/* * tclCompile.c -- * * This file contains procedures that compile Tcl commands or parts of * commands (like quoted strings or nested sub-commands) into a sequence * of instructions ("bytecodes"). * * Copyright (c) 1996-1998 Sun Microsystems, Inc. * Copyright (c) 2001 by Kevin B. Kenny. All rights reserved. * * See the file "license.terms" for information on usage and redistribution of * this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclCompile.c,v 1.127 2007/08/27 15:12:38 dgp Exp $ */ #include "tclInt.h" #include "tclCompile.h" /* * Table of all AuxData types. */ static Tcl_HashTable auxDataTypeTable; static int auxDataTypeTableInitialized; /* 0 means not yet initialized. */ TCL_DECLARE_MUTEX(tableMutex) /* * Variable that controls whether compilation tracing is enabled and, if so, * what level of tracing is desired: * 0: no compilation tracing * 1: summarize compilation of top level cmds and proc bodies * 2: display all instructions of each ByteCode compiled * This variable is linked to the Tcl variable "tcl_traceCompile". */ #ifdef TCL_COMPILE_DEBUG int tclTraceCompile = 0; static int traceInitialized = 0; #endif /* * A table describing the Tcl bytecode instructions. Entries in this table * must correspond to the instruction opcode definitions in tclCompile.h. The * names "op1" and "op4" refer to an instruction's one or four byte first * operand. Similarly, "stktop" and "stknext" refer to the topmost and next to * topmost stack elements. * * Note that the load, store, and incr instructions do not distinguish local * from global variables; the bytecode interpreter at runtime uses the * existence of a procedure call frame to distinguish these. */ InstructionDesc tclInstructionTable[] = { /* Name Bytes stackEffect #Opnds Operand types */ {"done", 1, -1, 0, {OPERAND_NONE}}, /* Finish ByteCode execution and return stktop (top stack item) */ {"push1", 2, +1, 1, {OPERAND_UINT1}}, /* Push object at ByteCode objArray[op1] */ {"push4", 5, +1, 1, {OPERAND_UINT4}}, /* Push object at ByteCode objArray[op4] */ {"pop", 1, -1, 0, {OPERAND_NONE}}, /* Pop the topmost stack object */ {"dup", 1, +1, 0, {OPERAND_NONE}}, /* Duplicate the topmost stack object and push the result */ {"concat1", 2, INT_MIN, 1, {OPERAND_UINT1}}, /* Concatenate the top op1 items and push result */ {"invokeStk1", 2, INT_MIN, 1, {OPERAND_UINT1}}, /* Invoke command named objv[0]; = */ {"invokeStk4", 5, INT_MIN, 1, {OPERAND_UINT4}}, /* Invoke command named objv[0]; = */ {"evalStk", 1, 0, 0, {OPERAND_NONE}}, /* Evaluate command in stktop using Tcl_EvalObj. */ {"exprStk", 1, 0, 0, {OPERAND_NONE}}, /* Execute expression in stktop using Tcl_ExprStringObj. */ {"loadScalar1", 2, 1, 1, {OPERAND_LVT1}}, /* Load scalar variable at index op1 <= 255 in call frame */ {"loadScalar4", 5, 1, 1, {OPERAND_LVT4}}, /* Load scalar variable at index op1 >= 256 in call frame */ {"loadScalarStk", 1, 0, 0, {OPERAND_NONE}}, /* Load scalar variable; scalar's name is stktop */ {"loadArray1", 2, 0, 1, {OPERAND_LVT1}}, /* Load array element; array at slot op1<=255, element is stktop */ {"loadArray4", 5, 0, 1, {OPERAND_LVT4}}, /* Load array element; array at slot op1 > 255, element is stktop */ {"loadArrayStk", 1, -1, 0, {OPERAND_NONE}}, /* Load array element; element is stktop, array name is stknext */ {"loadStk", 1, 0, 0, {OPERAND_NONE}}, /* Load general variable; unparsed variable name is stktop */ {"storeScalar1", 2, 0, 1, {OPERAND_LVT1}}, /* Store scalar variable at op1<=255 in frame; value is stktop */ {"storeScalar4", 5, 0, 1, {OPERAND_LVT4}}, /* Store scalar variable at op1 > 255 in frame; value is stktop */ {"storeScalarStk", 1, -1, 0, {OPERAND_NONE}}, /* Store scalar; value is stktop, scalar name is stknext */ {"storeArray1", 2, -1, 1, {OPERAND_LVT1}}, /* Store array element; array at op1<=255, value is top then elem */ {"storeArray4", 5, -1, 1, {OPERAND_LVT4}}, /* Store array element; array at op1>=256, value is top then elem */ {"storeArrayStk", 1, -2, 0, {OPERAND_NONE}}, /* Store array element; value is stktop, then elem, array names */ {"storeStk", 1, -1, 0, {OPERAND_NONE}}, /* Store general variable; value is stktop, then unparsed name */ {"incrScalar1", 2, 0, 1, {OPERAND_LVT1}}, /* Incr scalar at index op1<=255 in frame; incr amount is stktop */ {"incrScalarStk", 1, -1, 0, {OPERAND_NONE}}, /* Incr scalar; incr amount is stktop, scalar's name is stknext */ {"incrArray1", 2, -1, 1, {OPERAND_LVT1}}, /* Incr array elem; arr at slot op1<=255, amount is top then elem */ {"incrArrayStk", 1, -2, 0, {OPERAND_NONE}}, /* Incr array element; amount is top then elem then array names */ {"incrStk", 1, -1, 0, {OPERAND_NONE}}, /* Incr general variable; amount is stktop then unparsed var name */ {"incrScalar1Imm", 3, +1, 2, {OPERAND_LVT1, OPERAND_INT1}}, /* Incr scalar at slot op1 <= 255; amount is 2nd operand byte */ {"incrScalarStkImm", 2, 0, 1, {OPERAND_INT1}}, /* Incr scalar; scalar name is stktop; incr amount is op1 */ {"incrArray1Imm", 3, 0, 2, {OPERAND_LVT1, OPERAND_INT1}}, /* Incr array elem; array at slot op1 <= 255, elem is stktop, * amount is 2nd operand byte */ {"incrArrayStkImm", 2, -1, 1, {OPERAND_INT1}}, /* Incr array element; elem is top then array name, amount is op1 */ {"incrStkImm", 2, 0, 1, {OPERAND_INT1}}, /* Incr general variable; unparsed name is top, amount is op1 */ {"jump1", 2, 0, 1, {OPERAND_INT1}}, /* Jump relative to (pc + op1) */ {"jump4", 5, 0, 1, {OPERAND_INT4}}, /* Jump relative to (pc + op4) */ {"jumpTrue1", 2, -1, 1, {OPERAND_INT1}}, /* Jump relative to (pc + op1) if stktop expr object is true */ {"jumpTrue4", 5, -1, 1, {OPERAND_INT4}}, /* Jump relative to (pc + op4) if stktop expr object is true */ {"jumpFalse1", 2, -1, 1, {OPERAND_INT1}}, /* Jump relative to (pc + op1) if stktop expr object is false */ {"jumpFalse4", 5, -1, 1, {OPERAND_INT4}}, /* Jump relative to (pc + op4) if stktop expr object is false */ {"lor", 1, -1, 0, {OPERAND_NONE}}, /* Logical or: push (stknext || stktop) */ {"land", 1, -1, 0, {OPERAND_NONE}}, /* Logical and: push (stknext && stktop) */ {"bitor", 1, -1, 0, {OPERAND_NONE}}, /* Bitwise or: push (stknext | stktop) */ {"bitxor", 1, -1, 0, {OPERAND_NONE}}, /* Bitwise xor push (stknext ^ stktop) */ {"bitand", 1, -1, 0, {OPERAND_NONE}}, /* Bitwise and: push (stknext & stktop) */ {"eq", 1, -1, 0, {OPERAND_NONE}}, /* Equal: push (stknext == stktop) */ {"neq", 1, -1, 0, {OPERAND_NONE}}, /* Not equal: push (stknext != stktop) */ {"lt", 1, -1, 0, {OPERAND_NONE}}, /* Less: push (stknext < stktop) */ {"gt", 1, -1, 0, {OPERAND_NONE}}, /* Greater: push (stknext || stktop) */ {"le", 1, -1, 0, {OPERAND_NONE}}, /* Logical or: push (stknext || stktop) */ {"ge", 1, -1, 0, {OPERAND_NONE}}, /* Logical or: push (stknext || stktop) */ {"lshift", 1, -1, 0, {OPERAND_NONE}}, /* Left shift: push (stknext << stktop) */ {"rshift", 1, -1, 0, {OPERAND_NONE}}, /* Right shift: push (stknext >> stktop) */ {"add", 1, -1, 0, {OPERAND_NONE}}, /* Add: push (stknext + stktop) */ {"sub", 1, -1, 0, {OPERAND_NONE}}, /* Sub: push (stkext - stktop) */ {"mult", 1, -1, 0, {OPERAND_NONE}}, /* Multiply: push (stknext * stktop) */ {"div", 1, -1, 0, {OPERAND_NONE}}, /* Divide: push (stknext / stktop) */ {"mod", 1, -1, 0, {OPERAND_NONE}}, /* Mod: push (stknext % stktop) */ {"uplus", 1, 0, 0, {OPERAND_NONE}}, /* Unary plus: push +stktop */ {"uminus", 1, 0, 0, {OPERAND_NONE}}, /* Unary minus: push -stktop */ {"bitnot", 1, 0, 0, {OPERAND_NONE}}, /* Bitwise not: push ~stktop */ {"not", 1, 0, 0, {OPERAND_NONE}}, /* Logical not: push !stktop */ {"callBuiltinFunc1", 2, 1, 1, {OPERAND_UINT1}}, /* Call builtin math function with index op1; any args are on stk */ {"callFunc1", 2, INT_MIN, 1, {OPERAND_UINT1}}, /* Call non-builtin func objv[0]; = */ {"tryCvtToNumeric", 1, 0, 0, {OPERAND_NONE}}, /* Try converting stktop to first int then double if possible. */ {"break", 1, 0, 0, {OPERAND_NONE}}, /* Abort closest enclosing loop; if none, return TCL_BREAK code. */ {"continue", 1, 0, 0, {OPERAND_NONE}}, /* Skip to next iteration of closest enclosing loop; if none, return * TCL_CONTINUE code. */ {"foreach_start4", 5, 0, 1, {OPERAND_AUX4}}, /* Initialize execution of a foreach loop. Operand is aux data index * of the ForeachInfo structure for the foreach command. */ {"foreach_step4", 5, +1, 1, {OPERAND_AUX4}}, /* "Step" or begin next iteration of foreach loop. Push 0 if to * terminate loop, else push 1. */ {"beginCatch4", 5, 0, 1, {OPERAND_UINT4}}, /* Record start of catch with the operand's exception index. Push the * current stack depth onto a special catch stack. */ {"endCatch", 1, 0, 0, {OPERAND_NONE}}, /* End of last catch. Pop the bytecode interpreter's catch stack. */ {"pushResult", 1, +1, 0, {OPERAND_NONE}}, /* Push the interpreter's object result onto the stack. */ {"pushReturnCode", 1, +1, 0, {OPERAND_NONE}}, /* Push interpreter's return code (e.g. TCL_OK or TCL_ERROR) as a new * object onto the stack. */ {"streq", 1, -1, 0, {OPERAND_NONE}}, /* Str Equal: push (stknext eq stktop) */ {"strneq", 1, -1, 0, {OPERAND_NONE}}, /* Str !Equal: push (stknext neq stktop) */ {"strcmp", 1, -1, 0, {OPERAND_NONE}}, /* Str Compare: push (stknext cmp stktop) */ {"strlen", 1, 0, 0, {OPERAND_NONE}}, /* Str Length: push (strlen stktop) */ {"strindex", 1, -1, 0, {OPERAND_NONE}}, /* Str Index: push (strindex stknext stktop) */ {"strmatch", 2, -1, 1, {OPERAND_INT1}}, /* Str Match: push (strmatch stknext stktop) opnd == nocase */ {"list", 5, INT_MIN, 1, {OPERAND_UINT4}}, /* List: push (stk1 stk2 ... stktop) */ {"listIndex", 1, -1, 0, {OPERAND_NONE}}, /* List Index: push (listindex stknext stktop) */ {"listLength", 1, 0, 0, {OPERAND_NONE}}, /* List Len: push (listlength stktop) */ {"appendScalar1", 2, 0, 1, {OPERAND_LVT1}}, /* Append scalar variable at op1<=255 in frame; value is stktop */ {"appendScalar4", 5, 0, 1, {OPERAND_LVT4}}, /* Append scalar variable at op1 > 255 in frame; value is stktop */ {"appendArray1", 2, -1, 1, {OPERAND_LVT1}}, /* Append array element; array at op1<=255, value is top then elem */ {"appendArray4", 5, -1, 1, {OPERAND_LVT4}}, /* Append array element; array at op1>=256, value is top then elem */ {"appendArrayStk", 1, -2, 0, {OPERAND_NONE}}, /* Append array element; value is stktop, then elem, array names */ {"appendStk", 1, -1, 0, {OPERAND_NONE}}, /* Append general variable; value is stktop, then unparsed name */ {"lappendScalar1", 2, 0, 1, {OPERAND_LVT1}}, /* Lappend scalar variable at op1<=255 in frame; value is stktop */ {"lappendScalar4", 5, 0, 1, {OPERAND_LVT4}}, /* Lappend scalar variable at op1 > 255 in frame; value is stktop */ {"lappendArray1", 2, -1, 1, {OPERAND_LVT1}}, /* Lappend array element; array at op1<=255, value is top then elem */ {"lappendArray4", 5, -1, 1, {OPERAND_LVT4}}, /* Lappend array element; array at op1>=256, value is top then elem */ {"lappendArrayStk", 1, -2, 0, {OPERAND_NONE}}, /* Lappend array element; value is stktop, then elem, array names */ {"lappendStk", 1, -1, 0, {OPERAND_NONE}}, /* Lappend general variable; value is stktop, then unparsed name */ {"lindexMulti", 5, INT_MIN, 1, {OPERAND_UINT4}}, /* Lindex with generalized args, operand is number of stacked objs * used: (operand-1) entries from stktop are the indices; then list to * process. */ {"over", 5, +1, 1, {OPERAND_UINT4}}, /* Duplicate the arg-th element from top of stack (TOS=0) */ {"lsetList", 1, -2, 0, {OPERAND_NONE}}, /* Four-arg version of 'lset'. stktop is old value; next is new * element value, next is the index list; pushes new value */ {"lsetFlat", 5, INT_MIN, 1, {OPERAND_UINT4}}, /* Three- or >=5-arg version of 'lset', operand is number of stacked * objs: stktop is old value, next is new element value, next come * (operand-2) indices; pushes the new value. */ {"returnImm", 9, -1, 2, {OPERAND_INT4, OPERAND_UINT4}}, /* Compiled [return], code, level are operands; options and result * are on the stack. */ {"expon", 1, -1, 0, {OPERAND_NONE}}, /* Binary exponentiation operator: push (stknext ** stktop) */ /* * NOTE: the stack effects of expandStkTop and invokeExpanded are wrong - * but it cannot be done right at compile time, the stack effect is only * known at run time. The value for invokeExpanded is estimated better at * compile time. * See the comments further down in this file, where INST_INVOKE_EXPANDED * is emitted. */ {"expandStart", 1, 0, 0, {OPERAND_NONE}}, /* Start of command with {*} (expanded) arguments */ {"expandStkTop", 5, 0, 1, {OPERAND_UINT4}}, /* Expand the list at stacktop: push its elements on the stack */ {"invokeExpanded", 1, 0, 0, {OPERAND_NONE}}, /* Invoke the command marked by the last 'expandStart' */ {"listIndexImm", 5, 0, 1, {OPERAND_IDX4}}, /* List Index: push (lindex stktop op4) */ {"listRangeImm", 9, 0, 2, {OPERAND_IDX4, OPERAND_IDX4}}, /* List Range: push (lrange stktop op4 op4) */ {"startCommand", 9, 0, 2, {OPERAND_INT4,OPERAND_UINT4}}, /* Start of bytecoded command: op is the length of the cmd's code, op2 * is number of commands here */ {"listIn", 1, -1, 0, {OPERAND_NONE}}, /* List containment: push [lsearch stktop stknext]>=0) */ {"listNotIn", 1, -1, 0, {OPERAND_NONE}}, /* List negated containment: push [lsearch stktop stknext]<0) */ {"pushReturnOpts", 1, +1, 0, {OPERAND_NONE}}, /* Push the interpreter's return option dictionary as an object on the * stack. */ {"returnStk", 1, -2, 0, {OPERAND_NONE}}, /* Compiled [return]; options and result are on the stack, code and * level are in the options. */ {"dictGet", 5, INT_MIN, 1, {OPERAND_UINT4}}, /* The top op4 words (min 1) are a key path into the dictionary just * below the keys on the stack, and all those values are replaced by * the value read out of that key-path (like [dict get]). * Stack: ... dict key1 ... keyN => ... value */ {"dictSet", 9, INT_MIN, 