/* * tclCompExpr.c -- * * This file contains the code to parse and compile Tcl expressions * and implementations of the Tcl commands corresponding to expression * operators, such as the command ::tcl::mathop::+ . * * Copyright (c) 1997 Sun Microsystems, Inc. * Copyright (c) 1998-2000 by Scriptics Corporation. * Contributions from Don Porter, NIST, 2006. (not subject to US copyright) * * See the file "license.terms" for information on usage and redistribution of * this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclCompExpr.c,v 1.76 2007/08/14 17:18:34 dgp Exp $ */ #include "tclInt.h" #include "tclCompile.h" /* CompileEnv */ /* * Expression parsing takes place in the routine ParseExpr(). It takes a * string as input, parses that string, and generates a representation of * the expression in the form of a tree of operators, a list of literals, * a list of function names, and an array of Tcl_Token's within a Tcl_Parse * struct. The tree is composed of OpNodes. */ typedef struct OpNode { int left; /* "Pointer" to the left operand. */ int right; /* "Pointer" to the right operand. */ union { int parent; /* "Pointer" to the parent operand. */ int prev; /* "Pointer" joining incomplete tree stack */ } p; unsigned char lexeme; /* Code that identifies the operator. */ unsigned char precedence; /* Precedence of the operator */ unsigned char mark; /* Mark used to control traversal. */ } OpNode; /* * The storage for the tree is dynamically allocated array of OpNodes. The * array is grown as parsing needs dictate according to a scheme similar to * Tcl's string growth algorithm, so that the resizing costs are O(N) and so * that we use at least half the memory allocated as expressions get large. * * Each OpNode in the tree represents an operator in the expression, either * unary or binary. When parsing is completed successfully, a binary operator * OpNode will have its left and right fields filled with "pointers" to its * left and right operands. A unary operator OpNode will have its right field * filled with a pointer to its single operand. When an operand is a * subexpression the "pointer" takes the form of the index -- a non-negative * integer -- into the OpNode storage array where the root of that * subexpression parse tree is found. * * Non-operator elements of the expression do not get stored in the OpNode * tree. They are stored in the other structures according to their type. * Literal values get appended to the literal list. Elements that denote * forms of quoting or substitution known to the Tcl parser get stored as * Tcl_Tokens. These non-operator elements of the expression are the * leaves of the completed parse tree. When an operand of an OpNode is * one of these leaf elements, the following negative integer codes are used * to indicate which kind of elements it is. */ enum OperandTypes { OT_LITERAL = -3, /* Operand is a literal in the literal list */ OT_TOKENS = -2, /* Operand is sequence of Tcl_Tokens */ OT_EMPTY = -1 /* "Operand" is an empty string. This is a * special case used only to represent the * EMPTY lexeme. See below. */ }; /* * Readable macros to test whether a "pointer" value points to an operator. * They operate on the "non-negative integer -> operator; negative integer -> * a non-operator OperandType" distinction. */ #define IsOperator(l) ((l) >= 0) #define NotOperator(l) ((l) < 0) /* * Note that it is sufficient to store in the tree just the type of leaf * operand, without any explicit pointer to which leaf. This is true because * the traversals of the completed tree we perform are known to visit * the leaves in the same order as the original parse. * * In a completed parse tree, those OpNodes that are themselves (roots of * subexpression trees that are) operands of some operator store in their * p.parent field a "pointer" to the OpNode of that operator. The p.parent * field permits a traversal of the tree within a * non-recursive routine * (ConvertTreeToTokens() and CompileExprTree()). This means that even * expression trees of great depth pose no risk of blowing the C stack. * * While the parse tree is being constructed, the same memory space is used * to hold the p.prev field which chains together a stack of incomplete * trees awaiting their right operands. * * The lexeme field is filled in with the lexeme of the operator that is * returned by the ParseLexeme() routine. Only lexemes for unary and * binary operators get stored in an OpNode. Other lexmes get different * treatement. * * The precedence field provides a place to store the precedence of the * operator, so it need not be looked up again and again. * * The mark field is use to control the traversal of the tree, so * that it can be done non-recursively. The mark values are: */ enum Marks { MARK_LEFT, /* Next step of traversal is to visit left subtree */ MARK_RIGHT, /* Next step of traversal is to visit right subtree */ MARK_PARENT, /* Next step of traversal is to return to parent */ }; /* * Each lexeme belongs to one of four categories, which determine * its place in the parse tree. We use the two high bits of the * (unsigned char) value to store a NODE_TYPE code. */ #define NODE_TYPE 0xC0 /* * The four category values are LEAF, UNARY, and BINARY, explained below, * and "uncategorized", which is used either temporarily, until context * determines which of the other three categories is correct, or for * lexemes like INVALID, which aren't really lexemes at all, but indicators * of a parsing error. Note that the codes must be distinct to distinguish * categories, but need not take the form of a bit array. */ #define BINARY 0x40 /* This lexeme is a binary operator. An * OpNode representing it should go into the * parse tree, and two operands should be * parsed for it in the expression. */ #define UNARY 0x80 /* This lexeme is a unary operator. An OpNode * representing it should go into the parse * tree, and one operand should be parsed for * it in the expression. */ #define LEAF 0xC0 /* This lexeme is a leaf operand in the parse * tree. No OpNode will be placed in the tree * for it. Either a literal value will be * appended to the list of literals in this * expression, or appropriate Tcl_Tokens will * be appended in a Tcl_Parse struct to * represent those leaves that require some * form of substitution. */ /* Uncategorized lexemes */ #define PLUS 1 /* Ambiguous. Resolves to UNARY_PLUS or * BINARY_PLUS according to context. */ #define MINUS 2 /* Ambiguous. Resolves to UNARY_MINUS or * BINARY_MINUS according to context. */ #define BAREWORD 3 /* Ambigous. Resolves to BOOLEAN or to * FUNCTION or a parse error according to * context and value. */ #define INCOMPLETE 4 /* A parse error. Used only when the single * "=" is encountered. */ #define INVALID 5 /* A parse error. Used when any punctuation * appears that's not a supported operator. */ /* Leaf lexemes */ #define NUMBER ( LEAF | 1) /* For literal numbers */ #define SCRIPT ( LEAF | 2) /* Script substitution; [foo] */ #define BOOLEAN ( LEAF | BAREWORD) /* For literal booleans */ #define BRACED ( LEAF | 4) /* Braced string; {foo bar} */ #define VARIABLE ( LEAF | 5) /* Variable substitution; $x */ #define QUOTED ( LEAF | 6) /* Quoted string; "foo $bar [soom]" */ #define EMPTY ( LEAF | 7) /* Used only for an empty argument * list to a function. Represents * the empty string within parens in * the expression: rand() */ /* Unary operator lexemes */ #define UNARY_PLUS ( UNARY | PLUS) #define UNARY_MINUS ( UNARY | MINUS) #define FUNCTION ( UNARY | BAREWORD) /* This is a bit of "creative * interpretation" on the part of the * parser. A function call is parsed * into the parse tree according to * the perspective that the function * name is a unary operator and its * argument list, enclosed in parens, * is its operand. The additional * requirements not implied generally * by treatment as a unary operator -- * for example, the requirement that * the operand be enclosed in parens -- * are hard coded in the relevant * portions of ParseExpr(). We trade * off the need to