32_t *)HDcalloc((size_t)4096, sizeof(int32_t));
    HDassert(rbuf);

    /* Case 1: No metadata in accumulator */
    /* Write 10 1's at address 64 */
    /* @0:|     1111111111| */
    /* Put some data in the accumulator initially */
    for (i = 0; i < 10; i++)
        wbuf[i] = 1;
    if (accum_write(64, 10 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(64, 10 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    /* Case 9: New piece completely before accumulated data */
    /* Write 72 9 at address 60  */
    /* @0:|9   1111111111| */
    for (i = 0; i < 72; i++)
        wbuf[i] = 9;
    if (accum_write(60, 72 * sizeof(int32_t), wbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(60, 72 * sizeof(int32_t), rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, 72 * sizeof(int32_t)) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 0;

error:
    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 1;
} /* test_accum_overlap_size */

/*-------------------------------------------------------------------------
 * Function:    test_accum_adjust
 *
 * Purpose:     This test examines the various ways the accumulator might
 *              adjust itself as a result of data appending or prepending
 *              to it.
 *
 *              This test program covers all the code in H5F_accum_adjust,
 *              but NOT all possible paths through said code. It only covers
 *              six potential paths through the function. (Again, though, each
 *              piece of code within an if/else statement in H5F_accum_adjust is
 *              covered by one of the paths in this test function). Since there
 *              are a ridiculous number of total possible paths through this
 *              function due to its large number of embedded if/else statements,
 *              that's certainly a lot of different test cases to write by hand.
 *              (Though if someone comes across this code and has some free
 *              time, go for it).
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Mike McGreevy
 *              October 11, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_accum_adjust(H5F_t *f)
{
    int      i = 0;
    int      s = 1048576; /* size of buffer */
    int32_t *wbuf, *rbuf;

    TESTING("accumulator adjustments after append/prepend of data");

    /* Allocate buffers */
    wbuf = (int32_t *)HDmalloc((size_t)s * sizeof(int32_t));
    HDassert(wbuf);
    rbuf = (int32_t *)HDcalloc((size_t)s, sizeof(int32_t));
    HDassert(rbuf);

    /* Fill up write buffer */
    for (i = 0; i < s; i++)
        wbuf[i] = i + 1;

    /* ================================================================ */
    /* CASE 1: Prepending small block to large, fully dirty accumulator */
    /* ================================================================ */

    /* Write data to the accumulator to fill it just under 1MB (max size),
     * but not quite full. This will force the accumulator to, on subsequent
     * writes, a) have to adjust since it's nearly full, and b) prevent
     * an increase in size because it's already at it's maximum size */
    if (accum_write((1024 * 1024), (1024 * 1024) - 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a small (1KB) block that prepends to the front of the accumulator. */
    /* ==> Accumulator will need more buffer space */
    /* ==> Accumulator will try to resize, but see that it's getting too big */
    /* ==> Size of new block is less than half maximum size of accumulator */
    /* ==> New block is being prepended to accumulator */
    /* ==> Accumulator is dirty, it will be flushed. */
    /* ==> Dirty region overlaps region to eliminate from accumulator */
    if (accum_write((1024 * 1024) - 1024, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read back and verify first write */
    if (accum_read((1024 * 1024), (1024 * 1024) - 1, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)((1024 * 1024) - 1)) != 0)
        TEST_ERROR;

    /* Read back and verify second write */
    if (accum_read((1024 * 1024) - 1024, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)1024) != 0)
        TEST_ERROR;

    /* Reset accumulator for next case */
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* ================================================================ */
    /* Case 2: Prepending large block to large, fully dirty accumulator */
    /* ================================================================ */

    /* Write data to the accumulator to fill it just under 1MB (max size),
     * but not quite full. This will force the accumulator to, on subsequent
     * writes, a) have to adjust since it's nearly full, and b) prevent
     * an increase in size because it's already at it's maximum size */
    if (accum_write((1024 * 1024), (1024 * 1024) - 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a large (just under 1MB) block to the front of the accumulator. */
    /* ==> Accumulator will need more buffer space */
    /* ==> Accumulator will try to resize, but see that it's getting too big */
    /* ==> Size of new block is larger than half maximum size of accumulator */
    /* ==> New block is being prepended to accumulator */
    /* ==> Accumulator is dirty, it will be flushed. */
    /* ==> Dirty region overlaps region to eliminate from accumulator */
    if (accum_write(5, (1024 * 1024) - 5, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read back and verify both pieces of data */
    if (accum_read(1048576, 1048575, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)1048576) != 0)
        TEST_ERROR;

    if (accum_read(5, 1048571, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)1048571) != 0)
        TEST_ERROR;