2, {OPERAND_UINT4, OPERAND_LVT4}}, /* Update a dictionary value such that the keys are a path pointing to * the value. op4#1 = numKeys, op4#2 = LVTindex * Stack: ... key1 ... keyN value => ... newDict */ {"dictUnset", 9, INT_MIN, 2, {OPERAND_UINT4, OPERAND_LVT4}}, /* Update a dictionary value such that the keys are not a path pointing * to any value. op4#1 = numKeys, op4#2 = LVTindex * Stack: ... key1 ... keyN => ... newDict */ {"dictIncrImm", 9, 0, 2, {OPERAND_INT4, OPERAND_LVT4}}, /* Update a dictionary value such that the value pointed to by key is * incremented by some value (or set to it if the key isn't in the * dictionary at all). op4#1 = incrAmount, op4#2 = LVTindex * Stack: ... key => ... newDict */ {"dictAppend", 5, -1, 1, {OPERAND_LVT4}}, /* Update a dictionary value such that the value pointed to by key has * some value string-concatenated onto it. op4 = LVTindex * Stack: ... key valueToAppend => ... newDict */ {"dictLappend", 5, -1, 1, {OPERAND_LVT4}}, /* Update a dictionary value such that the value pointed to by key has * some value list-appended onto it. op4 = LVTindex * Stack: ... key valueToAppend => ... newDict */ {"dictFirst", 5, +2, 1, {OPERAND_LVT4}}, /* Begin iterating over the dictionary, using the local scalar * indicated by op4 to hold the iterator state. If doneBool is true, * dictDone *must* be called later on. * Stack: ... dict => ... value key doneBool */ {"dictNext", 5, +3, 1, {OPERAND_LVT4}}, /* Get the next iteration from the iterator in op4's local scalar. * Stack: ... => ... value key doneBool */ {"dictDone", 5, 0, 1, {OPERAND_LVT4}}, /* Terminate the iterator in op4's local scalar. */ {"dictUpdateStart", 9, -1, 2, {OPERAND_LVT4, OPERAND_AUX4}}, /* Create the variables (described in the aux data referred to by the * second immediate argument) to mirror the state of the dictionary in * the variable referred to by the first immediate argument. The list * of keys (popped from the stack) must be the same length as the list * of variables. * Stack: ... keyList => ... */ {"dictUpdateEnd", 9, -1, 1, {OPERAND_LVT4, OPERAND_AUX4}}, /* Reflect the state of local variables (described in the aux data * referred to by the second immediate argument) back to the state of * the dictionary in the variable referred to by the first immediate * argument. The list of keys (popped from the stack) must be the same * length as the list of variables. * Stack: ... keyList => ... */ {"jumpTable", 5, -1, 1, {OPERAND_AUX4}}, /* Jump according to the jump-table (in AuxData as indicated by the * operand) and the argument popped from the list. Always executes the * next instruction if no match against the table's entries was found. * Stack: ... value => ... * Note that the jump table contains offsets relative to the PC when * it points to this instruction; the code is relocatable. */ {"upvar", 5, 0, 1, {OPERAND_LVT4}}, /* finds level and otherName in stack, links to local variable at * index op1. Leaves the level on stack. */ {"nsupvar", 5, 0, 1, {OPERAND_LVT4}}, /* finds namespace and otherName in stack, links to local variable at * index op1. Leaves the namespace on stack. */ {"variable", 5, 0, 1, {OPERAND_LVT4}}, /* finds namespace and otherName in stack, links to local variable at * index op1. Leaves the namespace on stack. */ {"noop", 1, 0, 0, {OPERAND_NONE}}, /* finds namespace and otherName in stack, links to local variable at * index op1. Leaves the namespace on stack. */ {0} }; /* * Prototypes for procedures defined later in this file: */ static void DupByteCodeInternalRep(Tcl_Obj *srcPtr, Tcl_Obj *copyPtr); static unsigned char * EncodeCmdLocMap(CompileEnv *envPtr, ByteCode *codePtr, unsigned char *startPtr); static void EnterCmdExtentData(CompileEnv *envPtr, int cmdNumber, int numSrcBytes, int numCodeBytes); static void EnterCmdStartData(CompileEnv *envPtr, int cmdNumber, int srcOffset, int codeOffset); static void FreeByteCodeInternalRep(Tcl_Obj *objPtr); static int GetCmdLocEncodingSize(CompileEnv *envPtr); #ifdef TCL_COMPILE_STATS static void RecordByteCodeStats(ByteCode *codePtr); #endif /* TCL_COMPILE_STATS */ static int SetByteCodeFromAny(Tcl_Interp *interp, Tcl_Obj *objPtr); /* * TIP #280: Helper for building the per-word line information of all compiled * commands. */ static void EnterCmdWordData(ExtCmdLoc *eclPtr, int srcOffset, Tcl_Token *tokenPtr, const char *cmd, int len, int numWords, int line, int **lines); /* * The structure below defines the bytecode Tcl object type by means of * procedures that can be invoked by generic object code. */ Tcl_ObjType tclByteCodeType = { "bytecode", /* name */ FreeByteCodeInternalRep, /* freeIntRepProc */ DupByteCodeInternalRep, /* dupIntRepProc */ NULL, /* updateStringProc */ SetByteCodeFromAny /* setFromAnyProc */ }; /* *---------------------------------------------------------------------- * * TclSetByteCodeFromAny -- * * Part of the bytecode Tcl object type implementation. Attempts to * generate an byte code internal form for the Tcl object "objPtr" by * compiling its string representation. This function also takes a hook * procedure that will be invoked to perform any needed post processing * on the compilation results before generating byte codes. * * Results: * The return value is a standard Tcl object result. If an error occurs * during compilation, an error message is left in the interpreter's * result unless "interp" is NULL. * * Side effects: * Frees the old internal representation. If no error occurs, then the * compiled code is stored as "objPtr"s bytecode representation. Also, if * debugging, initializes the "tcl_traceCompile" Tcl variable used to * trace compilations. * *---------------------------------------------------------------------- */ int TclSetByteCodeFromAny( Tcl_Interp *interp, /* The interpreter for which the code is being * compiled. Must not be NULL. */ Tcl_Obj *objPtr, /* The object to make a ByteCode object. */ CompileHookProc *hookProc, /* Procedure to invoke after compilation. */ ClientData clientData) /* Hook procedure private data. */ { Interp *iPtr = (Interp *) interp; CompileEnv compEnv; /* Compilation environment structure allocated * in frame. */ register AuxData *auxDataPtr; LiteralEntry *entryPtr; register int i; int length, result = TCL_OK; char *stringPtr; #ifdef TCL_COMPILE_DEBUG if (!traceInitialized) { if (Tcl_LinkVar(interp, "tcl_traceCompile", (char *) &tclTraceCompile, TCL_LINK_INT) != TCL_OK) { Tcl_Panic("SetByteCodeFromAny: unable to create link for tcl_traceCompile variable"); } traceInitialized = 1; } #endif stringPtr = Tcl_GetStringFromObj(objPtr, &length); /* * TIP #280: Pick up the CmdFrame in which the BC compiler was invoked and * use to initialize the tracking in the compiler. This information was * stored by TclCompEvalObj and ProcCompileProc. */ TclInitCompileEnv(interp, &compEnv, stringPtr, length, iPtr->invokeCmdFramePtr, iPtr->invokeWord); TclCompileScript(interp, stringPtr, length, &compEnv); /* * Successful compilation. Add a "done" instruction at the end. */ TclEmitOpcode(INST_DONE, &compEnv); /* * Invoke the compilation hook procedure if one exists. */ if (hookProc) { result = (*hookProc)(interp, &compEnv, clientData); } /* * Change the object into a ByteCode object. Ownership of the literal * objects and aux data items is given to the ByteCode object. */ #ifdef TCL_COMPILE_DEBUG TclVerifyLocalLiteralTable(&compEnv); #endif /*TCL_COMPILE_DEBUG*/ TclInitByteCodeObj(objPtr, &compEnv); #ifdef TCL_COMPILE_DEBUG if (tclTraceCompile >= 2) { TclPrintByteCodeObj(interp, objPtr); } #endif /* TCL_COMPILE_DEBUG */ if (result != TCL_OK) { /* * Handle any error from the hookProc */ entryPtr = compEnv.literalArrayPtr; for (i = 0; i < compEnv.literalArrayNext; i++) { TclReleaseLiteral(interp, entryPtr->objPtr); entryPtr++; } #ifdef TCL_COMPILE_DEBUG TclVerifyGlobalLiteralTable(iPtr); #endif /*TCL_COMPILE_DEBUG*/ auxDataPtr = compEnv.auxDataArrayPtr; for (i = 0; i < compEnv.auxDataArrayNext; i++) { if (auxDataPtr->type->freeProc != NULL) { auxDataPtr->type->freeProc(auxDataPtr->clientData); } auxDataPtr++; } } TclFreeCompileEnv(&compEnv); return result; } /* *----------------------------------------------------------------------- * * SetByteCodeFromAny -- * * Part of the bytecode Tcl object type implementation. Attempts to * generate an byte code internal form for the Tcl object "objPtr" by * compiling its string representation. * * Results: * The return value is a standard Tcl object result. If an error occurs * during compilation, an error message is left in the interpreter's * result unless "interp" is NULL. * * Side effects: * Frees the old internal representation. If no error occurs, then the * compiled code is stored as "objPtr"s bytecode representation. Also, if * debugging, initializes the "tcl_traceCompile" Tcl variable used to * trace compilations. * *---------------------------------------------------------------------- */ static int SetByteCodeFromAny( Tcl_Interp *interp, /* The interpreter for which the code is being * compiled. Must not be NULL. */ Tcl_Obj *objPtr) /* The object to make a ByteCode object. */ { (void) TclSetByteCodeFromAny(interp, objPtr, NULL, (ClientData) NULL); return TCL_OK; } /* *---------------------------------------------------------------------- * * DupByteCodeInternalRep -- * * Part of the bytecode Tcl object type implementation. However, it does * not copy the internal representation of a bytecode Tcl_Obj, but * instead leaves the new object untyped (with a NULL type pointer). * Code will be compiled for the new object only if necessary. * * Results: * None. * * Side effects: * None. * *---------------------------------------------------------------------- */ static void DupByteCodeInternalRep( Tcl_Obj *srcPtr, /* Object with internal rep to copy. */ Tcl_Obj *copyPtr) /* Object with internal rep to set. */ { return; } /* *---------------------------------------------------------------------- * * FreeByteCodeInternalRep -- * * Part of the bytecode Tcl object type implementation. Frees the storage * associated with a bytecode object's internal representation unless its * code is actively being executed. * * Results: * None. * * Side effects: * The bytecode object's internal rep is marked invalid and its code gets * freed unless the code is actively being executed. In that case the * cleanup is delayed until the last execution of the code completes. * *---------------------------------------------------------------------- */ static void FreeByteCodeInternalRep( register Tcl_Obj *objPtr) /* Object whose internal rep to free. */ { register ByteCode *codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; codePtr->refCount--; if (codePtr->refCount <= 0) { TclCleanupByteCode(codePtr); } objPtr->typePtr = NULL; objPtr->internalRep.otherValuePtr = NULL; } /* *---------------------------------------------------------------------- * * TclCleanupByteCode -- * * This procedure does all the real work of freeing up a bytecode * object's ByteCode structure. It's called only when the structure's * reference count becomes zero. * * Results: * None. * * Side effects: * Frees objPtr's bytecode internal representation and sets its type and * objPtr->internalRep.otherValuePtr NULL. Also releases its literals and * frees its auxiliary data items. * *---------------------------------------------------------------------- */ void TclCleanupByteCode( register ByteCode *codePtr) /* Points to the ByteCode to free. */ { Tcl_Interp *interp = (Tcl_Interp *) *codePtr->interpHandle; Interp *iPtr = (Interp *) interp; int numLitObjects = codePtr->numLitObjects; int numAuxDataItems = codePtr->numAuxDataItems; register Tcl_Obj **objArrayPtr, *objPtr; register AuxData *auxDataPtr; int i; #ifdef TCL_COMPILE_STATS if (interp != NULL) { ByteCodeStats *statsPtr; Tcl_Time destroyTime; int lifetimeSec, lifetimeMicroSec, log2; statsPtr = &((Interp *) interp)->stats; statsPtr->numByteCodesFreed++; statsPtr->currentSrcBytes -= (double) codePtr->numSrcBytes; statsPtr->currentByteCodeBytes -= (double) codePtr->structureSize; statsPtr->currentInstBytes -= (double) codePtr->numCodeBytes; statsPtr->currentLitBytes -= (double) codePtr->numLitObjects * sizeof(Tcl_Obj *); statsPtr->currentExceptBytes -= (double) codePtr->numExceptRanges * sizeof(ExceptionRange); statsPtr->currentAuxBytes -= (double) codePtr->numAuxDataItems * sizeof(AuxData); statsPtr->currentCmdMapBytes -= (double) codePtr->numCmdLocBytes; Tcl_GetTime(&destroyTime); lifetimeSec = destroyTime.sec - codePtr->createTime.sec; if (lifetimeSec > 2000) { /* avoid overflow */ lifetimeSec = 2000; } lifetimeMicroSec = 1000000 * lifetimeSec + (destroyTime.usec - codePtr->createTime.usec); log2 = TclLog2(lifetimeMicroSec); if (log2 > 31) { log2 = 31; } statsPtr->lifetimeCount[log2]++; } #endif /* TCL_COMPILE_STATS */ /* * A single heap object holds the ByteCode structure and its code, object, * command location, and auxiliary data arrays. This means we only need to * 1) decrement the ref counts of the LiteralEntry's in its literal array, * 2) call the free procs for the auxiliary data items, 3) free the * localCache if it is unused, and finally 4) free the ByteCode * structure's heap object. * * The case for TCL_BYTECODE_PRECOMPILED (precompiled ByteCodes, like * those generated from tbcload) is special, as they doesn't make use of * the global literal table. They instead maintain private references to * their literals which must be decremented. * * In order to insure a proper and efficient cleanup of the literal array * when it contains non-shared literals [Bug 983660], we also distinguish * the case of an interpreter being deleted (signaled by interp == NULL). * Also, as the interp deletion will remove the global