'\" '\" Copyright (c) 2007 Donal K. Fellows '\" '\" See the file "license.terms" for information on usage and redistribution '\" of this file, and for a DISCLAIMER OF ALL WARRANTIES. '\" .so man.macros .TH define n 0.3 TclOO "TclOO Commands" .BS '\" Note: do not modify the .SH NAME line immediately below! .SH NAME oo::define, oo::objdefine \- define and configure classes and objects .SH SYNOPSIS .nf package require TclOO \fBoo::define\fI class defScript\fR \fBoo::define\fI class subcommand arg\fR ?\fIarg ...\fR? \fBoo::objdefine\fI object defScript\fR \fBoo::objdefine\fI object subcommand arg\fR ?\fIarg ...\fR? .fi .BE .SH DESCRIPTION The \fBoo::define\fR command is used to control the configuration of classes, and the \fBoo::objdefine\fR command is used to control the configuration of objects (including classes as instance objects), with the configuration being applied to the entity named in the \fIclass\fR or the \fIobject\fR argument. Configuring a class also updates the configuration of all subclasses of the class and all objects that are instances of that class or which mix it in (as modified by any per-instance configuration). The way in which the configuration is done is controlled by either the \fIdefScript\fR argument or by the \fIsubcommand\fR and following \fIarg\fR arguments; when the second is present, it is exactly as if all the arguments from \fIsubcommand\fR onwards are made into a list and that list is used as the \fIdefScript\fR argument. .SS "CONFIGURING CLASSES" .PP The following commands are supported in the \fIdefScript\fR for \fBoo::define\fR, each of which may also be used in the \fIsubcommand\fR form: .TP \fBconstructor\fI argList bodyScript\fR . This creates or updates the constructor for a class. The formal arguments to the constructor (defined using the same format as for the Tcl \fBproc\fR command) will be \fIargList\fR, and the body of the constructor will be \fIbodyScript\fR. When the body of the constructor is evaluated, the current namespace of the constructor will be a namespace that is unique to the object being constructed. Within the constructor, the \fBnext\fR command should be used to call the superclasses' constructors. If \fIbodyScript\fR is the empty string, the constructor will be deleted. .TP \fBdeletemethod\fI name\fR ?\fIname ...\fR . This deletes each of the methods called \fIname\fR from a class. The methods must have previously existed in that class. Does not affect the superclasses of the class, nor does it affect the subclasses or instances of the class (except when they have a call chain through the class being modified). .TP \fBdestructor\fI bodyScript\fR . This creates or updates the destructor for a class. Destructors take no arguments, and the body of the destructor will be \fIbodyScript\fR. The destructor is called when objects of the class are deleted, and when called will have the object's unique namespace as the current namespace. Destructors should use the \fBnext\fR command to call the superclasses' destructors. Note that destructors are not called in all situations (e.g. if the interpreter is destroyed). If \fIbodyScript\fR is the empty string, the destructor will be deleted. .RS Note that errors during the evaluation of a destructor \fIare not returned\fR to the code that causes the destruction of an object. Instead, they are passed to the currently-defined \fBbgerror\fR handler. .RE .TP \fBexport\fI name \fR?\fIname ...\fR? . This arranges for each of the named methods, \fIname\fR, to be exported (i.e. usable outside an instance through the instance object's command) by the class being defined. Note that the methods themselves may be actually defined by a superclass; subclass exports override superclass visibility, and may in turn be overridden by instances. .TP \fBfilter\fR ?\fImethodName ...\fR? . This sets or updates the list of method names that are used to guard whether a method call to instances of the class may be called and what the method's results are. Each \fImethodName\fR names a single filtering method (which may be exposed or not exposed); it is not an error for a non-existent method to be named since they may be defined by subclasses. If no \fImethodName\fR arguments are present, the list of filter names is set to empty. .TP \fBforward\fI name cmdName \fR?\fIarg ...