/* * re_*exec and friends - match REs * * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved. * * Development of this software was funded, in part, by Cray Research Inc., * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics * Corporation, none of whom are responsible for the results. The author * thanks all of them. * * Redistribution and use in source and binary forms -- with or without * modification -- are permitted for any purpose, provided that * redistributions in source form retain this entire copyright notice and * indicate the origin and nature of any modifications. * * I'd appreciate being given credit for this package in the documentation of * software which uses it, but that is not a requirement. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "regguts.h" /* * Lazy-DFA representation. */ struct arcp { /* "pointer" to an outarc */ struct sset *ss; color co; }; struct sset { /* state set */ unsigned *states; /* pointer to bitvector */ unsigned hash; /* hash of bitvector */ #define HASH(bv, nw) (((nw) == 1) ? *(bv) : hash(bv, nw)) #define HIT(h,bv,ss,nw) ((ss)->hash == (h) && ((nw) == 1 || \ memcmp((void*)(bv), (void*)((ss)->states), (nw)*sizeof(unsigned)) == 0)) int flags; #define STARTER 01 /* the initial state set */ #define POSTSTATE 02 /* includes the goal state */ #define LOCKED 04 /* locked in cache */ #define NOPROGRESS 010 /* zero-progress state set */ struct arcp ins; /* chain of inarcs pointing here */ chr *lastseen; /* last entered on arrival here */ struct sset **outs; /* outarc vector indexed by color */ struct arcp *inchain; /* chain-pointer vector for outarcs */ }; struct dfa { int nssets; /* size of cache */ int nssused; /* how many entries occupied yet */ int nstates; /* number of states */ int ncolors; /* length of outarc and inchain vectors */ int wordsper; /* length of state-set bitvectors */ struct sset *ssets; /* state-set cache */ unsigned *statesarea; /* bitvector storage */ unsigned *work; /* pointer to work area within statesarea */ struct sset **outsarea; /* outarc-vector storage */ struct arcp *incarea; /* inchain storage */ struct cnfa *cnfa; struct colormap *cm; chr *lastpost; /* location of last cache-flushed success */ chr *lastnopr; /* location of last cache-flushed NOPROGRESS */ struct sset *search; /* replacement-search-pointer memory */ int cptsmalloced; /* were the areas individually malloced? */ char *mallocarea; /* self, or master malloced area, or NULL */ }; #define WORK 1 /* number of work bitvectors needed */ /* * Setup for non-malloc allocation for small cases. */ #define FEWSTATES 20 /* must be less than UBITS */ #define FEWCOLORS 15 struct smalldfa { struct dfa dfa; struct sset ssets[FEWSTATES*2]; unsigned statesarea[FEWSTATES*2 + WORK]; struct sset *outsarea[FEWSTATES*2 * FEWCOLORS]; struct arcp incarea[FEWSTATES*2 * FEWCOLORS]; }; #define DOMALLOC ((struct smalldfa *)NULL) /* force malloc */ /* * Internal variables, bundled for easy passing around. */ struct vars { regex_t *re; struct guts *g; int eflags; /* copies of arguments */ size_t nmatch; regmatch_t *pmatch; rm_detail_t *details; chr *start; /* start of string */ chr *stop; /* just past end of string */ int err; /* error code if any (0 none) */ struct dfa **subdfas; /* per-subre DFAs */ struct smalldfa dfa1; struct smalldfa dfa2; }; #define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */ #define ISERR() VISERR(v) #define VERR(vv,e) ((vv)->err = ((vv)->err ? (vv)->err : (e))) #define ERR(e) VERR(v, e) /* record an error */ #define NOERR() {if (ISERR()) return v->err;} /* if error seen, return it */ #define OFF(p) ((p) - v->start) #define LOFF(p) ((long)OFF(p)) /* * forward declarations */ /* =====^!^===== begin forwards =====^!