literal table * anyway, we avoid the extra cost of updating it for each literal being * released. */ if ((codePtr->flags & TCL_BYTECODE_PRECOMPILED) || (interp == NULL)) { objArrayPtr = codePtr->objArrayPtr; for (i = 0; i < numLitObjects; i++) { objPtr = *objArrayPtr; if (objPtr) { Tcl_DecrRefCount(objPtr); } objArrayPtr++; } codePtr->numLitObjects = 0; } else { objArrayPtr = codePtr->objArrayPtr; for (i = 0; i < numLitObjects; i++) { /* * TclReleaseLiteral sets a ByteCode's object array entry NULL to * indicate that it has already freed the literal. */ objPtr = *objArrayPtr; if (objPtr != NULL) { TclReleaseLiteral(interp, objPtr); } objArrayPtr++; } } auxDataPtr = codePtr->auxDataArrayPtr; for (i = 0; i < numAuxDataItems; i++) { if (auxDataPtr->type->freeProc != NULL) { (auxDataPtr->type->freeProc)(auxDataPtr->clientData); } auxDataPtr++; } /* * TIP #280. Release the location data associated with this byte code * structure, if any. NOTE: The interp we belong to may be gone already, * and the data with it. * * See also tclBasic.c, DeleteInterpProc */ if (iPtr) { Tcl_HashEntry *hePtr = Tcl_FindHashEntry(iPtr->lineBCPtr, (char *) codePtr); if (hePtr) { ExtCmdLoc *eclPtr = Tcl_GetHashValue(hePtr); int i; if (eclPtr->type == TCL_LOCATION_SOURCE) { Tcl_DecrRefCount(eclPtr->path); } for (i=0 ; inuloc ; i++) { ckfree((char *) eclPtr->loc[i].line); } if (eclPtr->loc != NULL) { ckfree((char *) eclPtr->loc); } ckfree((char *) eclPtr); Tcl_DeleteHashEntry(hePtr); } } if (codePtr->localCachePtr && (--codePtr->localCachePtr->refCount == 0)) { TclFreeLocalCache(interp, codePtr->localCachePtr); } TclHandleRelease(codePtr->interpHandle); ckfree((char *) codePtr); } /* *---------------------------------------------------------------------- * * TclInitCompileEnv -- * * Initializes a CompileEnv compilation environment structure for the * compilation of a string in an interpreter. * * Results: * None. * * Side effects: * The CompileEnv structure is initialized. * *---------------------------------------------------------------------- */ void TclInitCompileEnv( Tcl_Interp *interp, /* The interpreter for which a CompileEnv * structure is initialized. */ register CompileEnv *envPtr,/* Points to the CompileEnv structure to * initialize. */ char *stringPtr, /* The source string to be compiled. */ int numBytes, /* Number of bytes in source string. */ const CmdFrame *invoker, /* Location context invoking the bcc */ int word) /* Index of the word in that context getting * compiled */ { Interp *iPtr = (Interp *) interp; envPtr->iPtr = iPtr; envPtr->source = stringPtr; envPtr->numSrcBytes = numBytes; envPtr->procPtr = iPtr->compiledProcPtr; envPtr->numCommands = 0; envPtr->exceptDepth = 0; envPtr->maxExceptDepth = 0; envPtr->maxStackDepth = 0; envPtr->currStackDepth = 0; TclInitLiteralTable(&(envPtr->localLitTable)); envPtr->codeStart = envPtr->staticCodeSpace; envPtr->codeNext = envPtr->codeStart; envPtr->codeEnd = (envPtr->codeStart + COMPILEENV_INIT_CODE_BYTES); envPtr->mallocedCodeArray = 0; envPtr->literalArrayPtr = envPtr->staticLiteralSpace; envPtr->literalArrayNext = 0; envPtr->literalArrayEnd = COMPILEENV_INIT_NUM_OBJECTS; envPtr->mallocedLiteralArray = 0; envPtr->exceptArrayPtr = envPtr->staticExceptArraySpace; envPtr->exceptArrayNext = 0; envPtr->exceptArrayEnd = COMPILEENV_INIT_EXCEPT_RANGES; envPtr->mallocedExceptArray = 0; envPtr->cmdMapPtr = envPtr->staticCmdMapSpace; envPtr->cmdMapEnd = COMPILEENV_INIT_CMD_MAP_SIZE; envPtr->mallocedCmdMap = 0; envPtr->atCmdStart = 1; /* * TIP #280: Set up the extended command location information, based on * the context invoking the byte code compiler. This structure is used to * keep the per-word line information for all compiled commands. * * See also tclBasic.c, TclEvalObjEx, for the equivalent code in the * non-compiling evaluator */ envPtr->extCmdMapPtr = (ExtCmdLoc *) ckalloc(sizeof(ExtCmdLoc)); envPtr->extCmdMapPtr->loc = NULL; envPtr->extCmdMapPtr->nloc = 0; envPtr->extCmdMapPtr->nuloc = 0; envPtr->extCmdMapPtr->path = NULL; if (invoker == NULL) { /* * Initialize the compiler for relative counting. */ envPtr->line = 1; envPtr->extCmdMapPtr->type = (envPtr->procPtr ? TCL_LOCATION_PROC : TCL_LOCATION_BC); } else { /* * Initialize the compiler using the context, making counting absolute * to that context. Note that the context can be byte code execution. * In that case we have to fill out the missing pieces (line, path, * ...) which may make change the type as well. */ if ((invoker->nline <= word) || (invoker->line[word] < 0)) { /* * Word is not a literal, relative counting. */ envPtr->line = 1; envPtr->extCmdMapPtr->type = (envPtr->procPtr ? TCL_LOCATION_PROC : TCL_LOCATION_BC); } else { CmdFrame *ctxPtr; int pc = 0; ctxPtr = (CmdFrame *) TclStackAlloc(interp, sizeof(CmdFrame)); *ctxPtr = *invoker; if (invoker->type == TCL_LOCATION_BC) { /* * Note: Type BC => ctx.data.eval.path is not used. * ctx.data.tebc.codePtr is used instead. */ TclGetSrcInfoForPc(ctxPtr); pc = 1; } envPtr->line = ctxPtr->line[word]; envPtr->extCmdMapPtr->type = ctxPtr->type; if (ctxPtr->type == TCL_LOCATION_SOURCE) { if (pc) { /* * The reference 'TclGetSrcInfoForPc' made is transfered. */ envPtr->extCmdMapPtr->path = ctxPtr->data.eval.path; ctxPtr->data.eval.path = NULL; } else { /* * We have a new reference here. */ envPtr->extCmdMapPtr->path = ctxPtr->data.eval.path; Tcl_IncrRefCount(envPtr->extCmdMapPtr->path); } } TclStackFree(interp, ctxPtr); } } envPtr->auxDataArrayPtr = envPtr->staticAuxDataArraySpace; envPtr->auxDataArrayNext = 0; envPtr->auxDataArrayEnd = COMPILEENV_INIT_AUX_DATA_SIZE; envPtr->mallocedAuxDataArray = 0; } /* *---------------------------------------------------------------------- * * TclFreeCompileEnv -- * * Free the storage allocated in a CompileEnv compilation environment * structure. * * Results: * None. * * Side effects: * Allocated storage in the CompileEnv structure is freed. Note that its * local literal table is not deleted and its literal objects are not * released. In addition, storage referenced by its auxiliary data items * is not freed. This is done so that, when compilation is successful, * "ownership" of these objects and aux data items is handed over to the * corresponding ByteCode structure. * *---------------------------------------------------------------------- */ void TclFreeCompileEnv( register CompileEnv *envPtr)/* Points to the CompileEnv structure. */ { if (envPtr->localLitTable.buckets != envPtr->localLitTable.staticBuckets) { ckfree((char *) envPtr->localLitTable.buckets); envPtr->localLitTable.buckets = envPtr->localLitTable.staticBuckets; } if (envPtr->mallocedCodeArray) { ckfree((char *) envPtr->codeStart); } if (envPtr->mallocedLiteralArray) { ckfree((char *) envPtr->literalArrayPtr); } if (envPtr->mallocedExceptArray) { ckfree((char *) envPtr->exceptArrayPtr); } if (envPtr->mallocedCmdMap) { ckfree((char *) envPtr->cmdMapPtr); } if (envPtr->mallocedAuxDataArray) { ckfree((char *) envPtr->auxDataArrayPtr); } if (envPtr->extCmdMapPtr) { ckfree((char *) envPtr->extCmdMapPtr); } } /* *---------------------------------------------------------------------- * * TclWordKnownAtCompileTime -- * * Test whether the value of a token is completely known at compile time. * * Results: * Returns true if the tokenPtr argument points to a word value that is * completely known at compile time. Generally, values that are known at * compile time can be compiled to their values, while values that cannot * be known until substitution at runtime must be compiled to bytecode * instructions that perform that substitution. For several commands, * whether or not arguments are known at compile time determine whether * it is worthwhile to compile at all. * * Side effects: * When returning true, appends the known value of the word to the * unshared Tcl_Obj (*valuePtr), unless valuePtr is NULL. * *---------------------------------------------------------------------- */ int TclWordKnownAtCompileTime( Tcl_Token *tokenPtr, /* Points to Tcl_Token we should check */ Tcl_Obj *valuePtr) /* If not NULL, points to an unshared Tcl_Obj * to which we should append the known value * of the word. */ { int numComponents = tokenPtr->numComponents; Tcl_Obj *tempPtr = NULL; if (tokenPtr->type == TCL_TOKEN_SIMPLE_WORD) { if (valuePtr != NULL) { Tcl_AppendToObj(valuePtr, tokenPtr[1].start, tokenPtr[1].size); } return 1; } if (tokenPtr->type != TCL_TOKEN_WORD) { return 0; } tokenPtr++; if (valuePtr != NULL) { tempPtr = Tcl_NewObj(); Tcl_IncrRefCount(tempPtr); } while (numComponents--) { switch (tokenPtr->type) { case TCL_TOKEN_TEXT: if (tempPtr != NULL) { Tcl_AppendToObj(tempPtr, tokenPtr->start, tokenPtr->size); } break; case TCL_TOKEN_BS: if (tempPtr != NULL) { char utfBuf[TCL_UTF_MAX]; int length = Tcl_UtfBackslash(tokenPtr->start, NULL, utfBuf); Tcl_AppendToObj(tempPtr, utfBuf, length); } break; default: if (tempPtr != NULL) { Tcl_DecrRefCount(tempPtr); } return 0; } tokenPtr++; } if (valuePtr != NULL) { Tcl_AppendObjToObj(valuePtr, tempPtr); Tcl_DecrRefCount(tempPtr); } return 1; } /* *---------------------------------------------------------------------- * * TclCompileScript -- * * Compile a Tcl script in a string. * * Results: * The return value is TCL_OK on a successful compilation and TCL_ERROR * on failure. If TCL_ERROR is returned, then the interpreter's result * contains an error message. * * Side effects: * Adds instructions to envPtr to evaluate the script at runtime. * *---------------------------------------------------------------------- */ void TclCompileScript( Tcl_Interp *interp, /* Used for error and status reporting. Also * serves as context for finding and compiling * commands. May not be NULL. */ const char *script, /* The source script to compile. */ int numBytes, /* Number of bytes in script. If < 0, the * script consists of all bytes up to the * first null character. */ CompileEnv *envPtr) /* Holds resulting instructions. */ { Interp *iPtr = (Interp *) interp; int lastTopLevelCmdIndex = -1; /* Index of most recent toplevel command in * the command location table. Initialized to * avoid compiler warning. */ int startCodeOffset = -1; /* Offset of first byte of current command's * code. Init. to avoid compiler warning. */ unsigned char *entryCodeNext = envPtr->codeNext; const char *p, *next; Namespace *cmdNsPtr; Command *cmdPtr; Tcl_Token *tokenPtr; int bytesLeft, isFirstCmd, gotParse, wordIdx, currCmdIndex; int commandLength, objIndex; Tcl_DString ds; /* TIP #280 */ ExtCmdLoc *eclPtr = envPtr->extCmdMapPtr; int *wlines; int wlineat, cmdLine; Tcl_Parse *parsePtr = (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); Tcl_DStringInit(&ds); if (numBytes < 0) { numBytes = strlen(script); } Tcl_ResetResult(interp); isFirstCmd = 1; if (envPtr->procPtr != NULL) { cmdNsPtr = envPtr->procPtr->cmdPtr->nsPtr; } else { cmdNsPtr = NULL; /* use current NS */ } /* * Each iteration through the following loop compiles the next command * from the script. */ p = script; bytesLeft = numBytes; gotParse = 0; cmdLine = envPtr->line; do { if (Tcl_ParseCommand(interp, p, bytesLeft, 0, parsePtr) != TCL_OK) { /* * Compile bytecodes to report the parse error at runtime. */ Tcl_Obj *returnCmd; Tcl_Obj *errMsg = Tcl_GetObjResult(interp); Tcl_Obj *errInfo = Tcl_DuplicateObj(errMsg); char *cmdString; int cmdLength; Tcl_Parse *subParsePtr = (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse)); int errorLine = 1; TclNewLiteralStringObj(returnCmd, "return -code 1 -level 0 -errorinfo"); Tcl_IncrRefCount(returnCmd); Tcl_IncrRefCount(errInfo); Tcl_AppendToObj(errInfo, "\n while executing\n\"", -1); Tcl_AppendLimitedToObj(errInfo, parsePtr->commandStart, /* Drop the command terminator (";","]") if appropriate */ (parsePtr->term == parsePtr->commandStart + parsePtr->commandSize - 1)? parsePtr->commandSize - 1 : parsePtr->commandSize, 153, NULL); Tcl_AppendToObj(errInfo, "\"", -1); Tcl_ListObjAppendElement(NULL, returnCmd, errInfo); for (p = envPtr->source; p != parsePtr->commandStart; p++) { if (*p == '\n') { errorLine++; } } Tcl_ListObjAppendElement(NULL, returnCmd, Tcl_NewStringObj("-errorline", -1)); Tcl_ListObjAppendElement(NULL, returnCmd, Tcl_NewIntObj(errorLine)); Tcl_ListObjAppendElement(NULL, returnCmd, errMsg); Tcl_DecrRefCount(errInfo); cmdString = Tcl_GetStringFromObj(returnCmd, &cmdLength); Tcl_ParseCommand(interp, cmdString, cmdLength, 0, subParsePtr); TclCompileReturnCmd(interp, subParsePtr, envPtr); Tcl_DecrRefCount(returnCmd); Tcl_FreeParse(subParsePtr); TclStackFree(interp, subParsePtr); break; } gotParse = 1; if (parsePtr->numWords > 0) { int expand = 0; /* Set if there are dynamic expansions * to handle */ /* * If not the first command, pop the previous command's result * and, if we're compiling a top level command, update the last * command's code size to account for the pop instruction. */ if (!isFirstCmd) { TclEmitOpcode(INST_POP, envPtr); envPtr->cmdMapPtr[lastTopLevelCmdIndex].numCodeBytes = (envPtr->codeNext - envPtr->codeStart) - startCodeOffset; } /* * Determine the actual length of the command. */ commandLength = parsePtr->commandSize; if (parsePtr->term == parsePtr->commandStart + commandLength - 1) { /* * The command terminator character (such as ; or ]) is the * last character in the parsed command. Reduce the length by * one so that the trace message doesn't include the * terminator character. */ commandLength -= 1; } #ifdef TCL_COMPILE_DEBUG /* * If tracing, print a line for each top level command compiled. */ if ((tclTraceCompile >= 1) && (envPtr->procPtr == NULL)) { fprintf(stdout, " Compiling: "); TclPrintSource(stdout, parsePtr->commandStart, TclMin(commandLength, 55)); fprintf(stdout, "\n"); } #endif /* * Check whether expansion has been