    /* Reset accumulator for next case */
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* ========================================================= */
    /* Case 3: Appending small block to large, clean accumulator */
    /* ========================================================= */

    /* Write data to the accumulator to fill it just under 1MB (max size),
     * but not quite full. This will force the accumulator to, on subsequent
     * writes, a) have to adjust since it's nearly full, and b) prevent
     * an increase in size because it's already at it's maximum size */
    if (accum_write(0, (1024 * 1024) - 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Flush the accumulator -- we want to test the case when
        accumulator contains clean data */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;

    /* Write a small (1KB) block to the end of the accumulator */
    /* ==> Accumulator will need more buffer space */
    /* ==> Accumulator will try to resize, but see that it's getting too big */
    /* ==> Size of new block is larger than half maximum size of accumulator */
    /* ==> New block being appended to accumulator */
    /* ==> Accumulator is NOT dirty */
    /* ==> Since we're appending, need to adjust location of accumulator */
    if (accum_write((1024 * 1024) - 1, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a piece of metadata outside current accumulator to force write
        to disk */
    if (accum_write(0, 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read in the piece we wrote to disk above, and then verify that
        the data is as expected */
    if (accum_read((1024 * 1024) - 1, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)1024) != 0)
        TEST_ERROR;

    /* Reset accumulator for next case */
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* ==================================================================== */
    /* Case 4: Appending small block to large, partially dirty accumulator, */
    /*         with existing dirty region NOT aligning with the new block   */
    /* ==================================================================== */

    /* Write data to the accumulator to fill it just under 1MB (max size),
     * but not quite full. This will force the accumulator to, on subsequent
     * writes, a) have to adjust since it's nearly full, and b) prevent
     * an increase in size because it's already at it's maximum size */
    if (accum_write(0, (1024 * 1024) - 5, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Flush the accumulator to clean it */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;

    /* write to part of the accumulator so just the start of it is dirty */
    if (accum_write(0, 5, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a small (~340KB) piece of data to the other end of the accumulator */
    /* ==> Accumulator will need more buffer space */
    /* ==> Accumulator will try to resize, but see that it's getting too big */
    /* ==> Size of new block is less than than half maximum size of accumulator */
    /* ==> New block being appended to accumulator */
    /* ==> We can slide the dirty region down, to accommodate the request */
    /* ==> Max Buffer Size - (dirty offset + adjust size) >= 2 * size) */
    /* ==> Need to adjust location of accumulator while appending */
    /* ==> Accumulator will need to be reallocated */
    if (accum_write(1048571, 349523, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a piece of metadata outside current accumulator to force write
        to disk */
    if (accum_write(1398900, 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read in the piece we wrote to disk above, and then verify that
        the data is as expected */
    if (accum_read(1048571, 349523, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)349523) != 0)
        TEST_ERROR;

    /* Reset accumulator for next case */
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* ==================================================================== */
    /* Case 5: Appending small block to large, partially dirty accumulator, */
    /*         with existing dirty region aligning with new block           */
    /* ==================================================================== */

    /* Write data to the accumulator to fill it just under max size (but not full) */
    if (accum_write(0, (1024 * 1024) - 5, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Flush the accumulator to clean it */
    if (accum_flush(f) < 0)
        FAIL_STACK_ERROR;

    /* write to part of the accumulator so it's dirty, but not entirely dirty */
    /* (just the begging few bytes will be clean) */
    if (accum_write(10, (1024 * 1024) - 15, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a small piece of data to the dirty end of the accumulator */
    /* ==> Accumulator will need more buffer space */
    /* ==> Accumulator will try to resize, but see that it's getting too big */
    /* ==> Size of new block is less than than half maximum size of accumulator */
    /* ==> New block being appended to accumulator */
    /* ==> We can slide the dirty region down, to accommodate the request */
    /* ==> Max Buffer Size - (dirty offset + adjust size) < 2 * size) */
    /* ==> Need to adjust location of accumulator while appending */
    if (accum_write((1024 * 1024) - 5, 10, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a piece of metadata outside current accumulator to force write
        to disk */
    if (accum_write(0, 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read in the piece we wrote to disk above, and then verify that
        the data is as expected */
    if (accum_read((1024 * 1024) - 5, 10, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)10) != 0)
        TEST_ERROR;

    /* Reset accumulator for next case */
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* ================================================================= */
    /* Case 6: Appending small block to large, fully dirty accumulator   */
    /* ================================================================= */