^===== */ /* automatically gathered by fwd; do not hand-edit */ /* === regexec.c === */ int exec(regex_t *, const chr *, size_t, rm_detail_t *, size_t, regmatch_t [], int); static struct dfa *getsubdfa(struct vars *, struct subre *); static int simpleFind(struct vars *const, struct cnfa *const, struct colormap *const); static int complicatedFind(struct vars *const, struct cnfa *const, struct colormap *const); static int complicatedFindLoop(struct vars *const, struct cnfa *const, struct colormap *const, struct dfa *const, struct dfa *const, chr **const); static void zapallsubs(regmatch_t *const, const size_t); static void zaptreesubs(struct vars *const, struct subre *const); static void subset(struct vars *const, struct subre *const, chr *const, chr *const); static int cdissect(struct vars *, struct subre *, chr *, chr *); static int ccondissect(struct vars *, struct subre *, chr *, chr *); static int crevcondissect(struct vars *, struct subre *, chr *, chr *); static int cbrdissect(struct vars *, struct subre *, chr *, chr *); static int caltdissect(struct vars *, struct subre *, chr *, chr *); static int citerdissect(struct vars *, struct subre *, chr *, chr *); static int creviterdissect(struct vars *, struct subre *, chr *, chr *); /* === rege_dfa.c === */ static chr *longest(struct vars *const, struct dfa *const, chr *const, chr *const, int *const); static chr *shortest(struct vars *const, struct dfa *const, chr *const, chr *const, chr *const, chr **const, int *const); static chr *lastCold(struct vars *const, struct dfa *const); static struct dfa *newDFA(struct vars *const, struct cnfa *const, struct colormap *const, struct smalldfa *); static void freeDFA(struct dfa *const); static unsigned hash(unsigned *const, const int); static struct sset *initialize(struct vars *const, struct dfa *const, chr *const); static struct sset *miss(struct vars *const, struct dfa *const, struct sset *const, const pcolor, chr *const, chr *const); static int checkLAConstraint(struct vars *const, struct cnfa *const, chr *const, const pcolor); static struct sset *getVacantSS(struct vars *const, struct dfa *const, chr *const, chr *const); static struct sset *pickNextSS(struct vars *const, struct dfa *const, chr *const, chr *const); /* automatically gathered by fwd; do not hand-edit */ /* =====^!^===== end forwards =====^!^===== */ /* - exec - match regular expression ^ int exec(regex_t *, const chr *, size_t, rm_detail_t *, ^ size_t, regmatch_t [], int); */ int exec( regex_t *re, const chr *string, size_t len, rm_detail_t *details, size_t nmatch, regmatch_t pmatch[], int flags) { AllocVars(v); int st, backref; size_t n; size_t i; #define LOCALMAT 20 regmatch_t mat[LOCALMAT]; #define LOCALDFAS 40 struct dfa *subdfas[LOCALDFAS]; /* * Sanity checks. */ if (re == NULL || string == NULL || re->re_magic != REMAGIC) { FreeVars(v); return REG_INVARG; } if (re->re_csize != sizeof(chr)) { FreeVars(v); return REG_MIXED; } /* * Setup. */ v->re = re; v->g = (struct guts *)re->re_guts; if ((v->g->cflags®_EXPECT) && details == NULL) { FreeVars(v); return REG_INVARG; } if (v->g->info®_UIMPOSSIBLE) { FreeVars(v); return REG_NOMATCH; } backref = (v->g->info®_UBACKREF) ? 1 : 0; v->eflags = flags; if (v->g->cflags®_NOSUB) { nmatch = 0; /* override client */ } v->nmatch = nmatch; if (backref) { /* * Need work area. */ if (v->g->nsub + 1 <= LOCALMAT) { v->pmatch = mat; } else { v->pmatch = (regmatch_t *) MALLOC((v->g->nsub + 1) * sizeof(regmatch_t)); } if (v->pmatch == NULL) { FreeVars(v); return REG_ESPACE; } v->nmatch = v->g->nsub + 1; } else { v->pmatch = pmatch; } v->details = details; v->start = (chr *)string; v->stop = (chr *)string + len; v->err = 0; assert(v->g->ntree >= 0); n = (size_t) v->g->ntree; if (n <= LOCALDFAS) v->subdfas = subdfas; else v->subdfas = (struct dfa **) MALLOC(n * sizeof(struct dfa *)); if (v->subdfas == NULL) { if (v->pmatch != pmatch && v->pmatch != mat) FREE(v->pmatch); FreeVars(v); return REG_ESPACE; } for (i = 0; i < n; i++) v->subdfas[i] = NULL; /* * Do it. */ assert(v->g->tree != NULL); if (backref) { st = complicatedFind(v, &v->g->tree->cnfa, &v->g->cmap); } else { st = simpleFind(v, &v->g->tree->cnfa, &v->g->cmap); } /* * Copy (portion of) match vector over if necessary. */ if (st == REG_OKAY && v->pmatch != pmatch && nmatch > 0) { zapallsubs(pmatch, nmatch); n = (nmatch < v->nmatch) ? nmatch : v->nmatch; memcpy((void*)(pmatch), (void*)(v->pmatch), n*sizeof(regmatch_t)); } /* * Clean up. */ if (v->pmatch != pmatch && v->pmatch != mat) { FREE(v->pmatch); } n = (size_t) v->g->ntree; for (i = 0; i < n; i++) { if (v->subdfas[i] != NULL) freeDFA(v->subdfas[i]); } if (v->subdfas != subdfas) FREE(v->subdfas); FreeVars(v); return st; } /* - getsubdfa - create or re-fetch the DFA for a subre node * We only need to create the DFA once per overall regex execution. * The DFA will be freed by the cleanup step in exec(). */ static struct dfa * getsubdfa(struct vars * v, struct subre * t) { if (v->subdfas[t->id] == NULL) { v->subdfas[t->id] = newDFA(v, &t->cnfa, &v->g->cmap, DOMALLOC); if (ISERR()) return NULL; } return v->subdfas[t->id]; } /* - simpleFind - find a match for the main NFA (no-complications case) ^ static int simpleFind(struct vars *, struct cnfa *, struct colormap *); */ static int simpleFind( struct vars *const v, struct cnfa *const cnfa, struct colormap *const cm) { struct dfa *s, *d; chr *begin, *end = NULL; chr *cold; chr *open, *close; /* Open and close of range of possible * starts */ int hitend; int shorter = (v->g->tree->flags&SHORTER) ? 1 : 0; /* * First, a shot with the search RE. */ s = newDFA(v, &v->g->search, cm, &v->dfa1); assert(!(ISERR() && s != NULL)); NOERR(); MDEBUG(("\nsearch at %ld\n", LOFF(v->start))); cold = NULL; close = shortest(v, s, v->start, v->start, v->stop, &cold, NULL); freeDFA(s); NOERR(); if (v->g->cflags®_EXPECT) { assert(v->details != NULL); if (cold != NULL) { v->details->rm_extend.rm_so = OFF(cold); } else { v->details->rm_extend.rm_so = OFF(v->stop); } v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */ } if (close == NULL) { /* not found */ return REG_NOMATCH; } if (v->nmatch == 0) { /* found, don't need exact location */ return REG_OKAY; } /* * Find starting point and match. */ assert(cold != NULL); open = cold; cold = NULL; MDEBUG(("between %ld and %ld\n", LOFF(open), LOFF(close))); d = newDFA(v, cnfa, cm, &v->dfa1); assert(!(ISERR() && d != NULL)); NOERR(); for (begin = open; begin <= close; begin++) { MDEBUG(("\nfind trying at %ld\n", LOFF(begin))); if (shorter) { end = shortest(v, d, begin, begin, v->stop, NULL, &hitend); } else { end = longest(v, d, begin, v->stop, &hitend); } if (ISERR()) { freeDFA(d); return v->err; } if (hitend && cold == NULL) { cold = begin; } if (end != NULL) { break; /* NOTE BREAK OUT */ } } assert(end != NULL); /* search RE succeeded so loop should */ freeDFA(d); /* * And pin down details. */ assert(v->nmatch > 0); v->pmatch[0].rm_so = OFF(begin); v->pmatch[0].rm_eo = OFF(end); if (v->g->cflags®_EXPECT) { if (cold != NULL) { v->details->rm_extend.rm_so = OFF(cold); } else { v->details->rm_extend.rm_so = OFF(v->stop); } v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */ } if (v->nmatch == 1) { /* no need for submatches */ return REG_OKAY; } /* * Find submatches. */ zapallsubs(v->pmatch, v->nmatch); return cdissect(v, v->g->tree, begin, end); } /* - complicatedFind - find a match for the main NFA (with complications) ^ static int complicatedFind(struct vars *, struct cnfa *, struct colormap *); */ static int complicatedFind( struct vars *const v, struct cnfa *const cnfa, struct colormap *const cm) { struct dfa *s, *d; chr *cold = NULL; /* silence gcc 4 warning */ int ret; s = newDFA(v, &v->g->search, cm, &v->dfa1); NOERR(); d = newDFA(v, cnfa, cm, &v->dfa2); if (ISERR()) { assert(d == NULL); freeDFA(s); return v->err; } ret = complicatedFindLoop(v, cnfa, cm, d, s, &cold); freeDFA(d); freeDFA(s); NOERR(); if (v->g->cflags®_EXPECT) { assert(v->details != NULL); if (cold != NULL) { v->details->rm_extend.rm_so = OFF(cold); } else { v->details->rm_extend.rm_so = OFF(v->stop); } v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */ } return ret; } /* - complicatedFindLoop - the heart of complicatedFind ^ static int complicatedFindLoop(struct vars *, struct cnfa *, struct colormap *, ^ struct dfa *, struct dfa *, chr **); */ static int complicatedFindLoop( struct vars *const v, struct cnfa *const cnfa, struct colormap *const cm, struct dfa *const d, struct dfa *const s, chr **const coldp) /* where to put coldstart pointer */ { chr *begin, *end; chr *cold; chr *open, *close; /* Open and close of range of possible * starts */ chr *estart, *estop; int er, hitend; int shorter = v->g->tree->flags&SHORTER; assert(d != NULL && s != NULL); cold = NULL; close = v->start; do { MDEBUG(("\ncsearch at %ld\n", LOFF(close))); close = shortest(v, s, close, close, v->stop, &cold, NULL); if (close == NULL) { break; /* NOTE BREAK */ } assert(cold != NULL); open = cold; cold = NULL; MDEBUG(("cbetween %ld and %ld\n", LOFF(open), LOFF(close))); for (begin = open; begin <= close; begin++) { MDEBUG(("\ncomplicatedFind trying at %ld\n", LOFF(begin))); estart = begin; estop = v->stop; for (;;) { if (shorter) { end = shortest(v, d, begin, estart, estop, NULL, &hitend); } else { end = longest(v, d, begin, estop, &hitend); } if (hitend && cold == NULL) { cold = begin; } if (end == NULL) { break; /* NOTE BREAK OUT */ } MDEBUG(("tentative end %ld\n", LOFF(end))); zapallsubs(v->pmatch, v->nmatch); er = cdissect(v, v->g->tree, begin, end); if (er == REG_OKAY) { if (v->nmatch > 0) { v->pmatch[0].rm_so = OFF(begin); v->pmatch[0].rm_eo = OFF(end); } *coldp = cold; return REG_OKAY; } if (er != REG_NOMATCH) { ERR(er); *coldp = cold; return er; } if ((shorter) ? end == estop : end == begin) { break; } /* * Go around and try again */ if (shorter) { estart = end + 1; } else { estop = end - 1; } } } } while (close < v->stop); *coldp = cold; return REG_NOMATCH; } /* - zapallsubs - initialize all subexpression matches to "no match" ^ static void zapallsubs(regmatch_t *, size_t); */ static void zapallsubs( regmatch_t *const p, const size_t n) { size_t i; for (i = n-1; i > 0; i--) { p[i].rm_so = -1; p[i].rm_eo = -1; } } /* - zaptreesubs - initialize subexpressions within subtree to "no match" ^ static void zaptreesubs(struct vars *, struct subre *); */ static void zaptreesubs( struct vars *const v, struct subre *const t) { if (t->op == '(') { int n = t->subno; assert(n > 0); if ((size_t) n < v->nmatch) { v->pmatch[n].rm_so = -1; v->pmatch[n].rm_eo = -1; } } if (t->left != NULL) { zaptreesubs(v, t->left); } if (t->right != NULL) { zaptreesubs(v, t->right); } } /* - subset - set subexpression match data for a successful subre ^ static void subset(struct vars *, struct subre *, chr *, chr *); */ static void subset( struct vars *const v, struct subre *const sub, chr *const begin, chr *const end) { int n = sub->subno; assert(n > 0); if ((size_t)n >= v->nmatch) { return; } MDEBUG(("setting %d\n", n)); v->pmatch[n].rm_so = OFF(begin); v->pmatch[n].rm_eo = OFF(end); } /* - cdissect - check backrefs and determine subexpression matches * cdissect recursively processes a subre tree to check matching of backrefs * and/or identify submatch boundaries for capture nodes. The proposed match * runs from "begin" to "end" (not including "end"), and we are basically * "dissecting" it to see where the submatches are. * Before calling any level of cdissect, the caller must have run the node's * DFA and found that the proposed substring satisfies the DFA. (We make * the caller do that because in concatenation and iteration nodes, it's * much faster to check all the substrings against the child DFAs before we * recurse.) Also, caller must have cleared subexpression match data via * zaptreesubs (or zapallsubs at the top level). ^ static int cdissect(struct vars *, struct subre *, chr *, chr *); */ static int /* regexec return code */ cdissect( struct vars *v, struct subre *t, chr *begin, /* beginning of relevant substring */ chr *end) /* end of same */ { int er; assert(t != NULL); MDEBUG(("cdissect %ld-%ld %c\n", LOFF(begin), LOFF(end), t->op)); switch (t->op) { case '=': /* terminal node */ assert(t->left == NULL && t->right == NULL); er = REG_OKAY; /* no action, parent did the work */ break; case 'b': /* back reference */ assert(t->left == NULL && t->right == NULL); er = cbrdissect(v, t, begin, end); break; case '.': /* concatenation */ assert(t->left != NULL && t->right != NULL); if (t->left->flags & SHORTER) /* reverse scan */ er = crevcondissect(v, t, begin, end); else er = ccondissect(v, t, begin, end); break; case '|': /* alternation */ assert(t->left != NULL); er = caltdissect(v, t, begin, end); break; case '*': /* iteration */ assert(t->left != NULL); if (t->left->flags & SHORTER) /* reverse scan */ er = creviterdissect(v, t, begin, end); else er = citerdissect(v, t, begin, end); break; case '(': /* capturing */ assert(t->left != NULL && t->right == NULL); assert(t->subno > 0); er = cdissect(v, t->left, begin, end); if (er == REG_OKAY) { subset(v, t, begin, end); } break; default: er = REG_ASSERT; break; } /* * We should never have a match failure unless backrefs lurk below; * otherwise, either caller failed to check the DFA, or there's some * inconsistency between the DFA and the node's innards. */ assert(er != REG_NOMATCH || (t->flags & BACKR)); return er; } /* - ccondissect - dissect match for concatenation node ^ static int ccondissect(struct vars *, struct subre *, chr *, chr *); */ static int /* regexec return code */ ccondissect( struct vars *v, struct subre *t, chr *begin, /* beginning of relevant substring */ chr *end) /* end of same */ { struct dfa *d, *d2; chr *mid; assert(t->op == '.'); assert(t->left != NULL && t->left->cnfa.nstates > 0); assert(t->right != NULL && t->right->cnfa.nstates > 0); assert(!(t->left->flags & SHORTER)); d = getsubdfa(v, t->left); NOERR(); d2 = getsubdfa(v, t->right); NOERR(); MDEBUG(("cConcat %d\n", t->id)); /* * Pick a tentative midpoint. */ mid = longest(v, d, begin, end, (int *) NULL); if (mid == NULL) { return REG_NOMATCH; } MDEBUG(("tentative midpoint %ld\n", LOFF(mid))); /* * Iterate until satisfaction or failure. */ for (;;) { /* * Try this midpoint on for size. */ if (longest(v, d2, mid, end, NULL) == end) { int er = cdissect(v, t->left, begin, mid); if (er == REG_OKAY) { er = cdissect(v, t->right, mid, end); if (er == REG_OKAY) { /* * Satisfaction. */ MDEBUG(("successful\n")); return REG_OKAY; } } if (er != REG_NOMATCH) { return er; } } /* * That midpoint didn't work, find a new one. */ if (mid == begin) { /* * All possibilities exhausted. */ MDEBUG(("%d no midpoint\n", t->id)); return REG_NOMATCH; } mid = longest(v, d, begin, mid-1, NULL); if (mid == NULL) { /* * Failed to find a new one. */ MDEBUG(("%d failed midpoint\n", t->id)); return REG_NOMATCH; } MDEBUG(("%d: new midpoint %ld\n", t->id, LOFF(mid))); zaptreesubs(v, t->left); zaptreesubs(v, t->right); } } /* - crevcondissect - dissect match for concatenation node, shortest-first ^ static int crevcondissect(struct vars *, struct subre *, chr *, chr *); */ static int /* regexec return code */ crevcondissect( struct vars *v, struct subre *t, chr *begin, /* beginning of relevant substring */ chr *end) /* end of same */ { struct dfa *d, *d2; chr *mid; assert(t->op == '.'); assert(t->left != NULL && t->left->cnfa.nstates > 0); assert(t->right != NULL && t->right->cnfa.nstates > 0); assert(t->left->flags&SHORTER); d = getsubdfa(v, t->left); NOERR(); d2 = getsubdfa(v, t->right); NOERR(); MDEBUG(("crevcon %d\n", t->id)); /* * Pick a tentative midpoint. */ mid = shortest(v, d, begin, begin, end, (chr **) NULL, (int *) NULL); if (mid == NULL) { return REG_NOMATCH; } MDEBUG(("tentative midpoint %ld\n", LOFF(mid))); /* * Iterate until satisfaction or failure. */ for (;;) { /* * Try this midpoint on for size. */ if (longest(v, d2, mid, end, NULL) == end) { int er = cdissect(v, t->left, begin, mid); if (er == REG_OKAY) { er = cdissect(v, t->right, mid, end); if (er == REG_OKAY) { /* * Satisfaction. */ MDEBUG(("successful\n")); return REG_OKAY; } } if (er != REG_NOMATCH) { return er; } } /* * That midpoint didn't work, find a new one. */ if (mid == end) { /* * All possibilities exhausted. */ MDEBUG(("%d no midpoint\n", t->id)); return REG_NOMATCH; } mid = shortest(v, d, begin, mid+1, end, NULL, NULL); if (mid == NULL) { /* * Failed to find a new one. */ MDEBUG(("%d failed midpoint\n", t->id)); return REG_NOMATCH; } MDEBUG(("%d: new midpoint %ld\n", t->id, LOFF(mid))); zaptreesubs(v, t->left); zaptreesubs(v, t->right); } } /* - cbrdissect - dissect match for backref node ^ static int cbrdissect(struct vars *, struct subre *, chr *, chr *); */ static int /* regexec return code */ cbrdissect( struct vars *v, struct subre *t, chr *begin, /* beginning of relevant substring */ chr *end) /* end of same */ { int n = t->subno, min = t->min, max = t->max; size_t numreps; size_t tlen; size_t brlen; chr *brstring; chr *p; assert(t != NULL); assert(t->op == 'b'); assert(n >= 0); assert((size_t)n < v->nmatch); MDEBUG(("cbackref n%d %d{%d-%d}\n", t->id, n, min, max)); /* get the backreferenced string */ if (v->pmatch[n].rm_so == -1) { return REG_NOMATCH; } brstring = v->start + v->pmatch[n].rm_so; brlen = v->pmatch[n].rm_eo - v->pmatch[n].rm_so; /* special cases for zero-length strings */ if (brlen == 0) { /* * matches only if target is zero length, but any number of * repetitions can be considered to be present */ if (begin == end && min <= max) { MDEBUG(("cbackref matched trivially\n")); return REG_OKAY; } return REG_NOMATCH; } if (begin == end) { /* matches only if zero repetitions are okay */ if (min == 0) { MDEBUG(("cbackref matched trivially\n")); return REG_OKAY; } return REG_NOMATCH; } /* * check target length to see if it could possibly be an allowed number of * repetitions of brstring */ assert(end > begin); tlen = end - begin; if (tlen % brlen != 0) return REG_NOMATCH; numreps = tlen / brlen; if (numreps < (size_t)min || (numreps > (size_t)max && max != DUPINF)) return REG_NOMATCH; /* okay, compare the actual string contents */ p = begin; while (numreps-- > 0) { if ((*v->g->compare) (brstring, p, brlen) != 0) return REG_NOMATCH; p += brlen; } MDEBUG(("cbackref matched\n")); return REG_OKAY; } /* - caltdissect - dissect match for alternation node ^ static int caltdissect(struct vars *, struct subre *, chr *, chr *); */ static int /* regexec return code */ caltdissect( struct vars *v, struct subre *t, chr *begin, /* beginning of relevant substring */ chr *end) /* end of same */ { struct dfa *d; int er; /* We loop, rather than tail-recurse, to handle a chain of alternatives */ while (t != NULL) { assert(t->op == '|'); assert(t->left != NULL && t->left->cnfa.nstates > 0); MDEBUG(("calt n%d\n", t->id)); d = getsubdfa(v, t->left); NOERR(); if (longest(v, d, begin, end, (int *) NULL) == end) { MDEBUG(("calt matched\n")); er = cdissect(v, t->left, begin, end); if (er != REG_NOMATCH) { return er; } } t = t->right; } return REG_NOMATCH; } /* - citerdissect - dissect match for iteration node ^ static int citerdissect(struct vars *, struct subre *, chr *, chr *); */ static int /* regexec return code */ citerdissect(struct vars * v, struct subre * t, chr *begin, /* beginning of relevant substring */ chr *end) /* end of same */ { struct dfa *d; chr **endpts; chr *limit; int min_matches; size_t max_matches; int nverified; int k; int i; int er; assert(t->op == '*'); assert(t->left != NULL && t->left->cnfa.nstates > 0); assert(!(t->left->flags & SHORTER)); assert(begin <= end); /* * If zero matches are allowed, and target string is empty, just declare * victory. OTOH, if target string isn't empty, zero matches can't work * so we pretend the min is 1. */ min_matches = t->min; if (min_matches <= 0) { if (begin == end) return REG_OKAY; min_matches = 1; } /* * We need workspace to track the endpoints of each sub-match. Normally * we consider only nonzero-length sub-matches, so there can be at most * end-begin of them. However, if min is larger than that, we will also * consider zero-length sub-matches in order to find enough matches. * * For convenience, endpts[0] contains the "begin" pointer and we store * sub-match endpoints in endpts[1..max_matches]. */ max_matches = end - begin; if (max_matches > (size_t)t->max && t->max != DUPINF) max_matches = t->max; if (max_matches < (size_t)min_matches) max_matches = min_matches; endpts = (chr **) MALLOC((max_matches + 1) * sizeof(chr *)); if (endpts == NULL) return REG_ESPACE; endpts[0] = begin; d = getsubdfa(v, t->left); if (ISERR()) { FREE(endpts); return v->err; } MDEBUG(("citer %d\n", t->id)); /* * Our strategy is to first find a set of sub-match endpoints that are * valid according to the child node's DFA, and then recursively dissect * each sub-match to confirm validity. If any validity check fails, * backtrack the last sub-match and try again. And, when we next try for * a validity check, we need not recheck any successfully verified * sub-matches that we didn't move the endpoints of. nverified remembers * how many sub-matches are currently known okay. */ /* initialize to consider first sub-match */ nverified = 0; k = 1; limit = end; /* iterate until satisfaction or failure */ while (k > 0) { /* try to find an endpoint for the k'th sub-match */ endpts[k] = longest(v, d, endpts[k - 1], limit, (int *) NULL); if (endpts[k] == NULL) { /* no match possible, so see if we can shorten previous one */ k--; goto backtrack; } MDEBUG(("%d: working endpoint %d: %ld\n", t->id, k, LOFF(endpts[k]))); /* k'th sub-match can no longer be considered verified */ if (nverified >= k) nverified = k - 1; if (endpts[k] != end) { /* haven't reached end yet, try another iteration if allowed */ if ((size_t)k >= max_matches) { /* must try to shorten some previous match */ k--; goto backtrack; } /* reject zero-length match unless necessary to achieve min */ if (endpts[k] == endpts[k - 1] && (k >= min_matches || min_matches - k < end - endpts[k])) goto backtrack; k++; limit = end; continue; } /* * We've identified a way to divide the string into k sub-matches * that works so far as the child DFA can tell. If k is an allowed * number of matches, start the slow part: recurse to verify each * sub-match. We always have k <= max_matches, needn't check that. */ if (k < min_matches) goto backtrack; MDEBUG(("%d: verifying %d..%d\n", t->id, nverified + 1, k)); for (i = nverified + 1; i <= k; i++) { zaptreesubs(v, t->left); er = cdissect(v, t->left, endpts[i - 1], endpts[i]); if (er == REG_OKAY) { nverified = i; continue; } if (er == REG_NOMATCH) break; /* oops, something failed */ FREE(endpts); return er; } if (i > k) { /* satisfaction */ MDEBUG(("%d successful\n", t->id)); FREE(endpts); return REG_OKAY; } /* match failed to verify, so backtrack */ backtrack: /* * Must consider shorter versions of the current sub-match. However, * we'll only ask for a zero-length match if necessary. */ while (k > 0) { chr *prev_end = endpts[k - 1]; if (endpts[k] > prev_end) { limit = endpts[k] - 1; if (limit > prev_end || (k < min_matches && min_matches - k >= end - prev_end)) { /* break out of backtrack loop, continue the outer one */ break; } } /* can't shorten k'th sub-match any more, consider previous one */ k--; } } /* all possibilities exhausted */ MDEBUG(("%d failed\n", t->id)); FREE(endpts); return REG_NOMATCH; } /* - creviterdissect - dissect match for iteration node, shortest-first ^ static int creviterdissect(struct vars *, struct subre *, chr *, chr *); */ static int /* regexec return code */ creviterdissect(struct vars * v, struct subre * t, chr *begin, /* beginning of relevant substring */ chr *end) /* end of same */ { struct dfa *d; chr **endpts; chr *limit; int min_matches; size_t max_matches; int nverified; int k; int i; int er; assert(t->op == '*'); assert(t->left != NULL && t->left->cnfa.nstates > 0); assert(t->left->flags & SHORTER); assert(begin <= end); /* * If zero matches are allowed, and target string is empty, just declare * victory. OTOH, if target string isn't empty, zero matches can't work * so we pretend the min is 1. */ min_matches = t->min; if (min_matches <= 0) { if (begin == end) return REG_OKAY; min_matches = 1; } /* * We need workspace to track the endpoints of each sub-match. Normally * we consider only nonzero-length sub-matches, so there can be at most * end-begin of them. However, if min is larger than that, we will also * consider zero-length sub-matches in order to find enough matches. * * For convenience, endpts[0] contains the "begin" pointer and we store * sub-match endpoints in endpts[1..max_matches]. */ max_matches = end - begin; if (max_matches > (size_t)t->max && t->max != DUPINF) max_matches = t->max; if (max_matches < (size_t)min_matches) max_matches = min_matches; endpts = (chr **) MALLOC((max_matches + 1) * sizeof(chr *)); if (endpts == NULL) return REG_ESPACE; endpts[0] = begin; d = getsubdfa(v, t->left); if (ISERR()) { FREE(endpts); return v->err; } MDEBUG(("creviter %d\n", t->id)); /* * Our strategy is to first find a set of sub-match endpoints that are * valid according to the child node's DFA, and then recursively dissect * each sub-match to confirm validity. If any validity check fails, * backtrack the last sub-match and try again. And, when we next try for * a validity check, we need not recheck any successfully verified * sub-matches that we didn't move the endpoints of. nverified remembers * how many sub-matches are currently known okay. */ /* initialize to consider first sub-match */ nverified = 0; k = 1; limit = begin; /* iterate until satisfaction or failure */ while (k > 0) { /* disallow zero-length match unless necessary to achieve min */ if (limit == endpts[k - 1] && limit != end && (k >= min_matches || min_matches - k < end - limit)) limit++; /* if this is the last allowed sub-match, it must reach to the end */ if ((size_t)k >= max_matches) limit = end; /* try to find an endpoint for the k'th sub-match */ endpts[k] = shortest(v, d, endpts[k - 1], limit, end, (chr **) NULL, (int *) NULL); if (endpts[k] == NULL) { /* no match possible, so see if we can lengthen previous one */ k--; goto backtrack; } MDEBUG(("%d: working endpoint %d: %ld\n", t->id, k, LOFF(endpts[k]))); /* k'th sub-match can no longer be considered verified */ if (nverified >= k) nverified = k - 1; if (endpts[k] != end) { /* haven't reached end yet, try another iteration if allowed */ if ((size_t)k >= max_matches) { /* must try to lengthen some previous match */ k--; goto backtrack; } k++; limit = endpts[k - 1]; continue; } /* * We've identified a way to divide the string into k sub-matches * that works so far as the child DFA can tell. If k is an allowed * number of matches, start the slow part: recurse to verify each * sub-match. We always have k <= max_matches, needn't check that. */ if (k < min_matches) goto backtrack; MDEBUG(("%d: verifying %d..%d\n", t->id, nverified + 1, k)); for (i = nverified + 1; i <= k; i++) { zaptreesubs(v, t->left); er = cdissect(v, t->left, endpts[i - 1], endpts[i]); if (er == REG_OKAY) { nverified = i; continue; } if (er == REG_NOMATCH) break; /* oops, something failed */ FREE(endpts); return er; } if (i > k) { /* satisfaction */ MDEBUG(("%d successful\n", t->id)); FREE(endpts); return REG_OKAY; } /* match failed to verify, so backtrack */ backtrack: /* * Must consider longer versions of the current sub-match. */ while (k > 0) { if (endpts[k] < end) { limit = endpts[k] + 1; /* break out of backtrack loop, continue the outer one */ break; } /* can't lengthen k'th sub-match any more, consider previous one */ k--; } } /* all possibilities exhausted */ MDEBUG(("%d failed\n", t->id)); FREE(endpts); return REG_NOMATCH; } #include "rege_dfa.c" /* * Local Variables: * mode: c * c-basic-offset: 4 * fill-column: 78 * End: */