requested for any of the * words. */ for (wordIdx = 0, tokenPtr = parsePtr->tokenPtr; wordIdx < parsePtr->numWords; wordIdx++, tokenPtr += (tokenPtr->numComponents + 1)) { if (tokenPtr->type == TCL_TOKEN_EXPAND_WORD) { expand = 1; break; } } envPtr->numCommands++; currCmdIndex = (envPtr->numCommands - 1); lastTopLevelCmdIndex = currCmdIndex; startCodeOffset = (envPtr->codeNext - envPtr->codeStart); EnterCmdStartData(envPtr, currCmdIndex, parsePtr->commandStart - envPtr->source, startCodeOffset); /* * Should only start issuing instructions after the "command has * started" so that the command range is correct in the bytecode. */ if (expand) { TclEmitOpcode(INST_EXPAND_START, envPtr); } /* * TIP #280. Scan the words and compute the extended location * information. The map first contain full per-word line * information for use by the compiler. This is later replaced by * a reduced form which signals non-literal words, stored in * 'wlines'. */ TclAdvanceLines(&cmdLine, p, parsePtr->commandStart); EnterCmdWordData(eclPtr, parsePtr->commandStart - envPtr->source, parsePtr->tokenPtr, parsePtr->commandStart, parsePtr->commandSize, parsePtr->numWords, cmdLine, &wlines); wlineat = eclPtr->nuloc - 1; /* * Each iteration of the following loop compiles one word from the * command. */ for (wordIdx = 0, tokenPtr = parsePtr->tokenPtr; wordIdx < parsePtr->numWords; wordIdx++, tokenPtr += (tokenPtr->numComponents + 1)) { envPtr->line = eclPtr->loc[wlineat].line[wordIdx]; if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) { /* * The word is not a simple string of characters. */ TclCompileTokens(interp, tokenPtr+1, tokenPtr->numComponents, envPtr); if (tokenPtr->type == TCL_TOKEN_EXPAND_WORD) { TclEmitInstInt4(INST_EXPAND_STKTOP, envPtr->currStackDepth, envPtr); } continue; } /* * This is a simple string of literal characters (i.e. we know * it absolutely and can use it directly). If this is the * first word and the command has a compile procedure, let it * compile the command. */ if ((wordIdx == 0) && !expand) { /* * We copy the string before trying to find the command by * name. We used to modify the string in place, but this * is not safe because the name resolution handlers could * have side effects that rely on the unmodified string. */ Tcl_DStringSetLength(&ds, 0); Tcl_DStringAppend(&ds, tokenPtr[1].start,tokenPtr[1].size); cmdPtr = (Command *) Tcl_FindCommand(interp, Tcl_DStringValue(&ds), (Tcl_Namespace *) cmdNsPtr, /*flags*/ 0); if ((cmdPtr != NULL) && (cmdPtr->compileProc != NULL) && !(cmdPtr->flags & CMD_HAS_EXEC_TRACES) && !(iPtr->flags & DONT_COMPILE_CMDS_INLINE)) { int savedNumCmds = envPtr->numCommands; unsigned int savedCodeNext = envPtr->codeNext - envPtr->codeStart; int update = 0, code; /* * Mark the start of the command; the proper bytecode * length will be updated later. There is no need to * do this for the first bytecode in the compile env, * as the check is done before calling * TclExecuteByteCode(). Do emit an INST_START_CMD in * special cases where the first bytecode is in a * loop, to insure that the corresponding command is * counted properly. Compilers for commands able to * produce such a beast (currently 'while 1' only) set * envPtr->atCmdStart to 0 in order to signal this * case. [Bug 1752146] * Note that the environment is initialised with * atCmdStart=1 to avoid emitting ISC for the first * command. */ if (envPtr->atCmdStart) { if (savedCodeNext != 0) { /* * Increase the number of commands being * started at the current point. Note that * this depends on the exact layout of the * INST_START_CMD's operands, so be careful! */ unsigned char *fixPtr = envPtr->codeNext - 4; TclStoreInt4AtPtr(TclGetUInt4AtPtr(fixPtr)+1, fixPtr); } } else { TclEmitInstInt4(INST_START_CMD, 0, envPtr); TclEmitInt4(1, envPtr); update = 1; } code = (cmdPtr->compileProc)(interp, parsePtr, envPtr); if (code == TCL_OK) { if (update) { /* * Fix the bytecode length. */ unsigned char *fixPtr = envPtr->codeStart + savedCodeNext + 1; unsigned int fixLen = envPtr->codeNext - envPtr->codeStart - savedCodeNext; TclStoreInt4AtPtr(fixLen, fixPtr); } goto finishCommand; } else { /* * Restore numCommands and codeNext to their * correct values, removing any commands compiled * before the failure to produce bytecode got * reported. [Bugs 705406 and 735055] */ envPtr->numCommands = savedNumCmds; envPtr->codeNext = envPtr->codeStart+savedCodeNext; } } /* * No compile procedure so push the word. If the command * was found, push a CmdName object to reduce runtime * lookups. Avoid sharing this literal among different * namespaces to reduce shimmering. */ objIndex = TclRegisterNewNSLiteral(envPtr, tokenPtr[1].start, tokenPtr[1].size); if (cmdPtr != NULL) { TclSetCmdNameObj(interp, envPtr->literalArrayPtr[objIndex].objPtr,cmdPtr); } if ((wordIdx == 0) && (parsePtr->numWords == 1)) { /* * Single word script: unshare the command name to * avoid shimmering between bytecode and cmdName * representations [Bug 458361] */ TclHideLiteral(interp, envPtr, objIndex); } } else { objIndex = TclRegisterNewLiteral(envPtr, tokenPtr[1].start, tokenPtr[1].size); } TclEmitPush(objIndex, envPtr); } /* for loop */ /* * Emit an invoke instruction for the command. We skip this if a * compile procedure was found for the command. */ if (expand) { /* * The stack depth during argument expansion can only be * managed at runtime, as the number of elements in the * expanded lists is not known at compile time. We adjust here * the stack depth estimate so that it is correct after the * command with expanded arguments returns. * * The end effect of this command's invocation is that all the * words of the command are popped from the stack, and the * result is pushed: the stack top changes by (1-wordIdx). * * Note that the estimates are not correct while the command * is being prepared and run, INST_EXPAND_STKTOP is not * stack-neutral in general. */ TclEmitOpcode(INST_INVOKE_EXPANDED, envPtr); TclAdjustStackDepth((1-wordIdx), envPtr); } else if (wordIdx > 0) { if (wordIdx <= 255) { TclEmitInstInt1(INST_INVOKE_STK1, wordIdx, envPtr); } else { TclEmitInstInt4(INST_INVOKE_STK4, wordIdx, envPtr); } } /* * Update the compilation environment structure and record the * offsets of the source and code for the command. */ finishCommand: EnterCmdExtentData(envPtr, currCmdIndex, commandLength, (envPtr->codeNext-envPtr->codeStart) - startCodeOffset); isFirstCmd = 0; /* * TIP #280: Free full form of per-word line data and insert the * reduced form now */ ckfree((char *) eclPtr->loc[wlineat].line); eclPtr->loc[wlineat].line = wlines; } /* end if parsePtr->numWords > 0 */ /* * Advance to the next command in the script. */ next = parsePtr->commandStart + parsePtr->commandSize; bytesLeft -= next - p; p = next; /* * TIP #280: Track lines in the just compiled command. */ TclAdvanceLines(&cmdLine, parsePtr->commandStart, p); Tcl_FreeParse(parsePtr); gotParse = 0; } while (bytesLeft > 0); /* * If the source script yielded no instructions (e.g., if it was empty), * push an empty string as the command's result. * * WARNING: push an unshared object! If the script being compiled is a * shared empty string, it will otherwise be self-referential and cause * difficulties with literal management [Bugs 467523, 983660]. We used to * have special code in TclReleaseLiteral to handle this particular * self-reference, but now opt for avoiding its creation altogether. */ if (envPtr->codeNext == entryCodeNext) { TclEmitPush(TclAddLiteralObj(envPtr, Tcl_NewObj(), NULL), envPtr); } envPtr->numSrcBytes = (p - script); TclStackFree(interp, parsePtr); Tcl_DStringFree(&ds); } /* *---------------------------------------------------------------------- * * TclCompileTokens -- * * Given an array of tokens parsed from a Tcl command (e.g., the tokens * that make up a word) this procedure emits instructions to evaluate the * tokens and concatenate their values to form a single result value on * the interpreter's runtime evaluation stack. * * Results: * The return value is a standard Tcl result. If an error occurs, an * error message is left in the interpreter's result. * * Side effects: * Instructions are added to envPtr to push and evaluate the tokens at * runtime. * *---------------------------------------------------------------------- */ void TclCompileTokens( Tcl_Interp *interp, /* Used for error and status reporting. */ Tcl_Token *tokenPtr, /* Pointer to first in an array of tokens to * compile. */ int count, /* Number of tokens to consider at tokenPtr. * Must be at least 1. */ CompileEnv *envPtr) /* Holds the resulting instructions. */ { Tcl_DString textBuffer; /* Holds concatenated chars from adjacent * TCL_TOKEN_TEXT, TCL_TOKEN_BS tokens. */ char buffer[TCL_UTF_MAX]; const char *name, *p; int numObjsToConcat, nameBytes, localVarName, localVar; int length, i; unsigned char *entryCodeNext = envPtr->codeNext; Tcl_DStringInit(&textBuffer); numObjsToConcat = 0; for ( ; count > 0; count--, tokenPtr++) { switch (tokenPtr->type) { case TCL_TOKEN_TEXT: Tcl_DStringAppend(&textBuffer, tokenPtr->start, tokenPtr->size); break; case TCL_TOKEN_BS: length = Tcl_UtfBackslash(tokenPtr->start, NULL, buffer); Tcl_DStringAppend(&textBuffer, buffer, length); break; case TCL_TOKEN_COMMAND: /* * Push any accumulated chars appearing before the command. */ if (Tcl_DStringLength(&textBuffer) > 0) { int literal; literal = TclRegisterNewLiteral(envPtr, Tcl_DStringValue(&textBuffer), Tcl_DStringLength(&textBuffer)); TclEmitPush(literal, envPtr); numObjsToConcat++; Tcl_DStringFree(&textBuffer); } TclCompileScript(interp, tokenPtr->start+1, tokenPtr->size-2, envPtr); numObjsToConcat++; break; case TCL_TOKEN_VARIABLE: /* * Push any accumulated chars appearing before the $. */ if (Tcl_DStringLength(&textBuffer) > 0) { int literal; literal = TclRegisterNewLiteral(envPtr, Tcl_DStringValue(&textBuffer), Tcl_DStringLength(&textBuffer)); TclEmitPush(literal, envPtr); numObjsToConcat++; Tcl_DStringFree(&textBuffer); } /* * Determine how the variable name should be handled: if it * contains any namespace qualifiers it is not a local variable * (localVarName=-1); if it looks like an array element and the * token has a single component, it should not be created here * [Bug 569438] (localVarName=0); otherwise, the local variable * can safely be created (localVarName=1). */ name = tokenPtr[1].start; nameBytes = tokenPtr[1].size; localVarName = -1; if (envPtr->procPtr != NULL) { localVarName = 1; for (i = 0, p = name; i < nameBytes; i++, p++) { if ((*p == ':') && (i < nameBytes-1) && (*(p+1) == ':')) { localVarName = -1; break; } else if ((*p == '(') && (tokenPtr->numComponents == 1) && (*(name + nameBytes - 1) == ')')) { localVarName = 0; break; } } } /* * Either push the variable's name, or find its index in the array * of local variables in a procedure frame. */ localVar = -1; if (localVarName != -1) { localVar = TclFindCompiledLocal(name, nameBytes, localVarName, envPtr->procPtr); } if (localVar < 0) { TclEmitPush(TclRegisterNewLiteral(envPtr, name, nameBytes), envPtr); } /* * Emit instructions to load the variable. */ if (tokenPtr->numComponents == 1) { if (localVar < 0) { TclEmitOpcode(INST_LOAD_SCALAR_STK, envPtr); } else if (localVar <= 255) { TclEmitInstInt1(INST_LOAD_SCALAR1, localVar, envPtr); } else { TclEmitInstInt4(INST_LOAD_SCALAR4, localVar, envPtr); } } else { TclCompileTokens(interp, tokenPtr+2, tokenPtr->numComponents-1, envPtr); if (localVar < 0) { TclEmitOpcode(INST_LOAD_ARRAY_STK, envPtr); } else if (localVar <= 255) { TclEmitInstInt1(INST_LOAD_ARRAY1, localVar, envPtr); } else { TclEmitInstInt4(INST_LOAD_ARRAY4, localVar, envPtr); } } numObjsToConcat++; count -= tokenPtr->numComponents; tokenPtr += tokenPtr->numComponents; break; default: Tcl_Panic("Unexpected token type in TclCompileTokens"); } } /* * Push any accumulated characters appearing at the end. */ if (Tcl_DStringLength(&textBuffer) > 0) { int literal; literal = TclRegisterNewLiteral(envPtr, Tcl_DStringValue(&textBuffer), Tcl_DStringLength(&textBuffer)); TclEmitPush(literal, envPtr); numObjsToConcat++; } /* * If necessary, concatenate the parts of the word. */ while (numObjsToConcat > 255) { TclEmitInstInt1(INST_CONCAT1, 255, envPtr); numObjsToConcat -= 254; /* concat pushes 1 obj, the result */ } if (numObjsToConcat > 1) { TclEmitInstInt1(INST_CONCAT1, numObjsToConcat, envPtr); } /* * If the tokens yielded no instructions, push an empty string. */ if (envPtr->codeNext == entryCodeNext) { TclEmitPush(TclRegisterNewLiteral(envPtr, "", 0), envPtr); } Tcl_DStringFree(&textBuffer); } /* *---------------------------------------------------------------------- * * TclCompileCmdWord -- * * Given an array of parse tokens for a word containing one or more Tcl * commands, emit inline instructions to execute them. This procedure * differs from TclCompileTokens in that a simple word such as a loop * body enclosed in braces is not just pushed as a string, but is itself * parsed into tokens and compiled. * * Results: * The return value is a standard Tcl result. If an error occurs, an * error message is left in the interpreter's result. * * Side effects: * Instructions are added to envPtr to execute the tokens at runtime. * *---------------------------------------------------------------------- */ void TclCompileCmdWord( Tcl_Interp *interp, /* Used for error and status reporting. */ Tcl_Token *tokenPtr, /* Pointer to first in an array of tokens for * a command word to compile inline. */ int count, /* Number of tokens to consider at tokenPtr. * Must be at least 1. */ CompileEnv *envPtr) /* Holds the resulting instructions. */ { if ((count == 1) && (tokenPtr->type == TCL_TOKEN_TEXT)) { /* * Handle the common case: if there is a single text token, compile it * into an inline sequence of instructions. */ TclCompileScript(interp, tokenPtr->start, tokenPtr->size, envPtr); } else { /* * Multiple tokens or the single token involves substitutions. Emit * instructions to invoke the eval command procedure at runtime on the * result of evaluating the tokens. */ TclCompileTokens(interp, tokenPtr, count, envPtr); TclEmitOpcode(INST_EVAL_STK, envPtr); } } /* *---------------------------------------------------------------------- * * TclCompileExprWords -- * * Given an array of parse tokens representing one or more words that * contain a Tcl expression, emit inline instructions to execute the * expression. This procedure differs from TclCompileExpr in that it * supports Tcl's two-level substitution semantics for expressions that * appear as command words. * * Results: * The return value is a standard Tcl result. If an error occurs, an * error message is left in the interpreter's result. * * Side effects: * Instructions are added to envPtr to execute the expression. * *---------------------------------------------------------------------- */ void TclCompileExprWords( Tcl_Interp *interp, /* Used for error and status reporting. */ Tcl_Token *tokenPtr, /* Points to first in an array of word tokens * tokens for the expression to compile * inline. */ int numWords, /* Number of word tokens starting at tokenPtr. * Must be at least 1. Each word token * contains one or more subtokens. */ CompileEnv *envPtr) /* Holds the resulting instructions. */ { Tcl_Token *wordPtr; int i, concatItems; /* * If the expression is a single word that doesn't require substitutions, * just compile its string into inline instructions. */ if ((numWords == 1) && (tokenPtr->type == TCL_TOKEN_SIMPLE_WORD)) { const char *script = tokenPtr[1].start; int numBytes = tokenPtr[1].size; int savedNumCmds = envPtr->numCommands; unsigned int savedCodeNext = envPtr->codeNext - envPtr->codeStart; if (TclCompileExpr(interp, script, numBytes, envPtr) == TCL_OK) { return; } Tcl_ResetResult(interp); envPtr->numCommands = savedNumCmds; envPtr->codeNext = envPtr->codeStart + savedCodeNext; } /* * Emit code to call the expr command proc at runtime. Concatenate the * (already substituted once) expr tokens with a space between each. */ wordPtr = tokenPtr; for (i = 0; i < numWords; i++) { TclCompileTokens(interp, wordPtr+1, wordPtr->numComponents, envPtr); if (i < (numWords - 1)) { TclEmitPush(TclRegisterNewLiteral(envPtr, " ", 1), envPtr); } wordPtr += (wordPtr->numComponents + 1); } concatItems = 2*numWords - 1; while (concatItems > 255) { TclEmitInstInt1(INST_CONCAT1, 255, envPtr); concatItems -= 254; } if (concatItems > 1) { TclEmitInstInt1(INST_CONCAT1, concatItems, envPtr); } TclEmitOpcode(INST_EXPR_STK, envPtr); } /* *---------------------------------------------------------------------- * * TclCompileNoOp -- * * Function called to compile no-op's * * Results: * The return value is TCL_OK, indicating successful compilation. * * Side effects: * Instructions are added to envPtr to execute a no-op at runtime. No * result is pushed onto the stack: the compiler has to take care of this * itself if the last compiled command is a NoOp. * *---------------------------------------------------------------------- */ int TclCompileNoOp( Tcl_Interp *interp, /* Used for error reporting. */ Tcl_Parse *parsePtr, /* Points to a parse structure for the command * created by Tcl_ParseCommand. */ CompileEnv *envPtr) /* Holds resulting instructions. */ { Tcl_Token *tokenPtr; int i; int savedStackDepth = envPtr->currStackDepth; tokenPtr = parsePtr->tokenPtr; for(i = 1; i < parsePtr->numWords; i++) { tokenPtr = tokenPtr + tokenPtr->numComponents + 1; envPtr->currStackDepth = savedStackDepth; if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) { TclCompileTokens(interp, tokenPtr+1, tokenPtr->numComponents, envPtr); TclEmitOpcode(INST_POP, envPtr); } } envPtr->currStackDepth = savedStackDepth; TclEmitPush(TclRegisterNewLiteral(envPtr, "", 0), envPtr); return TCL_OK; } /* *---------------------------------------------------------------------- * * TclInitByteCodeObj -- * * Create a ByteCode structure and initialize it from a CompileEnv * compilation environment structure. The ByteCode structure is smaller * and contains just that information needed to execute the bytecode * instructions resulting from compiling a Tcl script. The resulting * structure is placed in the specified object. * * Results: * A newly constructed ByteCode object is stored in the internal * representation of the objPtr. * * Side effects: * A single heap object is allocated to hold the new ByteCode structure * and its code, object, command location, and aux data arrays. Note that * "ownership" (i.e., the pointers to) the Tcl objects and aux data items * will be handed over to the new ByteCode structure from the CompileEnv * structure. * *---------------------------------------------------------------------- */ void TclInitByteCodeObj( Tcl_Obj *objPtr, /* Points object that should be initialized, * and whose string rep contains the source * code. */ register CompileEnv *envPtr)/* Points to the CompileEnv structure from * which to create a ByteCode structure. */ { register ByteCode *codePtr; size_t codeBytes, objArrayBytes, exceptArrayBytes, cmdLocBytes; size_t auxDataArrayBytes, structureSize; register unsigned char *p; #ifdef TCL_COMPILE_DEBUG unsigned char *nextPtr; #endif int numLitObjects = envPtr->literalArrayNext; Namespace *namespacePtr; int i; int new; Interp *iPtr; iPtr = envPtr->iPtr; codeBytes = (envPtr->codeNext - envPtr->codeStart); objArrayBytes = (envPtr->literalArrayNext * sizeof(Tcl_Obj *)); exceptArrayBytes = (envPtr->exceptArrayNext * sizeof(ExceptionRange)); auxDataArrayBytes = (envPtr->auxDataArrayNext * sizeof(AuxData)); cmdLocBytes = GetCmdLocEncodingSize(envPtr); /* * Compute the total number of bytes needed for this bytecode. */ structureSize = sizeof(ByteCode); structureSize += TCL_ALIGN(codeBytes); /* align object array */ structureSize += TCL_ALIGN(objArrayBytes); /* align exc range arr */ structureSize += TCL_ALIGN(exceptArrayBytes); /* align AuxData array */ structureSize += auxDataArrayBytes; structureSize += cmdLocBytes; if (envPtr->iPtr->varFramePtr != NULL) { namespacePtr = envPtr->iPtr->varFramePtr->nsPtr; } else { namespacePtr = envPtr->iPtr->globalNsPtr; } p = (unsigned char *) ckalloc((size_t) structureSize); codePtr = (ByteCode *) p; codePtr->interpHandle = TclHandlePreserve(iPtr->handle); codePtr->compileEpoch = iPtr->compileEpoch; codePtr->nsPtr = namespacePtr; codePtr->nsEpoch = namespacePtr->resolverEpoch; codePtr->refCount = 1; if (namespacePtr->compiledVarResProc || iPtr->resolverPtr) { codePtr->flags = TCL_BYTECODE_RESOLVE_VARS; } else { codePtr->flags = 0; } codePtr->source = envPtr->source; codePtr->procPtr = envPtr->procPtr; codePtr->numCommands = envPtr->numCommands; codePtr->numSrcBytes = envPtr->numSrcBytes; codePtr->numCodeBytes = codeBytes; codePtr->numLitObjects = numLitObjects; codePtr->numExceptRanges = envPtr->exceptArrayNext; codePtr->numAuxDataItems = envPtr->auxDataArrayNext; codePtr->numCmdLocBytes = cmdLocBytes; codePtr->maxExceptDepth = envPtr->maxExceptDepth; codePtr->maxStackDepth = envPtr->maxStackDepth; p += sizeof(ByteCode); codePtr->codeStart = p; memcpy(p, envPtr->codeStart, (size_t) codeBytes); p += TCL_ALIGN(codeBytes); /* align object array */ codePtr->objArrayPtr = (Tcl_Obj **) p; for (i = 0; i < numLitObjects; i++) { codePtr->objArrayPtr[i] = envPtr->literalArrayPtr[i].objPtr; } p += TCL_ALIGN(objArrayBytes); /* align exception range array */ if (exceptArrayBytes > 0) { codePtr->exceptArrayPtr = (ExceptionRange *) p; memcpy(p, envPtr->exceptArrayPtr, (size_t) exceptArrayBytes); } else { codePtr->exceptArrayPtr = NULL; } p += TCL_ALIGN(exceptArrayBytes); /* align AuxData array */ if (auxDataArrayBytes > 0) { codePtr->auxDataArrayPtr = (AuxData *) p; memcpy(p, envPtr->auxDataArrayPtr, (size_t) auxDataArrayBytes); } else { codePtr->auxDataArrayPtr = NULL; } p += auxDataArrayBytes; #ifndef TCL_COMPILE_DEBUG EncodeCmdLocMap(envPtr, codePtr, (unsigned char *) p); #else nextPtr = EncodeCmdLocMap(envPtr, codePtr, (unsigned char *) p); if (((size_t)(nextPtr - p)) != cmdLocBytes) { Tcl_Panic("TclInitByteCodeObj: encoded cmd location bytes %d != expected size %d", (nextPtr - p), cmdLocBytes); } #endif /* * Record various compilation-related statistics about the new ByteCode * structure. Don't include overhead for statistics-related fields. */ #ifdef TCL_COMPILE_STATS codePtr->structureSize = structureSize - (sizeof(size_t) + sizeof(Tcl_Time)); Tcl_GetTime(&(codePtr->createTime)); RecordByteCodeStats(codePtr); #endif /* TCL_COMPILE_STATS */ /* * Free the old internal rep then convert the object to a bytecode object * by making its internal rep point to the just compiled ByteCode. */ TclFreeIntRep(objPtr); objPtr->internalRep.otherValuePtr = (void *) codePtr; objPtr->typePtr = &tclByteCodeType; /* * TIP #280. Associate the extended per-word line information with the * byte code object (internal rep), for use with the bc compiler. */ Tcl_SetHashValue(Tcl_CreateHashEntry(iPtr->lineBCPtr, (char *) codePtr, &new), envPtr->extCmdMapPtr); envPtr->extCmdMapPtr = NULL; codePtr->localCachePtr = NULL; } /* *---------------------------------------------------------------------- * * TclFindCompiledLocal -- * * This procedure is called at compile time to look up and optionally * allocate an entry ("slot") for a variable in a procedure's array of * local variables. If the variable's name is NULL, a new temporary * variable is always created. (Such temporary variables can only be * referenced using their slot index.) * * Results: * If create is 0 and the name is non-NULL, then if the variable is * found, the index of its entry in the procedure's array of local * variables is returned; otherwise -1 is returned. If name is NULL, the * index of a new temporary variable is returned. Finally, if create is 1 * and name is non-NULL, the index of a new entry is returned. * * Side effects: * Creates and registers a new local variable if create is 1 and the * variable is unknown, or if the name is NULL. * *---------------------------------------------------------------------- */ int TclFindCompiledLocal( register const char *name, /* Points to first character of the name of a * scalar or array variable. If NULL, a * temporary var should be created. */ int nameBytes, /* Number of bytes in the name. */ int create, /* If 1, allocate a local frame entry for the * variable if it is new. */ register Proc *procPtr) /* Points to structure describing procedure * containing the variable reference. */ { register CompiledLocal *localPtr; int localVar = -1; register int i; /* * If not creating a temporary, does a local variable of the specified * name already exist? */ if (name != NULL) { int localCt = procPtr->numCompiledLocals; localPtr = procPtr->firstLocalPtr; for (i = 0; i < localCt; i++) { if (!TclIsVarTemporary(localPtr)) { char *localName = localPtr->name; if ((nameBytes == localPtr->nameLength) && (strncmp(name,localName,(unsigned)nameBytes) == 0)) { return i; } } localPtr = localPtr->nextPtr; } } /* * Create a new variable if appropriate. */ if (create || (name == NULL)) { localVar = procPtr->numCompiledLocals; localPtr = (CompiledLocal *) ckalloc((unsigned) (sizeof(CompiledLocal) - sizeof(localPtr->name) + nameBytes + 1)); if (procPtr->firstLocalPtr == NULL) { procPtr->firstLocalPtr = procPtr->lastLocalPtr = localPtr; } else { procPtr->lastLocalPtr->nextPtr = localPtr; procPtr->lastLocalPtr = localPtr; } localPtr->nextPtr = NULL; localPtr->nameLength = nameBytes; localPtr->frameIndex = localVar; localPtr->flags = 0; if (name == NULL) { localPtr->flags |= VAR_TEMPORARY; } localPtr->defValuePtr = NULL; localPtr->resolveInfo = NULL; if (name != NULL) { memcpy(localPtr->name, name, (size_t) nameBytes); } localPtr->name[nameBytes] = '\0'; procPtr->numCompiledLocals++; } return localVar; } /* *---------------------------------------------------------------------- * * TclExpandCodeArray -- * * Procedure that uses malloc to allocate more storage for a CompileEnv's * code array. * * Results: * None. * * Side effects: * The byte code array in *envPtr is reallocated to a new array of double * the size, and if envPtr->mallocedCodeArray is non-zero the old array * is freed. Byte codes are copied from the old array to the new one. * *---------------------------------------------------------------------- */ void TclExpandCodeArray( void *envArgPtr) /* Points to the CompileEnv whose code array * must be enlarged. */ { CompileEnv *envPtr = (CompileEnv *) envArgPtr; /* The CompileEnv containing the code array to * be doubled in size. */ /* * envPtr->codeNext is equal to envPtr->codeEnd. The currently defined * code bytes are stored between envPtr->codeStart and envPtr->codeNext-1 * [inclusive]. */ size_t currBytes = (envPtr->codeNext - envPtr->codeStart); size_t newBytes = 2*(envPtr->codeEnd - envPtr->codeStart); if (envPtr->mallocedCodeArray) { envPtr->codeStart = (unsigned char *) ckrealloc((char *)envPtr->codeStart, newBytes); } else { /* * envPtr->codeStart isn't a ckalloc'd pointer, so we must * code a ckrealloc equivalent for ourselves. */ unsigned char *newPtr = (unsigned char *) ckalloc((unsigned) newBytes); memcpy(newPtr, envPtr->codeStart, currBytes); envPtr->codeStart = newPtr; envPtr->mallocedCodeArray = 1; } envPtr->codeNext = (envPtr->codeStart + currBytes); envPtr->codeEnd = (envPtr->codeStart + newBytes); } /* *---------------------------------------------------------------------- * * EnterCmdStartData -- * * Registers the starting source and bytecode location of a command. This * information is used at runtime to