    /* Write data to the accumulator to fill it just under 1MB (max size),
     * but not quite full. This will force the accumulator to, on subsequent
     * writes, a) have to adjust since it's nearly full, and b) prevent
     * an increase in size because it's already at it's maximum size */
    if (accum_write(0, (1024 * 1024) - 5, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a small (~340KB) piece of data to the end of the accumulator */
    /* ==> Accumulator will need more buffer space */
    /* ==> Accumulator will try to resize, but see that it's getting too big */
    /* ==> Size of new block is less than than half maximum size of accumulator */
    /* ==> New block being appended to accumulator */
    /* ==> We cannot slide dirty region down, it's all dirty */
    /* ==> Dirty region overlaps region to eliminate from accumulator */
    /* ==> Need to adjust location of accumulator while appending */
    if (accum_write(1048571, 349523, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a piece of metadata outside current accumulator to force write
        to disk */
    if (accum_write(1398900, 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read in the piece we wrote to disk above, and then verify that
        the data is as expected */
    if (accum_read(1048571, 349523, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)349523) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 0;

error:
    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 1;
} /* test_accum_adjust */

/*-------------------------------------------------------------------------
 * Function:    test_read_after
 *
 * Purpose:     This test will verify the case when metadata is read partly
 *              from the accumulator and partly from disk.  The test will
 *              write a block of data at address 512, force the data to be
 *              written to disk, write new data partially overlapping the
 *              original block from below, then read data at address 512.
 *              The data read should be partly new and partly original.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Larry Knox
 *              October 8, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_read_after(H5F_t *f)
{
    int      i = 0;
    int      s = 128; /* size of buffer */
    int32_t *wbuf, *rbuf;

    TESTING("reading data from both accumulator and disk");

    /* Allocate buffers */
    wbuf = (int32_t *)HDmalloc((size_t)s * sizeof(int32_t));
    HDassert(wbuf);
    rbuf = (int32_t *)HDcalloc((size_t)s, sizeof(int32_t));
    HDassert(rbuf);

    /* Fill up write buffer with 1s */
    for (i = 0; i < s; i++)
        wbuf[i] = 1;

    /* Write data to the accumulator to fill it. */
    if (accum_write(512, 512, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write a piece of metadata outside current accumulator to force write
        to disk */
    if (accum_write(0, 1, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Fill up write buffer with 2s */
    for (i = 0; i < s; i++)
        wbuf[i] = 2;

    /* Write a block of 2s of the original size that will overlap the lower half
        of the original block */
    if (accum_write(256, 512, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read 128 bytes at the original address, and then  */
    if (accum_read(512, 512, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Set the second half of wbuf back to 1s */
    for (i = 64; i < s; i++)
        wbuf[i] = 1;

    /* Read in the piece we wrote to disk above, and then verify that
        the data is as expected */
    if (accum_read(512, 512, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (HDmemcmp(wbuf, rbuf, (size_t)128) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 0;

error:
    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);

    return 1;
} /* end test_read_after */

/*-------------------------------------------------------------------------
 * Function:    test_big
 *
 * Purpose:     This test exercises writing large pieces of metadata to the
 *		file.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Quincey Koziol
 *              October 12, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_big(H5F_t *f)
{
    uint8_t *wbuf, *wbuf2, *rbuf, *zbuf; /* Buffers for reading & writing, etc */
    unsigned u;                          /* Local index variable */

    /* Allocate space for the write & read buffers */
    wbuf = (uint8_t *)HDmalloc((size_t)BIG_BUF_SIZE);
    HDassert(wbuf);
    wbuf2 = (uint8_t *)HDmalloc((size_t)BIG_BUF_SIZE);
    HDassert(wbuf2);
    rbuf = (uint8_t *)HDcalloc((size_t)(BIG_BUF_SIZE + 1536), (size_t)1);
    HDassert(rbuf);
    zbuf = (uint8_t *)HDcalloc((size_t)(BIG_BUF_SIZE + 1536), (size_t)1);
    HDassert(zbuf);

    /* Initialize write buffers */
    for (u = 0; u < BIG_BUF_SIZE; u++) {
        wbuf[u]  = (uint8_t)u;
        wbuf2[u] = (uint8_t)(u + 1);
    } /* end for */

    TESTING("large metadata I/O operations");

    /* Write large data segment to file */
    if (accum_write(0, BIG_BUF_SIZE, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read entire segment back from file */
    if (accum_read(0, BIG_BUF_SIZE, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(wbuf, rbuf, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(0, BIG_BUF_SIZE, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)BIG_BUF_SIZE);
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section to middle of accumulator */
    if (accum_write(1024, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read entire segment back from file */
    /* (Read covers entire dirty region) */
    if (accum_read(0, BIG_BUF_SIZE, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(zbuf, rbuf, (size_t)1024) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf, rbuf + 1024, (size_t)1024) != 0)
        TEST_ERROR;
    if (HDmemcmp(zbuf, rbuf + 2048, (size_t)(BIG_BUF_SIZE - 2048)) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(1024, 1024, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)BIG_BUF_SIZE);
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section to overlap with end of "big" region */
    if (accum_write(BIG_BUF_SIZE - 512, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read entire segment back from file */
    /* (Read covers bottom half of dirty region) */
    if (accum_read(0, BIG_BUF_SIZE, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(zbuf, rbuf, (size_t)(BIG_BUF_SIZE - 512)) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf, rbuf + (BIG_BUF_SIZE - 512), (size_t)512) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(BIG_BUF_SIZE - 512, 1024, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)BIG_BUF_SIZE);
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section to overlap with beginning of "big" region */
    if (accum_write(0, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read entire segment back from file */
    /* (Read covers bottom half of dirty region) */
    if (accum_read(512, BIG_BUF_SIZE, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(wbuf + 512, rbuf, (size_t)512) != 0)
        TEST_ERROR;
    if (HDmemcmp(zbuf, rbuf + 512, (size_t)(BIG_BUF_SIZE - 512)) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(0, 1024, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)BIG_BUF_SIZE);
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section to middle of accumulator */
    /* (With write buffer #1) */
    if (accum_write(1024, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write entire segment to from file */
    /* (With write buffer #2) */
    /* (Write covers entire dirty region) */
    if (accum_write(0, BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;

    /* Read entire segment back from file */
    if (accum_read(0, BIG_BUF_SIZE, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(wbuf2, rbuf, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(0, BIG_BUF_SIZE, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)BIG_BUF_SIZE);
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section to overlap with end of "big" region */
    /* (With write buffer #1) */
    if (accum_write(BIG_BUF_SIZE - 512, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write entire segment to from file */
    /* (With write buffer #2) */
    /* (Read covers bottom half of dirty region) */
    if (accum_write(0, BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;

    /* Read both segments back from file */
    if (accum_read(0, BIG_BUF_SIZE + 512, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(wbuf2, rbuf, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf + 512, rbuf + BIG_BUF_SIZE, (size_t)512) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(0, BIG_BUF_SIZE + 512, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)(BIG_BUF_SIZE + 512));
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section to be past "big" region */
    /* (With write buffer #1) */
    if (accum_write(BIG_BUF_SIZE + 512, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read section before "big" region */
    /* (To enlarge accumulator, to it will intersect with big write) */
    if (accum_read(BIG_BUF_SIZE - 512, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write entire segment to from file */
    /* (With write buffer #2) */
    /* (Doesn't overlap with small section) */
    if (accum_write(0, BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;

    /* Read both segments & gap back from file */
    if (accum_read(0, BIG_BUF_SIZE + 1024, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(wbuf2, rbuf, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;
    if (HDmemcmp(zbuf, rbuf + BIG_BUF_SIZE, (size_t)512) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf, rbuf + BIG_BUF_SIZE + 512, (size_t)512) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(0, BIG_BUF_SIZE + 1536, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)(BIG_BUF_SIZE + 1024));
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section to be past "big" region */
    /* (With write buffer #1) */
    if (accum_write(BIG_BUF_SIZE + 512, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read section before "big" region */
    /* (To enlarge accumulator, so it will intersect with big write) */
    if (accum_read(BIG_BUF_SIZE - 512, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;
    if (accum_read(BIG_BUF_SIZE + 1536, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write entire segment to from file */
    /* (With write buffer #2) */
    /* (Overwriting dirty region, but not invalidating entire accumulator) */
    if (accum_write(1536, BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;

    /* Read both segments & gap back from file */
    if (accum_read(0, BIG_BUF_SIZE + 1536, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(zbuf, rbuf, (size_t)1536) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf2, rbuf + 1536, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(1536, BIG_BUF_SIZE, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)(BIG_BUF_SIZE + 1536));
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section before "big" region */
    /* (With write buffer #1) */
    if (accum_write(1024, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read section before "big" region */
    /* (To enlarge accumulator, so it will intersect with big write) */
    if (accum_read(0, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write entire segment to from file */
    /* (With write buffer #2) */
    /* (Overwriting dirty region, but not invalidating entire accumulator) */
    if (accum_write(512, BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;

    /* Read both segments & gap back from file */
    if (accum_read(0, BIG_BUF_SIZE + 512, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(zbuf, rbuf, (size_t)512) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf2, rbuf + 512, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(512, BIG_BUF_SIZE, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)(BIG_BUF_SIZE + 512));
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section before "big" region */
    /* (With write buffer #1) */
    if (accum_write(0, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read section before "big" region */
    /* (To enlarge accumulator, so it will intersect with big write) */
    if (accum_read(1024, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write entire segment to from file */
    /* (With write buffer #2) */
    /* (Avoiding dirty region, and not invalidating entire accumulator) */
    if (accum_write(1536, BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;

    /* Read both segments & gap back from file */
    if (accum_read(0, BIG_BUF_SIZE + 1536, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(wbuf, rbuf, (size_t)1024) != 0)
        TEST_ERROR;
    if (HDmemcmp(zbuf, rbuf + 1024, (size_t)512) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf2, rbuf + 1536, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;

    /* Reset data in file back to zeros & reset the read buffer */
    if (accum_write(0, BIG_BUF_SIZE + 1536, zbuf) < 0)
        FAIL_STACK_ERROR;
    HDmemset(rbuf, 0, (size_t)(BIG_BUF_SIZE + 1536));
    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    /* Write small section before "big" region */
    /* (With write buffer #1) */
    if (accum_write(0, 1024, wbuf) < 0)
        FAIL_STACK_ERROR;

    /* Read section before "big" region */
    /* (To enlarge accumulator, so it will intersect with big write) */
    if (accum_read(1024, 1024, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Write entire segment to from file */
    /* (With write buffer #2) */
    /* (Partially overwriting dirty region, and not invalidating entire accumulator) */
    if (accum_write(512, BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;

    /* Read both segments back from file */
    if (accum_read(0, BIG_BUF_SIZE + 512, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read */
    if (HDmemcmp(wbuf, rbuf, (size_t)512) != 0)
        TEST_ERROR;
    if (HDmemcmp(wbuf2, rbuf + 512, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(wbuf2);
    HDfree(rbuf);
    HDfree(zbuf);

    return 0;

error:
    HDfree(wbuf);
    HDfree(wbuf2);
    HDfree(rbuf);
    HDfree(zbuf);

    return 1;
} /* end test_big() */

/*-------------------------------------------------------------------------
 * Function:    test_random_write
 *
 * Purpose:     This test writes random pieces of data to the file and
 *		then reads it all back.
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Quincey Koziol
 *              October 11, 2010
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_random_write(H5F_t *f)
{
    uint8_t *wbuf, *rbuf; /* Buffers for reading & writing */
    unsigned seed = 0;    /* Random # seed */
    size_t * off;         /* Offset of buffer segments to write */
    size_t * len;         /* Size of buffer segments to write */
    size_t   cur_off;     /* Current offset */
    size_t   nsegments;   /* Number of segments to write */
    size_t   swap;        /* Position to swap with */
    unsigned u;           /* Local index variable */

    /* Allocate space for the write & read buffers */
    wbuf = (uint8_t *)HDmalloc((size_t)RANDOM_BUF_SIZE);
    HDassert(wbuf);
    rbuf = (uint8_t *)HDcalloc((size_t)RANDOM_BUF_SIZE, (size_t)1);
    HDassert(rbuf);

    /* Initialize write buffer */
    for (u = 0; u < RANDOM_BUF_SIZE; u++)
        wbuf[u] = (uint8_t)u;

    TESTING("random writes to accumulator");

    /* Choose random # seed */
    seed = (unsigned)HDtime(NULL);
#if 0
/* seed = (unsigned)1155438845; */
HDfprintf(stderr, "Random # seed was: %u\n", seed);
#endif
    HDsrandom(seed);

    /* Allocate space for the segment length buffer */
    off = (size_t *)HDmalloc(MAX_RANDOM_SEGMENTS * sizeof(size_t));
    HDassert(off);
    len = (size_t *)HDmalloc(MAX_RANDOM_SEGMENTS * sizeof(size_t));
    HDassert(len);

    /* Randomly choose lengths of segments */
    cur_off = 0;
    for (u = 0; u < MAX_RANDOM_SEGMENTS;) {
        size_t length = 0; /* Length of current segment */

        /* Choose random length of segment, allowing for variance */
        do {
            length += (size_t)(HDrandom() % RAND_SEG_LEN) + 1;
        } while ((HDrandom() & 256) >= 128); /* end while */

        /* Check for going off end of buffer */
        if ((cur_off + length) > RANDOM_BUF_SIZE)
            length = RANDOM_BUF_SIZE - cur_off;

        /* Set offset & length of segment */
        off[u] = cur_off;
        len[u] = length;

        /* Advance array offset */
        u++;

        /* Advance current offset */
        cur_off += length;

        /* If we've used up entire buffer before hitting limit of segments, get out */
        if (cur_off >= RANDOM_BUF_SIZE)
            break;
    } /* end for */
    nsegments = u;

    /* Increase length of last segment, if it doesn't reach end of buffer */
    if (nsegments < MAX_RANDOM_SEGMENTS)
        len[nsegments - 1] = RANDOM_BUF_SIZE - off[nsegments - 1];

    /* Shuffle order of segments, to randomize positions to write */
    for (u = 0; u < nsegments; u++) {
        size_t tmp; /* Temporary holder for offset & length values */

        /* Choose value within next few elements to to swap with */
        swap = ((size_t)HDrandom() % 8) + u;
        if (swap >= nsegments)
            swap = nsegments - 1;

        /* Swap values */
        tmp       = off[u];
        off[u]    = off[swap];
        off[swap] = tmp;
        tmp       = len[u];
        len[u]    = len[swap];
        len[swap] = tmp;
    } /* end for */

    /* Write data segments to file */
    for (u = 0; u < nsegments; u++) {
        if (accum_write(RANDOM_BASE_OFF + off[u], len[u], wbuf + off[u]) < 0)
            FAIL_STACK_ERROR;

        /* Verify individual reads */
        if (accum_read(RANDOM_BASE_OFF + off[u], len[u], rbuf) < 0)
            FAIL_STACK_ERROR;
        if (HDmemcmp(wbuf + off[u], rbuf, len[u]) != 0)
            TEST_ERROR;
    } /* end for */

    /* Read entire region back from file */
    if (accum_read(RANDOM_BASE_OFF, RANDOM_BUF_SIZE, rbuf) < 0)
        FAIL_STACK_ERROR;

    /* Verify data read back in */
    if (HDmemcmp(wbuf, rbuf, (size_t)RANDOM_BUF_SIZE) != 0)
        TEST_ERROR;

    if (accum_reset(f) < 0)
        FAIL_STACK_ERROR;

    PASSED();

    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);
    HDfree(off);
    HDfree(len);

    return 0;

error:
    /* Release memory */
    HDfree(wbuf);
    HDfree(rbuf);
    HDfree(off);
    HDfree(len);

    HDfprintf(stderr, "Random # seed was: %u\n", seed);
    return 1;
} /* end test_random_write() */

/*-------------------------------------------------------------------------
 * Function:    test_swmr_write_big
 *
 * Purpose:     A SWMR test: verifies that writing "large" metadata to a file
 *              opened with SWMR_WRITE will flush the existing metadata in the
 *              accumulator to disk first before writing the "large" metadata
 *              to disk.
 *
 *              This test will fork and exec a reader "accum_swmr_reader" which
 *              opens the same file with SWMR_READ and verifies that the correct
 *              metadata is read from disk.
 *
 * Return:      Success: 0
 *              Failure: 1
 *
 * Programmer:  Vailin Choi; April 2013
 *
 *-------------------------------------------------------------------------
 */
unsigned
test_swmr_write_big(hbool_t newest_format)
{

    hid_t    fid  = -1;   /* File ID */
    hid_t    fapl = -1;   /* File access property list */
    H5F_t *  rf   = NULL; /* File pointer */
    char     filename[1024];
    uint8_t *wbuf2 = NULL, *rbuf = NULL; /* Buffers for reading & writing */
    uint8_t  wbuf[1024];                 /* Buffer for reading & writing */
    unsigned u;                          /* Local index variable */
    hbool_t  process_success = FALSE;
    char *   driver          = NULL;  /* VFD string (from env variable) */
    hbool_t  api_ctx_pushed  = FALSE; /* Whether API context pushed */

    if (newest_format)
        TESTING("SWMR write of large metadata: with latest format");
    else
        TESTING("SWMR write of large metadata: with non-latest-format");

#if !defined(H5_HAVE_UNISTD_H) && !defined(H5_HAVE_WIN32_API)

    /* Not a Windows or POSIX system */
    SKIPPED();
    HDputs("    Test skipped: Not a Windows or POSIX system.");
    return 0;

#else
    /* Skip this test if SWMR I/O is not supported for the VFD specified
     * by the environment variable.
     */
    driver = HDgetenv(HDF5_DRIVER);
    if (!H5FD__supports_swmr_test(driver)) {
        SKIPPED();
        HDputs("    Test skipped due to VFD not supporting SWMR I/O.");
        return 0;
    }

    /* File access property list */
    if ((fapl = h5_fileaccess()) < 0)
        FAIL_STACK_ERROR;
    h5_fixname(FILENAME[1], fapl, filename, sizeof filename);

    /* Both cases will result in v3 superblock and version 2 object header for SWMR */
    if (newest_format) { /* latest format */
        if (H5Pset_libver_bounds(fapl, H5F_LIBVER_LATEST, H5F_LIBVER_LATEST) < 0)
            FAIL_STACK_ERROR;

        if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0)
            FAIL_STACK_ERROR;
    }
    else { /* non-latest-format */
        if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC | H5F_ACC_SWMR_WRITE, H5P_DEFAULT, fapl)) < 0)
            FAIL_STACK_ERROR;
    } /* end if */

    /* Close the file */
    if (H5Fclose(fid) < 0)
        FAIL_STACK_ERROR;

    /* Open the file with SWMR_WRITE */
    if ((fid = H5Fopen(filename, H5F_ACC_RDWR | H5F_ACC_SWMR_WRITE, fapl)) < 0)
        FAIL_STACK_ERROR;

    /* Push API context */
    if (H5CX_push() < 0)
        FAIL_STACK_ERROR;
    api_ctx_pushed = TRUE;

    /* Get H5F_t * to internal file structure */
    if (NULL == (rf = (H5F_t *)H5VL_object(fid)))
        FAIL_STACK_ERROR;

    /* We'll be writing lots of garbage data, so extend the
        file a ways. 10MB should do. */
    if (H5FD_set_eoa(rf->shared->lf, H5FD_MEM_DEFAULT, (haddr_t)(1024 * 1024 * 10)) < 0)
        FAIL_STACK_ERROR;

    if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0)
        FAIL_STACK_ERROR;

    /* Reset metadata accumulator for the file */
    if (accum_reset(rf) < 0)
        FAIL_STACK_ERROR;

    /* Allocate space for the write & read buffers */
    if ((wbuf2 = (uint8_t *)HDmalloc((size_t)BIG_BUF_SIZE)) == NULL)
        FAIL_STACK_ERROR;
    if ((rbuf = (uint8_t *)HDmalloc((size_t)BIG_BUF_SIZE)) == NULL)
        FAIL_STACK_ERROR;

    /* Initialize wbuf with "0, 1, 2...1024"*/
    for (u = 0; u < 1024; u++)
        wbuf[u] = (uint8_t)u;

    /* Write [1024, 1024] bytes with wbuf */
    if (H5F_block_write(rf, H5FD_MEM_DEFAULT, (haddr_t)1024, (size_t)1024, wbuf) < 0)
        FAIL_STACK_ERROR;
    /* Read the data */
    if (H5F_block_read(rf, H5FD_MEM_DEFAULT, (haddr_t)1024, (size_t)1024, rbuf) < 0)
        FAIL_STACK_ERROR;
    /* Verify the data read is correct */
    if (HDmemcmp(wbuf, rbuf, (size_t)1024) != 0)
        TEST_ERROR;
    /* Flush the data to disk */
    if (accum_reset(rf) < 0)
        FAIL_STACK_ERROR;

    /* Initialize wbuf with all 1s */
    for (u = 0; u < 1024; u++)
        wbuf[u] = (uint8_t)1;

    /* Initialize wbuf2 */
    for (u = 0; u < BIG_BUF_SIZE; u++)
        wbuf2[u] = (uint8_t)(u + 1);

    /* Write [1024,1024] with wbuf--all 1s */
    if (H5F_block_write(rf, H5FD_MEM_DEFAULT, (haddr_t)1024, (size_t)1024, wbuf) < 0)
        FAIL_STACK_ERROR;
    /* Read the data */
    if (H5F_block_read(rf, H5FD_MEM_DEFAULT, (haddr_t)1024, (size_t)1024, rbuf) < 0)
        FAIL_STACK_ERROR;
    /* Verify the data read is correct */
    if (HDmemcmp(wbuf, rbuf, (size_t)1024) != 0)
        TEST_ERROR;
    /* The data stays in the accumulator */

    /* Write a large piece of metadata [2048, BIG_BUF_SIZE] with wbuf2 */
    if (H5F_block_write(rf, H5FD_MEM_DEFAULT, (haddr_t)2048, (size_t)BIG_BUF_SIZE, wbuf2) < 0)
        FAIL_STACK_ERROR;
    /* Read the data */
    if (H5F_block_read(rf, H5FD_MEM_DEFAULT, (haddr_t)2048, (size_t)BIG_BUF_SIZE, rbuf) < 0)
        FAIL_STACK_ERROR;
    /* Verify the data read is correct */
    if (HDmemcmp(wbuf2, rbuf, (size_t)BIG_BUF_SIZE) != 0)
        TEST_ERROR;

#if defined(H5_HAVE_WIN32_API)
    {
        STARTUPINFO         si;
        PROCESS_INFORMATION pi;
        DWORD               exit_code = EXIT_FAILURE;

        ZeroMemory(&si, sizeof(si));
        si.cb = sizeof(si);
        ZeroMemory(&pi, sizeof(pi));

        if (0 == CreateProcess(NULL, SWMR_READER, NULL, NULL, FALSE, 0, NULL, NULL, &si, &pi)) {
            HDprintf("CreateProcess failed (%d).\n", GetLastError());
            FAIL_STACK_ERROR;
        }

        (void)WaitForSingleObject(pi.hProcess, INFINITE);

        if (FALSE == GetExitCodeProcess(pi.hProcess, &exit_code) || EXIT_FAILURE == exit_code)
            process_success = FALSE;
        else
            process_success = TRUE;

        CloseHandle(pi.hProcess);
        CloseHandle(pi.hThread);
    }
#else  /* defined(H5_HAVE_WIN32_API) */
    {
        pid_t pid;    /* Process ID */
        int   status; /* Status returned from child process */

        /* Fork child process to verify that the data at [1024, 2014] does get written to disk */
        if ((pid = HDfork()) < 0) {
            HDperror("fork");
            FAIL_STACK_ERROR;
        }
        else if (0 == pid) { /* Child process */
            /* By convention, argv[0] tells the name of program invoked.
             *
             * execv on NetBSD 8 will actually return EFAULT if there is a
             * NULL at argv[0], so we follow the convention unconditionally.
             */
            char        swmr_reader[] = SWMR_READER;
            char *const new_argv[]    = {swmr_reader, NULL};
            /* Run the reader */
            status = HDexecv(SWMR_READER, new_argv);
            HDprintf("errno from execv = %s\n", HDstrerror(errno));
            FAIL_STACK_ERROR;
        } /* end if */

        /* Parent process -- wait for the child process to complete */
        while (pid != HDwaitpid(pid, &status, 0))
            /*void*/;

        /* Check if child process terminates normally and its return value */
        if (WIFEXITED(status) && !WEXITSTATUS(status))
            process_success = TRUE;
    }
#endif /* defined(H5_HAVE_WIN32_API) */

    /* Check if the process terminated correctly */
    if (!process_success)
        FAIL_PUTS_ERROR("child process exited abnormally");

    /* Flush the accumulator */
    if (accum_reset(rf) < 0)
        FAIL_STACK_ERROR;

    /* Close and remove the file */
    if (H5Fclose(fid) < 0)
        FAIL_STACK_ERROR;

    /* Close the property list */
    if (H5Pclose(fapl) < 0)
        FAIL_STACK_ERROR;

    /* Pop API context */
    if (api_ctx_pushed && H5CX_pop(FALSE) < 0)
        FAIL_STACK_ERROR;
    api_ctx_pushed = FALSE;

    /* Release memory */
    if (wbuf2)
        HDfree(wbuf2);
    if (rbuf)
        HDfree(rbuf);

    PASSED();
    return 0;

error:
    /* Closing and remove the file */
    H5Fclose(fid);

    if (api_ctx_pushed)
        H5CX_pop(FALSE);

    H5Pclose(fapl);

    /* Release memory */
    if (wbuf2)
        HDfree(wbuf2);
    if (rbuf)
        HDfree(rbuf);

    return 1;

#endif /* !defined(H5_HAVE_UNISTD_H) && !defined(H5_HAVE_WIN32_API) */

} /* end test_swmr_write_big() */

/*-------------------------------------------------------------------------
 * Function:    accum_printf
 *
 * Purpose:     Debug function to print some stats about the accumulator
 *
 * Return:      Success: SUCCEED
 *              Failure: FAIL
 *
 * Programmer:  Mike McGreevy
 *              October 7, 2010
 *
 *-------------------------------------------------------------------------
 */
void
accum_printf(const H5F_t *f)
{
    H5F_meta_accum_t *accum = &f->shared->accum;

    HDprintf("\n");
    HDprintf("Current contents of accumulator:\n");
    if (accum->alloc_size == 0) {
        HDprintf("=====================================================\n");
        HDprintf(" No accumulator allocated.\n");
        HDprintf("=====================================================\n");
    }
    else {
        HDprintf("=====================================================\n");
        HDprintf(" accumulator allocated size == %zu\n", accum->alloc_size);
        HDprintf(" accumulated data size      == %zu\n", accum->size);
        HDfprintf(stdout, " accumulator dirty?         == %s\n", accum->dirty ? "TRUE" : "FALSE");
        HDprintf("=====================================================\n");
        HDfprintf(stdout, " start of accumulated data, loc = %" PRIuHADDR "\n", accum->loc);
        if (accum->dirty) {
            HDfprintf(stdout, " start of dirty region, loc = %" PRIuHADDR "\n",
                      (haddr_t)(accum->loc + accum->dirty_off));
            HDfprintf(stdout, " end of dirty region,   loc = %" PRIuHADDR "\n",
                      (haddr_t)(accum->loc + accum->dirty_off + accum->dirty_len));
        } /* end if */
        HDfprintf(stdout, " end of accumulated data,   loc = %" PRIuHADDR "\n",
                  (haddr_t)(accum->loc + accum->size));
        HDfprintf(stdout, " end of accumulator allocation,   loc = %" PRIuHADDR "\n",
                  (haddr_t)(accum->loc + accum->alloc_size));
        HDprintf("=====================================================\n");
    }
    HDprintf("\n\n");
} /* accum_printf() */