include such * exceptional handling in the code * against the need we would otherwise * have for more lexeme categories. */ #define START ( UNARY | 4) /* This lexeme isn't parsed from the * expression text at all. It * represents the start of the * expression and sits at the root of * the parse tree where it serves as * the start/end point of traversals. */ #define OPEN_PAREN ( UNARY | 5) /* Another bit of creative * interpretation, where we treat "(" * as a unary operator with the * sub-expression between it and its * matching ")" as its operand. See * CLOSE_PAREN below. */ #define NOT ( UNARY | 6) #define BIT_NOT ( UNARY | 7) /* Binary operator lexemes */ #define BINARY_PLUS ( BINARY | PLUS) #define BINARY_MINUS ( BINARY | MINUS) #define COMMA ( BINARY | 3) /* The "," operator is a low precedence * binary operator that separates the * arguments in a function call. The * additional constraint that this * operator can only legally appear * at the right places within a * function call argument list are * hard coded within ParseExpr(). */ #define MULT ( BINARY | 4) #define DIVIDE ( BINARY | 5) #define MOD ( BINARY | 6) #define LESS ( BINARY | 7) #define GREATER ( BINARY | 8) #define BIT_AND ( BINARY | 9) #define BIT_XOR ( BINARY | 10) #define BIT_OR ( BINARY | 11) #define QUESTION ( BINARY | 12) /* These two lexemes make up the */ #define COLON ( BINARY | 13) /* ternary conditional operator, * $x ? $y : $z . We treat them as * two binary operators to avoid * another lexeme category, and * code the additional constraints * directly in ParseExpr(). For * instance, the right operand of * a "?" operator must be a ":" * operator. */ #define LEFT_SHIFT ( BINARY | 14) #define RIGHT_SHIFT ( BINARY | 15) #define LEQ ( BINARY | 16) #define GEQ ( BINARY | 17) #define EQUAL ( BINARY | 18) #define NEQ ( BINARY | 19) #define AND ( BINARY | 20) #define OR ( BINARY | 21) #define STREQ ( BINARY | 22) #define STRNEQ ( BINARY | 23) #define EXPON ( BINARY | 24) /* Unlike the other binary operators, * EXPON is right associative and this * distinction is coded directly in * ParseExpr(). */ #define IN_LIST ( BINARY | 25) #define NOT_IN_LIST ( BINARY | 26) #define CLOSE_PAREN ( BINARY | 27) /* By categorizing the CLOSE_PAREN * lexeme as a BINARY operator, the * normal parsing rules for binary * operators assure that a close paren * will not directly follow another * operator, and the machinery already * in place to connect operands to * operators according to precedence * performs most of the work of * matching open and close parens for * us. In the end though, a close * paren is not really a binary * operator, and some special coding * in ParseExpr() make sure we never * put an actual CLOSE_PAREN node * in the parse tree. The * sub-expression between parens * becomes the single argument of * the matching OPEN_PAREN unary * operator. */ #define END ( BINARY | 28) /* This lexeme represents the end of * the string being parsed. Treating * it as a binary operator follows the * same logic as the CLOSE_PAREN lexeme * and END pairs with START, in the * same way that CLOSE_PAREN pairs with * OPEN_PAREN. */ /* * When ParseExpr() builds the parse tree it must choose which operands to * connect to which operators. This is done according to operator precedence. * The greater an operator's precedence the greater claim it has to link to * an available operand. The Precedence enumeration lists the precedence * values used by Tcl expression operators, from lowest to highest claim. * Each precedence level is commented with the operators that hold that * precedence. */ enum Precedence { PREC_END = 1, /* END */ PREC_START, /* START */ PREC_CLOSE_PAREN, /* ")" */ PREC_OPEN_PAREN, /* "(" */ PREC_COMMA, /* "," */ PREC_CONDITIONAL, /* "?", ":" */ PREC_OR, /* "||" */ PREC_AND, /* "&&" */ PREC_BIT_OR, /* "|" */ PREC_BIT_XOR, /* "^" */ PREC_BIT_AND, /* "&" */ PREC_EQUAL, /* "==", "!=", "eq", "ne", "in", "ni" */ PREC_COMPARE, /* "<", ">", "<=", ">=" */ PREC_SHIFT, /* "<<", ">>" */ PREC_ADD, /* "+", "-" */ PREC_MULT, /* "*", "/", "%" */ PREC_EXPON, /* "**" */ PREC_UNARY /* "+", "-", FUNCTION, "!", "~" */ }; /* * Here the same information contained in the comments above is stored * in inverted form, so that given a lexeme, one can quickly look up * its precedence value. */ static const unsigned char prec[] = { /* Non-operator lexemes */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Binary operator lexemes */ PREC_ADD, /* BINARY_PLUS */ PREC_ADD, /* BINARY_MINUS */ PREC_COMMA, /* COMMA */ PREC_MULT, /* MULT */ PREC_MULT, /* DIVIDE */ PREC_MULT, /* MOD */ PREC_COMPARE, /* LESS */ PREC_COMPARE, /* GREATER */ PREC_BIT_AND, /* BIT_AND */ PREC_BIT_XOR, /* BIT_XOR */ PREC_BIT_OR, /* BIT_OR */ PREC_CONDITIONAL, /* QUESTION */ PREC_CONDITIONAL, /* COLON */ PREC_SHIFT, /* LEFT_SHIFT */ PREC_SHIFT, /* RIGHT_SHIFT */ PREC_COMPARE, /* LEQ */ PREC_COMPARE, /* GEQ */ PREC_EQUAL, /* EQUAL */ PREC_EQUAL, /* NEQ */ PREC_AND, /* AND */ PREC_OR, /* OR */ PREC_EQUAL, /* STREQ */ PREC_EQUAL, /* STRNEQ */ PREC_EXPON, /* EXPON */ PREC_EQUAL, /* IN_LIST */ PREC_EQUAL, /* NOT_IN_LIST */ PREC_CLOSE_PAREN, /* CLOSE_PAREN */ PREC_END, /* END */ /* Expansion room for more binary operators */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Unary operator lexemes */ PREC_UNARY, /* UNARY_PLUS */ PREC_UNARY, /* UNARY_MINUS */ PREC_UNARY, /* FUNCTION */ PREC_START, /* START */ PREC_OPEN_PAREN, /* OPEN_PAREN */ PREC_UNARY, /* NOT*/ PREC_UNARY, /* BIT_NOT*/ }; /* * A table mapping lexemes to bytecode instructions, used by CompileExprTree(). */ static const unsigned char instruction[] = { /* Non-operator lexemes */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Binary operator lexemes */ INST_ADD, /* BINARY_PLUS */ INST_SUB, /* BINARY_MINUS */ 0, /* COMMA */ INST_MULT, /* MULT */ INST_DIV, /* DIVIDE */ INST_MOD, /* MOD */ INST_LT, /* LESS */ INST_GT, /* GREATER */ INST_BITAND, /* BIT_AND */ INST_BITXOR, /* BIT_XOR */ INST_BITOR, /* BIT_OR */ 0, /* QUESTION */ 0, /* COLON */ INST_LSHIFT, /* LEFT_SHIFT */ INST_RSHIFT, /* RIGHT_SHIFT */ INST_LE, /* LEQ */ INST_GE, /* GEQ */ INST_EQ, /* EQUAL */ INST_NEQ, /* NEQ */ 0, /* AND */ 0, /* OR */ INST_STR_EQ, /* STREQ */ INST_STR_NEQ, /* STRNEQ */ INST_EXPON, /* EXPON */ INST_LIST_IN, /* IN_LIST */ INST_LIST_NOT_IN, /* NOT_IN_LIST */ 0, /* CLOSE_PAREN */ 0, /* END */ /* Expansion room for more binary operators */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Unary operator lexemes */ INST_UPLUS, /* UNARY_PLUS */ INST_UMINUS, /* UNARY_MINUS */ 0, /* FUNCTION */ 0, /* START */ 0, /* OPEN_PAREN */ INST_LNOT, /* NOT*/ INST_BITNOT, /* BIT_NOT*/ }; /* * The JumpList struct is used to create a stack of data needed for the * TclEmitForwardJump() and TclFixupForwardJump() calls that are performed * when compiling the short-circuiting operators QUESTION/COLON, AND, and OR. * Keeping a stack permits the CompileExprTree() routine to be non-recursive. */ typedef struct JumpList { JumpFixup jump; /* Pass this argument to matching calls of * TclEmitForwardJump() and * TclFixupForwardJump(). */ int depth; /* Remember the currStackDepth of the * CompileEnv here. */ int offset; /* Data used to compute jump lengths to pass * to TclFixupForwardJump() */ int convert; /* Temporary storage used to compute whether * numeric conversion will be needed following * the operator we're compiling. */ struct JumpList *next; /* Point to next item on the stack */ } JumpList; /* * Declarations for local functions to this file: */ static void CompileExprTree(Tcl_Interp *interp, OpNode *nodes, Tcl_Obj *const litObjv[], Tcl_Obj *funcList, Tcl_Token *tokenPtr, int *convertPtr, CompileEnv *envPtr); static void ConvertTreeToTokens(const char *start, int numBytes, OpNode *nodes, Tcl_Token *tokenPtr, Tcl_Parse *parsePtr); static int OpCmd(Tcl_Interp *interp, OpNode *nodes, Tcl_Obj * const litObjv[]); static int ParseExpr(Tcl_Interp *interp, const char *start, int numBytes, OpNode **opTreePtr, Tcl_Obj *litList, Tcl_Obj *funcList, Tcl_Parse *parsePtr, int parseOnly); static int ParseLexeme(const char *start, int numBytes, unsigned char *lexemePtr, Tcl_Obj **literalPtr); /* *---------------------------------------------------------------------- * * ParseExpr -- * * Given a string, the numBytes bytes starting at start, this function * parses it as a Tcl expression and constructs a tree representing * the structure of the expression. The caller must pass in empty * lists as the funcList and litList arguments. The elements of the * parsed expression are returned to the caller as that tree, a list of * literal values, a list of function names, and in Tcl_Tokens * added to a Tcl_Parse struct passed in by the caller. * * Results: * If the string is successfully parsed as a valid Tcl expression, TCL_OK * is returned, and data about the expression structure is written to * the last four arguments. If the string cannot be parsed as a valid * Tcl expression, TCL_ERROR is returned, and if interp is non-NULL, an * error message is written to interp. * * Side effects: * Memory will be allocated. If TCL_OK is returned, the caller must * clean up the returned data structures. The (OpNode *) value written * to opTreePtr should be passed to ckfree() and the parsePtr argument * should be passed to Tcl_FreeParse(). The elements appended to the * litList and funcList will automatically be freed whenever the * refcount on those lists indicates they can be freed. * *---------------------------------------------------------------------- */ static int ParseExpr( Tcl_Interp *interp, /* Used for error reporting. */ const char *start, /* Start of source string to parse. */ int numBytes, /* Number of bytes in string. */ OpNode **opTreePtr, /* Points to space where a pointer to the * allocated OpNode tree should go. */ Tcl_Obj *litList, /* List to append literals to. */ Tcl_Obj *funcList, /* List to append function names to. */ Tcl_Parse *parsePtr, /* Structure to fill with tokens representing * those operands that require run time * substitutions. */ int parseOnly) /* A boolean indicating whether the caller's * aim is just a parse, or whether it will go * on to compile the expression. Different * optimizations are appropriate for the * two scenarios. */ { OpNode *nodes = NULL; /* Pointer to the OpNode storage array where * we build the parse tree. */ int nodesAvailable = 64; /* Initial size of the storage array. This * value establishes a minimum tree memory cost * of only about 1 kibyte, and is large enough * for most expressions to parse with no need * for array growth and reallocation. */ int nodesUsed = 0; /* Number of OpNodes filled. */ int scanned = 0; /* Capture number of byte scanned by * parsing routines. */ int lastParsed; /* Stores info about what the lexeme parsed * the previous pass through the parsing loop * was. If it was an operator, lastParsed is * the index of the OpNode for that operator. * If it was not an operator, lastParsed holds * an OperandTypes value encoding what we * need to know about it. */ int incomplete; /* Index of the most recent incomplete tree * in the OpNode array. Heads a stack of * incomplete trees linked by p.prev. */ int complete = OT_EMPTY; /* "Index" of the complete tree (that is, a * complete subexpression) determined at the * moment. OT_EMPTY is a nonsense value * used only to silence compiler warnings. * During a parse, complete will always hold * an index or an OperandTypes value pointing * to an actual leaf at the time the complete * tree is needed. */ /* These variables control generation of the error message. */ Tcl_Obj *msg = NULL; /* The error message. */ Tcl_Obj *post = NULL; /* In a few cases, an additional postscript * for the error message, supplying more * information after the error msg and * location have been reported. */ const char *mark = "_@_"; /* In the portion of the complete error message * where the error location is reported, this * "mark" substring is inserted into the * string being parsed to aid in pinpointing * the location of the syntax error in the * expression. */ int insertMark = 0; /* A boolean controlling whether the "mark" * should be inserted. */ const int limit = 25; /* Portions of the error message are * constructed out of substrings of the * original expression. In order to keep the * error message readable, we impose this limit * on the substring size we extract. */ TclParseInit(interp, start, numBytes, parsePtr); nodes = (OpNode *) attemptckalloc(nodesAvailable * sizeof(OpNode)); if (nodes == NULL) { TclNewLiteralStringObj(msg, "not enough memory to parse expression"); goto error; } /* Initialize the parse tree with the special "START" node. */ nodes->lexeme = START; nodes->precedence = prec[START]; nodes->mark = MARK_RIGHT; incomplete = lastParsed = nodesUsed; nodesUsed++; /* * Main parsing loop parses one lexeme per iteration. We exit the * loop only when there's a syntax error with a "goto error" which * takes us to the error handling code following the loop, or when * we've successfully completed the parse and we return to the caller. */ while (1) { OpNode *nodePtr; /* Points to the OpNode we may fill this * pass through the loop. */ unsigned char lexeme; /* The lexeme we parse this iteration. */ Tcl_Obj *literal; /* Filled by the ParseLexeme() call when * a literal is parsed that has a Tcl_Obj * rep worth preserving. */ const char *lastStart = start - scanned; /* Compute where the lexeme parsed the * previous pass through the loop began. * This is helpful for detecting invalid * octals and providing more complete error * messages. */ /* * Each pass through this loop adds up to one more OpNode. Allocate * space for one if required. */ if (nodesUsed >= nodesAvailable) { int size = nodesUsed * 2; OpNode *newPtr; do { newPtr = (OpNode *) attemptckrealloc((char *) nodes, (unsigned int) size * sizeof(OpNode)); } while ((newPtr == NULL) && ((size -= (size - nodesUsed) / 2) > nodesUsed)); if (newPtr == NULL) { TclNewLiteralStringObj(msg, "not enough memory to parse expression"); goto error; } nodesAvailable = size; nodes = newPtr; } nodePtr = nodes + nodesUsed; /* Skip white space between lexemes. */ scanned = TclParseAllWhiteSpace(start, numBytes); start += scanned; numBytes -= scanned; scanned = ParseLexeme(start, numBytes, &lexeme, &literal); /* Use context to categorize the lexemes that are ambiguous. */ if ((NODE_TYPE & lexeme) == 0) { switch (lexeme) { case INVALID: msg = Tcl_ObjPrintf( "invalid character \"%.*s\"", scanned, start); goto error; case INCOMPLETE: msg = Tcl_ObjPrintf( "incomplete operator \"%.*s\"", scanned, start); goto error; case BAREWORD: /* * Most barewords in an expression are a syntax error. * The exceptions are that when a bareword is followed by * an open paren, it might be a function call, and when the * bareword is a legal literal boolean value, we accept that * as well. */ if (start[scanned+TclParseAllWhiteSpace( start+scanned, numBytes-scanned)] == '(') { lexeme = FUNCTION; /* * When we compile the expression we'll need the function * name, and there's no place in the parse tree to store * it, so we keep a separate list of all the function * names we've parsed in the order we found them. */ Tcl_ListObjAppendElement(NULL, funcList, literal); } else { int b; if (Tcl_GetBooleanFromObj(NULL, literal, &b) == TCL_OK) { lexeme = BOOLEAN; } else { Tcl_DecrRefCount(literal); msg = Tcl_ObjPrintf( "invalid bareword \"%.*s%s\"", (scanned < limit) ? scanned : limit - 3, start, (scanned < limit) ? "" : "..."); post = Tcl_ObjPrintf( "should be \"$%.*s%s\" or \"{%.*s%s}\"", (scanned < limit) ? scanned : limit - 3, start, (scanned < limit) ? "" : "...", (scanned < limit) ? scanned : limit - 3, start, (scanned < limit) ? "" : "..."); Tcl_AppendPrintfToObj(post, " or \"%.*s%s(...)\" or ...", (scanned < limit) ? scanned : limit - 3, start, (scanned < limit) ? "" : "..."); goto error; } } break; case PLUS: case MINUS: if (IsOperator(lastParsed)) { /* * A "+" or "-" coming just after another operator * must be interpreted as a unary operator. */ lexeme |= UNARY; } else { lexeme |= BINARY; } } } /* Uncategorized lexemes */ /* Handle lexeme based on its category. */ switch (NODE_TYPE & lexeme) { /* * Each LEAF results in either a literal getting appended to the * litList, or a sequence of Tcl_Tokens representing a Tcl word * getting appended to the parsePtr->tokens. No OpNode is filled * for this lexeme. */ case LEAF: { Tcl_Token *tokenPtr; const char *end = start; int wordIndex; int code = TCL_OK; /* * A leaf operand appearing just after something that's not an * operator is a syntax error. */ if (NotOperator(lastParsed)) { msg = Tcl_ObjPrintf("missing operator at %s", mark); if (lastStart[0] == '0') { Tcl_Obj *copy = Tcl_NewStringObj(lastStart, start + scanned - lastStart); if (TclCheckBadOctal(NULL, Tcl_GetString(copy))) { TclNewLiteralStringObj(post, "looks like invalid octal number"); } Tcl_DecrRefCount(copy); } scanned = 0; insertMark = 1; parsePtr->errorType = TCL_PARSE_BAD_NUMBER; /* Free any literal to avoid a memleak. */ if ((lexeme == NUMBER) || (lexeme == BOOLEAN)) { Tcl_DecrRefCount(literal); } goto error; } switch (lexeme) { case NUMBER: case BOOLEAN: Tcl_ListObjAppendElement(NULL, litList, literal); complete = lastParsed = OT_LITERAL; start += scanned; numBytes -= scanned; continue; default: break; } /* * Remaining LEAF cases may involve filling Tcl_Tokens, so * make room for at least 2 more tokens. */ if (parsePtr->numTokens+1 >= parsePtr->tokensAvailable) { TclExpandTokenArray(parsePtr); } wordIndex = parsePtr->numTokens; tokenPtr = parsePtr->tokenPtr + wordIndex; tokenPtr->type = TCL_TOKEN_WORD; tokenPtr->start = start; parsePtr->numTokens++; switch (lexeme) { case QUOTED: code = Tcl_ParseQuotedString(NULL, start, numBytes, parsePtr, 1, &end); scanned = end - start; break; case BRACED: code = Tcl_ParseBraces(NULL, start, numBytes, parsePtr, 1, &end); scanned = end - start; break; case VARIABLE: code = Tcl_ParseVarName(NULL, start, numBytes, parsePtr, 1); /* * Handle the quirk that Tcl_ParseVarName reports a successful * parse even when it gets only a "$" with no variable name. */ tokenPtr = parsePtr->tokenPtr + wordIndex + 1; if (code == TCL_OK && tokenPtr->type != TCL_TOKEN_VARIABLE) { TclNewLiteralStringObj(msg, "invalid character \"$\""); goto error; } scanned = tokenPtr->size; break; case SCRIPT: { Tcl_Parse *nestedPtr = (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); tokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; tokenPtr->type = TCL_TOKEN_COMMAND; tokenPtr->start = start; tokenPtr->numComponents = 0; end = start + numBytes; start++; while (1) { code = Tcl_ParseCommand(interp, start, (end - start), 1, nestedPtr); if (code != TCL_OK) { parsePtr->term = nestedPtr->term; parsePtr->errorType = nestedPtr->errorType; parsePtr->incomplete = nestedPtr->incomplete; break; } start = (nestedPtr->commandStart + nestedPtr->commandSize); Tcl_FreeParse(nestedPtr); if ((nestedPtr->term < end) && (*(nestedPtr->term) == ']') && !(nestedPtr->incomplete)) { break; } if (start == end) { TclNewLiteralStringObj(msg, "missing close-bracket"); parsePtr->term = tokenPtr->start; parsePtr->errorType = TCL_PARSE_MISSING_BRACKET; parsePtr->incomplete = 1; code = TCL_ERROR; break; } } TclStackFree(interp, nestedPtr); end = start; start = tokenPtr->start; scanned = end - start; tokenPtr->size = scanned; parsePtr->numTokens++; break; } } if (code != TCL_OK) { /* * Here we handle all the syntax errors generated by * the Tcl_Token generating parsing routines called in the * switch just above. If the value of parsePtr->incomplete * is 1, then the error was an unbalanced '[', '(', '{', * or '"' and parsePtr->term is pointing to that unbalanced * character. If the value of parsePtr->incomplete is 0, * then the error is one of lacking whitespace following a * quoted word, for example: expr {[an error {foo}bar]}, * and parsePtr->term points to where the whitespace is * missing. We reset our values of start and scanned so that * when our error message is constructed, the location of * the syntax error is sure to appear in it, even if the * quoted expression is truncated. */ start = parsePtr->term; scanned = parsePtr->incomplete; goto error; } tokenPtr = parsePtr->tokenPtr + wordIndex; tokenPtr->size = scanned; tokenPtr->numComponents = parsePtr->numTokens - wordIndex - 1; if (!parseOnly && ((lexeme == QUOTED) || (lexeme == BRACED))) { /* * When this expression is destined to be compiled, and a * braced or quoted word within an expression is known at * compile time (no runtime substitutions in it), we can * store it as a literal rather than in its tokenized form. * This is an advantage since the compiled bytecode is going * to need the argument in Tcl_Obj form eventually, so it's * just as well to get there now. Another advantage is that * with this conversion, larger constant expressions might * be grown and optimized. * * On the contrary, if the end goal of this parse is to * fill a Tcl_Parse for a caller of Tcl_ParseExpr(), then it's * wasteful to convert to a literal only to convert back again * later. */ literal = Tcl_NewObj(); if (TclWordKnownAtCompileTime(tokenPtr, literal)) { Tcl_ListObjAppendElement(NULL, litList, literal); complete = lastParsed = OT_LITERAL; parsePtr->numTokens = wordIndex; break; } Tcl_DecrRefCount(literal); } complete = lastParsed = OT_TOKENS; break; } /* case LEAF */ case UNARY: /* * A unary operator appearing just after something that's not an * operator is a syntax error -- something trying to be the left * operand of an operator that doesn't take one. */ if (NotOperator(lastParsed)) { msg = Tcl_ObjPrintf("missing operator at %s", mark); scanned = 0; insertMark = 1; goto error; } /* Create an OpNode for the unary operator */ nodePtr->lexeme = lexeme; /* Remember the operator... */ nodePtr->precedence = prec[lexeme]; /* ... and its precedence. */ nodePtr->mark = MARK_RIGHT; /* * This unary operator is a new incomplete tree, so push it * onto our stack of incomplete trees. Also remember it as * the last lexeme we parsed. */ nodePtr->p.prev = incomplete; incomplete = lastParsed = nodesUsed; nodesUsed++; break; case BINARY: { OpNode *incompletePtr; unsigned char precedence = prec[lexeme]; /* * A binary operator appearing just after another operator is a * syntax error -- one of the two operators is missing an operand. */ if (IsOperator(lastParsed)) { if ((lexeme == CLOSE_PAREN) && (nodePtr[-1].lexeme == OPEN_PAREN)) { if (nodePtr[-2].lexeme == FUNCTION) { /* * Normally, "()" is a syntax error, but as a special * case accept it as an argument list for a function. * Treat this as a special LEAF lexeme, and restart * the parsing loop with zero characters scanned. * We'll parse the ")" again the next time through, * but with the OT_EMPTY leaf as the subexpression * between the parens. */ scanned = 0; complete = lastParsed = OT_EMPTY; break; } msg = Tcl_ObjPrintf("empty subexpression at %s", mark); scanned = 0; insertMark = 1; goto error; } if (nodePtr[-1].precedence > precedence) { if (nodePtr[-1].lexeme == OPEN_PAREN) { TclNewLiteralStringObj(msg, "unbalanced open paren"); parsePtr->errorType = TCL_PARSE_MISSING_PAREN; } else if (nodePtr[-1].lexeme == COMMA) { msg = Tcl_ObjPrintf( "missing function argument at %s", mark); scanned = 0; insertMark = 1; } else if (nodePtr[-1].lexeme == START) { TclNewLiteralStringObj(msg, "empty expression"); } } else { if (lexeme == CLOSE_PAREN) { TclNewLiteralStringObj(msg, "unbalanced close paren"); } else if ((lexeme == COMMA) && (nodePtr[-1].lexeme == OPEN_PAREN) && (nodePtr[-2].lexeme == FUNCTION)) { msg = Tcl_ObjPrintf( "missing function argument at %s", mark); scanned = 0; insertMark = 1; } } if (msg == NULL) { msg = Tcl_ObjPrintf("missing operand at %s", mark); scanned = 0; insertMark = 1; } goto error; } /* * Here is where the tree comes together. At this point, we * have a stack of incomplete trees corresponding to * substrings that are incomplete expressions, followed by * a complete tree corresponding to a substring that is itself * a complete expression, followed by the binary operator we have * just parsed. The incomplete trees can each be completed by * adding a right operand. * * To illustrate with an example, when we parse the expression * "1+2*3-4" and we reach this point having just parsed the "-" * operator, we have these incomplete trees: START, "1+", and * "2*". Next we have the complete subexpression "3". Last is * the "-" we've just parsed. * * The next step is to join our complete tree to an operator. * The choice is governed by the precedence and associativity * of the competing operators. If we connect it as the right * operand of our most recent incomplete tree, we get a new * complete tree, and we can repeat the process. The while * loop following repeats this until precedence indicates it * is time to join the complete tree as the left operand of * the just parsed binary operator. * * Continuing the example, the first pass through the loop * will join "3" to "2*"; the next pass will join "2*3" to * "1+". Then we'll exit the loop and join "1+2*3" to "-". * When we return to parse another lexeme, our stack of * incomplete trees is START and "1+2*3-". */ while (1) { incompletePtr = nodes + incomplete; if (incompletePtr->precedence < precedence) { break; } if (incompletePtr->precedence == precedence) { /* Right association rules for exponentiation. */ if (lexeme == EXPON) { break; } /* * Special association rules for the conditional operators. * The "?" and ":" operators have equal precedence, but * must be linked up in sensible pairs. */ if ((incompletePtr->lexeme == QUESTION) && (NotOperator(complete) || (nodes[complete].lexeme != COLON))) { break; } if ((incompletePtr->lexeme == COLON) && (lexeme == QUESTION)) { break; } } /* Some special syntax checks... */ /* Parens must balance */ if ((incompletePtr->lexeme == OPEN_PAREN) && (lexeme != CLOSE_PAREN)) { TclNewLiteralStringObj(msg, "unbalanced open paren"); parsePtr->errorType = TCL_PARSE_MISSING_PAREN; goto error; } /* Right operand of "?" must be ":" */ if ((incompletePtr->lexeme == QUESTION) && (NotOperator(complete) || (nodes[complete].lexeme != COLON))) { msg = Tcl_ObjPrintf( "missing operator \":\" at %s", mark); scanned = 0; insertMark = 1; goto error; } /* Operator ":" may only be right operand of "?" */ if (IsOperator(complete) && (nodes[complete].lexeme == COLON) && (incompletePtr->lexeme != QUESTION)) { TclNewLiteralStringObj(msg, "unexpected operator \":\" " "without preceding \"?\""); goto error; } /* * Attach complete tree as right operand of most recent * incomplete tree. */ incompletePtr->right = complete; if (IsOperator(complete)) { nodes[complete].p.parent = incomplete; } if (incompletePtr->lexeme == START) { /* * Completing the START tree indicates we're done. * Transfer the parse tree to the caller and return. */ *opTreePtr = nodes; return TCL_OK; } /* * With a right operand attached, last incomplete tree has * become the complete tree. Pop it from the incomplete * tree stack. */ complete = incomplete; incomplete = incompletePtr->p.prev; /* CLOSE_PAREN can only close one OPEN_PAREN. */ if (incompletePtr->lexeme == OPEN_PAREN) { break; } } /* More syntax checks... */ /* Parens must balance. */ if (lexeme == CLOSE_PAREN) { if (incompletePtr->lexeme != OPEN_PAREN) { TclNewLiteralStringObj(msg, "unbalanced close paren"); goto error; } } /* Commas must appear only in function argument lists. */ if (lexeme == COMMA) { if ((incompletePtr->lexeme != OPEN_PAREN) || (incompletePtr[-1].lexeme != FUNCTION)) { TclNewLiteralStringObj(msg, "unexpected \",\" outside function argument list"); goto error; } } /* Operator ":" may only be right operand of "?" */ if (IsOperator(complete) && (nodes[complete].lexeme == COLON)) { TclNewLiteralStringObj(msg, "unexpected operator \":\" without preceding \"?\""); goto error; } /* Create no node for a CLOSE_PAREN lexeme. */ if (lexeme == CLOSE_PAREN) { break; } /* Link complete tree as left operand of new node. */ nodePtr->lexeme = lexeme; nodePtr->precedence = precedence; nodePtr->mark = MARK_LEFT; nodePtr->left = complete; if (IsOperator(complete)) { nodes[complete].p.parent = nodesUsed; } /* * With a left operand attached and a right operand missing, * the just-parsed binary operator is root of a new incomplete * tree. Push it onto the stack of incomplete trees. */ nodePtr->p.prev = incomplete; incomplete = lastParsed = nodesUsed; nodesUsed++; break; } /* case BINARY */ } /* lexeme handler */ /* Advance past the just-parsed lexeme */ start += scanned; numBytes -= scanned; } /* main parsing loop */ error: /* * We only get here if there's been an error. * Any errors that didn't get a suitable parsePtr->errorType, * get recorded as syntax errors. */ if (parsePtr->errorType == TCL_PARSE_SUCCESS) { parsePtr->errorType = TCL_PARSE_SYNTAX; } /* Free any partial parse tree we've built. */ if (nodes != NULL) { ckfree((char*) nodes); } if (interp == NULL) { /* Nowhere to report an error message, so just free it */ if (msg) { Tcl_DecrRefCount(msg); } } else { /* * Construct the complete error message. Start with the simple * error message, pulled from the interp result if necessary... */ if (msg == NULL) { msg = Tcl_GetObjResult(interp); } /* * Add a detailed quote from the bad expression, displaying and * sometimes marking the precise location of the syntax error. */ Tcl_AppendPrintfToObj(msg, "\nin expression \"%s%.*s%.*s%s%s%.*s%s\"", ((start - limit) < parsePtr->string) ? "" : "...", ((start - limit) < parsePtr->string) ? (start - parsePtr->string) : limit - 3, ((start - limit) < parsePtr->string) ? parsePtr->string : start - limit + 3, (scanned < limit) ? scanned : limit - 3, start, (scanned < limit) ? "" : "...", insertMark ? mark : "", (start + scanned + limit > parsePtr->end) ? parsePtr->end - (start + scanned) : limit-3, start + scanned, (start + scanned + limit > parsePtr->end) ? "" : "..."); /* Next, append any postscript message. */ if (post != NULL) { Tcl_AppendToObj(msg, ";\n", -1); Tcl_AppendObjToObj(msg, post); Tcl_DecrRefCount(post); } Tcl_SetObjResult(interp, msg); /* Finally, place context information in the errorInfo. */ numBytes = parsePtr->end - parsePtr->string; Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf( "\n (parsing expression \"%.*s%s\")", (numBytes < limit) ? numBytes : limit - 3, parsePtr->string, (numBytes < limit) ? "" : "...")); } return TCL_ERROR; } /* *---------------------------------------------------------------------- * * ConvertTreeToTokens -- * * Given a string, the numBytes bytes starting at start, and an OpNode * tree and Tcl_Token array created by passing that same string to * ParseExpr(), this function writes into *parsePtr the sequence of * Tcl_Tokens needed so to satisfy the historical interface provided * by Tcl_ParseExpr(). Note that this routine exists only for the sake * of the public Tcl_ParseExpr() routine. It is not used by Tcl itself * at all. * * Results: * None. * * Side effects: * The Tcl_Parse *parsePtr is filled with Tcl_Tokens representing the * parsed expression. * *---------------------------------------------------------------------- */ static void ConvertTreeToTokens( const char *start, int numBytes, OpNode *nodes, Tcl_Token *tokenPtr, Tcl_Parse *parsePtr) { int subExprTokenIdx = 0; OpNode *nodePtr = nodes; int next = nodePtr->right; while (1) { Tcl_Token *subExprTokenPtr; int scanned, parentIdx; unsigned char lexeme; /* * Advance the mark so the next exit from this node won't retrace * steps over ground already covered. */ nodePtr->mark++; /* Handle next child node or leaf */ switch (next) { case OT_EMPTY: /* No tokens and no characters for the OT_EMPTY leaf. */ break; case OT_LITERAL: /* Skip any white space that comes before the literal */ scanned = TclParseAllWhiteSpace(start, numBytes); start +=scanned; numBytes -= scanned; /* Reparse the literal to get pointers into source string */ scanned = ParseLexeme(start, numBytes, &lexeme, NULL); if (parsePtr->numTokens + 1 >= parsePtr->tokensAvailable) { TclExpandTokenArray(parsePtr); } subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; subExprTokenPtr->start = start; subExprTokenPtr->size = scanned; subExprTokenPtr->numComponents = 1; subExprTokenPtr[1].type = TCL_TOKEN_TEXT; subExprTokenPtr[1].start = start; subExprTokenPtr[1].size = scanned; subExprTokenPtr[1].numComponents = 0; parsePtr->numTokens += 2; start +=scanned; numBytes -= scanned; break; case OT_TOKENS: { /* * tokenPtr points to a token sequence that came from parsing * a Tcl word. A Tcl word is made up of a sequence of one or * more elements. When the word is only a single element, it's * been the historical practice to replace the TCL_TOKEN_WORD * token directly with a TCL_TOKEN_SUB_EXPR token. However, * when the word has multiple elements, a TCL_TOKEN_WORD token * is kept as a grouping device so that TCL_TOKEN_SUB_EXPR * always has only one element. Wise or not, these are the * rules the Tcl expr parser has followed, and for the sake * of those few callers of Tcl_ParseExpr() we do not change * them now. Internally, we can do better. */ int toCopy = tokenPtr->numComponents + 1; if (tokenPtr->numComponents == tokenPtr[1].numComponents + 1) { /* * Single element word. Copy tokens and convert the leading * token to TCL_TOKEN_SUB_EXPR. */ while (parsePtr->numTokens + toCopy - 1 >= parsePtr->tokensAvailable) { TclExpandTokenArray(parsePtr); } subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; memcpy(subExprTokenPtr, tokenPtr, (size_t) toCopy * sizeof(Tcl_Token)); subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; parsePtr->numTokens += toCopy; } else { /* * Multiple element word. Create a TCL_TOKEN_SUB_EXPR * token to lead, with fields initialized from the leading * token, then copy entire set of word tokens. */ while (parsePtr->numTokens + toCopy >= parsePtr->tokensAvailable) { TclExpandTokenArray(parsePtr); } subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens; *subExprTokenPtr = *tokenPtr; subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; subExprTokenPtr->numComponents++; subExprTokenPtr++; memcpy(subExprTokenPtr, tokenPtr, (size_t) toCopy * sizeof(Tcl_Token)); parsePtr->numTokens += toCopy + 1; } scanned = tokenPtr->start + tokenPtr->size - start; start +=scanned; numBytes -= scanned; tokenPtr += toCopy; break; } default: /* Advance to the child node, which is an operator. */ nodePtr = nodes + next; /* Skip any white space that comes before the subexpression */ scanned = TclParseAllWhiteSpace(start, numBytes); start +=scanned; numBytes -= scanned; /* Generate tokens for the operator / subexpression... */ switch (nodePtr->lexeme) { case OPEN_PAREN: case COMMA: case COLON: /* * Historical practice has been to have no Tcl_Tokens for * these operators. */ break; default: { /* * Remember the index of the last subexpression we were * working on -- that of our parent. We'll stack it later. */ parentIdx = subExprTokenIdx; /* * Verify space for the two leading Tcl_Tokens representing * the subexpression rooted by this operator. The first * Tcl_Token will be of type TCL_TOKEN_SUB_EXPR; the second * of type TCL_TOKEN_OPERATOR. */ if (parsePtr->numTokens + 1 >= parsePtr->tokensAvailable) { TclExpandTokenArray(parsePtr); } subExprTokenIdx = parsePtr->numTokens; subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx; parsePtr->numTokens += 2; subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR; subExprTokenPtr[1].type = TCL_TOKEN_OPERATOR; /* * Our current position scanning the string is the starting * point for this subexpression. */ subExprTokenPtr->start = start; /* * Eventually, we know that the numComponents field of the * Tcl_Token of type TCL_TOKEN_OPERATOR will be 0. This means * we can make other use of this field for now to track the * stack of subexpressions we have pending. */ subExprTokenPtr[1].numComponents = parentIdx; break; } } break; } /* Determine which way to exit the node on this pass. */ router: switch (nodePtr->mark) { case MARK_LEFT: next = nodePtr->left; break; case MARK_RIGHT: next = nodePtr->right; /* Skip any white space that comes before the operator */ scanned = TclParseAllWhiteSpace(start, numBytes); start +=scanned; numBytes -= scanned; /* * Here we scan from the string the operator corresponding to * nodePtr->lexeme. */ scanned = ParseLexeme(start, numBytes, &lexeme, NULL); switch(nodePtr->lexeme) { case OPEN_PAREN: case COMMA: case COLON: /* No tokens for these lexemes -> nothing to do. */ break; default: /* * Record in the TCL_TOKEN_OPERATOR token the pointers into * the string marking where the operator is. */ subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx; subExprTokenPtr[1].start = start; subExprTokenPtr[1].size = scanned; break; } start +=scanned; numBytes -= scanned; break; case MARK_PARENT: switch (nodePtr->lexeme) { case START: /* When we get back to the START node, we're done. */ return; case COMMA: case COLON: /* No tokens for these lexemes -> nothing to do. */ break; case OPEN_PAREN: /* Skip past matching close paren. */ scanned = TclParseAllWhiteSpace(start, numBytes); start +=scanned; numBytes -= scanned; scanned = ParseLexeme(start, numBytes, &lexeme, NULL); start +=scanned; numBytes -= scanned; break; default: { /* * Before we leave this node/operator/subexpression for the * last time, finish up its tokens.... * * Our current position scanning the string is where the * substring for the subexpression ends. */ subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx; subExprTokenPtr->size = start - subExprTokenPtr->start; /* * All the Tcl_Tokens allocated and filled belong to * this subexpresion. The first token is the leading * TCL_TOKEN_SUB_EXPR token, and all the rest (one fewer) * are its components. */ subExprTokenPtr->numComponents = (parsePtr->numTokens - subExprTokenIdx) - 1; /* * Finally, as we return up the tree to our parent, pop the * parent subexpression off our subexpression stack, and * fill in the zero numComponents for the operator Tcl_Token. */ parentIdx = subExprTokenPtr[1].numComponents; subExprTokenPtr[1].numComponents = 0; subExprTokenIdx = parentIdx; break; } } /* Since we're returning to parent, skip child handling code. */ nodePtr = nodes + nodePtr->p.parent; goto router; } } } /* *---------------------------------------------------------------------- * * Tcl_ParseExpr -- * * Given a string, the numBytes bytes starting at start, this function * parses it as a Tcl expression and stores information about the * structure of the expression in the Tcl_Parse struct indicated by the * caller. * * Results: * If the string is successfully parsed as a valid Tcl expression, TCL_OK * is returned, and data about the expression structure is written to * *parsePtr. If the string cannot be parsed as a valid Tcl expression, * TCL_ERROR is returned, and if interp is non-NULL, an error message is * written to interp. * * Side effects: * If there is insufficient space in parsePtr to hold all the information * about the expression, then additional space is malloc-ed. If the * function returns TCL_OK then the caller must eventually invoke * Tcl_FreeParse to release any additional space that was allocated. * *---------------------------------------------------------------------- */ int Tcl_ParseExpr( Tcl_Interp *interp, /* Used for error reporting. */ const char *start, /* Start of source string to parse. */ int numBytes, /* Number of bytes in string. If < 0, the * string consists of all bytes up to the * first null character. */ Tcl_Parse *parsePtr) /* Structure to fill with information about * the parsed expression; any previous * information in the structure is ignored. */ { int code; OpNode *opTree = NULL; /* Will point to the tree of operators */ Tcl_Obj *litList = Tcl_NewObj(); /* List to hold the literals */ Tcl_Obj *funcList = Tcl_NewObj(); /* List to hold the functon names*/ Tcl_Parse *exprParsePtr = (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); /* Holds the Tcl_Tokens of substitutions */ if (numBytes < 0) { numBytes = (start ? strlen(start) : 0); } code = ParseExpr(interp, start, numBytes, &opTree, litList, funcList, exprParsePtr, 1 /* parseOnly */); Tcl_DecrRefCount(funcList); Tcl_DecrRefCount(litList); TclParseInit(interp, start, numBytes, parsePtr); if (code == TCL_OK) { ConvertTreeToTokens(start, numBytes, opTree, exprParsePtr->tokenPtr, parsePtr); } else { parsePtr->term = exprParsePtr->term; parsePtr->errorType = exprParsePtr->errorType; } Tcl_FreeParse(exprParsePtr); TclStackFree(interp, exprParsePtr); ckfree((char *) opTree); return code; } /* *---------------------------------------------------------------------- * * ParseLexeme -- * * Parse a single lexeme from the start of a string, scanning no more * than numBytes bytes. * * Results: * Returns the number of bytes scanned to produce the lexeme. * * Side effects: * Code identifying lexeme parsed is writen to *lexemePtr. * *---------------------------------------------------------------------- */ static int ParseLexeme( const char *start, /* Start of lexeme to parse. */ int numBytes, /* Number of bytes in string. */ unsigned char *lexemePtr, /* Write code of parsed lexeme to this * storage. */ Tcl_Obj **literalPtr) /* Write corresponding literal value to this storage, if non-NULL. */ { const char *end; int scanned; Tcl_UniChar ch; Tcl_Obj *literal = NULL; if (numBytes == 0) { *lexemePtr = END; return 0; } switch (*start) { case '[': *lexemePtr = SCRIPT; return 1; case '{': *lexemePtr = BRACED; return 1; case '(': *lexemePtr = OPEN_PAREN; return 1; case ')': *lexemePtr = CLOSE_PAREN; return 1; case '$': *lexemePtr = VARIABLE; return 1; case '\"': *lexemePtr = QUOTED; return 1; case ',': *lexemePtr = COMMA; return 1; case '/': *lexemePtr = DIVIDE; return 1; case '%': *lexemePtr = MOD; return 1; case '+': *lexemePtr = PLUS; return 1; case '-': *lexemePtr = MINUS; return 1; case '?': *lexemePtr = QUESTION; return 1; case ':': *lexemePtr = COLON; return 1; case '^': *lexemePtr = BIT_XOR; return 1; case '~': *lexemePtr = BIT_NOT; return 1; case '*': if ((numBytes > 1) && (start[1] == '*')) { *lexemePtr = EXPON; return 2; } *lexemePtr = MULT; return 1; case '=': if ((numBytes > 1) && (start[1] == '=')) { *lexemePtr = EQUAL; return 2; } *lexemePtr = INCOMPLETE; return 1; case '!': if ((numBytes > 1) && (start[1] == '=')) { *lexemePtr = NEQ; return 2; } *lexemePtr = NOT; return 1; case '&': if ((numBytes > 1) && (start[1] == '&')) { *lexemePtr = AND; return 2; } *lexemePtr = BIT_AND; return 1; case '|': if ((numBytes > 1) && (start[1] == '|')) { *lexemePtr = OR; return 2; } *lexemePtr = BIT_OR; return 1; case '<': if (numBytes > 1) { switch (start[1]) { case '<': *lexemePtr = LEFT_SHIFT; return 2; case '=': *lexemePtr = LEQ; return 2; } } *lexemePtr = LESS; return 1; case '>': if (numBytes > 1) { switch (start[1]) { case '>': *lexemePtr = RIGHT_SHIFT; return 2; case '=': *lexemePtr = GEQ; return 2; } } *lexemePtr = GREATER; return 1; case 'i': if ((numBytes > 1) && (start[1] == 'n') && ((numBytes == 2) || !isalpha(UCHAR(start[2])))) { /* * Must make this check so we can tell the difference between * the "in" operator and the "int" function name and the * "infinity" numeric value. */ *lexemePtr = IN_LIST; return 2; } break; case 'e': if ((numBytes > 1) && (start[1] == 'q') && ((numBytes == 2) || !isalpha(UCHAR(start[2])))) { *lexemePtr = STREQ; return 2; } break; case 'n': if ((numBytes > 1) && ((numBytes == 2) || !isalpha(UCHAR(start[2])))) { switch (start[1]) { case 'e': *lexemePtr = STRNEQ; return 2; case 'i': *lexemePtr = NOT_IN_LIST; return 2; } } } literal = Tcl_NewObj(); if (TclParseNumber(NULL, literal, NULL, start, numBytes, &end, TCL_PARSE_NO_WHITESPACE) == TCL_OK) { TclInitStringRep(literal, start, end-start); *lexemePtr = NUMBER; if (literalPtr) { *literalPtr = literal; } else { Tcl_DecrRefCount(literal); } return (end-start); } if (Tcl_UtfCharComplete(start, numBytes)) { scanned = Tcl_UtfToUniChar(start, &ch); } else { char utfBytes[TCL_UTF_MAX]; memcpy(utfBytes, start, (size_t) numBytes); utfBytes[numBytes] = '\0'; scanned = Tcl_UtfToUniChar(utfBytes, &ch); } if (!isalpha(UCHAR(ch))) { *lexemePtr = INVALID; Tcl_DecrRefCount(literal); return scanned; } end = start; while (isalnum(UCHAR(ch)) || (UCHAR(ch) == '_')) { end += scanned; numBytes -= scanned; if (Tcl_UtfCharComplete(end, numBytes)) { scanned = Tcl_UtfToUniChar(end, &ch); } else { char utfBytes[TCL_UTF_MAX]; memcpy(utfBytes, end, (size_t) numBytes); utfBytes[numBytes] = '\0'; scanned = Tcl_UtfToUniChar(utfBytes, &ch); } } *lexemePtr = BAREWORD; if (literalPtr) { Tcl_SetStringObj(literal, start, (int) (end-start)); *literalPtr = literal; } else { Tcl_DecrRefCount(literal); } return (end-start); } /* *---------------------------------------------------------------------- * * TclCompileExpr -- * * This procedure compiles a string containing a Tcl expression into Tcl * bytecodes. * * Results: * The return value is TCL_OK on a successful compilation and TCL_ERROR * on failure (which must be a syntax error). If TCL_ERROR is returned, * then the interpreter's result contains an error message. * * Side effects: * Adds instructions to envPtr to evaluate the expression at runtime. * *---------------------------------------------------------------------- */ /* TODO: Convert this to return void. Generate error throwing bytecode * for syntax errors instead of failing to compile. */ int TclCompileExpr( Tcl_Interp *interp, /* Used for error reporting. */ const char *script, /* The source script to compile. */ int numBytes, /* Number of bytes in script. */ CompileEnv *envPtr) /* Holds resulting instructions. */ { OpNode *opTree = NULL; /* Will point to the tree of operators */ Tcl_Obj *litList = Tcl_NewObj(); /* List to hold the literals */ Tcl_Obj *funcList = Tcl_NewObj(); /* List to hold the functon names*/ Tcl_Parse *parsePtr = (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); /* Holds the Tcl_Tokens of substitutions */ int code = ParseExpr(interp, script, numBytes, &opTree, litList, funcList, parsePtr, 0 /* parseOnly */); if (code == TCL_OK) { int litObjc, needsNumConversion = 1; Tcl_Obj **litObjv; /* TIP #280 : Track Lines within the expression */ TclAdvanceLines(&envPtr->line, script, script + TclParseAllWhiteSpace(script, numBytes)); /* * Valid parse; compile the tree. */ Tcl_ListObjGetElements(NULL, litList, &litObjc, &litObjv); CompileExprTree(interp, opTree, litObjv, funcList, parsePtr->tokenPtr, &needsNumConversion, envPtr); if (needsNumConversion) { /* * Attempt to convert the expression result to an int or double. * This is done in order to support Tcl's policy of interpreting * operands if at all possible as first integers, else * floating-point numbers. */ TclEmitOpcode(INST_TRY_CVT_TO_NUMERIC, envPtr); } } Tcl_FreeParse(parsePtr); TclStackFree(interp, parsePtr); Tcl_DecrRefCount(funcList); Tcl_DecrRefCount(litList); ckfree((char *) opTree); return code; } /* *---------------------------------------------------------------------- * * CompileExprTree -- * [???] * * Results: * None. * * Side effects: * Adds instructions to envPtr to evaluate the expression at runtime. * *---------------------------------------------------------------------- */ static void CompileExprTree( Tcl_Interp *interp, OpNode *nodes, Tcl_Obj *const litObjv[], Tcl_Obj *funcList, Tcl_Token *tokenPtr, int *convertPtr, CompileEnv *envPtr) { OpNode *nodePtr = nodes; int nextFunc = 0, numWords = 0; JumpList *jumpPtr = NULL; /* TODO: reduce constant expressions */ while (1) { int next; JumpList *freePtr, *newJump; if (nodePtr->mark == MARK_LEFT) { next = nodePtr->left; switch (nodePtr->lexeme) { case QUESTION: newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); newJump->next = jumpPtr; jumpPtr = newJump; newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); newJump->next = jumpPtr; jumpPtr = newJump; jumpPtr->depth = envPtr->currStackDepth; *convertPtr = 1; break; case AND: case OR: newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); newJump->next = jumpPtr; jumpPtr = newJump; newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); newJump->next = jumpPtr; jumpPtr = newJump; newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList)); newJump->next = jumpPtr; jumpPtr = newJump; jumpPtr->depth = envPtr->currStackDepth; break; } } else if (nodePtr->mark == MARK_RIGHT) { next = nodePtr->right; switch (nodePtr->lexeme) { case FUNCTION: { Tcl_DString cmdName; Tcl_Obj *funcName; const char *p; int length; Tcl_DStringInit(&cmdName); Tcl_DStringAppend(&cmdName, "tcl::mathfunc::", -1); Tcl_ListObjIndex(NULL, funcList, nextFunc++, &funcName); p = Tcl_GetStringFromObj(funcName, &length); Tcl_DStringAppend(&cmdName, p, length); TclEmitPush(TclRegisterNewNSLiteral(envPtr, Tcl_DStringValue(&cmdName), Tcl_DStringLength(&cmdName)), envPtr); Tcl_DStringFree(&cmdName); /* * Start a count of the number of words in this function * command invocation. In case there's already a count * in progress (nested functions), save it in our unused * "left" field for restoring later. */ nodePtr->left = numWords; numWords = 2; /* Command plus one argument */ break; } case QUESTION: TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump)); break; case COLON: TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &(jumpPtr->next->jump)); envPtr->currStackDepth = jumpPtr->depth; jumpPtr->offset = (envPtr->codeNext - envPtr->codeStart); jumpPtr->convert = *convertPtr; *convertPtr = 1; break; case AND: TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump)); break; case OR: TclEmitForwardJump(envPtr, TCL_TRUE_JUMP, &(jumpPtr->jump)); break; } } else { switch (nodePtr->lexeme) { case START: /* We're done */ return; case OPEN_PAREN: case QUESTION: /* do nothing */ break; case FUNCTION: /* * Use the numWords count we've kept to invoke the * function command with the correct number of arguments. */ if (numWords < 255) { TclEmitInstInt1(INST_INVOKE_STK1, numWords, envPtr); } else { TclEmitInstInt4(INST_INVOKE_STK4, numWords, envPtr); } /* Restore any saved numWords value. */ numWords = nodePtr->left; *convertPtr = 1; break; case COMMA: /* Each comma implies another function argument. */ numWords++; break; case COLON: if (TclFixupForwardJump(envPtr, &(jumpPtr->next->jump), (envPtr->codeNext - envPtr->codeStart) - jumpPtr->next->jump.codeOffset, 127)) { jumpPtr->offset += 3; } TclFixupForwardJump(envPtr, &(jumpPtr->jump), jumpPtr->offset - jumpPtr->jump.codeOffset, 127); *convertPtr |= jumpPtr->convert; envPtr->currStackDepth = jumpPtr->depth + 1; freePtr = jumpPtr; jumpPtr = jumpPtr->next; TclStackFree(interp, freePtr); freePtr = jumpPtr; jumpPtr = jumpPtr->next; TclStackFree(interp, freePtr); break; case AND: case OR: TclEmitForwardJump(envPtr, (nodePtr->lexeme == AND) ? TCL_FALSE_JUMP : TCL_TRUE_JUMP, &(jumpPtr->next->jump)); TclEmitPush(TclRegisterNewLiteral(envPtr, (nodePtr->lexeme == AND) ? "1" : "0", 1), envPtr); TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &(jumpPtr->next->next->jump)); TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->jump), 127); if (TclFixupForwardJumpToHere(envPtr, &(jumpPtr->jump), 127)) { jumpPtr->next->next->jump.codeOffset += 3; } TclEmitPush(TclRegisterNewLiteral(envPtr, (nodePtr->lexeme == AND) ? "0" : "1", 1), envPtr); TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->next->jump), 127); *convertPtr = 0; envPtr->currStackDepth = jumpPtr->depth + 1; freePtr = jumpPtr; jumpPtr = jumpPtr->next; TclStackFree(interp, freePtr); freePtr = jumpPtr; jumpPtr = jumpPtr->next; TclStackFree(interp, freePtr); freePtr = jumpPtr; jumpPtr = jumpPtr->next; TclStackFree(interp, freePtr); break; default: TclEmitOpcode(instruction[nodePtr->lexeme], envPtr); *convertPtr = 0; break; } nodePtr = nodes + nodePtr->p.parent; continue; } nodePtr->mark++; switch (next) { case OT_EMPTY: numWords = 1; /* No arguments, so just the command */ break; case OT_LITERAL: TclEmitPush(TclAddLiteralObj(envPtr, *litObjv++, NULL), envPtr); break; case OT_TOKENS: TclCompileTokens(interp, tokenPtr+1, tokenPtr->numComponents, envPtr); tokenPtr += tokenPtr->numComponents + 1; break; default: nodePtr = nodes + next; } } } static int OpCmd( Tcl_Interp *interp, OpNode *nodes, Tcl_Obj * const litObjv[]) { CompileEnv *compEnvPtr; ByteCode *byteCodePtr; int code, tmp=1; Tcl_Obj *byteCodeObj = Tcl_NewObj(); /* * Note we are compiling an expression with literal arguments. This means * there can be no [info frame] calls when we execute the resulting * bytecode, so there's no need to tend to TIP 280 issues. */ compEnvPtr = (CompileEnv *) TclStackAlloc(interp, sizeof(CompileEnv)); TclInitCompileEnv(interp, compEnvPtr, NULL, 0, NULL, 0); CompileExprTree(interp, nodes, litObjv, NULL, NULL, &tmp, compEnvPtr); TclEmitOpcode(INST_DONE, compEnvPtr); Tcl_IncrRefCount(byteCodeObj); TclInitByteCodeObj(byteCodeObj, compEnvPtr); TclFreeCompileEnv(compEnvPtr); TclStackFree(interp, compEnvPtr); byteCodePtr = (ByteCode *) byteCodeObj->internalRep.otherValuePtr; code = TclExecuteByteCode(interp, byteCodePtr); Tcl_DecrRefCount(byteCodeObj); return code; } int TclSingleOpCmd( ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData; unsigned char lexeme; OpNode nodes[2]; if (objc != 1+occdPtr->numArgs) { Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected); return TCL_ERROR; } ParseLexeme(occdPtr->operator, strlen(occdPtr->operator), &lexeme, NULL); nodes[0].lexeme = START; nodes[0].mark = MARK_RIGHT; nodes[0].right = 1; nodes[1].lexeme = lexeme; if (objc == 2) { nodes[1].mark = MARK_RIGHT; } else { nodes[1].mark = MARK_LEFT; nodes[1].left = OT_LITERAL; } nodes[1].right = OT_LITERAL; nodes[1].p.parent = 0; return OpCmd(interp, nodes, objv+1); } int TclSortingOpCmd( ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { int code = TCL_OK; if (objc < 3) { Tcl_SetObjResult(interp, Tcl_NewBooleanObj(1)); } else { TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData; Tcl_Obj **litObjv = (Tcl_Obj **) TclStackAlloc(interp, 2*(objc-2)*sizeof(Tcl_Obj *)); OpNode *nodes = (OpNode *) TclStackAlloc(interp, 2*(objc-2)*sizeof(OpNode)); unsigned char lexeme; int i, lastAnd = 1; ParseLexeme(occdPtr->operator, strlen(occdPtr->operator), &lexeme, NULL); litObjv[0] = objv[1]; nodes[0].lexeme = START; nodes[0].mark = MARK_RIGHT; for (i=2; inumArgs)); return TCL_OK; } ParseLexeme(occdPtr->operator, strlen(occdPtr->operator), &lexeme, NULL); lexeme |= BINARY; if (objc == 2) { Tcl_Obj *litObjv[2]; OpNode nodes[2]; int decrMe = 0; if (lexeme == EXPON) { litObjv[1] = Tcl_NewIntObj(occdPtr->numArgs); Tcl_IncrRefCount(litObjv[1]); decrMe = 1; litObjv[0] = objv[1]; nodes[0].lexeme = START; nodes[0].mark = MARK_RIGHT; nodes[0].right = 1; nodes[1].lexeme = lexeme; nodes[1].mark = MARK_LEFT; nodes[1].left = OT_LITERAL; nodes[1].right = OT_LITERAL; nodes[1].p.parent = 0; } else { if (lexeme == DIVIDE) { litObjv[0] = Tcl_NewDoubleObj(1.0); } else { litObjv[0] = Tcl_NewIntObj(occdPtr->numArgs); } Tcl_IncrRefCount(litObjv[0]); litObjv[1] = objv[1]; nodes[0].lexeme = START; nodes[0].mark = MARK_RIGHT; nodes[0].right = 1; nodes[1].lexeme = lexeme; nodes[1].mark = MARK_LEFT; nodes[1].left = OT_LITERAL; nodes[1].right = OT_LITERAL; nodes[1].p.parent = 0; } code = OpCmd(interp, nodes, litObjv); Tcl_DecrRefCount(litObjv[decrMe]); return code; } else { OpNode *nodes = (OpNode *) TclStackAlloc(interp, (objc-1)*sizeof(OpNode)); int i, lastOp = OT_LITERAL; nodes[0].lexeme = START; nodes[0].mark = MARK_RIGHT; if (lexeme == EXPON) { for (i=objc-2; i>0; i-- ) { nodes[i].lexeme = lexeme; nodes[i].mark = MARK_LEFT; nodes[i].left = OT_LITERAL; nodes[i].right = lastOp; if (lastOp >= 0) { nodes[lastOp].p.parent = i; } lastOp = i; } } else { for (i=1; i= 0) { nodes[lastOp].p.parent = i; } nodes[i].right = OT_LITERAL; lastOp = i; } } nodes[0].right = lastOp; nodes[lastOp].p.parent = 0; code = OpCmd(interp, nodes, objv+1); TclStackFree(interp, nodes); return code; } } int TclNoIdentOpCmd( ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData; if (objc < 2) { Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected); return TCL_ERROR; } return TclVariadicOpCmd(clientData, interp, objc, objv); } /* * Local Variables: * mode: c * c-basic-offset: 4 * fill-column: 78 * End: */