map between instruction pc and * source locations. * * Results: * None. * * Side effects: * Inserts source and code location information into the compilation * environment envPtr for the command at index cmdIndex. The compilation * environment's CmdLocation array is grown if necessary. * *---------------------------------------------------------------------- */ static void EnterCmdStartData( CompileEnv *envPtr, /* Points to the compilation environment * structure in which to enter command * location information. */ int cmdIndex, /* Index of the command whose start data is * being set. */ int srcOffset, /* Offset of first char of the command. */ int codeOffset) /* Offset of first byte of command code. */ { CmdLocation *cmdLocPtr; if ((cmdIndex < 0) || (cmdIndex >= envPtr->numCommands)) { Tcl_Panic("EnterCmdStartData: bad command index %d", cmdIndex); } if (cmdIndex >= envPtr->cmdMapEnd) { /* * Expand the command location array by allocating more storage from * the heap. The currently allocated CmdLocation entries are stored * from cmdMapPtr[0] up to cmdMapPtr[envPtr->cmdMapEnd] (inclusive). */ size_t currElems = envPtr->cmdMapEnd; size_t newElems = 2*currElems; size_t currBytes = currElems * sizeof(CmdLocation); size_t newBytes = newElems * sizeof(CmdLocation); if (envPtr->mallocedCmdMap) { envPtr->cmdMapPtr = (CmdLocation *) ckrealloc((char *) envPtr->cmdMapPtr, newBytes); } else { /* * envPtr->cmdMapPtr isn't a ckalloc'd pointer, so we must * code a ckrealloc equivalent for ourselves. */ CmdLocation *newPtr = (CmdLocation *) ckalloc((unsigned) newBytes); memcpy(newPtr, envPtr->cmdMapPtr, currBytes); envPtr->cmdMapPtr = newPtr; envPtr->mallocedCmdMap = 1; } envPtr->cmdMapEnd = newElems; } if (cmdIndex > 0) { if (codeOffset < envPtr->cmdMapPtr[cmdIndex-1].codeOffset) { Tcl_Panic("EnterCmdStartData: cmd map not sorted by code offset"); } } cmdLocPtr = &(envPtr->cmdMapPtr[cmdIndex]); cmdLocPtr->codeOffset = codeOffset; cmdLocPtr->srcOffset = srcOffset; cmdLocPtr->numSrcBytes = -1; cmdLocPtr->numCodeBytes = -1; } /* *---------------------------------------------------------------------- * * EnterCmdExtentData -- * * Registers the source and bytecode length for a command. This * information is used at runtime to map between instruction pc and * source locations. * * Results: * None. * * Side effects: * Inserts source and code length information into the compilation * environment envPtr for the command at index cmdIndex. Starting source * and bytecode information for the command must already have been * registered. * *---------------------------------------------------------------------- */ static void EnterCmdExtentData( CompileEnv *envPtr, /* Points to the compilation environment * structure in which to enter command * location information. */ int cmdIndex, /* Index of the command whose source and code * length data is being set. */ int numSrcBytes, /* Number of command source chars. */ int numCodeBytes) /* Offset of last byte of command code. */ { CmdLocation *cmdLocPtr; if ((cmdIndex < 0) || (cmdIndex >= envPtr->numCommands)) { Tcl_Panic("EnterCmdExtentData: bad command index %d", cmdIndex); } if (cmdIndex > envPtr->cmdMapEnd) { Tcl_Panic("EnterCmdExtentData: missing start data for command %d", cmdIndex); } cmdLocPtr = &(envPtr->cmdMapPtr[cmdIndex]); cmdLocPtr->numSrcBytes = numSrcBytes; cmdLocPtr->numCodeBytes = numCodeBytes; } /* *---------------------------------------------------------------------- * TIP #280 * * EnterCmdWordData -- * * Registers the lines for the words of a command. This information is * used at runtime by 'info frame'. * * Results: * None. * * Side effects: * Inserts word location information into the compilation environment * envPtr for the command at index cmdIndex. The compilation * environment's ExtCmdLoc.ECL array is grown if necessary. * *---------------------------------------------------------------------- */ static void EnterCmdWordData( ExtCmdLoc *eclPtr, /* Points to the map environment structure in * which to enter command location * information. */ int srcOffset, /* Offset of first char of the command. */ Tcl_Token *tokenPtr, const char *cmd, int len, int numWords, int line, int **wlines) { ECL *ePtr; const char *last; int wordIdx, wordLine, *wwlines; if (eclPtr->nuloc >= eclPtr->nloc) { /* * Expand the ECL array by allocating more storage from the heap. The * currently allocated ECL entries are stored from eclPtr->loc[0] up * to eclPtr->loc[eclPtr->nuloc-1] (inclusive). */ size_t currElems = eclPtr->nloc; size_t newElems = (currElems ? 2*currElems : 1); size_t newBytes = newElems * sizeof(ECL); eclPtr->loc = (ECL *) ckrealloc((char *)(eclPtr->loc), newBytes); eclPtr->nloc = newElems; } ePtr = &eclPtr->loc[eclPtr->nuloc]; ePtr->srcOffset = srcOffset; ePtr->line = (int *) ckalloc(numWords * sizeof(int)); ePtr->nline = numWords; wwlines = (int *) ckalloc(numWords * sizeof(int)); last = cmd; wordLine = line; for (wordIdx=0 ; wordIdxnumComponents + 1) { TclAdvanceLines(&wordLine, last, tokenPtr->start); wwlines[wordIdx] = (TclWordKnownAtCompileTime(tokenPtr, NULL) ? wordLine : -1); ePtr->line[wordIdx] = wordLine; last = tokenPtr->start; } *wlines = wwlines; eclPtr->nuloc ++; } /* *---------------------------------------------------------------------- * * TclCreateExceptRange -- * * Procedure that allocates and initializes a new ExceptionRange * structure of the specified kind in a CompileEnv. * * Results: * Returns the index for the newly created ExceptionRange. * * Side effects: * If there is not enough room in the CompileEnv's ExceptionRange array, * the array in expanded: a new array of double the size is allocated, if * envPtr->mallocedExceptArray is non-zero the old array is freed, and * ExceptionRange entries are copied from the old array to the new one. * *---------------------------------------------------------------------- */ int TclCreateExceptRange( ExceptionRangeType type, /* The kind of ExceptionRange desired. */ register CompileEnv *envPtr)/* Points to CompileEnv for which to create a * new ExceptionRange structure. */ { register ExceptionRange *rangePtr; int index = envPtr->exceptArrayNext; if (index >= envPtr->exceptArrayEnd) { /* * Expand the ExceptionRange array. The currently allocated entries * are stored between elements 0 and (envPtr->exceptArrayNext - 1) * [inclusive]. */ size_t currBytes = envPtr->exceptArrayNext * sizeof(ExceptionRange); int newElems = 2*envPtr->exceptArrayEnd; size_t newBytes = newElems * sizeof(ExceptionRange); if (envPtr->mallocedExceptArray) { envPtr->exceptArrayPtr = (ExceptionRange *) ckrealloc((char *)(envPtr->exceptArrayPtr), newBytes); } else { /* * envPtr->exceptArrayPtr isn't a ckalloc'd pointer, so we must * code a ckrealloc equivalent for ourselves. */ ExceptionRange *newPtr = (ExceptionRange *) ckalloc((unsigned) newBytes); memcpy(newPtr, envPtr->exceptArrayPtr, currBytes); envPtr->exceptArrayPtr = newPtr; envPtr->mallocedExceptArray = 1; } envPtr->exceptArrayEnd = newElems; } envPtr->exceptArrayNext++; rangePtr = &(envPtr->exceptArrayPtr[index]); rangePtr->type = type; rangePtr->nestingLevel = envPtr->exceptDepth; rangePtr->codeOffset = -1; rangePtr->numCodeBytes = -1; rangePtr->breakOffset = -1; rangePtr->continueOffset = -1; rangePtr->catchOffset = -1; return index; } /* *---------------------------------------------------------------------- * * TclCreateAuxData -- * * Procedure that allocates and initializes a new AuxData structure in a * CompileEnv's array of compilation auxiliary data records. These * AuxData records hold information created during compilation by * CompileProcs and used by instructions during execution. * * Results: * Returns the index for the newly created AuxData structure. * * Side effects: * If there is not enough room in the CompileEnv's AuxData array, the * AuxData array in expanded: a new array of double the size is * allocated, if envPtr->mallocedAuxDataArray is non-zero the old array * is freed, and AuxData entries are copied from the old array to the new * one. * *---------------------------------------------------------------------- */ int TclCreateAuxData( ClientData clientData, /* The compilation auxiliary data to store in * the new aux data record. */ AuxDataType *typePtr, /* Pointer to the type to attach to this * AuxData */ register CompileEnv *envPtr)/* Points to the CompileEnv for which a new * aux data structure is to be allocated. */ { int index; /* Index for the new AuxData structure. */ register AuxData *auxDataPtr; /* Points to the new AuxData structure */ index = envPtr->auxDataArrayNext; if (index >= envPtr->auxDataArrayEnd) { /* * Expand the AuxData array. The currently allocated entries are * stored between elements 0 and (envPtr->auxDataArrayNext - 1) * [inclusive]. */ size_t currBytes = envPtr->auxDataArrayNext * sizeof(AuxData); int newElems = 2*envPtr->auxDataArrayEnd; size_t newBytes = newElems * sizeof(AuxData); if (envPtr->mallocedAuxDataArray) { envPtr->auxDataArrayPtr = (AuxData *) ckrealloc((char *)(envPtr->auxDataArrayPtr), newBytes); } else { /* * envPtr->auxDataArrayPtr isn't a ckalloc'd pointer, so we must * code a ckrealloc equivalent for ourselves. */ AuxData *newPtr = (AuxData *) ckalloc((unsigned) newBytes); memcpy(newPtr, envPtr->auxDataArrayPtr, currBytes); envPtr->auxDataArrayPtr = newPtr; envPtr->mallocedAuxDataArray = 1; } envPtr->auxDataArrayEnd = newElems; } envPtr->auxDataArrayNext++; auxDataPtr = &(envPtr->auxDataArrayPtr[index]); auxDataPtr->clientData = clientData; auxDataPtr->type = typePtr; return index; } /* *---------------------------------------------------------------------- * * TclInitJumpFixupArray -- * * Initializes a JumpFixupArray structure to hold some number of jump * fixup entries. * * Results: * None. * * Side effects: * The JumpFixupArray structure is initialized. * *---------------------------------------------------------------------- */ void TclInitJumpFixupArray( register JumpFixupArray *fixupArrayPtr) /* Points to the JumpFixupArray structure to * initialize. */ { fixupArrayPtr->fixup = fixupArrayPtr->staticFixupSpace; fixupArrayPtr->next = 0; fixupArrayPtr->end = (JUMPFIXUP_INIT_ENTRIES - 1); fixupArrayPtr->mallocedArray = 0; } /* *---------------------------------------------------------------------- * * TclExpandJumpFixupArray -- * * Procedure that uses malloc to allocate more storage for a jump fixup * array. * * Results: * None. * * Side effects: * The jump fixup array in *fixupArrayPtr is reallocated to a new array * of double the size, and if fixupArrayPtr->mallocedArray is non-zero * the old array is freed. Jump fixup structures are copied from the old * array to the new one. * *---------------------------------------------------------------------- */ void TclExpandJumpFixupArray( register JumpFixupArray *fixupArrayPtr) /* Points to the JumpFixupArray structure * to enlarge. */ { /* * The currently allocated jump fixup entries are stored from fixup[0] up * to fixup[fixupArrayPtr->fixupNext] (*not* inclusive). We assume * fixupArrayPtr->fixupNext is equal to fixupArrayPtr->fixupEnd. */ size_t currBytes = fixupArrayPtr->next * sizeof(JumpFixup); int newElems = 2*(fixupArrayPtr->end + 1); size_t newBytes = newElems * sizeof(JumpFixup); if (fixupArrayPtr->mallocedArray) { fixupArrayPtr->fixup = (JumpFixup *) ckrealloc((char *)(fixupArrayPtr->fixup), newBytes); } else { /* * fixupArrayPtr->fixup isn't a ckalloc'd pointer, so we must * code a ckrealloc equivalent for ourselves. */ JumpFixup *newPtr = (JumpFixup *) ckalloc((unsigned) newBytes); memcpy(newPtr, fixupArrayPtr->fixup, currBytes); fixupArrayPtr->fixup = newPtr; fixupArrayPtr->mallocedArray = 1; } fixupArrayPtr->end = newElems; } /* *---------------------------------------------------------------------- * * TclFreeJumpFixupArray -- * * Free any storage allocated in a jump fixup array structure. * * Results: * None. * * Side effects: * Allocated storage in the JumpFixupArray structure is freed. * *---------------------------------------------------------------------- */ void TclFreeJumpFixupArray( register JumpFixupArray *fixupArrayPtr) /* Points to the JumpFixupArray structure to * free. */ { if (fixupArrayPtr->mallocedArray) { ckfree((char *) fixupArrayPtr->fixup); } } /* *---------------------------------------------------------------------- * * TclEmitForwardJump -- * * Procedure to emit a two-byte forward jump of kind "jumpType". Since * the jump may later have to be grown to five bytes if the jump target * is more than, say, 127 bytes away, this procedure also initializes a * JumpFixup record with information about the jump. * * Results: * None. * * Side effects: * The JumpFixup record pointed to by "jumpFixupPtr" is initialized with * information needed later if the jump is to be grown. Also, a two byte * jump of the designated type is emitted at the current point in the * bytecode stream. * *---------------------------------------------------------------------- */ void TclEmitForwardJump( CompileEnv *envPtr, /* Points to the CompileEnv structure that * holds the resulting instruction. */ TclJumpType jumpType, /* Indicates the kind of jump: if true or * false or unconditional. */ JumpFixup *jumpFixupPtr) /* Points to the JumpFixup structure to * initialize with information about this * forward jump. */ { /* * Initialize the JumpFixup structure: * - codeOffset is offset of first byte of jump below * - cmdIndex is index of the command after the current one * - exceptIndex is the index of the first ExceptionRange after the * current one. */ jumpFixupPtr->jumpType = jumpType; jumpFixupPtr->codeOffset = (envPtr->codeNext - envPtr->codeStart); jumpFixupPtr->cmdIndex = envPtr->numCommands; jumpFixupPtr->exceptIndex = envPtr->exceptArrayNext; switch (jumpType) { case TCL_UNCONDITIONAL_JUMP: TclEmitInstInt1(INST_JUMP1, 0, envPtr); break; case TCL_TRUE_JUMP: TclEmitInstInt1(INST_JUMP_TRUE1, 0, envPtr); break; default: TclEmitInstInt1(INST_JUMP_FALSE1, 0, envPtr); break; } } /* *---------------------------------------------------------------------- * * TclFixupForwardJump -- * * Procedure that updates a previously-emitted forward jump to jump a * specified number of bytes, "jumpDist". If necessary, the jump is grown * from two to five bytes; this is done if the jump distance is greater * than "distThreshold" (normally 127 bytes). The jump is described by a * JumpFixup record previously initialized by TclEmitForwardJump. * * Results: * 1 if the jump was grown and subsequent instructions had to be moved; * otherwise 0. This result is returned to allow callers to update any * additional code offsets they may hold. * * Side effects: * The jump may be grown and subsequent instructions moved. If this * happens, the code offsets for any commands and any ExceptionRange * records between the jump and the current code address will be updated * to reflect the moved code. Also, the bytecode instruction array in the * CompileEnv structure may be grown and reallocated. * *---------------------------------------------------------------------- */ int TclFixupForwardJump( CompileEnv *envPtr, /* Points to the CompileEnv structure that * holds the resulting instruction. */ JumpFixup *jumpFixupPtr, /* Points to the JumpFixup structure that * describes the forward jump. */ int jumpDist, /* Jump distance to set in jump instr. */ int distThreshold) /* Maximum distance before the two byte jump * is grown to five bytes. */ { unsigned char *jumpPc, *p; int firstCmd, lastCmd, firstRange, lastRange, k; unsigned int numBytes; if (jumpDist <= distThreshold) { jumpPc = (envPtr->codeStart + jumpFixupPtr->codeOffset); switch (jumpFixupPtr->jumpType) { case TCL_UNCONDITIONAL_JUMP: TclUpdateInstInt1AtPc(INST_JUMP1, jumpDist, jumpPc); break; case TCL_TRUE_JUMP: TclUpdateInstInt1AtPc(INST_JUMP_TRUE1, jumpDist, jumpPc); break; default: TclUpdateInstInt1AtPc(INST_JUMP_FALSE1, jumpDist, jumpPc); break; } return 0; } /* * We must grow the jump then move subsequent instructions down. Note that * if we expand the space for generated instructions, code addresses might * change; be careful about updating any of these addresses held in * variables. */ if ((envPtr->codeNext + 3) > envPtr->codeEnd) { TclExpandCodeArray(envPtr); } jumpPc = (envPtr->codeStart + jumpFixupPtr->codeOffset); numBytes = envPtr->codeNext-jumpPc-2; p = jumpPc+2; memmove(p+3, p, numBytes); envPtr->codeNext += 3; jumpDist += 3; switch (jumpFixupPtr->jumpType) { case TCL_UNCONDITIONAL_JUMP: TclUpdateInstInt4AtPc(INST_JUMP4, jumpDist, jumpPc); break; case TCL_TRUE_JUMP: TclUpdateInstInt4AtPc(INST_JUMP_TRUE4, jumpDist, jumpPc); break; default: TclUpdateInstInt4AtPc(INST_JUMP_FALSE4, jumpDist, jumpPc); break; } /* * Adjust the code offsets for any commands and any ExceptionRange records * between the jump and the current code address. */ firstCmd = jumpFixupPtr->cmdIndex; lastCmd = (envPtr->numCommands - 1); if (firstCmd < lastCmd) { for (k = firstCmd; k <= lastCmd; k++) { (envPtr->cmdMapPtr[k]).codeOffset += 3; } } firstRange = jumpFixupPtr->exceptIndex; lastRange = (envPtr->exceptArrayNext - 1); for (k = firstRange; k <= lastRange; k++) { ExceptionRange *rangePtr = &(envPtr->exceptArrayPtr[k]); rangePtr->codeOffset += 3; switch (rangePtr->type) { case LOOP_EXCEPTION_RANGE: rangePtr->breakOffset += 3; if (rangePtr->continueOffset != -1) { rangePtr->continueOffset += 3; } break; case CATCH_EXCEPTION_RANGE: rangePtr->catchOffset += 3; break; default: Tcl_Panic("TclFixupForwardJump: bad ExceptionRange type %d", rangePtr->type); } } return 1; /* the jump was grown */ } /* *---------------------------------------------------------------------- * * TclGetInstructionTable -- * * Returns a pointer to the table describing Tcl bytecode instructions. * This procedure is defined so that clients can access the pointer from * outside the TCL DLLs. * * Results: * Returns a pointer to the global instruction table, same as the * expression (&tclInstructionTable[0]). * * Side effects: * None. * *---------------------------------------------------------------------- */ void * /* == InstructionDesc* == */ TclGetInstructionTable(void) { return &tclInstructionTable[0]; } /* *-------------------------------------------------------------- * * TclRegisterAuxDataType -- * * This procedure is called to register a new AuxData type in the table * of all AuxData types supported by Tcl. * * Results: * None. * * Side effects: * The type is registered in the AuxData type table. If there was already * a type with the same name as in typePtr, it is replaced with the new * type. * *-------------------------------------------------------------- */ void TclRegisterAuxDataType( AuxDataType *typePtr) /* Information about object type; storage must * be statically allocated (must live forever; * will not be deallocated). */ { register Tcl_HashEntry *hPtr; int isNew; Tcl_MutexLock(&tableMutex); if (!auxDataTypeTableInitialized) { TclInitAuxDataTypeTable(); } /* * If there's already a type with the given name, remove it. */ hPtr = Tcl_FindHashEntry(&auxDataTypeTable, typePtr->name); if (hPtr != NULL) { Tcl_DeleteHashEntry(hPtr); } /* * Now insert the new object type. */ hPtr = Tcl_CreateHashEntry(&auxDataTypeTable, typePtr->name, &isNew); if (isNew) { Tcl_SetHashValue(hPtr, typePtr); } Tcl_MutexUnlock(&tableMutex); } /* *---------------------------------------------------------------------- * * TclGetAuxDataType -- * * This procedure looks up an Auxdata type by name. * * Results: * If an AuxData type with name matching "typeName" is found, a pointer * to its AuxDataType structure is returned; otherwise, NULL is returned. * * Side effects: * None. * *---------------------------------------------------------------------- */ AuxDataType * TclGetAuxDataType( char *typeName) /* Name of AuxData type to look up. */ { register Tcl_HashEntry *hPtr; AuxDataType *typePtr = NULL; Tcl_MutexLock(&tableMutex); if (!auxDataTypeTableInitialized) { TclInitAuxDataTypeTable(); } hPtr = Tcl_FindHashEntry(&auxDataTypeTable, typeName); if (hPtr != NULL) { typePtr = (AuxDataType *) Tcl_GetHashValue(hPtr); } Tcl_MutexUnlock(&tableMutex); return typePtr; } /* *-------------------------------------------------------------- * * TclInitAuxDataTypeTable -- * * This procedure is invoked to perform once-only initialization of the * AuxData type table. It also registers the AuxData types defined in * this file. * * Results: * None. * * Side effects: * Initializes the table of defined AuxData types "auxDataTypeTable" with * builtin AuxData types defined in this file. * *-------------------------------------------------------------- */ void TclInitAuxDataTypeTable(void) { /* * The table mutex must already be held before this routine is invoked. */ auxDataTypeTableInitialized = 1; Tcl_InitHashTable(&auxDataTypeTable, TCL_STRING_KEYS); /* * There are only two AuxData type at this time, so register them here. */ TclRegisterAuxDataType(&tclForeachInfoType); TclRegisterAuxDataType(&tclJumptableInfoType); } /* *---------------------------------------------------------------------- * * TclFinalizeAuxDataTypeTable -- * * This procedure is called by Tcl_Finalize after all exit handlers have * been run to free up storage associated with the table of AuxData * types. This procedure is called by TclFinalizeExecution() which is * called by Tcl_Finalize(). * * Results: * None. * * Side effects: * Deletes all entries in the hash table of AuxData types. * *---------------------------------------------------------------------- */ void TclFinalizeAuxDataTypeTable(void) { Tcl_MutexLock(&tableMutex); if (auxDataTypeTableInitialized) { Tcl_DeleteHashTable(&auxDataTypeTable); auxDataTypeTableInitialized = 0; } Tcl_MutexUnlock(&tableMutex); } /* *---------------------------------------------------------------------- * * GetCmdLocEncodingSize -- * * Computes the total number of bytes needed to encode the command * location information for some compiled code. * * Results: * The byte count needed to encode the compiled location information. * * Side effects: * None. * *---------------------------------------------------------------------- */ static int GetCmdLocEncodingSize( CompileEnv *envPtr) /* Points to compilation environment structure * containing the CmdLocation structure to * encode. */ { register CmdLocation *mapPtr = envPtr->cmdMapPtr; int numCmds = envPtr->numCommands; int codeDelta, codeLen, srcDelta, srcLen; int codeDeltaNext, codeLengthNext, srcDeltaNext, srcLengthNext; /* The offsets in their respective byte * sequences where the next encoded offset or * length should go. */ int prevCodeOffset, prevSrcOffset, i; codeDeltaNext = codeLengthNext = srcDeltaNext = srcLengthNext = 0; prevCodeOffset = prevSrcOffset = 0; for (i = 0; i < numCmds; i++) { codeDelta = (mapPtr[i].codeOffset - prevCodeOffset); if (codeDelta < 0) { Tcl_Panic("GetCmdLocEncodingSize: bad code offset"); } else if (codeDelta <= 127) { codeDeltaNext++; } else { codeDeltaNext += 5; /* 1 byte for 0xFF, 4 for positive delta */ } prevCodeOffset = mapPtr[i].codeOffset; codeLen = mapPtr[i].numCodeBytes; if (codeLen < 0) { Tcl_Panic("GetCmdLocEncodingSize: bad code length"); } else if (codeLen <= 127) { codeLengthNext++; } else { codeLengthNext += 5; /* 1 byte for 0xFF, 4 for length */ } srcDelta = (mapPtr[i].srcOffset - prevSrcOffset); if ((-127 <= srcDelta) && (srcDelta <= 127)) { srcDeltaNext++; } else { srcDeltaNext += 5; /* 1 byte for 0xFF, 4 for delta */ } prevSrcOffset = mapPtr[i].srcOffset; srcLen = mapPtr[i].numSrcBytes; if (srcLen < 0) { Tcl_Panic("GetCmdLocEncodingSize: bad source length"); } else if (srcLen <= 127) { srcLengthNext++; } else { srcLengthNext += 5; /* 1 byte for 0xFF, 4 for length */ } } return (codeDeltaNext + codeLengthNext + srcDeltaNext + srcLengthNext); } /* *---------------------------------------------------------------------- * * EncodeCmdLocMap -- * * Encode the command location information for some compiled code into a * ByteCode structure. The encoded command location map is stored as * three adjacent byte sequences. * * Results: * Pointer to the first byte after the encoded command location * information. * * Side effects: * The encoded information is stored into the block of memory headed by * codePtr. Also records pointers to the start of the four byte sequences * in fields in codePtr's ByteCode header structure. * *---------------------------------------------------------------------- */ static unsigned char * EncodeCmdLocMap( CompileEnv *envPtr, /* Points to compilation environment structure * containing the CmdLocation structure to * encode. */ ByteCode *codePtr, /* ByteCode in which to encode envPtr's * command location information. */ unsigned char *startPtr) /* Points to the first byte in codePtr's * memory block where the location information * is to be stored. */ { register CmdLocation *mapPtr = envPtr->cmdMapPtr; int numCmds = envPtr->numCommands; register unsigned char *p = startPtr; int codeDelta, codeLen, srcDelta, srcLen, prevOffset; register int i; /* * Encode the code offset for each command as a sequence of deltas. */ codePtr->codeDeltaStart = p; prevOffset = 0; for (i = 0; i < numCmds; i++) { codeDelta = (mapPtr[i].codeOffset - prevOffset); if (codeDelta < 0) { Tcl_Panic("EncodeCmdLocMap: bad code offset"); } else if (codeDelta <= 127) { TclStoreInt1AtPtr(codeDelta, p); p++; } else { TclStoreInt1AtPtr(0xFF, p); p++; TclStoreInt4AtPtr(codeDelta, p); p += 4; } prevOffset = mapPtr[i].codeOffset; } /* * Encode the code length for each command. */ codePtr->codeLengthStart = p; for (i = 0; i < numCmds; i++) { codeLen = mapPtr[i].numCodeBytes; if (codeLen < 0) { Tcl_Panic("EncodeCmdLocMap: bad code length"); } else if (codeLen <= 127) { TclStoreInt1AtPtr(codeLen, p); p++; } else { TclStoreInt1AtPtr(0xFF, p); p++; TclStoreInt4AtPtr(codeLen, p); p += 4; } } /* * Encode the source offset for each command as a sequence of deltas. */ codePtr->srcDeltaStart = p; prevOffset = 0; for (i = 0; i < numCmds; i++) { srcDelta = (mapPtr[i].srcOffset - prevOffset); if ((-127 <= srcDelta) && (srcDelta <= 127)) { TclStoreInt1AtPtr(srcDelta, p); p++; } else { TclStoreInt1AtPtr(0xFF, p); p++; TclStoreInt4AtPtr(srcDelta, p); p += 4; } prevOffset = mapPtr[i].srcOffset; } /* * Encode the source length for each command. */ codePtr->srcLengthStart = p; for (i = 0; i < numCmds; i++) { srcLen = mapPtr[i].numSrcBytes; if (srcLen < 0) { Tcl_Panic("EncodeCmdLocMap: bad source length"); } else if (srcLen <= 127) { TclStoreInt1AtPtr(srcLen, p); p++; } else { TclStoreInt1AtPtr(0xFF, p); p++; TclStoreInt4AtPtr(srcLen, p); p += 4; } } return p; } #ifdef TCL_COMPILE_DEBUG /* *---------------------------------------------------------------------- * * TclPrintByteCodeObj -- * * This procedure prints ("disassembles") the instructions of a bytecode * object to stdout. * * Results: * None. * * Side effects: * None. * *---------------------------------------------------------------------- */ void TclPrintByteCodeObj( Tcl_Interp *interp, /* Used only for Tcl_GetStringFromObj. */ Tcl_Obj *objPtr) /* The bytecode object to disassemble. */ { ByteCode *codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; unsigned char *codeStart, *codeLimit, *pc; unsigned char *codeDeltaNext, *codeLengthNext; unsigned char *srcDeltaNext, *srcLengthNext; int codeOffset, codeLen, srcOffset, srcLen, numCmds, delta, i; Interp *iPtr = (Interp *) *codePtr->interpHandle; if (codePtr->refCount <= 0) { return; /* already freed */ } codeStart = codePtr->codeStart; codeLimit = (codeStart + codePtr->numCodeBytes); numCmds = codePtr->numCommands; /* * Print header lines describing the ByteCode. */ fprintf(stdout, "\nByteCode 0x%p, refCt %u, epoch %u, interp 0x%p (epoch %u)\n", codePtr, codePtr->refCount, codePtr->compileEpoch, iPtr, iPtr->compileEpoch); fprintf(stdout, " Source "); TclPrintSource(stdout, codePtr->source, TclMin(codePtr->numSrcBytes, 55)); fprintf(stdout, "\n Cmds %d, src %d, inst %d, litObjs %u, aux %d, stkDepth %u, code/src %.2f\n", numCmds, codePtr->numSrcBytes, codePtr->numCodeBytes, codePtr->numLitObjects, codePtr->numAuxDataItems, codePtr->maxStackDepth, #ifdef TCL_COMPILE_STATS codePtr->numSrcBytes? codePtr->structureSize/(float)codePtr->numSrcBytes : #endif 0.0); #ifdef TCL_COMPILE_STATS fprintf(stdout, " Code %lu = header %lu+inst %d+litObj %lu+exc %lu+aux %lu+cmdMap %d\n", (unsigned long) codePtr->structureSize, (unsigned long) (sizeof(ByteCode) - (sizeof(size_t) + sizeof(Tcl_Time))), codePtr->numCodeBytes, (unsigned long) (codePtr->numLitObjects * sizeof(Tcl_Obj *)), (unsigned long) (codePtr->numExceptRanges * sizeof(ExceptionRange)), (unsigned long) (codePtr->numAuxDataItems * sizeof(AuxData)), codePtr->numCmdLocBytes); #endif /* TCL_COMPILE_STATS */ /* * If the ByteCode is the compiled body of a Tcl procedure, print * information about that procedure. Note that we don't know the * procedure's name since ByteCode's can be shared among procedures. */ if (codePtr->procPtr != NULL) { Proc *procPtr = codePtr->procPtr; int numCompiledLocals = procPtr->numCompiledLocals; fprintf(stdout, " Proc 0x%p, refCt %d, args %d, compiled locals %d\n", procPtr, procPtr->refCount, procPtr->numArgs, numCompiledLocals); if (numCompiledLocals > 0) { CompiledLocal *localPtr = procPtr->firstLocalPtr; for (i = 0; i < numCompiledLocals; i++) { fprintf(stdout, " slot %d%s%s%s%s%s%s", i, (localPtr->flags & (VAR_ARRAY|VAR_LINK)) ? "" : ", scalar", (localPtr->flags & VAR_ARRAY) ? ", array" : "", (localPtr->flags & VAR_LINK) ? ", link" : "", (localPtr->flags & VAR_ARGUMENT) ? ", arg" : "", (localPtr->flags & VAR_TEMPORARY) ? ", temp" : "", (localPtr->flags & VAR_RESOLVED) ? ", resolved" : ""); if (TclIsVarTemporary(localPtr)) { fprintf(stdout, "\n"); } else { fprintf(stdout, ", \"%s\"\n", localPtr->name); } localPtr = localPtr->nextPtr; } } } /* * Print the ExceptionRange array. */ if (codePtr->numExceptRanges > 0) { fprintf(stdout, " Exception ranges %d, depth %d:\n", codePtr->numExceptRanges, codePtr->maxExceptDepth); for (i = 0; i < codePtr->numExceptRanges; i++) { ExceptionRange *rangePtr = &(codePtr->exceptArrayPtr[i]); fprintf(stdout, " %d: level %d, %s, pc %d-%d, ", i, rangePtr->nestingLevel, (rangePtr->type==LOOP_EXCEPTION_RANGE ? "loop" : "catch"), rangePtr->codeOffset, (rangePtr->codeOffset + rangePtr->numCodeBytes - 1)); switch (rangePtr->type) { case LOOP_EXCEPTION_RANGE: fprintf(stdout, "continue %d, break %d\n", rangePtr->continueOffset, rangePtr->breakOffset); break; case CATCH_EXCEPTION_RANGE: fprintf(stdout, "catch %d\n", rangePtr->catchOffset); break; default: Tcl_Panic("TclPrintByteCodeObj: bad ExceptionRange type %d", rangePtr->type); } } } /* * If there were no commands (e.g., an expression or an empty string was * compiled), just print all instructions and return. */ if (numCmds == 0) { pc = codeStart; while (pc < codeLimit) { fprintf(stdout, " "); pc += TclPrintInstruction(codePtr, pc); } return; } /* * Print table showing the code offset, source offset, and source length * for each command. These are encoded as a sequence of bytes. */ fprintf(stdout, " Commands %d:", numCmds); codeDeltaNext = codePtr->codeDeltaStart; codeLengthNext = codePtr->codeLengthStart; srcDeltaNext = codePtr->srcDeltaStart; srcLengthNext = codePtr->srcLengthStart; codeOffset = srcOffset = 0; for (i = 0; i < numCmds; i++) { if ((unsigned int) (*codeDeltaNext) == (unsigned int) 0xFF) { codeDeltaNext++; delta = TclGetInt4AtPtr(codeDeltaNext); codeDeltaNext += 4; } else { delta = TclGetInt1AtPtr(codeDeltaNext); codeDeltaNext++; } codeOffset += delta; if ((unsigned int) (*codeLengthNext) == (unsigned int) 0xFF) { codeLengthNext++; codeLen = TclGetInt4AtPtr(codeLengthNext); codeLengthNext += 4; } else { codeLen = TclGetInt1AtPtr(codeLengthNext); codeLengthNext++; } if ((unsigned int) (*srcDeltaNext) == (unsigned int) 0xFF) { srcDeltaNext++; delta = TclGetInt4AtPtr(srcDeltaNext); srcDeltaNext += 4; } else { delta = TclGetInt1AtPtr(srcDeltaNext); srcDeltaNext++; } srcOffset += delta; if ((unsigned int) (*srcLengthNext) == (unsigned int) 0xFF) { srcLengthNext++; srcLen = TclGetInt4AtPtr(srcLengthNext); srcLengthNext += 4; } else { srcLen = TclGetInt1AtPtr(srcLengthNext); srcLengthNext++; } fprintf(stdout, "%s%4d: pc %d-%d, src %d-%d", ((i % 2)? " " : "\n "), (i+1), codeOffset, (codeOffset + codeLen - 1), srcOffset, (srcOffset + srcLen - 1)); } if (numCmds > 0) { fprintf(stdout, "\n"); } /* * Print each instruction. If the instruction corresponds to the start of * a command, print the command's source. Note that we don't need the code * length here. */ codeDeltaNext = codePtr->codeDeltaStart; srcDeltaNext = codePtr->srcDeltaStart; srcLengthNext = codePtr->srcLengthStart; codeOffset = srcOffset = 0; pc = codeStart; for (i = 0; i < numCmds; i++) { if ((unsigned int) (*codeDeltaNext) == (unsigned int) 0xFF) { codeDeltaNext++; delta = TclGetInt4AtPtr(codeDeltaNext); codeDeltaNext += 4; } else { delta = TclGetInt1AtPtr(codeDeltaNext); codeDeltaNext++; } codeOffset += delta; if ((unsigned int) (*srcDeltaNext) == (unsigned int) 0xFF) { srcDeltaNext++; delta = TclGetInt4AtPtr(srcDeltaNext); srcDeltaNext += 4; } else { delta = TclGetInt1AtPtr(srcDeltaNext); srcDeltaNext++; } srcOffset += delta; if ((unsigned int) (*srcLengthNext) == (unsigned int) 0xFF) { srcLengthNext++; srcLen = TclGetInt4AtPtr(srcLengthNext); srcLengthNext += 4; } else { srcLen = TclGetInt1AtPtr(srcLengthNext); srcLengthNext++; } /* * Print instructions before command i. */ while ((pc-codeStart) < codeOffset) { fprintf(stdout, " "); pc += TclPrintInstruction(codePtr, pc); } fprintf(stdout, " Command %d: ", (i+1)); TclPrintSource(stdout, (codePtr->source + srcOffset), TclMin(srcLen, 55)); fprintf(stdout, "\n"); } if (pc < codeLimit) { /* * Print instructions after the last command. */ while (pc < codeLimit) { fprintf(stdout, " "); pc += TclPrintInstruction(codePtr, pc); } } } /* *---------------------------------------------------------------------- * * TclPrintInstruction -- * * This procedure prints ("disassembles") one instruction from a bytecode * object to stdout. * * Results: * Returns the length in bytes of the current instruiction. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclPrintInstruction( ByteCode *codePtr, /* Bytecode containing the instruction. */ unsigned char *pc) /* Points to first byte of instruction. */ { Proc *procPtr = codePtr->procPtr; unsigned char opCode = *pc; register InstructionDesc *instDesc = &tclInstructionTable[opCode]; unsigned char *codeStart = codePtr->codeStart; unsigned int pcOffset = (pc - codeStart); int opnd, i, j, numBytes = 1; int localCt = procPtr ? procPtr->numCompiledLocals : 0; CompiledLocal *localPtr = procPtr ? procPtr->firstLocalPtr : NULL; char suffixBuffer[64]; /* Additional info to print after main opcode * and immediates. */ char *suffixSrc = NULL; Tcl_Obj *suffixObj = NULL; AuxData *auxPtr = NULL; suffixBuffer[0] = '\0'; fprintf(stdout, "(%u) %s ", pcOffset, instDesc->name); for (i = 0; i < instDesc->numOperands; i++) { switch (instDesc->opTypes[i]) { case OPERAND_INT1: opnd = TclGetInt1AtPtr(pc+numBytes); numBytes++; if (opCode == INST_JUMP1 || opCode == INST_JUMP_TRUE1 || opCode == INST_JUMP_FALSE1) { sprintf(suffixBuffer, "pc %u", pcOffset+opnd); } fprintf(stdout, "%+d ", opnd); break; case OPERAND_INT4: opnd = TclGetInt4AtPtr(pc+numBytes); numBytes += 4; if (opCode == INST_JUMP4 || opCode == INST_JUMP_TRUE4 || opCode == INST_JUMP_FALSE4) { sprintf(suffixBuffer, "pc %u", pcOffset+opnd); } else if (opCode == INST_START_CMD) { sprintf(suffixBuffer, "next cmd at pc %u", pcOffset+opnd); } fprintf(stdout, "%+d ", opnd); break; case OPERAND_UINT1: opnd = TclGetUInt1AtPtr(pc+numBytes); numBytes++; if (opCode == INST_PUSH1) { suffixObj = codePtr->objArrayPtr[opnd]; } fprintf(stdout, "%u ", (unsigned int) opnd); break; case OPERAND_AUX4: case OPERAND_UINT4: opnd = TclGetUInt4AtPtr(pc+numBytes); numBytes += 4; if (opCode == INST_PUSH4) { suffixObj = codePtr->objArrayPtr[opnd]; } else if (opCode == INST_START_CMD && opnd != 1) { sprintf(suffixBuffer, ", %u cmds start here", opnd); } fprintf(stdout, "%u ", (unsigned int) opnd); if (instDesc->opTypes[i] == OPERAND_AUX4) { auxPtr = &codePtr->auxDataArrayPtr[opnd]; } break; case OPERAND_IDX4: opnd = TclGetInt4AtPtr(pc+numBytes); numBytes += 4; if (opnd >= -1) { fprintf(stdout, "%d ", opnd); } else if (opnd == -2) { fprintf(stdout, "end "); } else { fprintf(stdout, "end-%d ", -2-opnd); } break; case OPERAND_LVT1: opnd = TclGetUInt1AtPtr(pc+numBytes); numBytes++; goto printLVTindex; case OPERAND_LVT4: opnd = TclGetUInt4AtPtr(pc+numBytes); numBytes += 4; printLVTindex: if (localPtr != NULL) { if (opnd >= localCt) { Tcl_Panic("TclPrintInstruction: bad local var index %u (%u locals)", (unsigned int) opnd, localCt); } for (j = 0; j < opnd; j++) { localPtr = localPtr->nextPtr; } if (TclIsVarTemporary(localPtr)) { sprintf(suffixBuffer, "temp var %u", (unsigned) opnd); } else { sprintf(suffixBuffer, "var "); suffixSrc = localPtr->name; } } fprintf(stdout, "%%v%u ", (unsigned) opnd); break; case OPERAND_NONE: default: break; } } if (suffixObj) { fprintf(stdout, "\t# "); TclPrintObject(stdout, codePtr->objArrayPtr[opnd], 40); } else if (suffixBuffer[0]) { fprintf(stdout, "\t# %s", suffixBuffer); if (suffixSrc) { TclPrintSource(stdout, suffixSrc, 40); } } fprintf(stdout, "\n"); if (auxPtr && auxPtr->type->printProc) { fprintf(stdout, "\t\t["); auxPtr->type->printProc(auxPtr->clientData, codePtr, pcOffset); fprintf(stdout, "]\n"); } return numBytes; } /* *---------------------------------------------------------------------- * * TclPrintObject -- * * This procedure prints up to a specified number of characters from the * argument Tcl object's string representation to a specified file. * * Results: * None. * * Side effects: * Outputs characters to the specified file. * *---------------------------------------------------------------------- */ void TclPrintObject( FILE *outFile, /* The file to print the source to. */ Tcl_Obj *objPtr, /* Points to the Tcl object whose string * representation should be printed. */ int maxChars) /* Maximum number of chars to print. */ { char *bytes; int length; bytes = Tcl_GetStringFromObj(objPtr, &length); TclPrintSource(outFile, bytes, TclMin(length, maxChars)); } /* *---------------------------------------------------------------------- * * TclPrintSource -- * * This procedure prints up to a specified number of characters from the * argument string to a specified file. It tries to produce legible * output by adding backslashes as necessary. * * Results: * None. * * Side effects: * Outputs characters to the specified file. * *---------------------------------------------------------------------- */ void TclPrintSource( FILE *outFile, /* The file to print the source to. */ const char *stringPtr, /* The string to print. */ int maxChars) /* Maximum number of chars to print. */ { register const char *p; register int i = 0; if (stringPtr == NULL) { fprintf(outFile, "\"\""); return; } fprintf(outFile, "\""); p = stringPtr; for (; (*p != '\0') && (i < maxChars); p++, i++) { switch (*p) { case '"': fprintf(outFile, "\\\""); continue; case '\f': fprintf(outFile, "\\f"); continue; case '\n': fprintf(outFile, "\\n"); continue; case '\r': fprintf(outFile, "\\r"); continue; case '\t': fprintf(outFile, "\\t"); continue; case '\v': fprintf(outFile, "\\v"); continue; default: fprintf(outFile, "%c", *p); continue; } } fprintf(outFile, "\""); } #endif /* TCL_COMPILE_DEBUG */ #ifdef TCL_COMPILE_STATS /* *---------------------------------------------------------------------- * * RecordByteCodeStats -- * * Accumulates various compilation-related statistics for each newly * compiled ByteCode. Called by the TclInitByteCodeObj when Tcl is * compiled with the -DTCL_COMPILE_STATS flag * * Results: * None. * * Side effects: * Accumulates aggregate code-related statistics in the interpreter's * ByteCodeStats structure. Records statistics specific to a ByteCode in * its ByteCode structure. * *---------------------------------------------------------------------- */ void RecordByteCodeStats( ByteCode *codePtr) /* Points to ByteCode structure with info * to add to accumulated statistics. */ { Interp *iPtr = (Interp *) *codePtr->interpHandle; register ByteCodeStats *statsPtr = &(iPtr->stats); statsPtr->numCompilations++; statsPtr->totalSrcBytes += (double) codePtr->numSrcBytes; statsPtr->totalByteCodeBytes += (double) codePtr->structureSize; statsPtr->currentSrcBytes += (double) codePtr->numSrcBytes; statsPtr->currentByteCodeBytes += (double) codePtr->structureSize; statsPtr->srcCount[TclLog2(codePtr->numSrcBytes)]++; statsPtr->byteCodeCount[TclLog2((int)(codePtr->structureSize))]++; statsPtr->currentInstBytes += (double) codePtr->numCodeBytes; statsPtr->currentLitBytes += (double) codePtr->numLitObjects * sizeof(Tcl_Obj *); statsPtr->currentExceptBytes += (double) codePtr->numExceptRanges * sizeof(ExceptionRange); statsPtr->currentAuxBytes += (double) codePtr->numAuxDataItems * sizeof(AuxData); statsPtr->currentCmdMapBytes += (double) codePtr->numCmdLocBytes; } #endif /* TCL_COMPILE_STATS */ /* * Local Variables: * mode: c * c-basic-offset: 4 * fill-column: 78 * End: */