\fR? . This creates or updates a forwarded method called \fIname\fR. The method is defined be forwarded to the command called \fIcmdName\fR, with additional arguments, \fIarg\fR etc., added before those arguments specified by the caller of the method. The \fIcmdName\fR will always be resolved using the rules of the invoking objects' namespaces, i.e., when \fIcmdName\fR is not fully-qualified, the command will be searched for in each object's namespace, using the instances' namespace's path, or by looking in the global namespace. The method will be exported if \fIname\fR starts with a lower-case letter, and non-exported otherwise. .TP \fBmethod\fI name argList bodyScript\fR . This creates or updates a method that is implemented as a procedure-like script. The name of the method is \fIname\fR, the formal arguments to the method (defined using the same format as for the Tcl \fBproc\fR command) will be \fIargList\fR, and the body of the method will be \fIbodyScript\fR. When the body of the method is evaluated, the current namespace of the method will be a namespace that is unique to the current object. The method will be exported if \fIname\fR starts with a lower-case letter, and non-exported otherwise; this behavior can be overridden via \fBexport\fR and \fBunexport\fR. .TP \fBmixin\fR ?\fIclassName ...\fR? . This sets or updates the list of additional classes that are to be mixed into all the instances of the class being defined. Each \fIclassName\fR argument names a single class that is to be mixed in; if no classes are present, the list of mixed-in classes is set to be empty. .TP \fBrenamemethod\fI fromName toName\fR . This renames the method called \fIfromName\fR in a class to \fItoName\fR. The method must have previously existed in the class, and \fItoName\fR must not previously refer to a method in that class. Does not affect the superclasses of the class, nor does it affect the subclasses or instances of the class (except when they have a call chain through the class being modified). Does not change the export status of the method; if it was exported before, it will be afterwards. .TP \fBself\fI subcommand arg ...\fR .TP \fBself\fI script\fR . This command is equivalent to calling \fBoo::objdefine\fR on the class being defined (see \fBCONFIGURING OBJECTS\fR below for a description of the supported values of \fIsubcommand\fR). It follows the same general pattern of argument handling as the \fBoo::define\fR and \fBoo::objdefine\fR commands, and .QW "\fBoo::define \fIcls \fBself \fIsubcommand ...\fR" operates identically to .QW "\fBoo::objdefine \fIcls subcommand ...\fR" . .TP \fBsuperclass\fI className \fR?\fIclassName ...\fR? . This allows the alteration of the superclasses of the class being defined. Each \fIclassName\fR argument names one class that is to be a superclass of the defined class. Note that objects must not be changed from being classes to being non-classes or vice-versa. .TP \fBunexport\fI name \fR?\fIname ...\fR? . This arranges for each of the named methods, \fIname\fR, to be not exported (i.e. not usable outside the instance through the instance object's command, but instead just through the \fBmy\fR command visible in each object's context) by the class being defined. Note that the methods themselves may be actually defined by a superclass; subclass unexports override superclass visibility, and may be overridden by instance unexports. .TP \fBvariable\fR ?\fIname ...\fR? .VS This arranges for each of the named variables to be automatically made available in the methods, constructor and destructor declared by the class being defined. Note that the list of variable names is the whole list of variable names for the class. Each variable name must not have any namespace separators and must not look like an array access. All variables will be actually present in the instance object on which the method is executed. Note that the variable lists declared by a superclass or subclass are completely disjoint, as are variable lists declared by instances; the list of variable names is just for methods (and constructors and destructors) declared by this class. .VE .SS "CONFIGURING OBJECTS" .PP The following commands are supported in the \fIdefScript\fR for \fBoo::objdefine\fR, each of which may also be used in the \fIsubcommand\fR form: .TP \fBclass\fI className\fR . This allows the class of an object to be changed after creation. Note that the class's constructors are not called when this is done, and so the object may well be in an inconsistent state unless additional configuration work is done. .TP \fBdeletemethod\fI name\fR ?\fIname ...\fR . This deletes each of the methods called \fIname\fR from an object. The methods must have previously existed in that object. Does not affect the classes that the object is an instance of. .TP \fBexport\fI name \fR?\fIname ...\fR? . This arranges for each of the named methods, \fIname\fR, to be exported (i.e. usable outside the object through the object's command) by the object being defined. Note that the methods themselves may be actually defined by a class or superclass; object exports override class visibility. .TP \fBfilter\fR ?\fImethodName ...\fR? . This sets or updates the list of method names that are used to guard whether a method call to the object may be called and what the method's results are. Each \fImethodName\fR names a single filtering method (which may be exposed or not exposed); it is not an error for a non-existent method to be named. If no \fImethodName\fR arguments are present, the list of filter names is set to empty. Note that the actual list of filters also depends on the filters set upon any classes that the object is an instance of. .TP \fBforward\fI name cmdName \fR?\fIarg ...\fR? . This creates or updates a forwarded object method called \fIname\fR. The method is defined be forwarded to the command called \fIcmdName\fR, with additional arguments, \fIarg\fR etc., added before those arguments specified by the caller of the method. Forwarded methods should be deleted using the \fBmethod\fR subcommand. The method will be exported if \fIname\fR starts with a lower-case letter, and non-exported otherwise. .TP \fBmethod\fI name argList bodyScript\fR . This creates, updates or deletes an object method. The name of the method is \fIname\fR, the formal arguments to the method (defined using the same format as for the Tcl \fBproc\fR command) will be \fIargList\fR, and the body of the method will be \fIbodyScript\fR. When the body of the method is evaluated, the current namespace of the method will be a namespace that is unique to the object. The method will be exported if \fIname\fR starts with a lower-case letter, and non-exported otherwise. .TP \fBmixin\fR ?\fIclassName ...\fR? . This sets or updates a per-object list of additional classes that are to be mixed into the object. Each argument, \fIclassName\fR, names a single class that is to be mixed in; if no classes are present, the list of mixed-in classes is set to be empty. .TP \fBrenamemethod\fI fromName toName\fR . This renames the method called \fIfromName\fR in an object to \fItoName\fR. The method must have previously existed in the object, and \fItoName\fR must not previously refer to a method in that object. Does not affect the classes that the object is an instance of. Does not change the export status of the method; if it was exported before, it will be afterwards. .TP \fBunexport\fI name \fR?\fIname ...\fR? . This arranges for each of the named methods, \fIname\fR, to be not exported (i.e. not usable outside the object through the object's command, but instead just through the \fBmy\fR command visible in the object's context) by the object being defined. Note that the methods themselves may be actually defined by a class; instance unexports override class visibility. .TP \fBvariable\fR ?\fIname ...\fR? .VS This arranges for each of the named variables to be automatically made available in the methods declared by the object being defined. Note that the list of variable names is the whole list of variable names for the object. Each variable name must not have any namespace separators and must not look like an array access. All variables will be actually present in the object on which the method is executed. Note that the variable lists declared by the classes and mixins of which the object is an instance are completely disjoint; the list of variable names is just for methods declared by this object. .VE .SH EXAMPLES This example demonstrates how to use both forms of the \fBoo::define\fR and \fBoo::objdefine\fR commands (they work in the same way), as well as illustrating four of the subcommands of them. .PP .CS oo::class create c c create o \fBoo::define\fR c \fBmethod\fR foo {} { puts "world" } \fBoo::objdefine\fR o { \fBmethod\fR bar {} { my Foo "hello " my foo } \fBforward\fR Foo ::puts -nonewline \fBunexport\fR foo } o bar \fI\(-> prints "hello world"\fR o foo \fI\(-> error "unknown method foo"\fR o Foo Bar \fI\(-> error "unknown method Foo"\fR \fBoo::objdefine\fR o \fBrenamemethod\fR bar lollipop o lollipop \fI\(-> prints "hello world"\fR .CE .SH "SEE ALSO" next(n), oo::class(n), oo::object(n) .SH KEYWORDS class, definition, method, object .\" Local variables: .\" mode: nroff .\" fill-column: 78 .\" End: